
Academic Editors: Heng Lian and

Manuel Alberto M. Ferreira

Received: 23 July 2025

Revised: 3 September 2025

Accepted: 5 September 2025

Published: 14 September 2025

Citation: Tang, M.-L.; Wu, Q.; Chow,

D.H.-S.; Tian, G.-L. Variant Poisson

Item Count Technique with Non-

Compliance. Mathematics 2025, 13,

2973. https://doi.org/10.3390/

math13182973

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Variant Poisson Item Count Technique with Non-Compliance †

Man-Lai Tang 1 , Qin Wu 2,*, Daisy Hoi-Sze Chow 3 and Guo-Liang Tian 4

1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB, UK;
m.l.tang@herts.ac.uk

2 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
3 Cheers Psychological Consultancy Services, Hong Kong, China; daisychowuk@gmail.com
4 Department of Statistics and Data Science, Southern University of Science and Technology,

Shenzhen 518055, China; tiangl@sustech.edu.cn
* Correspondence: wuqin@m.scnu.edu.cn
† This paper is an extension version of our paper published in 33rd International Workshop of Statistical

Modelling, Bristol, UK, 16–20 July 2018; pp. 161–164.

Abstract

In this article, we propose a variant Poisson item count technique (VPICT) that explicitly
accounts for respondent non-compliance in surveys involving sensitive questions. Unlike
the existing Poisson item count technique (PICT), the proposed VPICT (i) replaces the
sensitive item with a triangular model that combines the sensitive and an additional non-
sensitive item; (ii) utilizes data from both control and treatment groups to estimate the
prevalence of the sensitive characteristic, thereby improving the accuracy and efficiency
of parameter estimation; and (iii) limits the occurrence of the floor effect to cases where
the respondent neither possesses the sensitive characteristic nor meets the non-sensitive
condition, thus protecting a subset of respondents from privacy breaches. The method
introduces a mechanism to estimate the rate of non-compliance alongside the sensitive
trait, enhancing overall estimation reliability. We present the complete methodological
framework, including survey design, parameter estimation via the EM algorithm, and
hypothesis testing procedures. Extensive simulation studies are conducted to evaluate
performance under various settings. The practical utility of the proposed approach is
demonstrated through an application to real-world survey data on illegal drug use among
high school students.

Keywords: Poisson item count technique; non-compliance; EM algorithm; hypothesis test;
stochastic representation

MSC: 62K99

1. Introduction
Accurate data collection and analysis in surveys involving sensitive or stigmatizing

behaviors remain a persistent challenge in social science, public health, and behavioral
research. When participants are asked directly about private or potentially incriminating
information—such as illicit behavior, socially undesirable actions, or taboo personal expe-
riences—they often respond in ways that align with perceived social norms rather than
disclosing the truth. This response bias seriously compromises the validity of prevalence
estimates and can distort the results of any subsequent analysis. For instance, van der
Heijden et al. [1] reported that only 19% of respondents who had committed welfare or
unemployment benefit fraud admitted doing so when asked directly, despite confidentiality
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assurances. Such reluctance to reveal sensitive truths reflects the deeply rooted social pres-
sures and privacy concerns that respondents face, leading to substantial underreporting
and biased findings.

To mitigate this issue and enhance the reliability of survey responses, a number of
indirect questioning techniques have been developed. Among the most established is the
randomized response (RR) technique, introduced by Warner [2]. This method involves
using a randomizing device, such as a coin flip or a random number generator, to determine
how a respondent should answer a question—either truthfully or following a pre-specified
rule—thereby introducing a controlled level of uncertainty that protects individual privacy
while still allowing for unbiased population-level estimates. Extensions and refinements
of the RR method have been widely explored in the literature, offering sophisticated
mechanisms for maintaining anonymity while improving response accuracy.

In more recent years, non-randomized response (NRR) techniques have gained atten-
tion as viable alternatives that avoid the use of randomizing devices altogether. Instead,
these designs incorporate a non-sensitive question alongside a sensitive one in a strategic
manner, such that the response to the composite query does not reveal which component
triggered the answer. This innovation allows for the preservation of respondent confiden-
tiality while reducing administrative complexity. Yu et al. [3] provide an excellent overview
of NRR techniques, highlighting their advantages and limitations in practical settings.

Another influential method in this domain is the item count technique (ICT) [4], also
known as the unmatched count technique or block total response method [5]. Under ICT,
participants are randomly assigned to either a control group or a treatment group. Both
groups receive a list of innocuous yes/no questions, but the treatment group’s list includes
one additional sensitive question. Rather than answering each question individually,
respondents report only the total number of “yes” answers. The difference in mean totals
between the two groups is then used to estimate the prevalence of the sensitive attribute.
ICT offers several advantages: it is simple to administer, easy to explain to respondents,
and effectively conceals individual responses to sensitive items.

Despite its intuitive appeal and growing popularity, ICT has several important draw-
backs [6]. One of the most significant is the presence of ceiling and floor effects. If a
respondent in the treatment group answers “yes” to all questions, they may be identifiable
as possessing the sensitive attribute, potentially compromising anonymity. Similarly, if
a respondent in either group answers “no” to all questions, it may be inferred that they
do not possess the sensitive attribute. These vulnerabilities can discourage respondents
from answering truthfully and may even lead to non-compliance, particularly among those
with the sensitive trait who fear disclosure. Additionally, ICT lacks standard guidelines
for determining the number and composition of non-sensitive items, and it often assumes
independence and known prevalence of these items—assumptions that may not hold in
real-world applications.

Moreover, like many other indirect questioning techniques, ICT and its variants gener-
ally assume that respondents comply fully with the survey design and answer honestly.
This so-called “no-liar” assumption is often unrealistic. Even under RR conditions, it
was reported that fewer than 52% of those who admitted to fraud when protected by
randomization were truthful, indicating a significant level of residual dishonesty [1] . Wu
and Tang [7] showed that failure to model non-compliance in NRR contexts could lead
to substantial underestimation of the true prevalence of sensitive behaviors, such as pre-
marital sex. Recognizing the seriousness of this issue, a growing body of research has
attempted to model deliberate underreporting as a form of self-protective behavior. For
example, Böckenholt and van der Heijden [8] proposed a mixture model that accounts
for non-cooperative respondents in RR surveys. Similarly, Cruyff et al. [9] introduced a
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log-linear randomized response model capable of measuring self-protective tendencies. In
the NRR setting, Wu and Tang [7] incorporated an explicit non-compliance parameter to
improve estimation accuracy.

The Poisson item count technique (denoted as PICT) was recently introduced as a vari-
ant of ICT to address the ceiling effect by assuming that the total number of “yes” answers
follows a Poisson distribution [10]. This refinement enhances privacy protection, particu-
larly for respondents with the sensitive attribute. However, the PICT still does not account
for the floor effect and continues to rely on the assumption that all respondents comply
with the survey instructions. In this setting, a response of zero can unambiguously identify
a participant as not having the sensitive trait, which may prompt those who do possess
the attribute to falsely report a zero in order to avoid exposure. Consequently, deliberate
underreporting persists, and the resulting parameter estimates are biased and unreliable.

To address these challenges, we propose a novel method called the variant Poisson item
count technique (denoted as VPICT). Our method extends the existing PICT by explicitly
modeling respondent non-compliance. Specifically, we assume that individuals with the
sensitive characteristic may choose to falsely report zero—denying their attribute—due
to feelings of guilt, fear, or a desire to conform to social expectations. We introduce a non-
compliance parameter, denoted by θ, which represents the probability that a respondent
with the sensitive trait will misreport. Conversely, respondents who do not possess the
sensitive attribute are assumed to comply with the survey protocol and respond truthfully.
This modeling framework allows for more accurate estimation of the true prevalence of
sensitive attributes and provides valuable insights into the extent of self-protective behavior
among respondents.

The structure of this paper is as follows. In Section 2, we present the survey design and
derive the maximum likelihood estimators for the model parameters. Section 3 develops
hypothesis tests for both the target prevalence and the non-compliance rate. Section 4
reports the results of simulation studies designed to evaluate the statistical performance
of our proposed method under various scenarios. In Section 5, we apply the VPICT to
real-world survey data concerning illegal drug use among high school students to illustrate
its practical utility. Finally, Section 6 offers concluding remarks and discusses potential
avenues for further research.

2. Variant Poisson Item Count Techniques with Non-Compliance
In this section, we will propose a variant of the existing Poisson ICT (i.e., VPICT)

which allows the estimation of the target proportion in the presence of the non-compliance
assumption. Point as well as confidence interval estimation will be developed.

2.1. Survey Design

Assume that the sensitive question of interest is binary (e.g., whether the respondent
has ever used illegal drugs in the past 30 days), and our objective is to estimate the
prevalence of this sensitive characteristic in the presence of non-compliance. To this
end, let n1 and n2 respondents be randomly assigned to the first and second groups,
respectively, where n = n1 + n2. All n respondents are instructed to answer the following
non-sensitive question:

(1) How many times did you travel abroad last year?
In addition, respondents in the first group (n1 individuals) are required to answer:
(2) If you were born between January and March and you have never used illegal

drugs in the past 30 days (i.e., you do not possess the sensitive characteristic), answer 0;
otherwise, answer 1.

Similarly, respondents in the second group (n2 individuals) are instructed:
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(2) If you were born between April and December and you have never used illegal
drugs in the past 30 days, answer 0; otherwise, answer 1.

Finally, all respondents are asked to report only the sum of their answers to questions
(1) and (2). For example, a respondent born in January who has never used illegal drugs in
the past 30 days and traveled abroad four times last year would report a total of 4 in the
first group and 5 in the second group.

In this design, the response to the first question (i.e., the number of trips abroad) is
modeled as a count variable X ∈ 0, 1, . . ., assumed to follow a Poisson distribution with
parameter λ. In the second question, the non-sensitive binary variable (birth month),
denoted by W, is assumed independent of the sensitive binary variable Z (whether the
respondent has ever used illegal drugs in the past 30 days). Specifically, W = 1 indicates
birth between April and December, and W = 0 otherwise. The probability p = Pr(W = 1)
is assumed known.

Let Z denote the sensitive characteristic, where Z = 1 if the respondent has used
illegal drugs in the past 30 days and Z = 0 otherwise. We assume Z ∼ Bernoulli (π),
where π = Pr(Z = 1) is the unknown parameter of interest. However, some respondents
may provide a dishonest answer of 0 with probability θ, in order to conceal the sensitive
behavior and project a socially desirable image.

To account for this non-compliance, we introduce a binary variable U, where U = 1
indicates non-compliance. We let Q(i) denote the response to the second question for group
i, where i = 1 corresponds to the first group and i = 2 to the second group. Note that
U and Z are not independent. Specifically, θ = Pr(U = 1 | Z = 1). Here, we assume a
respondent will always (i) comply with the design if (s)he does not possess the sensitive
characteristic (i.e., Pr(U = 1 | Z = 0) = 0), and (ii) choose the safe answer if (s)he does not
comply with the design (i.e., Pr(Q(i) = 0 | U = 1) = 1, i = 1, 2). Therefore, a respondent
born in January who has used illegal drugs in the past 30 days, traveled abroad four times
last year, and belonged to the first group would report a total of 5 if he complied with the
instruction, or 4 if he refused to comply with the instruction.

It is noteworthy that Wu et al. [11] proposed another PICT which accounts for non-
compliance (denoted as PICTNC). However, our proposed VPICT differs from PICTNC
(and also PICT) in three key aspects. First, while PICTNC incorporates only the Poisson
count question (i.e., X) and the sensitive question (i.e., Z), the VPICT additionally introduces
a non-sensitive question (i.e., W or its complement), which is combined with the sensitive
question. This modification is indeed a combination of the PICT and the triangular model
in [3]. That is, the proposed method uses the PICT’s way of asking respondents the answer
to the non-sensitive Poisson item and adds the idea of the triangular model of combining
sensitive and non-sensitive items. Second, in PICTNC, the control group is asked to respond
only to the Poisson count question (X), whereas the treatment group is required to report
the sum of the Poisson count and the sensitive question (X + Z). Consequently, the control
group only contributes to the estimation of the Poisson parameter (λ), resulting in a less
efficient estimation of the prevalence of the sensitive characteristic (π). In contrast, VPICT
utilizes the sensitive question in the first and second groups, allowing all respondents
to contribute information for the estimation of π. This integrated design improves the
efficiency of the estimator for π. Third, under the PICT(NC), if a respondent in the treatment
group’s truthful answers to all of the items are negative, then the final answer is zero, which
reveals the non-possession of the sensitive characteristic (i.e., floor effect). Under VPICT,
the floor effect occurs only when the respondent does not have the sensitive characteristic
AND fulfils the non-sensitive condition. As a result, a portion of the respondents who do
not possess the sensitive characteristic will be protected from the floor effect.
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2.2. Point Estimate

Let the observed data in the first and second groups be y(1)1 , . . . , y(1)n1 and y(2)1 , . . . , y(2)n2 ,
respectively. It is easy to show that (see Appendix A)

Y(1) = X + [1 − (1 − Z)(1 − W)](1 − U), and

Y(2) = X + [1 − (1 − Z)W](1 − U)
(1)

We first derive the method of moment estimate (MOME) (denoted as π̂MOM) for π.
For this purpose, we note that (see Appendix A)

E(Y(1)) = λ + 1 − [(1 − p)(1 − π) + πθ], and

E(Y(2)) = λ + 1 − [p(1 − π) + πθ].

It is easy to see that

π̂MOM = 1 − ȳ(1) − ȳ(2)

2p − 1
.

However, the method of moment estimate may occasionally yield values outside the

admissible interval [0, 1] if ȳ(2)−ȳ(1)
1−2p < 0 or ȳ(2)−ȳ(1)

1−2p > 1. This often occurs especially when
the true parameter is close to its boundaries (i.e., 0 or 1).

To overcome the above issue, we consider the maximum likelihood estimate (MLE).
For this purpose, we assume the first m1 and m2 observations in the first and second groups
are 0, respectively, and notice that the observed likelihood function is

L(π, θ, λ|Yobs) =
{

e−λ[(1 − p)(1 − π) + πθ]
}m1 ×

{
e−λ[p(1 − π) + πθ]

}m2

×
n1

∏
i=m1+1

 e−λλy(1)i

y(1)i !
[(1 − p)(1 − π) + πθ] +

e−λλy(1)−1
i

(y(1)i − 1)!
[p(1 − π) + π(1 − θ)]


×

n2

∏
i=m2+1

 e−λλy(2)i

y(2)i !
[p(1 − π) + πθ] +

e−λλy(2)−1
i

(y(2)i − 1)!
[(1 − p)(1 − π) + π(1 − θ)]

.

(2)

It is easy to observe that there is no closed-form solution for the target parameter
π. Here, we will develop the EM algorithm to obtain the MLEs. First, we introduce the
missing data Ymis = {{x(1)j , z(1)j , u(1)

j }n1
j=1; {x(2)j , z(2)j , u(2)

j }n2
j=1} with {x(1)j }, {x(2)j } being

the answers to the counting question in the first and second group respectively, {z(1)j } and

{z(2)j } being the answers to the sensitive question in the first and second group respectively,

and {u(1)
j } and {u(2)

j } being the non-compliance variables.
The likelihood function based on the complete observation is:

L(π, θ, λ|Ycom) =
n1

∏
i=1

 e−λλx(1)i

x(1)i !
(πθ)z(1)i u(1)

i (1 − π)1−z(1)i [π(1 − θ)]z
(1)
i (1−u(1)

i )


×

n2

∏
i=1

 e−λλx(2)i

x(2)i !
(πθ)z(2)i u(2)

i (1 − π)1−z(2)i [π(1 − θ)]z
(2)
i (1−u(2)

i )


and the log-likelihood is then
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ℓ = c +
n1

∑
i=1

[
−λ + x(1)i log λ + z(1)i log π + (1 − z(1)i ) log(1 − π) + z(1)i u(1)

i log(θ)

+z(1)i (1 − u(1)
i ) log(1 − θ)

]
+

n2

∑
i=1

[
−λ + x(2)i log λ + z(2)i log π + (1 − z(2)i ) log(1 − π) + z(2)i u(2)

i log(θ)

+z(2)i (1 − u(2)
i ) log(1 − θ)

]
,

where c is a constant.
The M step calculates the MLEs based on the complete likelihood and yields

π =
∑n1

i=1 z(1)i + ∑n2
i=1 z(2)i

n1 + n2
,

θ =
∑n1

i=1 z(1)i u(1)
i + ∑n2

i=1 z(2)i u(2)
i

∑n1
i=1 z(1)i + ∑n2

i=1 z(2)i

, and

λ =
∑n1

i=1 x(1)i + ∑n2
i=1 x(2)i

n1 + n2
.

(3)

The E step finds the conditional expectation and gives

E(X(1)
i |y(1)i ) =

y(1)i (y(1)i − 1)[π(1 − θ) + p(1 − π)] + y(1)i λ[πθ + (1 − p)(1 − π)]

y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]
,

E(X(2)
i |y(2)i ) =

y(2)i (y(2)i − 1)[π(1 − θ) + (1 − p)(1 − π)] + y(2)i λ[πθ + p(1 − π)]

y(2)i [π(1 − θ) + (1 − p)(1 − π)] + λ[πθ + p(1 − π)]
,

E(Z(1)
i |y(1)i ) =

π
[
y(1)i (1 − θ) + λθ

]
y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]

,

E(Z(2)
i |y(2)i ) =

π
[
y(2)i (1 − θ) + λθ

]
y(2)i [π(1 − θ) + (1 − p)(1 − π)] + λ[πθ + p(1 − π)]

,

E(U(1)
i |y(1)i ) =

πλθ

y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]
, and

E(U(2)
i |y(2)i ) =

πλθ

y(2)i [π(1 − θ) + (1 − p)(1 − π)] + λ[πθ + p(1 − π)]
.

(4)

The derivations of the E and M steps are presented in Appendix B. Here, we use the MOME
as the initial value and repeat the E and M steps until the estimates converge.

2.3. Confidence Interval Estimate

Let γ̂ = (π̂, θ̂, λ̂) be the MLEs of γ = (π, θ, λ) obtained from the EM algorithm. Usually,
we can construct the Wald-type confidence intervals (CIs) of the parameters using the
square root of the diagonal elements of the inverse Fisher information, evaluated at γ = γ̂.
It should be noted that both Bernoulli parameters (i.e., π and θ) should lie between 0 and 1.
In practice, the upper (or lower) bounds of these Wald CIs may be greater (or less) than 1
(or 0), resulting in invalid CIs. Alternatively, we employ the bootstrap method to construct
the bootstrap CI for any arbitrary function of γ, denoted by ϑ = h(γ). Briefly, based on
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the obtained MLEs γ̂ = (π̂, θ̂, λ̂), we can independently generate y(1)1 , . . . , y(1)n1 ; y(2)1 , . . . , y(2)n2

according to the stochastic representation in (1). Having obtained the observed data, we
can calculate the parameter estimates γ̂∗ and obtain the bootstrap replication ϑ̂∗ = h(γ∗).
Independently repeating this process G times, we obtain G replications {ϑ̂∗

g }G
g=1. The

bootstrap CI for ϑ can be constructed by

[ϑL, ϑU ]

where L and U are the 100(α/2) and 100(1 − α/2) percentiles of {ϑ̂∗
g }G

g=1, respectively.

3. Hypothesis Testing
3.1. Hypothesis Testing of Sensitive Proportion

Suppose that we are interested in testing the following hypotheses

H0 : π = π0 vs. H1 : π ̸= π0

where π0 is a pre-specified number. For the null hypothesis H0 specified above, the
likelihood ratio test (LRT) statistic is given by

T1 = −2[ℓ(π = π0, λ̂0, θ̂0|Yobs)− ℓ(π̂, λ̂, θ̂|Yobs)],

where π̂, λ̂, θ̂ are the unconstrained MLEs being calculated by (3) and (4), and λ̂0 and θ̂0 are
the constrained MLEs under the null hypothesis H0 : π = π0. The following EM algorithm
can be employed to find the constrained MLEs λ̂0 and θ̂0 under H0.

The M step is to calculate the constrained MLEs:

λ =
∑n1

i=1 x(1)i + ∑n2
i=1 x(2)i

n1 + n2
, and

θ =
∑n1

i=1 z(1)i u(1)
i + ∑n2

i=1 z(2)i u(2)
i

∑n1
i=1 z(1)i + ∑n2

i=1 z(2)i

.

The E step is to find the conditional expectation:

E(X(1)
i |y(1)i ) =

y(1)i (y(1)i − 1)[π0(1 − θ) + p(1 − π0)] + y(1)i λ[π0θ + (1 − p)(1 − π0)]

y(1)i [π0(1 − θ) + p(1 − π0)] + λ[π0θ + (1 − p)(1 − π0)]
,

E(X(2)
i |y(2)i ) =

y(2)i (y(2)i − 1)[π0(1 − θ) + (1 − p)(1 − π0)] + y(2)i λ[π0θ + p(1 − π0)]

y(2)i [π0(1 − θ) + (1 − p)(1 − π0)] + λ[π0θ + p(1 − π0)]
,

E(U(1)
i |y(1)i ) =

π0λθ

y(1)i [π0(1 − θ) + p(1 − π0)] + λ[π0θ + (1 − p)(1 − π0)]
,

E(U(2)
i |y(2)i ) =

π0λθ

y(2)i [π0(1 − θ) + (1 − p)(1 − π0)] + λ[π0θ + p(1 − π0)]
,

E(Z(1)
i |y(1)i ) = n1π0, and

E(Z(2)
i |y(2)i ) = n2π0.

(5)

Here, the moment estimate is employed to be the initial value, and we repeat the E step
and M step until the estimates are convergent. Let χ2(1) be the chi-square random variable
with one degree of freedom and t1 be the observed value of T1. Under the null hypothesis,
T1 is asymptotically chi-squared distributed with one degree of freedom. Hence, the null
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hypothesis is rejected if the p-value p1 (= Pr(χ2(1) > t1|H0)) is less than the prespecified
significance level α.

3.2. Hypothesis Testing of Non-Compliance Parameter

To check whether the respondents comply with the design, we test whether the non-
compliance parameter is 0 or not. That is, we consider the following hypotheses

H′
0 : θ = 0 vs. H′

1 : θ > 0. (6)

Again, we consider the following likelihood ratio test

T2 = −2[ℓ(π̂0, λ̂0, θ = 0|Yobs)− ℓ(π̂, λ̂, θ̂|Yobs)], (7)

where π̂0, λ̂0 are the constrained MLEs under the null hypothesis H′
0, and π̂, λ̂, and θ̂ are

unconstrained MLEs.
It is noteworthy that the null hypothesis H′

0 corresponds to the parameter of interest
(i.e., θ) lying on the boundary of the parameter space (i.e., 0). As pointed out by Self and
Liang [12] and Feng and McCulloch [13], the standard asymptotic theory suggesting that
under H′

0 T2 is chi-squared distributed may not be appropriate. Instead, it is suggested
that the appropriate reference null distribution for T2 is a mixture of χ2 distributions.
Specifically, the appropriate reference distribution under H′

0 is an equal mixture of a χ2(0)
(i.e., a constant at zero) and a χ2(1) with the corresponding p-value being given by [14,15]

p2 = Pr(T2 > t2|H′
0) =

1
2

Pr(χ2(1) > t2), (8)

where t2 is the observed value of T2. Again, the hypothesis is rejected if p2 is less than the
prespecified significance level α.

4. Simulation Studies
In this section, all the simulations are performed using R Version 4.4.2.

4.1. Parameter and Confidence Interval Estimates

To evaluate the performance of the proposed point and confidence interval estimates,
we consider two non-compliance cases: θ = 0.3 and θ = 0.4. In surveys with sensitive
questions, the proportion of such individuals is generally small. For both cases, we therefore
consider π = (0.05, 0.1, 0.2, 0.3, 0.4), p = 0.2, and λ = 2. For each configuration, we generate
{y(1)j , y(2)j }n

j=1 according to (1) with n = 1000, and calculate the MLEs via the EM algorithm
(3) and (4) and the 95% bootstrap CIs with G = 1000. Here, we independently repeat
this process 1000 times. The corresponding average MLE and average width and average
coverage probability of the bootstrap CIs are reported in Table 1 for θ = 0.3 and Table 2 for
θ = 0.4.

It is interesting to note that our proposed VPICT (with non-compliance) produces
satisfactory point estimates and confidence interval estimates when the sensitive proportion
lies away from boundary values (i.e., 0 and 1). When π = 0.05, for example, larger estimate
biases, wider confidence interval widths, and smaller coverage probabilities are observed.
For π = 0.30, all biases, confidence interval widths, and coverage probabilities substantially
improve. On the contrary, estimation of λ is robust for different values of π and θ.
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Table 1. Point and confidence interval estimates with non-compliance parameter θ = 0.3 and
n1 = n2 = 1000.

Variant PICT with Non-Compliance (VPICT)

π̂ θ̂ λ̂ Width of CI

π = 0.05 0.0879 0.3904 1.9935 0.2823 (92.6%)

π = 0.10 0.1246 0.3604 1.9961 0.3087 (94.6%)

π = 0.20 0.2031 0.3447 2.0026 0.3495 (97.5%)

π = 0.30 0.3018 0.3168 2.0053 0.3757 (95.9%)

π = 0.40 0.4021 0.3097 2.0038 0.3848 (96.4%)
Note: Values in parentheses represent the exact coverage percentages.

Table 2. Point and confidence interval estimates with non-compliance parameter θ = 0.4 and
n1 = n2 = 1000.

Variant PICT with Non-Compliance (VPICT)

π̂ θ̂ λ̂ Width of CI

π = 0.05 0.0705 0.4559 1.9967 0.2084 (93.9%)

π = 0.10 0.1099 0.4381 1.9976 0.2323 (96.5%)

π = 0.20 0.2029 0.4236 2.0002 0.2671 (95.6%)

π = 0.30 0.3011 0.4119 1.9988 0.2796 (95.1%)

π = 0.40 0.4017 0.4071 2.0013 0.2814 (95.0%)
Note: Values in parentheses represent the exact coverage percentages.

4.2. Hypothesis Testing

In this section, we conduct simulation studies to assess the performance of the like-
lihood ratio test for the hypothesis regarding the non-compliance parameter (i.e., T2).
First, we investigate the performance of its type I error rate. For this purpose, we set
λ = 2, p = 0.2 and θ = 0. To examine the effect of the value of π, we set n = 1000 and
π = 0.05, 0.1, 0.2, 0.3, 0.4. For each parameter configuration, we generate {y(1)j , y(2)j }n

j=1
according to Equation (1). The test statistic T2 is then calculated according to Equation (7),
and the null hypothesis is rejected if p2 is less than the pre-specified value α = 0.05. This
process is independently repeated 1000 times, and the proportion of rejections is plotted as
the simulated type I error rate in Figure 1. It is clear that the empirical type I error rates
fluctuate around the pre-specified nominal level of α being 0.05.

To investigate the influence of sample size on the type I error rate, we set π = 0.2, θ = 0
and n = 100, 200, 400, 600, 800, 1000, 2000. Similar to the previous simulation study, the
empirical type I error rates are computed based on 1000 repetitions for each configuration.
The results are plotted in Figure 2. It is clear that our proposed test is robust for different
sample sizes n, even for small sample sizes (e.g., n = 100). The simulation results from
Figures 1 and 2 show that our proposed likelihood ratio test T2 is a valid test and behaves
satisfactorily in the sense that its empirical type I error rate is close to the nominal level
(i.e., α = 0.05) for different sensitive proportions (i.e., π) and sample sizes (i.e., n).
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Figure 1. The type I error rates of the LRT for testing H0 : θ = 0 against H1 : θ > 0.
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Figure 2. The type I error rates of the LRT for testing H0 : θ = 0 against H1 : θ > 0.

Finally, we investigate the power of the proposed T2 test for the non-compliance
parameter θ when π = 0.2, p = 0.2 and λ = 2. Here, we set the true non-compliance param-
eter at θ = 0.3 and present the simulated power based on 1000 repetitions in Figure 3. As
expected, randomized and non-randomized response techniques are designed to improve
the validity of survey responses by reducing social desirability bias, but this often comes
at the cost of reduced statistical power compared to direct questioning. Figure 3 shows
that our proposed VPICT requires substantially more sample size in order to identify the
non-compliance effect at an acceptable statistical power (e.g., 0.8). From Figures 1–3, our
simulation results showed that moderate sample sizes (e.g., n = 500) are enough for con-
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trolling the type I error rate at the pre-specified nominal level (e.g., 0.05), but substantially
larger sample sizes (e.g., 5000) are required to achieve desirable statistical power (e.g., 0.8).
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o
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e
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Figure 3. The power of the LRT for testing H0 : θ = 0 against H1 : θ > 0.

5. Real Data Analysis
Substance use—including tobacco, alcohol, and illicit drugs—has long been linked to

a range of health and social problems worldwide. Adolescents are particularly vulnerable,
often engaging in risky behaviors such as smoking, drinking, and drug use. Research
indicates that many begin experimenting with these substances at an early age. In the
U.S., adolescent lifetime use of illicit drugs declined steadily between 2000 and 2010, then
plateaued from 2019 onward. Marijuana remains the most commonly used illicit substance
among youth due to its accessibility and increasing social acceptance. Between 2008 and
2013, past 30-day marijuana use rose across all grade levels: from 5.8% to 7% in 8th graders,
13.8% to 18% in 10th, and 19.4% to 22.7% in 12th. In Europe, lifetime use of drugs such
as cocaine and ecstasy rose from 12% in 1995 to 20% in 2011, then gradually declined.
Marijuana use peaked in 2011 (7.6%) and has since stabilized. Similar downward trends are
observed in Asia: in Hong Kong, under-21 drug use dropped from 17% in 2011 to 9% in 2020,
while Macau reported a 1.9% past-month use among students (2014–2018). In mainland
China, 8% of registered drug users in 2016 were under 25, though adolescent-specific data
were lacking [16].

To illustrate our proposed methods, we conduct two small scale surveys on drug
use among senior high school students aged from 16–18 in an urban city in Guangdong
Province in Mainland China. We apply both the direct question survey and our proposed
variant Poisson item count technique with non-compliance for the investigation. In the
first survey, 200 interviewees were directly asked whether they used illegal drugs in the
past 30 days. A total of 175 of them responded, and only one indicated illegal drug usage
in his/her final answer. Thus, the estimate for the sensitive proportion of illegal drug
usage is π̂ = 0.0057. Although all respondents were instructed to provide responses in an
anonymously answered questionnaire, a 12.5% non-response rate was observed. This result
is not surprising as illegal drug usage is a sensitive topic among Asian families. Compared
to the aforementioned illegal drug usage prevalences among youth in Europe, Macau, and
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Hong Kong, a 0.57% of illegal drug usage prevalence obtained from this direct question
survey seems to be an underestimate. It is reasonable to believe that social desirability
effects (e.g., high student school students should not smoke and take illegal drugs) may
bias prevalence estimates of sensitive behaviors (i.e., illegal drug usage) and opinions
obtained using direct questioning. This supports us to conduct another survey about illegal
drug usage among high school students using our proposed variant Poisson item count
technique (VPICT).

In the second survey, 400 people participated in the first and second groups with
200 participants in each group based on our proposed VPICT. Briefly, the sensitive variable
(i.e., Y) represents whether an interviewee had engaged in illegal drug usage in the past
30 days (i.e., Y = 1 if an interviewee had engaged in illegal drug usage in the past 30 days; =0
otherwise) and the non-sensitive variable (i.e., W) represents whether the respondent was
born between April and December (i.e., W = 1 if the respondent was born between April
and December; = 0 otherwise). The common non-sensitive question for all participants
is the frequency of travelling outside their home cities last year. We received 195 and
187 valid questionnaires from the first and second groups. That is, only 2.5% and 6.5%
non-response rates were reported in the first and second groups, respectively. These seem
to suggest that VPICT as an indirect questioning survey method substantially reduces
the non-response rate. The observed answers and frequencies from Groups 1 and 2 are
reported in Table 3. The parameter estimates and 95% bootstrap confidence interval are
shown in Table 4. Compared to the direct questioning survey, the reported prevalence for
illegal drug usage among high school students is significantly greater, which is close to that
reported from the aforementioned Europe studies. This also supports that the prevalence
estimate from the direct questioning survey is an underestimate. It is interesting to notice
that an estimate of 40.4% of the respondents who took illegal drugs in the past 30 days
did not comply with the design and intentionally chose the safe answer in their responses.
However, these results should be interpreted with caution since the sample sizes (i.e., 195
and 187) may not be sufficiently large to attain a reasonable statistical power according to
our power simulation study in Figure 3.

Table 3. Observed answers and frequencies for Groups 1 and 2.

Group 1 Group 2

Observed Answers Frequency Observed Answers Frequency

0 7 0 15

1 32 1 37

2 52 2 55

3 48 3 43

4 24 4 26

5 19 5 7

6 10 6 4

7 2

9 1

Table 4. Parameter estimates and confidence interval.

π̂ λ̂ θ̂ 95% C.I. for π

Direct Questioning 0.0057 Not applicable Not applicable (0, 0.0169)

VPICT 0.193 2.077 0.404 (0, 0.7256)
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6. Discussion
In this manuscript, we introduce a novel survey methodology grounded in the Pois-

son item count technique (ICT), which incorporates respondent non-compliance into the
modeling framework. This enhancement is aimed at improving the credibility and validity
of self-reported data on sensitive topics. The proposed model effectively addresses the floor
effect—a common limitation in ICT—by incorporating a non-sensitive control question,
thereby increasing the variability of responses and improving parameter estimation.

To estimate the model parameters, we develop an Expectation-Maximization (EM)
algorithm that efficiently computes the maximum likelihood estimates (MLEs). Further-
more, we propose hypothesis testing procedures for the key model parameters, including
the sensitive population proportion (π) and the non-compliance parameter (θ). These tests
provide a rigorous statistical framework for making inferences about sensitive behaviors or
attributes, which are often underreported in traditional survey methods.

Despite the methodological advances presented, this study does not yet explore the
relationship between the sensitive attribute and other relevant covariates. Prior literature
has shown that factors such as individual characteristics (e.g., rebelliousness and low
religiosity), family background (e.g., low parental education and neglect), and community
influences (e.g., association with peers who engage in drug abuse) play significant roles in
predicting adolescent drug use globally [17]. However, modeling such associations within
the context of indirect questioning methods like ICT remains relatively underexplored.
Future research could extend the current framework by integrating covariate information
through generalized linear models or other regression-based approaches, thereby enabling
more comprehensive analyses of sensitive behaviors.

Another critical consideration in survey design is the determination of an appropriate
sample size. Broadly speaking, sample size calculations fall into two categories: hypothesis
testing-based approaches and confidence interval-based approaches. In the former, sample
size is determined to ensure that a test of hypothesis achieves a pre-specified statistical
power at a given significance level. In the latter, the goal is to control the width of the confi-
dence interval for a parameter estimate at a desired confidence level [18]. Notably, sample
size formulas derived from hypothesis testing account for both Type I error (significance
level) and power (the probability of correctly rejecting a false null hypothesis). In contrast,
confidence interval-based methods typically focus on precision without explicit reference
to statistical power. In the context of surveys involving sensitive questions, especially those
using complex response mechanisms like the Poisson ICT, determining optimal sample
sizes becomes particularly challenging due to the additional model complexity and po-
tential for measurement error. As such, the development of robust sample size formulas
tailored to both hypothesis testing and confidence interval criteria remains a promising
direction for future methodological research. Such advancements would support more
efficient survey designs while maintaining the integrity and interpretability of statistical
inferences in sensitive data collection contexts.
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Appendix A. Derivations of Formulas for E[Y(i)] (i = 1, 2) and MOME
(i.e., π̂MOM)

We recall that (i) a respondent will always comply with the design if (s)he does not
possess the sensitive characteristic (i.e., Pr(U = 1 | Z = 0) = 0), (ii) a respondent will
always choose the safe answer if (s)he does not comply with the design (i.e., Pr(Q(i) =

0 | U = 1) = 1, i = 1, 2), and (iii) Q(i) represents the response to the second question of a
subject in group i, where i = 1, 2. Let first consider Q(1).

(a) When a respondent does not comply with the design (i.e., U = 1), the corresponding
value for Q(1) must be 0 (i.e., 1 − U).
(b) When a respondent complies with the design (i.e., U = 0), Q(1) = 0 if the respondents
does not satisfy the sensitive (i.e., Z = 0) nor non-sensitive (W = 0) items; = 1 otherwise.
That is, Q(1) = 1 − (1 − Z)(1 − W).

Combining (a) and (b), we have Q(1) = [1 − (1 − Z)(1 − W)](1 − U). Similarly, we have
Q(2) = [1 − (1 − Z)W](1 − U). Hence, Y(i) = X + Q(i) (i = 1, 2).

To derive the formulas for E[Y(i)] (i = 1, 2), we observe that

Pr(Q(1) = 0) = Pr(Q(1) = 0|Z = 0)Pr(Z = 0) + Pr(Q(1) = 0|Z = 1)Pr(Z = 1)

= Pr(W = 0)Pr(Z = 0) + Pr(Q(1) = 0|Z = 1)Pr(Z = 1)

= (1 − p)(1 − π) + [Pr(Q(1) = 0|Z = 1, U = 0)Pr(U = 0|Z = 1)

+ Pr(Q(1) = 0|Z = 1, U = 1)Pr(U = 1|Z = 1)]π

= (1 − p)(1 − π) + [0 × (1 − θ) + 1 × θ]π

= (1 − p)(1 − π) + θπ.

Therefore, E(Q(1)) = Pr(Q(1) = 1) = 1− (1− p)(1−π)− θπ. Similarly, E(Q(2)) = Pr(Q(2) =

1) = 1 − p(1 − π)− θπ. Since Y(i) = X + Q(i) ((i = 1, 2) ), we have E(Y(i)) = E(X) + E(Q(i))

= λ + E(Q(i)). Therefore,

E(Y(1))− (Y(2)) = E(Q(1))− E(Q(2))

= [1 − (1 − p)(1 − π)]− [1 − p(1 − π)]

= (2p − 1)(1 − π).

In other word, π = 1 - [E(Y(1))− (Y(2))]/(2p - 1). Hence, we have π̂MOM = 1 − ȳ(1)−ȳ(2)
2p−1 .

Appendix B. Derivations of E and M Steps for the EM Algorithm
In this section, the details of the EM algorithm will be represented. First, we derive

the closed-form prepsentations for the M steps. For this purpose, we differentiate the
log-likelihood function ℓ with respect to each of the three parameters (π, θ, λ). Then,
we have
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∂ℓ

∂π
=

∑n1
i=1 z(1)i + ∑n2

i=1 z(2)i
π

−
n1 + n2 − (∑n1

i=1 z(1)i + ∑n2
i=1 z(2))i )

1 − π
,

∂ℓ

∂θ
=

∑n1
i=1 z(1)i u(1)

i + ∑n2
i=1 z(2)i u(2)

i
θ

− ∑n1
i=1 z(1)i (1 − u(1)

i ) + ∑n2
i=1 z(2)i (1 − u(2)

i )

1 − θ
, and

∂ℓ

∂λ
= −(n1 + n2) +

∑n1
i=1 x(1)i + ∑n2

i=1 x(2)i
λ

.

Setting these equations equal to zero yields the M steps in (3).
Second, we derive the E steps in (4). For this purpose, we notice that the conditional

distribution of X(1)
i |Y(1)

i is given as:

Pr(X(1)
i |Y(1)

i ) =


y(1)i , with probability λ[πθ+(1−p)(1−π)]

λ[πθ+(1−p)(1−π)]+y(1)i [π(1−θ)+p(1−π)]

y(1)i − 1, with probability y(1)i [π(1−θ)+p(1−π)]

λ[πθ+(1−p)(1−π)]+y(1)i [π(1−θ)+p(1−π)]
.

The conditional expectations of the missing data given the observations in Group 1
are as follows:

E(X(1)
i |Y(1)

i = y(1)i ) = (y(1)i − 1)Pr(X(1)
i = y(1)i − 1) + y(1)i Pr(X(1)

i = y(1)i )

=
y(1)i (y(1)i − 1)[π(1 − θ) + p(1 − π)] + y(1)i λ[πθ + (1 − p)(1 − π)]

y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]
,

E(Z(1)
i |Y(1)

i = y(1)i ) = Pr(Z(1)
i = 1|Y(1)

i ) =
Pr(Z(1)

i = 1, Y(1)
i = y(1)i )

Pr(Y(1)
i = y(1)i )

=
Pr(X(1)

i = y(1)i − 1)Pr(Q(1) = 1, Z(1)
i = 1)) + Pr(X(1)

i = y(1)i )Pr(Q(1) = 0, Z(1)
i = 1))

Pr(X(1)
i = y(1)i − 1|Q(1) = 1)Pr(Q(1) = 1)) + Pr(X(1)

i = y(1)i |Q(1) = 0)Pr(Q(1) = 0))

=

e−λλ
y(1)i −1

(y(1)i −1)!
π(1 − θ) + e−λλ

y(1)i

(y(1)i )!
πθ

e−λλ
y(1)i −1

(y(1)i −1)!
[π(1 − θ) + (1 − π)p] + e−λλ

y(1)i

(y(1)i )!
[πθ + (1 − π)(1 − p)]

=
π
[
y(1)i (1 − θ) + λθ

]
y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]

, and

E(Z(1)
i U(1)

i |Y(1)
i = y(1)i ) = Pr(Z(1)

i U(1)
i = 1|Y(1)

i ) =
Pr(Z(1)

i U(1)
i = 1, Y(1)

i = y(1)i )

Pr(Y(1)
i = y(1)i )

=
Pr(X(1)

i = y(1)i )Pr(Q(1) = 0, Z(1)
i = 1))

Pr(X(1)
i = y(1)i − 1|Q(1) = 1)Pr(Q(1) = 1)) + Pr(X(1)

i = y(1)i |Q(1) = 0)Pr(Q(1) = 0))

=

e−λλ
y(1)i

(y(1)i )!
πθ

e−λλ
y(1)i −1

(y(1)i −1)!
[π(1 − θ) + (1 − π)p] + e−λλ

y(1)i

(y(1)i )!
[πθ + (1 − π)(1 − p)]

=
πλθ

y(1)i [π(1 − θ) + p(1 − π)] + λ[πθ + (1 − p)(1 − π)]
.
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Similarly, we can obtain the results for the second group.
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