PUBLISHED FOR SISSA BY 4) SPRINGER

RECEIVED: November 1, 202/

REVISED: February 2, 2025
ACCEPTED: August 18, 2025
PUBLISHED: October 8, 2025

Strings as hyper-fractons

Erica Bertolini®“ and Hyungrok Kim (&%) ©°
@School of Theoretical Physics, Dublin Institute for Advanced Studies,

10 Burlington Road, d04 c932, Dublin, Ireland

b Department of Physics, Astronomy and Mathematics, University of Hertfordshire,
Hatfield, Hertfordshire al10 9ab, U.K.

E-mail: ebertolini@stp.dias.ie, h.kim20@herts.ac.uk

ABSTRACT: We systematically examine all possible Gauss laws obeying spatial rotation
symmetry, characterising the corresponding conserved charges. In the case of conserved
higher moments, this gives rise to fractonic behaviour. We show that many Gauss laws,
including those arising from p-form electrodynamics, in fact, produce an infinite tower of
conserved moments, which we dub hyper-fractonic. In hyper-fractonic systems, a finite number
of charged particles cannot be mobile due to an inability of fulfilling the infinite number of
conservation laws with a finite number of degrees of freedom. Instead, mobile charged objects
must have an infinite number of degrees of freedom. In particular, the strings and branes
naturally coupling to p-form potentials provide an example of hyper-fractonic matter.

KEYWORDS: Gauge Symmetry, Global Symmetries, P-Branes

ARX1v EPRINT: 2410.11678

OPEN AccEss, © The Authors.

Article funded by SCOAP? https://doi.org/10.1007/JHEP10(2025)058


https://orcid.org/0000-0003-0773-7526
https://orcid.org/0000-0001-7909-4510
mailto:ebertolini@stp.dias.ie
mailto:h.kim2@herts.ac.uk
https://doi.org/10.48550/arXiv.2410.11678
https://doi.org/10.1007/JHEP10(2025)058

Contents

1 Introduction and summary 1
1.1 Notation and conventions

2 Conserved charges for general representations 5
3 Examples of fractonic behaviour 7
3.1 Totally traceless totally symmetric tensor theory 7
3.2 Symmetric traceless tensor with a vector charge 8
4 Examples of hyper-fractonic behaviour 9
4.1 Polyharmonic equation 9
4.2 p-form electrodynamics 10
4.3 Exhaustive enumeration in low rank 12
5 Discussion 12
A Proof of proposition 2 13

1 Introduction and summary

Fractons [1-5] are a fascinating phenomenon, originally discovered in lattice spin glasses [6] and
quantum information [7, 8] but subsequently also found in gauge theories [9, 10], Carrollian
theories [11, 12], elastic media [13-20] and many more systems [21-28§]

Indeed, as stated in [4] “the fracton frontiers sit at the confluence of multiple streams of
research in theoretical physics”, and thus, depending on the particular area of physics, there
are variations about the technical definition of a fractonic behaviour. The very definition
of the word “fracton” dates back to [1], in which “the fundamental excitations are termed
fractons, as they behave as fractions of a mobile quasiparticle”, immediately followed in [2]
by “... a generalised Gauss law that characterises the fracton topological phase”.

What is conserved is thus not only the total charge but also additional higher moments
of the charge [29]. As a result, single charged particles must be immobile [3, 4, 9, 10]:
a single particle moving around may have constant charge, but the dipole moment will
change. If the charge and the dipole moment are conserved, then dipoles (pairs of particles
of opposite charges) may be mobile. This has been for years the common thread for defining
fracton theories: limited mobility and electromagnetic-like behaviour (generalized Gauss and
multipole conservation). The literature is divided into two main classes [3, 4]: lattice models
(e.g. [1, 2, 6, 7]) and tensor gauge theories (e.g. [9, 10]), and in this paper we are concerned
with the latter class. It is interesting to observe that these two classes describe inherently
different fracton models. For instance the first case defines four-dimensional gapped theories,
with possible fractal structure for the case of the so-called Type II models [3, 7]. On the other
hand tensor gauge theories are gapless, and it has been possible to build (2 + 1)-dimensional



models as well [4], which are physically relevant for their connection with elasticity theory [13].
The definition of fracton theories then stretched even further when fractonic mobility features
has been identified also in gravity [30] (thrugh concervation of centre of mass), and Carrollian
theories [11] (through the lightcone limit ¢ — 0). The mobility constraints are typically
imposed through generalised Gauss laws. Different kinds of Gauss laws give different kinds of
conservation laws, which imply different kinds of mobility of particles, thus creating fractons,
lineons, planons, etc. The higher the conserved moments, the more particles are needed to
have mobility. In this context our paper follows the paradigm of [9, 10] and tensor gauge
theories of fractons in general, where Gauss law constraints provide the key ingredient for
limited mobility through dipole-moment (or more generally multipole-moment) conservation.

In fractonic gauge theories, the prototypical (3 + 1)-dimensional examples [10] are defined
by a symmetric tensor of rank 2 whose conjugate momentum (an electric-like field E%) is
required to satisfy some particular Gauss law. This Gauss law is at the core of the limited
mobility of the fracton quasiparticle through dipole (or quadrupole) moment conservation.
Thus in the paradigmatic example of the scalar charge theory of fractons [10], one has
the Gauss law

&'ajEij =P (1.1)

for the electric field E¥ and charge density p,whose consequence is to constrain isolated
charges to be immobile while dipole bound states d* ~ z‘p are free to move [3, 4, 10]. Different
constraints can change the nature of the conserved charges and their mobility. For instance,
in the vector charge theory [10], for which the Gauss constraint is instead

9,E" = p', (1.2)

the (now vector-valued) charge is a lineon (i.e. it can move only along a line). Imposing a
tracelessness condition on the electric field, i.e. E*; = 0, further limits the mobility of the
above mentioned quasiparticles and their bound states. The fractonic phenomenology of
these (3 4+ 1)-dimensional tensor gauge theories is summarised in the table below. The study
of more complex cases is already complicated in 3 + 1 dimensions and even more so in other
dimensions. It is the aim of this paper to investigate, through representation-theoretic tools,
all possible (Gauss-like) constraints in a general number of spatial dimensions and for gauge
fields of arbitrary rank, and classify them through the associated conserved quantities and
quasiparticle behaviour. The analysis allows us to uncover new kinds of possible fractonic
behaviour. For instance, what would happen if there were infinitely many conservation laws?
One might be tempted to guess that such systems must be unphysical as no finite system of
charged particles can withstand such a straitjacket. However, in this paper we show that the
familiar theory of p-form electrodynamics (for p > 1) — and, more generally, higher gauge
theory [31] — provide examples of such hyper-fractonic systems: there are infinitely many
charges, requiring infinitely many particles which must dance around in a coordinated fashion
so as to scrupulously observe all conservation laws and, in the process, arrange themselves
into a (p — 1)-brane as is familiar from string theory [32-34]. Such p-forms and higher gauge
theories have been discussed in a fractonic context before, for instance in [35], but this is
the first time that infinite towers of conserved moments have been discussed in higher gauge



Model Gauss law Conserved quantities Particle content

B p charge monopole: fracton;
Scalar charge theory 0;0;EY = p o .
Zp dipole dipole: free
0;0;E7 = p P ITp monopole: fracton;
Traceless scalar charge theory wr 9 ' .
E, =0 x°p ~ quadrupole dipole: planon

, ) p charge (~dipole)
Vector charge theory O EY = pl . monopole: lineon
Z A p angular momentum

OB = p Py ENG

) monopole: fracton
E, =0 # p (~ quadrupole) ; (- p)Z + 1225 P

Traceless vector charge theory

Table 1. (3 + 1)-dimensional fracton phenomenology of rank-2 tensor gauge theories [10]. In the
above, ordinary fractons, lineons, and planons are particles constrained to a point, line, or plane in
space, respectively.

theory to our knowledge. Interestingly, a particular case of the hyper-fractonic behaviour of
the Laplace equation was observed in [36] in the context of hydrodynamics, providing another
physical example of our analysis. Note that the presence of this infinite tower of conserved
moments may, but need not, imply integrability — for example, in geometric hydrodynamics,
the even-dimensional incompressible Euler equation admits an infinite number of conserved
enstrophy-type integrals despite not being integrable [37]; and in many Poincaré-invariant
systems, the Coleman-Mandula theorem requires higher conserved moments to vanish [38, 39].
Also, note that lattice regularisation and finite-size effects may break part of the tower of
conservation laws [36, 40].

In addition, we provide a discussion of general Gauss laws in an arbitrary number of
spacetime dimensions, assuming only spatial rotation and spacetime translation symmetry. A
scan of all possible Gauss laws in low rank shows that such a hyper-fractonic behaviour is
surprisingly common (see section 4.3), including the Poisson equation (section 4.1), where
the infinite tower of conserved moments corresponds to harmonic polynomials). Even in the
non-hyper-fractonic case, we provide a systematic analysis and classification of the possible
conserved moments using representation-theoretic tools.

In some cases action principles have been proposed, such as the covariant fracton model
of [41-45] or the (n, k)-Maxwell models of [35], and for p-form electrodynamics, but in general
the obtainability of a given Gauss law from an action principle is not straightforward, as it
is strictly model-dependent. For instance, a symmetry should be imposed, under which the
electric field must be invariant, being a physical observable. Moreover it also depends on
the field content in terms of which the electric field is typically the conjugate momentum.
In the context of this paper we will only discuss all possible Gauss laws, which could then
be adapted to the models of interest.

Similar to the usual fractonic case [29, 46], a hyper-fractonic theory admits a multipole
algebra. The approach presented in this paper starts from the analysis of all the possible
Gauss laws in any dimensions and with gauge field of arbitrary rank, which then leads to
the classification of conserved moments and fractonic behaviour. In contrast, ref. [29] has



the opposite approach, i.e. from the multipole algebra Gauss laws are identified. What is
relevant to remark is that, as hoped, the results intersect, and enrich one another, in our
case for example through the interpretation of the new hyperfractonic behaviour in the
classification. Finally we observe that for Poincaré-invariant theories meeting the assumptions
of the Coleman-Mandula theorem [38, 39] (such as p-form electrodynamics), the Coleman-
Mandula theorem forces the vanishing of all conserved moments whose generators do not
commute with the Poincaré group.

The paper is organised as follows. In section 2, we classify all possible Gauss laws and
consequent constraints assuming spatial rotational symmetry using representation theory,
from which three possible behaviours are observed: non-fractonic, fractonic, and hyper-
fractonic. In section 3, we apply the results to examples of fractonic theories known in the
literature, such as the traceless scalar and vector charge theories of table 1. In section 4,
we consider examples of the hyper-fractonic case, most of which are either new or whose
fractonic features have not been previously appreciated in the literature. Section 5 presents
a summary and outlook of our results.

1.1 Notation and conventions

We use (...), [...], and (...) for normalised total symmetrisation, total antisymmetrisation,
and total traceless symmetrisation. For example, on rank 2 and 3 tensors,

(i) _ %(Xij + X7 (1.3a)
xlidl — xii _ xii (1.3b)
xli) — x (i) _ % Xy, 5 (1.3¢)
(k) _ %(Xijk 4 Xy xRy Xk xRy kil (1.3d)
yligh] _ %(Xijk Xtk 4 xR ik g xckis _ xkdiy (1.3¢)
xtigk) — x(ijk) _ d6T2 (52'1' X (kim) sk x(ilm) | ski X(ﬂm)) ] (1.3f)

We will consider finite-dimensional irreducible representations of the simple Lie group SO(d),
which can be classified using the theory of highest weights. Given representations R; and
Ry, we denote their tensor product as R; ® Rg, direct sum as R; & Ry, and (if R; and
Ry are irreducible) the highest-weight subrepresentation of Ry ® Re as R; V Ry. The nth
symmetric tensor power of a representation is denoted (—)®", and the nth antisymmetric
tensor power of a representation is denoted (—)"\", and the highest-weight subrepresentation
of the symmetric power is denoted (—)¥™. The defining d-dimensional representation of
SO(d) is denoted as O (similar to a single-cell Young tableau); thus, 0¥ is the totally
antisymmetric k-tensor, and O0% is the totally symmetric k-tensor, and V¥ is the totally
traceless totally symmetric k-tensor.

We use superscript or subscript 4, j, a, A for labelling components, except that A™ and
|z|>® denote exponentiation. When we discuss Lorentzian signature, our metric is mostly
plus, and we use Greek indices u, v, .. ..



2 Conserved charges for general representations

We first discuss a general Gauss law and the conserved multipole moments it implies, using
representation theory of the rotation group SO(d). We work in d flat spatial dimensions.

Suppose that we have an electric-like field (which we henceforth simply call ‘electric
field’, regardless of the physical interpretation) E4 that transforms as a representation R
of SO(d), where the indices A, B, ... € {1,...,dim R} label the components of R. Suppose
that the charge density p® transforms as a representation S of SO(d), where the indices
a,b,... € {1,...,dim S} label the components of S. By a Gauss law we mean a general
relation between E4 and p? involving differential operators of the form

Yzéixl.”ikaail T aikEA =p (2'1>
where S is a subrepresentation
S cO% @R, (2.2)

in which 0% is the totally symmetric tensor representation of rank k, which appears as the
SO(d)-representation of 9;, --- 0

i, and Y is the projection operator

Y:O%®R— S. (2.3)

A charge moment in some spatial region U C R? is, in general, a quantity of the form

P [ dlea? - atpt, (24
where P is a projector to a subrepresentation T C 0 ® S and « is an index for T.. Some
of the above moments (2.4) obey conservation laws if through (2.1) they can be expressed
as local surface integrals involving the electric field E:

Q=¢ d'e(E), (2.5)
ou
where @ is some local function of F, which we interpret as the flux through the boundary
OU. Thus, any change of @ inside a bounded spatial region U C R¢ corresponds to a flux
®(E) through its boundary 9U, leading to a local conservation law [3, 9].
By using the general Gauss law (2.1) in the definition of the charge moment (2.4), we
may explicitly express the total charge moment on some spatial region U C R? as

e
Q= [ Aty

- po Y[gllka/[]ddxxh x]lazl azkEA (26)

Ji---gia

DR PE YAy dda s ol et e B Ik
0 ifl<k

+¢ d¥lz(-),
oU



where in the last step we have integrated by parts k& times. That is, the moment Q¢ is always
conserved precisely when [ < k (independently of the projector P, in which case P may be
simply the identity) or if the following relation is satisfied when | > k:

po 11 zka/ dd 5(]1 . J )xjk-&-l ... le)EA =0. (27)

J1-- ]la

The condition for the vanishing of (2.7) can be stated in a representation-theoretic language.
That is, from the above discussion, the following proposition follows.

Proposition 1. For a Gauss law (2.1), the conserved moments are either

e of the form

/U ddz 2t . gt pe (2.8)
forl < k with P =1id,
e or of the form
P / ddg it . gt pe (2.9)
for 1 >k, where
P: S ®0O% — coker(Z) (2.10)

is the projection map to the cokernel (i.e. orthogonal complement to the image) of Z,
where Z is the representation-theoretic branching representing the index contrations
that appear in (2.7), that is, the composition

idgr ®6®id‘:|®(l—k:)

Z: ROtk RO 0% eO00-h X2 gon®  (2.11)
where
1k/2] 1k/2] , |
5= diagguean € @ OVE2) g Ovk—2) c O% g O%F (2.12)
i=0 i=0
is the totally symmetric Kronecker delta (5811 55:)), and
s: 09 @ Otk _ O (2.13)

is the total symmetrisation map.
We may classify Gauss laws according to the following cases.

o For a non-fractonic Gauss law, only the zeroth moment, i.e. the charge [;; d%z p is
conserved. This includes the ordinary Gauss law 9;E’ = p of Maxwell theory.

e For a fractonic Gauss law, a finite number of higher moments are conserved in addition
to the zeroth moment. As discussed in [3, 9], this means that single monopole particles
are immobile whereas dipoles or other higher-order multipoles are mobile.

e For a hyper-fractonic Gauss law, there is an infinite tower of higher moments that
must be conserved. This renders particle-like dynamics problematic and signals stringy,
branelike or other exotic behaviours.



In particular, let us consider a simple sufficient (but not necessary) criterion for hyper-
fractonicity, whose proof is given in section A.

Proposition 2. Consider a Gauss law (2.1) that belongs to the special class for which
ScVk—2m g R c 0% @ R. (2.14)

This corresponds to Gauss laws containing m occurrences of the Laplacian A, i.e.

yiiag, g, EA = YRt Amy, g, B = o (2.15)
where
yitiva o g ik—2mlaglic—2mirin—omra . .. gik-1ix) (2.16)
Then all moments of the form
/U A9 [Pt gl po (2.17)

are conserved whenever n < m orl+n <k+m.

Therefore, whenever the Gauss law (2.1) involves at least one power of A, we always
have hyper-fractonic behaviour since there are infinitely many conserved moments of the
form [, ddg 2t ... 27 p% for arbitrarily large [, according to (2). However, as we discuss
below, p-form electrodynamics provides an example of hyper-fractonic behaviour even when
the Gauss law does not involve A.

3 Examples of fractonic behaviour

We first recapitulate the examples of fractonic behaviour given in [9] in our formalism,
enumerating the finite set of conserved moments. This will serve as a testing ground for
the results presented in the previous section.

3.1 Totally traceless totally symmetric tensor theory

Let us postulate the Gauss law
82'1 s 8%E“”k =p, (31)

where B = Eli1-k) jg a totally symmetric totally traceless electric field and p is a scalar
charge density. This is a rank-k generalisation of the rank-two case originally considered
in [9] and which admits an action principle [41, 42, 45].

This is the case where the electric field E and the charge p follow the SO(d) representations

R=0Vk S=1, (3.2)
with the branching from (2.3),

V:O% 0" - 1. (3.3)



The map Z from (2.11) is

id® diagka ®id
—>

Z: |:|\/k ® D@(l+2n—k) DVk ® D\/k ® |:|\/k ® D@(l—k) 1 ® |:|\/l, (34)

so that the cokernel of Z is given by the cokernel of the total symmetrisation map
Ovk @ 00—k — got (3.5)

between a totally traceless totally symmetric k-tensor and a totally symmetric (I — k)-tensor
into a totally symmetric [-tensor. Standard computations show that the cokernel is

11/2]
coker(Z) = P OV, (3.6)
n=l—k+1

corresponding to conserved moments
Q(FQ”’”)il“'il = / d%z \x|2"xi1""'l*2"p (—k+1<n<|[l/2]). (3.7)
U

In particular, the maximum value of [ for coker(Z) eq. (3.6) to be nontrivial is [ = 2k—2, so the
number of conserved moments is finite: we have fractonic but not hyper-fractonic behaviour.

In particular, for k¥ = 1 (Maxwell theory), we only have the scalar monopole charge
QY. For k = 2 (traceless symmetric 2-tensor), however, we also have conserved vector
dipole and scalar quadrupole charges,

0(0.0) :/ e p QUL :/ A% 2 p Q0.1 :/ Az [2[2p,  (3.8)
U U U
in agreement with the discussion in [9].

3.2 Symmetric traceless tensor with a vector charge
As another example, let us postulate a symmetric traceless electric field

EY = gl (3.9)
obeying the Gauss law

REY = pl. (3.10)

This is a traceless variant of the example considered in [9].
According to proposition 1, the conserved moments are given by the cokernel of the
map Z (2.11), which in this case is

Z: V2O - 0O, (3.11)

Computations using e.g. Young tableaux or computer algebra systems show that this map
is surjective except for | < 3, where the cokernel is

g ifl=2
coker(Z) =<190N ifl=1 (3.12)
g ifl =0.



These correspond to the four conserved moments
QO ::/ d%zp QW ::/ dzz-p (3.13)
U U
QUi ::/ d?z 2l p! Q) ::/ d?z [\x|2pi — 2(,0'.1‘)1‘7;} . (3.14)
U U
Since we only have a finite number of conserved moments, the system is fractonic but not
hyper-fractonic.

4 Examples of hyper-fractonic behaviour

In this section, we will analyse examples of new fractonic behaviour that arise from the
analysis of section 2.
4.1 Polyharmonic equation

As a first simple (but perhaps physically unrealistic) example of hyper-fractonic behaviour,
we can consider the Gauss law given by the inhomogeneous polyharmonic equation

A™E = p, (4.1)
i.e. when in (2.1) when we have
Y. 0%Cm g1 51, (4.2)

and where both the electric field £ and the charge p are scalars.

Let us consider the conserved moments of (4.1) according to proposition 1. This is the
case where R = S = 1 is the singlet representation. The branching Y:1® 1 — 1 from (2.3)
is trivial. The map Z (2.11) is given by

7. OeU=2m) _, ot (4.3)
Since
06 — OVl V-2 . .. (4.4)
Oe@=2m) _ Ov(i-2m) g v(-2m=2) gy ... (4.5)
we see that
coker(Z) =V e V2 g ... g OVUI—2m+2) (4.6)

This corresponds to the conserved moments
QUM — / ddz |z|"at™ . 2 p (l €Z>p, ne{0,...,m—1}). (4.7)
U

As [ is unbounded, we always have hyper-fractonic behaviour.

For m = 1, for example, (4.1) is simply the Poisson (inhomogeneous Laplace) equation,
which was discussed in [36], where an infinite number of conservation laws emerge from the
linearised hydrodynamic theory of isotropic dipole-conserving fluids. The conserved moments
correspond to harmonic polynomials x1:



4.2 p-form electrodynamics

Consider a theory of p-form electrodynamics with action

1 0,1 1
— d+1 _ [ e il B pt

5= /d $ ( 2(p+ 1)!FHOH1~~-HpF +p!A#1~~~.LLpJ ! p)’ (49>
where Ay, = Ay, is @ p-form gauge field, JH1-Hr = Jl-mp] §g a p-form current that
couples to it, and the field strength is

Fvy.oy = (0 + 10 Au, 0y (4.10)
The equations of motion are then
M E .y + Juy.n, = 0. (4.11)
In particular, defining the electric field and charge as
Ei, ..y = Foiy i, Pir.iip—1 = J0iy..ip_15 (4.12)
we have the Gauss law
& Ejiy iy = Pi.ipr- (4.13)

The case p = 1 is that of ordinary Maxwell theory. However, for p > 1, according to
proposition 1 these systems admit infinitely many conserved moments and are therefore
hyper-fractonic: an infinite tower of conserved moments is given by

Q% = Pi?...ip_ljl...jl /U ddilf pi1...ip_1x<j1 . sz)) (414>

where P is the projection to the SO(d)-representation OMe=1) v OVE that is, the highest-
weight component of MNP~ @ OVE,

At first sight, the appearance of hyper-fractonic behaviour for p-form electrodynamics,
with its infinite number of constraints, would seem to preclude dynamical charges. However,
p-form potentials naturally couple to (p — 1)-branes, which may be dynamical. That is,
while a finite number of point charges cannot move due to the hyper-fractonic constraints, a
continuum of point charges that arrange themselves into a string can. That is, in this case
the hyper-fractonic constraints signal the appearance of extended objects.

Note that p-form electrodynamics meets the assumptions of the Coleman-Mandula
theorem [38, 39], which requires that all conserved moments vanish since their generators
do not commute with Poincaré symmetry. For example, for p = 2, if one has a closed
string (with current density J,,,, and hence charge density p; ~ Jo;) in some compact spatial
region U, one has

/ A4z Jo; = 0. (4.15)
U

This differs from the usual discussion of higher-form symmetries [47-52]. Here we are
integrating against d-dimensional spatial volume (in d + 1-dimensional spacetime), whereas

,10,



for higher-form symmetries, we would be integrating against a (one-dimensional) curve in
space (or a two-dimensional worldsheet in spacetime).

For concreteness, let us consider the p = 2 case, such as the Kalb-Ramond field in Type 2
supergravity [53], where R = (0"? and S = [J. For an Ith-order moment (I > 0), the map Z is

Z: M2 e0"! 5 0e0O%. (4.16)
For | = 0, we have the zeroth moment (i.e. charge)
Qi — / g . (4.17)
U
For [ = 1 (i.e. a dipole moment), the map Z is
Z:0OM - 0e0=0"ge0O%, (4.18)
whose cokernel is
coker(Z) =02 =02 @ 1. (4.19)
This corresponds to the dipole moment
QWi = /Uddm 2l p?), (4.20)
For | = 2 (i.e. quadrupole moments), the map Z is

Z: O eO=0e0"e @@"?VvD)

4.21
-0 (el =000 e @ vD). (4.21)

We see that the cokernel is 0@ [OY3, which corresponds to the conserved vector and symmetric
rank-3 quadrupole moments

A A 1 .
Q@ = / dz (xz(p ) + 2p’]x‘2) (4.22)
U
Q(2)ijk:/ Atz plizi ). (4.23)
U
For [ = 3 (i.e. octupole moments),

7- D/\2 ® (DV2 D 1) — D/\2 D D/\2 D (D/\3 vV D) D D\/2 e (DV2 Vv D/\Q)

4.24
—)D@(D\/3@D):1@\:‘/\2@D\/2@D\/2@(DV2\/|:|/\2)®DV4. ( )

Hence the cokernel of Z is 1&0Y2@[0Y4, whose corresponding conserved octupole moments are

Q® :/Udd:c (p- )|z (4.25)
QW = /Uddx ((p-a:)x<iacj> +p<ixj>]x|2> (4.26)
QB)iakl /Uddxp<ia:j:ckml>. (4.27)

— 11 —



Gauss law Behaviour

O'E = p' hyper-fractonic
AE=p hyper-fractonic
ol E = pii hyper-fractonic
O,E' =p non-fractonic
ol Eil = pii hyper-fractonic
ORI = pia hyper-fractonic
AE! = pf hyper-fractonic
oligs >Ej =p hyper-fractonic
Vi R = pidk hyper-fractonic

(YDAz\/D)?ﬁkawﬁj,)E” = p%  hyper-fractonic

Table 2. Gauss laws involving up to two derivatives and field strengths with up to one index. In the
above, Yoseyg: O0Y2 ® O — 02 v O is the projector to an irreducible subrepresentation.

In general, the totally symmetric totally traceless moments

QWio--it . / iy pliogin ... git) — / dz sz(?;ll 001 ... gl (4.28)
U U

are always conserved for any ! according to proposition 1, where the projection
P O°0H) , gvi+D (4.29)

is projection to the totally traceless totally symmetric part, but there are many other
conserved moments in addition.

4.3 Exhaustive enumeration in low rank

Using representation theory, we may easily enumerate Gauss laws of lower ranks. Table 2
enumerates the ten possible Gauss laws involving at most two derivatives and a field strength
FE carrying at most one Lorentz index.

Note that we only enumerate Gauss laws involving electric fields, charges and differential
operators that are irreducible representations of SO(d). For example, the Gauss law

8i8jEj = pPi (430)
is not included, since it can be seen as the composition of the following two Gauss laws
AE = pf VN E; =, (4.31)

which are included in table 2.

5 Discussion

In this paper, we have shown that a generalised Gauss law (2.1) in arbitrary dimensions
allows for two kinds of possible conserved moments, (2.8) and/or (2.9), from which we can
observe three behaviours:

— 12 —



1. non-fractonic: only the charge is conserved and it has complete mobility;

2. fractonic: a finite number of higher moments is conserved, which present restricted
mobility (complete or partial);

3. hyper-fractonic: an infinite tower of conserved moments, which may signal stringy /brane-
like behaviour.

The most surprising result that emerges from our analysis is the last case: a new general
behaviour presenting an infinite tower of conserved charges. As unphysical and unrealistic as
it may seem, a particular case of that was observed in [36] in the context of hydrodynamics
and fractons. This provides a confirmation of our procedure, which then brought us to
identify this feature also in higher-form gauge theories, which thus seem to exhibit a new
(hyper-)fractonic behaviour. In addition, the analysis presented herein may then provide
a guiding light to construct new (hyper-)fractonic theories. In fact, another way to obtain
multipole conservation is through continuity equations of matter sources, which reflect the
Gauss laws of the specific theory. For instance, in the scalar-charge theory, it is

80p + 8i8jjij =0, (5.1)

which, when integrated over a volume, implies that the total dipole must be conserved in time
(up to boundary terms) [9, 10]. Eq. (5.1) may then be seen as a Ward identity on the sources,
from which it is thus possible to derive the symmetry transformation of the associated gauge
field, from which finally the invariant action and the full theory can be reconstructed.

A Proof of proposition 2

Consider the Gauss law of the form (2.15), viz.
YA, 05, B = pt. (A1)
Then, integrating by parts to obtain a conservation law, the following expression appears:
A"y, ...3Z.k>(le co gl (A.2)
Decomposing the string of xs into irreducible representations of SO(d), it suffices to show that
AT, -+ Oy (), (A.3)

vanishes precisely when either n < m or | +n < k + m, since this is the expression that
remains when one integrates by parts the conserved charge.
The expression (A.3) may be represented as a suitable projection

AT, - 3ik>(|x|2n$<j1 . a:jl>) _ Pil---iknmpq}...jz 9 ... 0

. . . . -/
1.1k JJipom 8 Ykt2m

(291 .- gieen)  (AL4)
where P and P are suitable projectors to subrepresentations:

p: Ook+2m) _, vk P: oot OV (A5)
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It is easy to see that

(li)d((ljll ...53:122:)xjk+2m+1---jl+2n) i 1420 > k+2m

0 if [+2n <k+2m.
(A.6)
That is, the expression 0y ... 9y (271 :cjl/+2n) is either zero (if k +2m > 1+ 2n) or a

Zk+2'm
product of [ + 2n — k — 2m occurrences of z followed by some Kronecker deltas.

azi T 8ik+2m (le T ,le+2n) = {

The string of xs in the right-hand side of (A.6) transforms as the representation
Oe(+2n—k=2m) = The Kronecker deltas (after separating out various traces) are the diag-
onal map diagar on the representation (1'%, and diagar transforms as OVF @ OVF.

So (A.4) may be evaluated by (a) starting with a string of xs, (b) contracting with
Kronecker deltas, and (c) projecting out some traces. That is, the projection involved here is

(O U+2n—k—2m) H€ovE ®dgoa an—i—zm) vk © OVk @ OO H2n—k—2m)

idgvr ®s (A7)
D\/k ® DVl
where
s: OVk g OeU+2n—k—2m) _, VI, (A.8)
So, the criterion for (A.3) vanishing is whether
Ok o O(+2n—k—2m) % Vi (A.9)
This is equivalent to
lg{k—(U+2n—k—-2m),k—(+2n—k—2m)+2,k— (I +2n—k —2m) + 4,
o k+({+2n—k—2m)}, (A.10)
which simplifies to
m>mnork+m>Il+n, (A.11)
as desired.
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