Expert Systems With Applications 233 (2023) 120678

| -

Expert
Systems
with
Applications &%

An International
Journal

Contents lists available at ScienceDirect

Expert Systems With Applications

Eebtorin-Chiel
Binshon

journal homepage: www.elsevier.com/locate/eswa

t.)

Check for

An evolutionary ensemble convolutional neural network for fault diagnosis &=’
problem

Mohammad Hassan Tayarani Najaran
University of Hertfordshire, Hatfield, UK

ARTICLE INFO ABSTRACT

Keywords:

Fault diagnosis

Evolutionary algorithms
Convolutional Neural Networks
Deep learning

Evolving deep learning

Automatic fault diagnosis in many systems is performed via the analysis of vibration data in the time or
frequency domain. In the literature, many approaches for extracting featured from signals for fault diagnosis
have been proposed. In this paper, we apply a variety of transform functions including Fourier, Wavelet, etc. to
extract features from the vibration data, which includes the statistical features and some features automatically
extracted via Convolutional Neural Networks (CNNs). For each of these feature extraction approaches, a
learning algorithm is trained to diagnose the faults and their results are aggregated in an ensemble machine
learning algorithm. The weights of the base learner algorithms are optimized via an evolutionary algorithm to
achieve the best-weighted voting scheme. The architecture of CNNs has a significant effect on the performance
of the algorithm, thus, in this paper, an evolutionary algorithm is proposed to find the best architecture for
CNNs in fault diagnosis. The CNNs are trained via gradient descent algorithms which suffer from getting stuck
in local optima. To manage this, we propose an evolutionary algorithm that benefits from the speed of gradient
descent and the global search of evolutionary algorithms. The proposed algorithm is tested on a number of
benchmark problems and the experimental results are presented.

1. Introduction its application to particular equipment. In this sense, efforts to design
automated feature extraction techniques that do not suffer from these
deficiencies have been conducted by many researchers. Convolutional
Neural Networks (CNNs) have attracted the attention of many works as
they have been successful in the design of automatic feature extraction
methods. Although promising, the use of CNNs in extracting features
for fault diagnosis is in its infancy and requires more attention.

In Huang, Cheng, Yang, and Guo (2019), an improved CNN called
multi-scale cascade CNN is proposed which bears at its input a new
layer that constructs a new signal of more distinguishable information.
After this layer, are inserted the convolutional layers. In Guo, Chen,
and Shen (2016), a hierarchical learning rate-adaptive deep CNN is

Fault diagnosis in many systems is usually performed by analyz-
ing vibration data. The data are usually processed in time-domain or
frequency-domain (Haidong, Junsheng, Hongkai, Yu, & Zhantao, 2020;
Liu, Mu, Chen, Li, & Guo, 2020; Lu, Yan, Liu and Wang, 2019). Because
the time-domain data better preserve the basic characteristics of the sig-
nal, many research extract features like pulse, kurtosis, peak, and wave-
form from the time-domain. However, there are some difficulties with
these features, as some are suitable for some type of faults, while others
may be suitable for other types (He, Shao, Zhang, Cheng, & Yang, 2019;
Hu, Qin, Zhang, He, & Sun, 2018; Zhao, Liu, Xu, & Deng, 2019). Thus,
there have been attempts to discover new features for fault diagnosis.
Many research use frequency-domain data to extract features, example
of which includes Fourier transform (Burriel-Valencia, Puche-Panadero,
Martinez-Roman, Sapena-Bano, & Pineda-Sanchez, 2017; Zhang, Wang,

proposed which consists of a fault pattern determination layer and a
fault size evaluation layer. In order to manage the dynamic information
in raw data, Long Short-Term Memory (LSTM) neural network has

& Wang, 2013), Wavelets transform (Lou & Loparo, 2004; Yan, Gao, &
Chen, 2014), Hilbert-Huang transform (Rai & Mohanty, 2007; Wang,
Ma, Zhu, Liu, & Zhao, 2014), generalized synchrosqueezing trans-
form (Li & Liang, 2012), Walsh transform (Xiang, Zhou, Li, Li, & Luo,
2009), Cosine transform (Lindu & Zhaohan, 1996), etc.

Despite their success, traditional fault diagnosis methods require
manually extracting features that demand professional prior knowl-
edge. This reduces the flexibility of the produced models which restricts

E-mail address: m.tayaraninajaran@herts.ac.uk.

https://doi.org/10.1016/j.eswa.2023.120678

been used in Zhao, Sun, and Jin (2018) for fault diagnosis. A novel
method called deep decoupling CNN is proposed in Huang, Liao, Zhang,
and Li (2018), which employs a 1-D CNN to learn the features from
the raw signal. Then multi-stack capsules are designed to perform as
decoupling classifiers. The fault signals are 1-D signals, while CNNs
are more suitable for 2-D image signals. To manage this, a method is
proposed in Lu, Lin et al. (2019) which transforms the 1-D signal into

Received 16 September 2021; Received in revised form 31 May 2023; Accepted 31 May 2023

Available online 23 June 2023

0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:m.tayaraninajaran@herts.ac.uk
https://doi.org/10.1016/j.eswa.2023.120678
https://doi.org/10.1016/j.eswa.2023.120678
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120678&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M.H.T. Najaran

a 2-D graph. The features of the resulting signal are then extracted via
CNNs.

In some works, mathematical transform methods with CNNs have
been used in fault diagnosis. Wavelet transform is used in Han, Tang,
and Deng (2018), to construct multi-level wavelet coefficient matrices
which are fed to several parallel CNNs. The output of these CNNs is
then aggregated via an ensemble scheme. The authors argue that the
parallel design helps the algorithm deal with the over-fitting problem.
In Zhu, Peng, Chen, and Gao (2019), a short-time Fourier transform is
applied to the signal to transform it into two-dimensional graphs. The
resulting graph is then fed to CNNs to extract features.

CNNs usually require large sets of training data to prevent over-
fitting. To manage this, a CNN is proposed in Cao, Zhang, and Tang
(2018) which consists of a pre-trained CNN that extracts the features
and a fully connected part for classification. Labeling large data-sets
requires huge efforts. To overcome this, an unsupervised Categorical
Adversarial Autoencoder is proposed in Liu et al. (2018). Other exam-
ples of the research that use CNNs to extract features for fault diagnosis
can be found in Azamfar, Singh, Bravo-Imaz, and Lee (2020), Hoang
and Kang (2019), Jiao, Zhao, Lin, and Zhao (2018), Jing, Zhao, Li, and
Xu (2017), Wu, Jiang, Ding, Feng, and Chen (2019) and Wen, Li, Gao,
and Zhang (2017).

By providing diversity and accuracy, ensemble learning improves
the performance of learning algorithms (Kuncheva, 2005). Research
shows that the ensemble of learning algorithms usually perform better
compared to individual algorithms (Benediktsson, Sveinsson, Ersoy,
& Swain, 1997; Breiman, 1996b; Hansen & Salamon, 1990; Hashem,
1997). Two main approaches of Heterogeneous and Homogeneous
are employed in the literature to achieve diversity. Heterogeneous
approaches achieve diversity by employing different classifiers. In order
to reach diversity, the ensemble should consist of a set of classifiers
that misclassify different instances (Polikar, 2006). The diversity in
Homogeneous approaches is achieved by injecting randomness into the
training phase of the classification. This can be done by, for exam-
ple, manipulating the feature set. Examples of Homogeneous methods
include Bagging (Breiman, 1996a), random subspace (Ho, 1998) and
diversification of algorithm parameters (Ranawana & Palade, 2006).
Bagging methods create diversity by changing the distribution of the
training data and building different training sets. In random subspace
approaches, the diversity is achieved by randomly selecting subsets
of features, and diversification of algorithm parameters makes the
diversity by incorporating diversity within the learning algorithms.

In Bithlmann, Yu, et al. (2002) and Buja and Stuetzle (2006) the-
oretical frameworks for bagging have been presented. A variation of
Bagging, called Pasting small votes is designed in Breiman (1999) for
large data-sets. Two versions of the algorithm called Rvotes and Ivotes
were then proposed. In Rvotes the data subsets are created at random
and in Ivotes consecutive data-sets are created based on important
data instances. The important data instances are the data records
that promote diversity. In Bryll, Gutierrez-Osuna, and Quek (2003)
a method called attribute bagging was proposed that, via a wrapper
scheme, establishes an appropriate attribute subset size. Bootstrap sam-
pling with more advanced methods of feature selection was integrated
in Stefanowski (2007). The feature selection methods in the research
are performed based on an analysis of the relationship between the
features and the target class. To achieve diversity, a method is proposed
in Shirai, Kudo, and Nakamura (2008) which selects both the samples
and features at the same time. In order to improve the performance of
bagging, a method is proposed in Cai, Peng, and Zhang (2008) which
considers the diversity of classification margins in feature sub-spaces.
To do so, the task is converted into the optimization problem of finding
the best weight of feature sub-spaces. In Cruz et al. (2021) an ensemble
learning algorithm is proposed which consists of five learning algo-
rithms that are aggregated in a voting scheme. The weights the learning
algorithms in the voting scheme is optimized via a search algorithm. A
two-stage ensemble of deep CNNs is presented in Uddamvathanak et al.

Expert Systems With Applications 233 (2023) 120678

(2018), in which for each base-learner, multiple rounds of training are
preformed based on sub-sampling the training dataset. The output of
the base-learners are aggregated via the MinMax median.

In order to detect fault in rotary systems many sets of features,
including wavelet, Fourier, Hilbert-Huang, etc. have been proposed
in the literature, and all these methods have shown successful results.
However, there is not many research that try to employ all represen-
tative features in one system. To cover this, in this paper, we propose
a method to take advantage of all these feature sets in an ensemble
learning paradigm. In the proposed algorithm, for each set of these fea-
tures, a base learner algorithm is designed to diagnose the faults. Then,
an ensemble scheme is proposed to aggregate the output of these base
learners. The proposed ensemble learning is a weighted voting scheme.
Finding the optimal weight of each base-learner in the voting system
is an optimization problem which highly affects the performance of
the final algorithm. The proposed algorithm employs an evolutionary
algorithm that finds the optimal voting weights. Most of the research
in the literature, employ statistical features for diagnosis. In this paper,
apart from statistical features that are used in the literature, we also use
CNNs to automatically extract features from the raw and transformed
signals. These new sets of features which have not been studied before
show promising results.

The architecture of CNNs has a great deal of effect on their per-
formance so finding the optimal architecture is a matter of impor-
tance for these algorithms. Finding the optimum architecture for a
CNN is an optimization process which is usually performed manually
by experts. There are many architectures proposed in the literature.
Some well-known works include CAE-2 (Rifai, Vincent, Muller, Glorot,
& Bengio, 2011), TIRBM (Sohn & Lee, 2012), PGBM+DN-1 (Sohn
& Lee, 2012), ScatNet-2 (Bruna & Mallat, 2013), RandNet-2 (Chan
et al., 2015), LDANet-2 (Chan et al.,, 2015), SVM+RBF (Larochelle,
Erhan, Courville, Bergstra, & Bengio, 2007), SVM+Poly (Larochelle
et al., 2007), NNet (Larochelle et al., 2007), SAAA-3 (Larochelle et al.,
2007), SqweezNet (SQNet) (Iandola et al., 2016), MobileNetV2 (San-
dler, Howard, Zhu, Zhmoginov, & Chen, 2018), DBN-3 (Larochelle
et al., 2007), LSTM and the algorithms proposed in Baldominos, Saez,
and Isasi (2018), Fernandes Junior and Yen (2019b), Gottapu and Dagli
(2020), Ma, Li, Xia, and Zhang (2020) and Sun, Xue, Zhang, and Yen
(2018). Manually optimizing the architecture has two limitations. First
it requires an expert with good understanding of the problem and the
learning algorithm. Second, the designed architecture is not generic
and is tweaked to perform best for a given problem. In this respect,
designing an automated method that can optimize the architecture for
a given problem is a matter of importance. In many research, Evolution-
ary algorithms are shown to be successful in optimizing the architecture
of machine learning algorithms. In order to optimize the architecture of
CNNs in diagnosing the faults, an evolutionary algorithm is proposed
in this paper. The architecture of a CNN is considered in this paper
as the graphical architecture and the numerical parameters of the net-
work. The evolutionary algorithm tries to optimize both the graphical
architecture and numerical parameters of the CNNs.

Training CNNs involves the optimization of a large number of
weighting parameters. Because of the large search space, the training
is often performed via gradient-based algorithms which, due to their
local search scheme, suffer from getting stuck in local optima. The
search space in the training process, specially for deep learning algo-
rithms is very large and incorporating a global search algorithm can
improve the performance. To manage this, an evolutionary algorithm
is proposed in this paper which uses the gradient descent algorithm to
find the local optima in the search space. Then these good solutions are
combined via evolutionary operators to generate new individuals. The
new individuals are then optimized via gradient descent to find better
local optima. The process continues until better solutions are found.
This paradigm manages the local optima problem in gradient descent
algorithms. In this scheme, the fast local search, the gradient descent
has the role of finding the local optima and the evolutionary part has

M.H.T. Najaran

Convolution Convolution

Pooling Pooling

Flatten

Input Image

Fig. 1. The architecture of CNNs, consisting of a combination of convolution and
pooling operators.

the role of performing the global search and helping the algorithm to
escape from local optima. The proposed algorithm is tested on some
benchmark problems and the results are presented.

The rest of this paper is organized as follows. Section 2 introduces
Convolutional Neural Networks and the way they are used and their
architecture is optimized in this paper. The proposed algorithm is intro-
duced in Section 3. Section 4 performs experiments on some benchmark
problems and finally, Section 5 concludes the paper.

2. Convolutional neural network structure

CNNs are a group of feed-forward artificial neural network algo-
rithms that have successfully been applied to a wide range of pattern
recognition problems. As presented in Fig. 1 a CNN consists of a number
of convolutional and pooling layers. The CNN in this figure has two
convolutional, two pooling, and one flattening layer. There are four
groups of feature maps followed by a fully connected layer at the tail.
The input of the CNN is a signal (usually a 2-D image signal) that is
fed to the network and is processed in the layers. The convolutional
and pooling layers process the input image and extract features. The
features are then classified via the fully connected layers. To generate a
feature map, a filter should be defined for the convolutional operators.
The filter is a matrix that performs convolution by sliding over the
image with the step size called stride. The pixels in the feature map
are the dot product of the corresponding pixels in the filter and those in
the image. The parameters of the convolutional operators are connection
weight, filter width, filter height, number of feature maps, the stride width
and the stride height.

Similar to the convolutional operators, the pooling operators pro-
cess the image by traversing over the image. The operator performs
computations, via a matrix called kernel to collect the average or
maximum values in the previous layer. This operator is devised to
streamline the underlying computations by reducing the size of the
representations to reduce the computations, number of parameters, and
the required memory. The pooling operator reduces the dimension of
the data by combining the output of a number of neurons at one layer
into a single neuron in the next layer. The parameters of the pooling
operator are the stride height, stride width, kernel height, kernel width and
pooling type.

CNNs have one or more fully connected layers at their tail. The fully
connected layer performs high-level reasoning and classification. The
neurons in a fully connected layer are connected to all the neurons in
the previous layer.

The CNN in Fig. 1 consists of a particular ordering of the convolu-
tional, pooling, and fully connected layers. This ordering, known as the
CNN architecture greatly affects the performance of these algorithms.
Also, the numerical parameters of the operators, namely kernel, filter,
and stride size affect the performance. Therefore, when solving a
problem, it is very important to use an architecture that is specifically
suitable for the problem.

There are some works that use evolutionary algorithms to optimize
the architecture of CNNs. In Sun, Xue, Zhang, and Yen (2020) a block-
based Genetic Algorithm is proposed to optimize the architecture of
CNNs. In order to improve the optimization of CNN architectures,
in Xie, Chen, Ma, and Xu (2022) a triplet attention mechanism is

Expert Systems With Applications 233 (2023) 120678

incorporated into the architecture of the algorithm. This work uses a
random forest-based performance predictor in the fitness evaluation
process. In Bingham, Macke, and Miikkulainen (2020), a tree-based
search space of activation functions is defined to optimize the activation
functions of CNNs via evolutionary algorithms. In order to create a
tradeoff between complexity and accuracy in CNNs, in Johner and
Wassner (2019), an evolutionary method is presented to optimize the
architecture of a CNN. The accurate prediction of the remaining useful
life of industrial components is a crucial task in many companies.
In Mo, Custode, and Iacca (2021) argues that many Deep Neural
Networks (DNNs) have been proposed for the problem, and the search
the best architecture of these algorithms is ongoing. To find the best
architecture of DNNs, evolutionary algorithms are employed in this
work that requires minimum computational resources. In Junior and
Yen (2019a), particle swarm optimization algorithm is used to optimize
the architecture of CNNs for image classification.

In this paper, we use a Genetic Algorithm to determine the best
architecture for the fault diagnosis problem. In the proposed GA, the
ordering of the operators and the numerical operators of CNN are
optimized at the same time. Algorithm 1 is used in this paper for this
purpose. Here the simple version of GA with the individual represen-
tation in Fig. 2 is used for the optimization. Similar approaches have
been conducted before in the previous works that have been mentioned
in this work.

Algorithm 1 CNN Architecture Optimization Algorithm

begin
set the parameters m, n and /
=0
1. initialize the population Y,
2. while not termination condition do
begin
3. evaluates the individuals in Y~
4. select the parent solutions via tournament selection
5. generate offsprings via crossover and store
them in O°
6. perform mutation on O° with probability m
7. perform environmental selection on Y* U O°
and store the results in Y 7+!

T=1+1
end
8. return the best solution in Y*

end

In the beginning, the parameters of the algorithm, m the mutation
rate, n the population size, and / the maximum length of the CNNs is
set. The parameter / determines the maximum number of layers in the
CNN. This controls the computational cost of the algorithm. Although a
greater number of layers in a CNN does not always translate into better
performance, having more layers means that the algorithm has more
complexity and is capable of extracting more detailed features. On the
other hand, larger CNNs require more computational power for both
training and the classification phase. Therefore in setting / a trade-off
should be performed between the computational cost and the required
performance. Based on our computation/time budget, we set / = 8 in
this paper.

In step 1 of the algorithm, the population is initialized. In this step,
n individuals X', i = 1,...,n are generated at random. The number of
layers in each individual must be 2 at a minimum because, in each CNN,
the first layer is always convolutional and the last layer is always a fully
connected layer. For each individual, a random number between 3 and /
is generated which determines the number of layers in the CNN. Thus in

M.H.T. Najaran

the initialization step, individuals with a different numbers of layers are
generated. This allows the algorithm to search in the space of finding
the best number of layers for the CNNs. A convolutional operator is
placed at the first layer and a fully connected layer is inserted at the last
layer. For the layers in between, with the probability of half a pooling
or a convolutional layer is placed until the required number of layers
is achieved.

The numerical parameters of the operators are also initialized at
random. This is performed for the pooling and convolutional operators.
For example, for the convolutional operators the parameters connection
weight, convolution type, filter width, filter height, number of feature maps,
the stride width and the stride height are randomly set. The values of
the filter or kernel matrices are also set at random. All these values are
optimized during the optimization process. For the sake of simplicity
and reducing the size of the search space, all the convolutional layers in
an individual have the same value for their numerical parameters. Due
to the huge number of connection weights, the optimization of these
values via the genetic algorithm is arduous work and so is performed
during the training phase. However, the mean and standard deviation
of the Gaussian distribution functions for generating these values are
optimized via the GA.

After initialization, the while loop performs the GA until the ter-
mination condition is satisfied. The termination condition can be a
maximum number of generations, a convergence measure, or the de-
sired performance. In step 3 of the algorithm, the individuals are
evaluated. In order to evaluate an individual, a CNN with the archi-
tecture suggested by the individual is generated, trained, and tested on
the data records. Then the performance of the CNN in the classification
process is taken as the fitness of the individual. The performance of the
learning algorithm in terms of the accuracy is used as the fitness of a
particular architecture. The fitness is measured as, Eq. (4).

The gradient descent algorithm is used in this paper to train the
CNNs. Note that due to the huge number of weights that should
be optimized in the training phase of the CNNs, using evolutionary
algorithms is not practical and thus the gradient descent algorithm
is the best choice. In step 4 of the algorithm, a simple tournament
selection algorithm is used to select the individuals.

In step 5 of the algorithm, the crossover is performed on the selected
individuals to generate offsprings. The crossover operator for structure
optimization is presented in Fig. 2. In this figure, I stands for input
layer, C stands for convolutional layer, P stands for pooling layer and F
stands for fully connected layer. The crossover chooses randomly two
crossover points on the two individuals. Then generates the offspring
by selecting one part from the first parent and the second part from
the second parent. Note that the size of the two-parent individuals is
different and the crossover is flexible to combine and build different
size individuals. In this paper, we define three types of mutation
operators, each serving a specific role. The mutation operators are as
follows.

+ Choose one operator randomly and swap its type (if it is convo-
lutional, change it to pooling and vice versa).

» Choose a pooling and convolutional operators and swap their
position. This mutation explores to find the best ordering of the
existing operators on CNN.

» Randomly remove or insert an operator in the CNN. By changing
the number of layers in the CNN, this mutation explores to find
the best number of layers for the algorithm.

These operators are designed to explore and find the best ordering
of the operators within CNN. The architecture of CNNs in this paper
is defined as the ordering of the operators and the numerical param-
eters of the operators. To optimize the numerical parameters of the
operators, the following crossover and mutation operators are devised.
The numerical parameters (connection weight, filter width, filter height,
etc.) are coded as a vector of numbers, for which a simple one-point
crossover is used in this paper. The numerical mutation is devised as

Expert Systems With Applications 233 (2023) 120678

JETr ic fr >

'

Fig. 2. The crossover operator for the CNN architecture optimization.

randomly choosing one value in the parameter vector and changing it
to a random value.

In this scheme, the individuals consist of two parts, one codes
the architecture which is shown in Fig. 2 and one is the numerical
parameters which are a vector of numbers. The individuals representing
the architecture, as shown in Fig. 2, are flexible and can be of different
sizes. The figure shows how this is managed in the crossover process.
The numerical parameters on the other hand are of the same size among
all the individuals, so performing crossover is simple. The number
of filters in the architecture is fixed and the number of neurons is
adaptively optimized via the architectural crossover operator as of
Fig. 2.

Many different CNN architectures have been proposed in the litera-
ture. However, these architectures are tuned for particular problems or
are designed for generic problems. We believe that there is no optimal
architecture that fits all problems, and each problem requires its own
architecture tuning.

3. The proposed algorithm

In the literature, different sets of features have been used to diag-
nose faults in systems. These include time-domain signal features like
pulse, kurtosis, peak, etc. While these features have been successful in
diagnosing faults (Ben Ali, Fnaiech, Saidi, Chebel-Morello, & Fnaiech,
2015), there are some properties of the faults that are not reflected
in these features. Faults in systems result in the significant transient
processes. The transient signals with some high-frequency components
are usually representative of different types of faults. Time-domain
features do not always reflect these properties and transforming the
signals into the frequency domain is sometimes necessary. To capture
this, Fourier transform has been used which is a very good choice for
finding what frequencies occur in the signal (Tran, AlThobiani, Ball,
& Choi, 2013). Although Fourier transform is very good at identifying
the frequency components of the signals, they do not provide time-
frequency information of the signals. In other words, Fourier transform
tells what frequencies exist in the signal, but does not tell where in the
signal these frequencies occur. To manage this, the wavelet transform
has been proposed which provides time—frequency information about
the signal. In this sense, using features from the wavelet transform has
been successful in diagnosing faults. Although successful in extracting
time-frequency information from the signals, wavelet transform has the
shortcoming that the mother wavelet is difficult to be selected (Gawali,
Hasabe, & Vaidya, 2015). The Hilbert-Huang transform is proposed to
manage this problem. The HHT is suitable to analyze the nonlinear
and non-stationary signals. The transform consists of two steps: the
empirical mode decomposition (EMD) and Hilbert transform. The EMD
decomposes the original signal into a number of intrinsic modes func-
tion components. The Hilbert transform is then applied to each of these
components so the time—frequency of the signal is extracted. Apart from
these signal processing methods, CNNs have been used as an automatic
feature extraction method to extract features from the fault signals.

Each of these feature extraction methods has its advantages and
shortcomings. We believe that combining these approaches can help
the learning algorithms to take advantage of all these methods.

M.H.T. Najaran
3.1. The proposed ensemble algorithm

In this paper, we propose an ensemble algorithm that is a combina-
tion of many learning algorithms, where each base learner algorithm
is trained via a particular set of features. In other words, the diversity
in the ensemble learning algorithm is achieved by using different sets
of features for each learning algorithm. In this paper, the following
methods are used to extract features from the signals.

+ Time-Domain Features: The first base learner uses time-domain
features to identify the faults. The features include Mean, Entropy
Error, Entropy estimation, histogram lower, histogram upper,
RMS, Kurtosis, Skewness, Peak to Peak, Crest Factor, Shape Fac-
tor, Impulse Factor, Margin Factor, Add Factor 1, and Add Factor
2. For a more detailed description and mathematical formula of
these features please see Ben Ali et al. (2015).

Fourier Transform Features: The Fourier transform is applied to
the signal and the Frequency center, RMS variance frequency,
and Root variance frequency are used for classification. A more
detailed description of these features and the extraction process
please see Tran et al. (2013).

Wavelet Transform Features: To extract this set of features, DWT
is applied to the signals, then the statistical features of the first
six decomposition levels are extracted. The statistical features in-
clude Mean, Entropy Error, Entropy estimation, histogram lower,
histogram upper, RMS, Kurtosis, Skewness, Peak to Peak, Crest
Factor, Shape Factor, Impulse Factor, Margin Factor, Add Factor
1, and Add Factor 2. For more information on how to extract these
wavelet features from a signal please see Hu, He, Zhang, and Zi
(2007).

Walsh Transform: The Walsh transform is applied to the signal
and the statistical features of the resulting signal are used for
classification. For more information on this transform, function
please see Xiang et al. (2009).

Hilbert-Huang Transform: The Hilbert-Huang Transform (HHT)
is a combination of Empirical Mode Decomposition and Hilbert
Transform and is a time-frequency analysis. The transform is
specifically designed for non-linear and non-stationary data. HHT
is applied to the signal and the statistical features
are extracted. For more information please see
Konar and Chattopadhyay (2015).

For all these signals, apart from the statistical features explained
above, also CNNs are used to extract features. In order to extract
features via CNN, from the time-domain features, the signal is first
transformed into an image. Fig. 3 shows the process that converts one-
dimensional signals into an image to be processed via a CNN. Note that
in order for the CNNs to process the images, all the input images should
be of the same size. In this method, the signal is sliced into M none
overlapping pieces of size M. Then, in the second dimension, these
pieces are placed on top of each other to build the M x M image.
Because the size of the input signal is greater than M?, the slices are
chosen from random places in the signal. Also, because the signal is
converted into an image, the values of the pixels should be in the range
of [0-255]. Thus, the values of the signal should be normalized in this
range.

In this paper, CNNs are used to extract features from the Fourier
transform of the signals. Applying Short-Term Fourier Transform
(STFT) allows extracting both time and frequency information of a
signal. The result of an STFT of a signal is a two-dimensional signal
that can be analyzed as an image. This image can be processed via
CNNs to extract features. More information on this can be found
in Zhang, Xing, Bai, Sun, and Meng (2020). The output of the wavelet
transform on a one-dimensional signal is a two-dimensional signal that
can be processed via CNNs. In this paper, we use the method proposed
in Liang et al. (2019) to extract features via wavelet and a CNN.

Expert Systems With Applications 233 (2023) 120678

1 e o o

2 e o o

3 e o o
oo (o o e
oo (o o e
oo o o |0

M-1 e o o

M e o o

1 2 3 M M-1

Fig. 3. The procedure to convert a signal to an image.

Extracting features from the Hilbert-Huang transform (HHT) via CNN
is performed in this paper. We use the method presented in Guo, Yang,
and Chen (2019) to extract these features.

The training in CNNs is the process of finding the best weights and
the best filters and kernels for the network. In the literature, gradient-
based algorithms are used to find the best values for these parameters.
The advantage of gradient descent (GD) algorithms compared to an
exhaustive or evolutionary search is that they are fast. This is specifi-
cally true for CNNs in which there is a huge number of parameters that
should be optimized in the learning process. Despite this advantage, the
GD algorithms are very prone to get stuck in local optima.

Fig. 4 represents the proposed ensemble algorithm. In this algo-
rithm, 9 feature extraction methods are used and the features are fed
to 9 classifiers. In this paper, we use Feed Forward Neural Networks
(FFNN) as classifiers. For the CNN feature extractors, FFNN is used as
the classifiers at the fully connected layers and the training is performed
as back-propagation through the whole network.

The proposed approach collects a large number of features via
different feature extraction methods. Instead of feeding all the features
into a single learning algorithm, an ensemble approach is proposed
where each base learner is trained via a subset of features. Using
the proposed scheme has a number of advantages over using all the
features in a single learning algorithm. (1) In many cases, feeding
too many features to a learning algorithm results in poor performance
and a feature selection mechanism should be adopted. The proposed
approach has the advantage that each of the base learners is trained
based on a smaller number of features. (2) Having a number of separate
feature sets results in diversity which in turn allows us to use ensemble
algorithms. This results in improved performance. (3) This scheme
is composed of a number of independent learning algorithms that
can be trained and tested in parallel. This allows implementing the
algorithms in a distributed paradigm. (4) Because each of the base
learners is architecturally designed and trained via a particular set of
features, they become tuned to learn the patterns of the feature set. For
example, one learning algorithm is assigned to learn only the patterns

M.H.T. Najaran

Raw Signal

Statistical
Feature Classifier
Extractor

L

Ravw Signal Frequency Domain
Fourier st
. Statistical
mmmm Feature Classifier
" A Extractor
) Time-Frequency
Raw Signal . clet Domain -
st Statistical
ransform i
W Feature Classifier
Extractor

Raw Signal Frequency Domain

Walsh tatistica

Extractor

Classifier

Time-Frequency

Raw Signal Domain
T tatistical Ensemble
Feature Classifier)
Extractor Layer
Raw Signal 2D Si

Time-Frequency
Domain

Time-Frequency
Wavelet ~ Domain

CNN }——-{ Classifier
CNN ’——-{Classiﬁer
CNN H Classifier
. Time-Frequency
Raw Signal Domain
ol o o]

Fig. 4. The proposed ensemble algorithm.

Raw Signal

Raw Signal

in the wavelet coefficients of the signal, so the learning algorithm gets
specialized in discovering these patterns. This learning algorithm is
not required to discover the patterns in the statistical features of the
signal. (5) The proposed paradigm splits the feature space into smaller
pieces. Thus, the training process for each of the base learners consists
of performing a search in a smaller search space with much fewer
local optima. This increases the chance of the algorithm finding better
optima.

3.2. Optimization of the weights in the voting scheme

The ensemble layer in this algorithm is weighted voting among the
classifiers. These weight values should be adjusted to find the best
classification. To do so, we first train all the base learners via the
training data. Then the final output is found as
Zf: 1 Wibi

Zf:] w; |
where P are the overall prediction of the ensemble, p; is the prediction
of ith base learner, ¢ is the number of base learners and w; is the weight
of the ith base learner. In this paper, Genetic Algorithms are used to
optimize the weight values (w;) of the ensemble layer. The individuals
in this algorithm are vectors of real numbers.

In the initialization step of GA, first the values of the weights are
set to random numbers between (0,1) (w; = R(0,1) for i = 1...¢).
Algorithm 2 shows the way the fitness of an individual is calculated.
In order to measure the fitness of an individual, the training data are
partitioned into 4 equal size partitions. Then in a 4-fold scheme, the
base learners are trained and used to predict the output. The weight
vector suggested by the individual x is used to aggregate the base
learners via weighted voting. The total number of correctly classified
data records is then used as the fitness value of the individual x. Note
that in step 4 of the algorithm 2, because it is only the weights of the
ensemble layers that are being optimized, the base learners do not need
to be trained and tested every time the fitness function is called. The
base learners are trained and tested in the 4-fold scheme once and their

P= (@]

Expert Systems With Applications 233 (2023) 120678

output is stored in a lookup table. Then, every time the fitness function
is called, the table is used to find the output of the base learners.

Because the weights in the voting scheme should be positive num-
bers, in the optimization process, we set a threshold to make sure the
weights do not go below zero.

The advantage of the proposed ensemble learning is that not only
it considers a large set of features for classification which improves the
performance, but also through the weighted voting scheme finds the
features that are more likely to provide better results. In the proposed
optimization algorithm for the voting scheme, if there is a set of
features (statistical or extracted via a CNN) that do not perform well in
predicting the final output, the weight of the classifier is automatically
set to a small value, so it will have small or no role in the final
classification. Conversely, if a set of features is better at predicting the
output, the algorithm chooses the weight in a way to give a better
role to the classifier. This simply means that the user does not need
to worry about a particular feature extractor to perform well. The not
good feature extractors are automatically eliminated from the voting in
the proposed algorithm. Note, however, that we have carefully chosen
and used the set of features that are shown in the literature or in our
experiments to provide accurate results.

Algorithm 2 Ensemble Weight Optimization Fitness Function

Gets as input the individual x and returns the fitness
begin
1. partition the training data T into 4 equal
partitions T, j=1...4
2.5=0
3.for j=1-4do
begin
4. train the base learners with T — T
5. test the base learners with 7;
6. use the weights in x to aggregate the base learners
and store the number of correctly classified cases in s
7. S=S+s
end
8. return S
end

3.3. Evolutionary training of CNNs

The training process in learning algorithms is and optimization
process which is usually performed via gradient descent algorithm. The
advantage of gradient descent algorithms is their speed, specially for
training the learning algorithms in which there usually are a large
number of training weights. However, just like any other local search
algorithm, Gradient Descent algorithms are prone to getting stuck in
local optima. This is specifically true in the case of CNNs, where there
is a huge number of learning parameters (weights, filter values, etc.)
that should be optimized. In such huge fitness landscapes, the chance
of a local search algorithm to find the global optimum is slim. In this
respect, introducing a global search algorithm into the process can
improve the chance of the algorithm in finding the optimal solution.
In order to design a training algorithm for CNNs that benefits from
the advantages of gradient descent and evolutionary algorithms, in this
paper, we propose an evolutionary algorithm that uses the gradient
descent as a local search and evolutionary operators as the global
search. In algorithm 3 the gradient descent algorithm is performed
to find the local optima in the fitness landscape. The evolutionary
operators are then applied to the local optima to perform a global
search in the fitness landscape. A description of the algorithm is as
follows.

M.H.T. Najaran

Algorithm 3 The Proposed Evolutionary Training Algorithm

begin
set the parameters m, a, N and n
=0

1. initialize N sub-populations Y/.O, j=1...N
while not termination condition do

begin
3. forj=1...N
begin
4. for all individuals in Yr
begin
5. partition the training data 7 into two partitions
Tzrain and Ttest
6. train the individual with T},,;, via GD
7. evaluates the individual with 7,,,
end
8. select the parent solutions from YT via
tournament selection
9. generate offsprings via crossover and store
them in (o}
10. perform mutation on o7 with probability of m
11. perform environmental selection on ij U OJT.
and store the results in Yj”'
end
12. perform migration with probability of «
T=7+1
end
13. return the best solution in Y,

end

At the beginning of the algorithm, the algorithm parameters,
i.e. mutation rate m, the migration rate «, and the population size, n
are determined.

In step 1 of the algorithm, the individuals are randomly initialized.
Each individual represents a set of training parameters (i.e. connection
weights and filters in convolutional layers) of the CNN and initialization
is performed via randomly setting the learning parameters of the CNNs.
CNNs usually have a large number of learning parameters that could
be of the order of hundreds of thousands. To increase diversity in the
population and help the algorithm not to get stuck in local optima
we devise a multi-population evolutionary algorithm. The population
in the proposed algorithm is divided into N sub-populations of equal
size. In this paradigm, each sub-population explores the search space
independently, so each will search a different area of the fitness land-
scape. This way, a wider area of the search space will be explored by
the individuals.

In step 2 of the algorithm, the training process continues until
the termination condition is reached. The termination condition can
be a maximum number of generations, a predefined performance,
convergence, or when the algorithm does not reach better results for
a number of iterations. The for loop in step 3 performs operations on
all sub-populations.

The individuals in the proposed evolutionary algorithm, represent
a set of the training parameters of a CNN. At each generation of the
evolutionary algorithm, the gradient descent is performed on the CNNs
(individuals) and the networks are trained. In order to measure the
fitness of the individuals, the performance of the corresponding CNNs
in classification is estimated and used as the fitness. To estimate the
performance of the CNNs, in step 5 of the algorithm, the training data
are partitioned into two pieces of T}, and T,,,. Here, T,,,, is used
to train the individuals (CNNs) via gradient descent and T7,,, is used

Expert Systems With Applications 233 (2023) 120678

Table 1

The range of each optimization parameter.
Parameter Range
Connection weight [—o0, 0]
Filter width [2,8]
Filter height [2,8]
of feature maps [4-24]
Stride width [2,8]
Stride height [2,8]
Kernel height [2,8]
Kernel width [2,8]

Pooling type {max,min,avg}

to test and evaluate their fitness. The partitioning is performed via a
random paradigm, where 3/4 of the data in T are randomly selected
and put in 7}, ,;, and 1/4 of them are inserted in T},,.

The individuals are trained in step 6 of the algorithm on the data
set T,,,,- The CNNs are trained via the gradient descent algorithm
which starts from the learning parameters of the individual and perform
the search until it reaches a local optimum. Note that in the first
iteration of the genetic algorithm, the individuals have been initialized
randomly, so the gradient descent starts the search from a random point
in the search space. As the genetic algorithm progresses, the gradient
descent optimizes the individuals that are the result of crossover and
mutation operators. That is the gradient descent algorithm takes the
individuals that are the result of GA operators as the starting point in
its optimization process.

The individuals are evaluated in step 7 of the algorithm. The CNNs
are trained on the data T,,,;, and evaluated base on 7,,,. This process
manages the over-fitting problem in two ways. First, the data T,
that is used to evaluate the individuals are not present in the gradient
descent training phase. Second is that for each individual, the T},
and T, are different. Because the data on which the individuals are
evaluated, T},,, are different and set randomly for each individual, the
global search algorithm is less prone to over-fitting (compared to using
the same T, for evaluating all the individuals).

In step 8 of the algorithm, the parent solutions are selected via
tournament selection and in step 9 crossover is performed to generate
new individuals. Note that the crossover operator is only applied to the
individuals within the same sub-population. This scheme is devised to
help the algorithm preserve diversity. The learning parameters in CNNs
are the connection weights and the filters. The connection weights are
a number of matrices and the crossover is defined in this paper as a
simple two-point crossover on matrices. The filters are also matrices
and a similar crossover is devised for them. In step 10, the mutation
operator is applied to the individuals. Because the number of learning
parameters is very large, the mutation operator should change a fair
amount of parameters. The proposed mutation changes randomly 5%
of the learning parameters in the matrices.

After the mutation and crossover operators are applied and a new
generation of individuals are created, the new individuals are then
optimized via gradient descent in step 6 of the algorithm. The crossover
and mutation operators change the individuals, moving them away
from the local optimum they have reached during the gradient descent.
This gives the gradient descent another chance to find another local op-
timum. By randomly perturbing the individuals, the mutation operator
injects diversity into the population. The crossover operator combines
two individuals and produces an individual that inherits properties
from both parents. The gradient descent then starts from this solution
and performs a search until it reaches another local optimum. The
new individual is located in a region in the search space in between
its parents. Starting from this point, the gradient descent algorithm
searches until it reaches a local optimum which, in expectation, has
better fitness than its parents.

In step 12, the migration is performed, which selects at random two
individuals from two sub-populations and swaps the sub-population to

M.H.T. Najaran Expert Systems With Applications 233 (2023) 120678

Table 2
The accuracy of different algorithms (Eq. (4)) on the Tennessee Eastman benchmark (case 1). The data are averaged over 30 runs.
Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9 Cls 10 Avg
SVM 96.85 97.91 28.76 98.33 92.98 62.37 99.96 49.75 30.34 36.25 69.35
ANN 94.53 95.03 28.58 93.57 72.93 98.30 98.29 87.31 32.45 16.68 71.76
SAE 93.90 94.16 33.09 97.84 71.74 51.29 99.94 49.14 35.35 29.50 65.60
DBN 94.12 94.24 31.74 97.90 71.96 49.53 98.78 57.70 32.01 40.72 66.87
BLS 93.88 94.07 34.57 97.86 70.85 79.55 99.54 54.23 28.21 18.50 67.12
Raw Stat. 94.71 96.94 28.83 93.26 83.97 51.81 94.78 57.67 29.64 32.36 66.40
Fourier Stat. 93.77 93.75 34.80 95.39 83.71 54.96 87.69 53.05 35.07 36.44 66.86
Wavelet Stat. 93.72 95.44 30.54 93.28 74.44 39.37 80.87 52.81 30.38 29.99 62.08
Walsh Stat. 96.21 98.32 31.72 95.99 93.43 74.90 91.11 77.60 31.58 36.95 72.78
HHT Stat. 96.29 98.06 28.18 94.88 91.96 53.21 94.87 71.05 33.43 27.67 68.96
1D to 2D CNN 94.99 98.50 33.53 97.11 79.74 70.29 89.69 76.75 31.17 31.35 70.31
STFT CNN 94.76 96.83 30.28 97.29 89.56 70.16 88.92 56.90 34.41 26.23 68.53
Wavelet CNN 96.52 98.51 32.71 96.18 91.27 53.53 98.84 81.50 37.66 37.71 72.44
HHT CNN 94.56 98.06 34.48 98.02 90.69 70.64 97.71 65.25 31.93 23.78 70.51
EECNN 98.14 99.88 32.32 99.66 94.61 99.77 99.88 88.84 34.52 38.65 78.63
1D to 2D CNN_ 95.00 98.25 35.65 97.25 78.25 69.00 89.45 70.10 35.60 26.60 69.51
STFT CNN_ 94.70 96.00 31.65 96.35 86.25 66.60 88.05 55.50 32.30 24.45 67.19
Wavelet CNN_ 96.20 97.55 33.55 95.75 86.65 50.60 97.30 79.05 35.05 31.35 70.31
HHT CNN_ 94.35 96.70 29.75 97.05 85.95 69.35 96.90 65.10 33.50 30.70 69.94
Cruz 97.30 98.60 31.55 99.20 91.05 96.10 98.20 86.30 33.95 34.55 76.68
Uddamvathanak 97.20 98.00 34.95 98.40 92.85 97.60 97.45 82.25 36.30 37.35 77.24
Table 3
The true positive rate of different algorithms (Eq. (2)) on the Tennessee Eastman benchmark (case 1). The data are averaged over 30 runs.
Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9 Cls 10 Avg
SVM 96.78 95.74 46.93 96.86 96.55 44.62 100.00 60.71 33.85 40.13 71.22
ANN 98.23 97.50 30.58 91.38 97.30 99.83 100.00 92.03 33.96 30.70 77.15
SAE 98.35 97.91 40.86 99.06 99.12 51.11 100.00 49.56 46.03 37.86 72.01
DBN 97.99 97.17 41.44 99.64 99.00 49.84 100.00 55.19 43.14 41.53 72.49
BLS 98.48 98.36 36.06 98.74 98.18 72.58 99.61 53.36 32.38 30.55 71.83
Raw Stat. 97.09 96.27 31.53 91.08 97.58 51.13 99.71 56.19 36.54 33.93 69.10
Fourier Stat. 96.92 97.16 41.39 94.11 97.32 52.84 99.93 76.08 34.19 38.11 72.81
Wavelet Stat. 97.39 97.01 33.31 91.08 96.45 44.80 99.52 52.81 33.22 34.22 67.98
Walsh Stat. 97.75 97.90 42.19 94.47 98.06 66.87 99.75 75.19 43.30 38.82 75.43
HHT Stat. 97.67 97.58 42.13 90.68 98.29 51.59 99.81 70.86 39.93 36.13 72.47
1D to 2D CNN 97.13 98.18 39.21 96.81 98.34 63.24 99.99 76.83 36.50 34.61 74.08
STFT CNN 98.13 96.22 38.40 95.15 97.80 62.83 99.53 67.91 34.48 35.60 72.60
Wavelet CNN 97.60 97.48 33.07 93.53 96.77 52.26 99.65 81.74 37.81 39.10 72.90
HHT CNN 97.38 97.41 42.77 96.98 98.41 63.43 99.62 64.95 41.84 36.87 73.97
EECNN 98.27 98.99 47.21 99.68 99.33 99.79 100.00 92.17 46.46 41.44 82.30
1D to 2D CNN_ 97.11 98.00 38.30 96.84 97.91 61.98 99.80 72.61 35.66 33.40 73.16
STFT CNN_ 98.19 96.23 37.68 94.21 97.41 60.41 99.70 66.83 34.67 35.00 72.03
Wavelet CNN_ 97.60 96.84 32.82 93.61 96.91 50.32 99.80 77.95 37.73 37.37 72.09
HHT CNN_ 97.21 96.70 40.19 95.66 98.00 62.24 99.80 64.04 40.91 35.24 73.00
Cruz 98.41 98.70 44.07 98.71 99.00 93.08 99.90 88.04 44.47 39.56 80.40
Uddamvathanak 98.61 98.30 43.30 97.91 99.00 96.49 99.90 82.87 44.70 40.73 80.18
Table 4

The positive predictive rate of different algorithms (Eq. (3)) on the Tennessee Eastman benchmark (case 1). The data are averaged over 30
runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9 Cls 10 Avg

SVM 97.11 100.00 34.50 99.85 89.96 100.00 99.45 50.30 31.84 43.58 74.66
ANN 92.03 92.44 34.71 95.59 64.98 96.50 97.03 83.86 36.67 54.85 74.87
SAE 90.61 90.81 33.99 97.20 64.03 93.80 99.19 84.61 36.99 55.21 74.64
DBN 91.02 91.80 36.17 96.55 64.15 97.96 97.17 83.69 37.71 51.98 74.82
BLS 91.01 90.73 33.67 96.87 64.12 94.46 99.43 85.65 37.17 54.30 74.75
Raw Stat. 92.72 97.24 33.53 96.60 76.85 94.99 90.84 67.35 33.64 43.79 72.75
Fourier Stat. 91.00 91.85 35.45 96.93 76.95 95.62 80.58 51.82 35.00 47.48 70.27
Wavelet Stat. 90.74 94.71 33.32 95.78 67.17 95.96 72.73 51.24 31.75 47.98 68.14
Walsh Stat. 94.54 99.05 35.78 97.66 89.82 97.78 84.66 82.40 33.32 54.67 76.97
HHT Stat. 95.28 98.42 34.31 99.02 87.08 95.80 91.37 72.88 36.71 60.70 77.16
1D to 2D CNN 93.36 98.54 35.80 97.16 71.51 98.91 83.04 78.15 35.27 47.46 73.92
STFT CNN 92.39 97.41 33.46 98.92 83.17 94.85 82.29 54.71 33.01 59.93 73.01
Wavelet CNN 95.13 99.80 34.80 99.24 87.61 95.25 97.77 82.04 35.48 53.66 78.08
HHT CNN 92.26 99.11 35.47 98.70 85.43 97.92 95.58 68.17 36.16 52.89 76.17
EECNN 97.28 100.00 3611 99.73 90.67 100.00 99.51 8573 37.49 61.03 80.72
1D to 2D CNN_ 93.20 98.50 35.44 97.71 70.34 98.60 82.70 69.73 35.16 46.51 72.79
STFT CNN_ 91.74 95.85 33.54 98.69 79.69 94.76 80.84 54.29 32.89 59.28 72.16
Wavelet CNN_ 94.95 98.30 34.67 98.20 80.45 95.30 95.05 80.24 35.19 51.97 76.43
HHT CNN_ 91.97 96.70 35.20 98.61 78.95 97.48 94.33 67.27 35.92 51.39 74.78
Cruz 96.30 98.50 36.06 99.70 85.44 99.60 96.62 85.34 36.86 57.83 79.22
Uddamvathanak 95.93 97.72 35.87 98.90 88.17 98.80 95.22 82.14 37.06 61.22 79.10

M.H.T. Najaran

Expert Systems With Applications 233 (2023) 120678

Tennessee Eastman Cls 1 Tennessee Eastman Cls 2

97 T T T T 99 T T

Tennessee Eastman Cls 3

35 T T T T

©
=3

Accuracy
© ©
£ S

Accuracy

©
o}

— 1D to 2D —IDt02D Do
% —STFT 95 —STFT —STFT
— Wavelet — Wavelet 28 — Wavelet
—HHT — HHT ——HHT
91 . . . 94 . . . , . \
0 200 400 600 800 1000 0 200 400 600 800 1000 270 200 400 600 800 1000

34t — T 1

Accuracy

Tteration

Tteration

Tteration

Fig. 5. The progress of the genetic algorithm in the optimization of CNN structure for three classes of Tennessee Eastman problem.

FS: Filter Size KS: Kernel Size
NF: Number of Filters ~ PT: Pooling Type
SS: Stride Size SS: Stride Size

FS=3 FS=5 KS=4 FS=4 KS=4
NF=4 NF=2 PT=M NF=3 PT=A
SS=4 SS=3 SS=4 SS=3 SS=4

2D Time-Domain Signal

FS=4 KS=3 FS=4 KS=3
NF=3 PT=A NF=4 PT=A
SS=3 SS=4 SS=3 SS=4

Short-Term Fourier Transform

SS=5 SS=3 SS=5 SS=4 SS=3

Wavelet Transform

SS=4 SS=4 SS=4 SS=3 SS=4

PGS P MGE P MG F [F]

Hilbert Huang Transform

Fig. 6. The best CNN architecture for each of the signal types.

which they belong. By migrating, the individuals transfer knowledge
between the sub-population. This way, the sub-populations share the
global information they have collected about the search space.

4. Experimental results

In this section, we start the experiments by finding the best CNN
architecture for got each type of signal. We use the algorithm 1 to
optimize the best architecture for CNN and the best architecture for
each of the signal types are presented in Fig. 6. The population size is
set to n = 20, the maximum number of layers in the CNNs is set to / = 8,
the mutation rate is set to m = 0.05 and the termination condition is set
to 1000 number of generations. In all our experiments, the signals in
this experiment are converted into 64 x 64 images. The optimization
process is independently performed on all the signal types and the best
architecture is reported in this figure. The ordering of the convolutional
and the pooling operators along with the filter size, number of filters,

Table 5
The accuracy of different algorithms (Eq. (4)) on the Three-Phase Flow Facility
benchmark (case 2). The data are averaged over 30 runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Avg

SVM 25.80 96.25 99.77 25.87 100.00 69.54
ANN 28.36 97.06 99.04 37.25 99.40 72.94
SAE 26.99 96.98 98.76 36.41 99.25 72.05
DBN 31.27 95.52 98.77 25.29 100.00 70.17
BLS 82.00 63.72 99.93 37.29 100.00 76.59
Raw Stat. 19.32 73.98 98.50 30.73 99.21 64.35
Fourier Stat. 70.54 80.46 98.26 24.32 99.54 74.62
Wavelet Stat. 44.94 66.03 98.45 29.60 99.31 67.67
Walsh Stat. 59.92 82.66 99.69 35.56 99.98 75.56
HHT Stat. 56.36 77.15 98.98 27.18 99.69 71.87
1D to 2D CNN 77.45 70.36 98.93 34.85 99.84 76.29
STFT CNN 52.27 80.25 98.28 32.40 100.00 72.64
Wavelet CNN 69.58 81.91 99.13 34.21 99.74 76.91
HHT CNN 72.42 78.71 99.17 36.68 99.51 77.30
EECNN 85.72 97.24 99.76 40.69 100.00 83.77
1D to 2D CNN_ 63.75 69.75 98.70 30.30 99.60 72.42
STFT CNN_ 47.35 78.25 98.40 35.25 99.65 71.78
Wavelet CNN_ 67.90 78.75 98.95 37.55 99.60 76.55
HHT CNN_ 70.70 75.10 99.30 36.85 99.75 76.34
Cruz 83.55 97.03 99.70 38.45 99.95 82.37
Uddamvathanak 75.35 97.08 99.70 33.10 99.90 79.67

Table 6

The true positive rate of different algorithms (Eq. (2)) on the Three-Phase Flow Facility
benchmark (case 2). The data are averaged over 30 runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Avg

SVM 53.13 92.93 100.00 31.05 100.00 75.42
ANN 30.66 94.28 100.00 39.97 100.00 72.98
SAE 30.11 93.74 100.00 40.23 100.00 72.82
DBN 36.81 91.27 100.00 30.47 100.00 71.71
BLS 82.89 63.30 100.00 40.25 100.00 77.29
Raw Stat. 47.29 76.51 99.06 32.85 100.00 71.14
Fourier Stat. 68.89 72.54 98.50 33.05 100.00 74.60
Wavelet Stat. 46.01 63.76 98.46 33.92 100.00 68.43
Walsh Stat. 63.91 76.80 98.83 36.92 100.00 75.29
HHT Stat. 70.88 75.92 99.07 34.27 100.00 76.03
1D to 2D CNN 74.71 66.34 98.90 36.35 100.00 75.26
STFT CNN 54.43 83.68 98.79 37.07 100.00 74.79
Wavelet CNN 67.32 80.44 98.95 37.99 100.00 76.94
HHT CNN 71.81 75.20 99.42 37.40 100.00 76.76
EECNN 86.35 93.84 100.00 40.32 100.00 84.10
1D to 2D CNN_ 62.21 65.93 99.00 34.45 100.00 72.32
STFT CNN_ 53.02 81.12 98.70 36.37 100.00 73.84
Wavelet CNN_ 67.07 75.74 98.71 37.24 100.00 75.75
HHT CNN_ 71.01 71.42 99.10 36.65 100.00 75.63
Cruz 82.82 89.87 99.90 39.88 100.00 82.49
Uddamvathanak 80.12 88.63 99.50 37.53 100.00 81.16

stride size, kernel size, and pooling type are presented. For all our
experiments in this paper, we use these architectures.

The experiments on the rival algorithms are performed via public

toolboxes. For the SVM algorithm the 1ibSVM (Chang & Lin, 2011) and
for the BLS algorithm, the BLS (Chen & Liu, 2017) toolboxes are used.

M.H.T. Najaran

Table 7
The positive predictive rate of different algorithms (Eq. (3)) on the Three-Phase Flow
Facility benchmark (case 2). The data are averaged over 30 runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Avg

SVM 33.16 100.00 99.73 43.03 100.00 75.18
ANN 30.77 100.00 97.65 43.50 99.19 74.22
SAE 30.81 100.00 97.83 43.64 99.13 74.28
DBN 30.63 100.00 97.11 35.16 100.00 72.58
BLS 80.37 68.09 98.85 43.15 100.00 78.09
Raw Stat. 30.83 72.97 97.79 36.01 99.03 67.33
Fourier Stat. 72.12 98.18 98.12 37.30 99.41 81.03
Wavelet Stat. 42.64 77.02 97.81 43.69 99.04 72.04
Walsh Stat. 60.02 92.87 99.94 44.10 99.62 79.31
HHT Stat. 55.91 80.18 98.79 44.99 99.90 75.95
1D to 2D CNN 82.29 80.61 98.79 42.71 99.25 80.73
STFT CNN 54.89 77.67 98.25 39.30 99.28 73.88
Wavelet CNN 78.88 86.19 99.75 40.77 98.69 80.85
HHT CNN 74.86 86.60 99.42 41.71 100.00 80.52
EECNN 84.94 100.00 99.80 45.10 100.00 85.97
1D to 2D CNN_ 66.09 79.18 98.41 41.52 99.20 76.88
STFT CNN_ 48.03 76.59 98.11 38.51 99.30 72.11
Wavelet CNN_ 70.95 85.64 99.20 40.63 99.20 79.13
HHT CNN_ 70.16 84.44 99.50 41.44 99.50 79.01
Cruz 84.88 95.09 99.50 44.46 99.90 84.76
Uddamvathanak 73.34 92.67 99.90 43.31 99.80 81.80

In order to implement ANN, SAE, and DBN algorithms, the DeepLearn
toolbox (DeepLearn Toolbox, 2015) is used. For CNN, the MATLAB
toolbox is used, for SVM, the polynomial kernel is used, for ANN, we
use a 5 layer network with 20 neurons at each layer and for other
algorithms, the default hyper parameters are used. For BLS, the number
of feature nodes is set to 100 and the number of enhancement nodes
is set to 2000. All other parameters in the algorithms used the default
parameters of the employed software. The statistical features including
Fourier, Wavelet, Walsh and HHT features are extracted via functions
implemented via Matlab 2018a toolbox.

To implement and run the experiments we used the cluster system at
the University of Hertfordshire. The information about its architecture
can be found in clu (2022).

In order to compare the proposed algorithm with other ensemble
algorithms, in this paper we perform the experiments on the algorithms
developed in Cruz et al. (2021) and Uddamvathanak et al. (2018). In
the experimental results in the tables, these algorithms are referred to
as Cruz and Uddamvathanak.

Table 8

Expert Systems With Applications 233 (2023) 120678

In order to perform a fair comparison between the proposed ensem-
ble algorithm and the two other ensemble learning algorithms, we tried
to give similar time budget to all algorithms.

Table 1 shows the range of the optimization parameters in the
proposed algorithm. Theoretically, the connection weights can get any
real number, so during the optimization process, we did not put any
limit on this. However, in the initialization process, random values are
generated between [-10,10]. It is then to the optimization process to
find the optimal value. In this paper, we allowed the algorithm to get
three types of pooling which include maximum, minimum, and average
operators.

Fig. 5 shows the evolutionary process of algorithm 1 in optimizing
the architecture of CNNs. This is the accuracy of the resulting CNN
at different iterations of the algorithm. The plots are generated for
three of the benchmarks and for the four CNN feature extractors. As
the data suggest, the performance starts from a random architecture
and progresses to reach the best architecture found by the proposed
algorithm.

As mentioned in the description of the algorithm 3, in step 5 of
the algorithm, if in calculating the fitness, the performance of the
individuals is measured based on its accuracy on the training data, the
evolutionary algorithm would select the individuals that fit the training
data and so the over-fitting problem would occur. To manage this, the
data are partitioned into the train and test sets, so the architectures
are trained on the training data but their fitness is measured based
on unseen test data. We suggested that this would manage the over-
fitting problem and improve the performance of the algorithm. In order
to compare the proposed algorithm with gradient descent, we also
train CNNs via gradient descent and the results are presented in the
experiments. The algorithms that end with ‘_’ means that the algorithm
uses gradient descent in the training phase. For example ‘STFT CNN’
means when the CNN with STFT features are trained via the proposed
evolutionary training and ‘STFT CNN_’ means when the CNN is trained
via gradient descent.

This paper uses three measures to evaluate the performance of the
algorithms, which are true positive rate (known as sensitivity), positive
predictive rate (known as precision), and accuracy.

TP

TPR = ————, @
TP + FN
TP
PV ®

The performance of different algorithms in terms of accuracy, true positive rate, and positive predictive rate on the Motor Bearing Fault
Diagnosis, the Self-Priming Centrifugal Pump Fault Diagnosis, and Axial Piston Hydraulic Pump Fault Diagnosis benchmarks. The data are

averaged over 30 runs.

Algorithm Case 3 (TSP) Case 4 (SPCP) Case 5 (APHP)
ACC TPR PPV ACC TPR PPV ACC TPR PPV

SVM 99.77 99.53 99.61 99.46 99.31 99.36 99.65 99.87 99.81
ANN 99.66 99.68 99.59 99.40 99.35 99.39 99.78 99.77 99.87
SAE 99.61 99.51 99.61 99.36 99.28 99.24 99.88 99.86 99.85
DBN 99.65 99.47 99.77 99.06 99.09 99.43 99.93 99.84 100.00
BLS 99.79 99.71 99.66 99.29 99.17 99.46 99.98 99.99 99.83
Raw Stat. 99.44 99.60 99.62 99.46 99.39 99.37 99.68 99.70 99.79
Fourier Stat. 99.72 99.45 99.67 99.18 99.32 99.35 99.81 99.72 99.83
Wavelet Stat. 99.48 99.35 99.67 99.13 99.07 99.24 99.83 99.83 99.78
Walsh Stat. 99.75 99.68 99.85 99.44 99.34 99.25 99.74 99.72 100.00
HHT Stat. 99.72 99.76 99.83 99.45 99.34 99.38 99.80 99.90 99.89
1D to 2D CNN 99.67 99.65 99.84 99.39 99.21 99.40 99.73 99.82 99.90
STFT CNN 99.54 99.39 99.77 99.28 99.34 99.27 99.99 99.89 99.83
Wavelet CNN 99.71 99.78 99.74 99.42 99.32 99.32 99.79 99.77 100.00
HHT CNN 99.76 99.68 99.75 99.27 99.35 99.16 99.82 99.93 99.74
EECNN 99.84 99.80 99.87 99.50 99.37 99.42 100.00 100.00 100.00
1D to 2D CNN_ 99.65 99.60 99.70 99.30 99.20 99.40 99.80 99.80 99.80
STFT CNN_ 99.55 99.50 99.60 99.30 99.30 99.30 99.85 99.90 99.80
Wavelet CNN_ 99.65 99.60 99.70 99.35 99.30 99.40 99.80 99.80 99.80
HHT CNN_ 99.75 99.64 99.70 99.30 99.30 99.30 99.90 99.90 99.90
Cruz 99.82 99.78 99.68 99.38 99.40 99.37 99.93 99.84 99.93
Uddamvathanak 99.79 99.71 99.79 99.47 99.38 99.41 99.99 99.91 99.94

10

M.H.T. Najaran

Expert Systems With Applications 233 (2023) 120678

Table 9
The time it takes to train and test each of the algorithms in seconds. The data are averaged over 30 runs.
Algorithm Case 1 Case 2 Case 3 Case 4 Case 5
Training Testing Training Testing Training Testing Training Testing Training Testing
SVM 35.30 3.10e-03 58.30 5.10e-03 65.30 6.10e-03 47.30 4.10e-03 58.30 5.10e-03
ANN 41.05 3.51e-03 64.05 5.51e-03 71.05 6.51e-03 53.05 4.51e-03 64.05 5.51e-03
SAE 38.22 3.23e-03 61.22 5.23e-03 68.22 6.23e-03 50.22 4.23e-03 61.22 5.23e-03
DBN 39.42 3.13e-03 62.42 5.13e-03 69.42 6.13e-03 51.42 4.13e-03 62.42 5.13e-03
BLS 40.21 4.05e-03 63.21 6.05e—03 70.21 7.05e-03 52.21 5.05e-03 63.21 6.05e—03
Raw Stat. 40.29 3.70e-03 63.29 5.70e-03 70.29 6.70e—03 52.29 4.70e-03 63.29 5.70e-03
Fourier Stat. 37.39 3.26e—-03 60.39 5.26e-03 67.39 6.26e-03 49.39 4.26e-03 60.39 5.26e—-03
Wavelet Stat. 42.91 3.81e-03 65.91 5.81e-03 72.91 6.81e-03 54.91 4.81e-03 65.91 5.81e-03
Walsh Stat. 43.12 3.48e-03 66.12 5.48e—-03 73.12 6.48e—03 55.12 4.48e—03 66.12 5.48e—-03
HHT Stat. 39.89 3.95e-03 62.89 5.95e-03 69.89 6.95e-03 51.89 4.95e-03 62.89 5.95e-03
1D to 2D CNN 353.63 3.90e-03 583.63 5.90e-03 653.63 6.90e-03 473.63 4.90e-03 583.63 5.90e-03
STFT CNN 358.48 4.16e—-03 588.48 6.16e—03 658.48 7.16e-03 478.48 5.16e—-03 588.48 6.16e—03
Wavelet CNN 356.99 4.34e-03 586.99 6.34e-03 656.99 7.34e-03 476.99 5.34e-03 586.99 6.34e-03
HHT CNN 363.41 4.27e-03 593.41 6.27e-03 663.41 7.27e-03 483.41 5.27e-03 593.41 6.27e-03
EECNN 1914.62 5.27e-02 3117.59 8.12e-02 3483.71 9.54e-02 2542.26 6.69e—02 3117.59 8.12e-02
1D to 2D CNN_ 358.05 4.19e-03 588.05 6.19e-03 658.05 7.19e-03 478.05 5.19e-03 588.05 6.19e-03
STFT CNN_ 357.48 4.84e-03 587.48 6.84e—-03 657.48 7.84e-03 477.48 5.84e-03 587.48 6.84e—03
Wavelet CNN_ 353.67 4.01e-03 583.67 6.01e—03 653.67 7.01e-03 473.67 5.01e-03 583.67 6.01e-03
HHT CNN_ 361.96 4.35e-03 591.96 6.35e—03 661.96 7.35e-03 481.96 5.35e-03 591.96 6.35e—-03
Cruz 1959.01 5.48e-02 3189.87 8.43e-02 3564.48 9.91e-02 2601.20 6.95e-02 3189.87 8.43e-02
Uddamvathanak 1980.26 5.61e-02 3224.46 8.64e—-02 3603.13 1.02e-01 2629.41 7.13e-02 3224.46 8.64e—-02
Table 10
The accuracy of different algorithms (Eq. (4)) on the Tennessee Eastman benchmark (case 1) for different evolutionary algorithms. The data are averaged over 30 runs.
Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9 Cls 10
1D to 2D CNN 94.99 98.50 33.53 97.11 79.74 70.29 89.69 76.75 31.17 31.35
A3 STFT CNN 94.76 96.83 30.28 97.29 89.56 70.16 88.92 56.90 34.41 26.23
Wavelet CNN 96.52 98.51 32.71 96.18 91.27 53.53 98.84 81.50 37.66 37.71
HHT CNN 94.56 98.06 34.48 98.02 90.69 70.64 97.71 65.25 31.93 23.78
1D to 2D CNN 95.00 98.33 34.59 97.14 78.79 69.73 89.47 74.70 34.44 31.20
PSO STFT CNN 94.72 96.73 31.01 96.73 88.29 69.88 88.66 56.46 33.86 25.42
Wavelet CNN 96.33 97.87 33.09 96.02 89.37 52.91 98.57 80.35 35.94 32.75
HHT CNN 94.53 96.70 34.13 97.52 89.18 70.04 97.18 65.14 33.18 25.00
1D to 2D CNN 94.99 98.50 33.75 97.20 79.36 69.60 89.64 75.92 34.13 27.03
GA STFT CNN 94.72 96.63 30.76 96.94 86.39 68.56 88.53 56.54 32.79 25.51
Wavelet CNN 96.38 97.95 33.20 96.01 90.23 52.74 97.43 81.21 35.06 35.55
HHT CNN 94.36 98.06 31.81 97.34 90.25 69.85 97.35 65.12 32.55 25.15
1D to 2D CNN 94.99 98.30 33.75 97.16 79.27 69.11 89.53 71.54 31.83 30.72
DE STFT CNN 94.72 96.69 30.87 97.26 86.99 69.00 88.89 56.09 32.64 25.42
Wavelet CNN 96.40 98.37 33.28 95.87 88.25 52.52 97.58 81.38 36.79 35.22
HHT CNN 94.44 97.88 31.24 97.90 87.50 69.85 96.93 65.15 33.27 29.09
1D to 2D CNN 95.00 98.26 34.62 97.17 78.41 70.28 89.47 71.17 32.55 31.25
ES STFT CNN 94.71 96.59 31.29 96.67 86.26 66.98 88.15 55.96 33.92 24.81
Wavelet CNN 96.34 98.25 33.08 96.07 89.69 51.55 97.91 81.12 35.75 37.08
HHT CNN 94.37 97.34 30.61 97.32 86.88 70.45 97.54 65.24 32.53 24.75
1D to 2D CNN 95.00 98.39 34.76 97.19 78.88 69.28 89.56 71.38 34.58 31.31
FES STFT CNN 94.75 96.54 31.59 97.00 87.99 67.89 88.09 56.38 32.73 26.00
Wavelet CNN 96.34 98.43 33.53 95.89 86.92 52.20 98.12 80.84 35.33 35.24
HHT CNN 94.36 97.64 31.77 97.82 88.95 69.54 97.37 65.19 32.17 27.64
1D to 2D CNN 94.99 98.43 35.14 97.22 78.92 69.48 89.52 74.82 34.76 30.69
EP STFT CNN 94.70 96.26 30.60 96.57 88.07 69.30 88.42 55.89 32.59 25.28
Wavelet CNN 96.43 97.62 33.11 96.05 88.36 52.80 98.37 79.87 35.41 37.17
HHT CNN 94.52 96.95 32.44 97.32 89.84 70.40 97.47 65.22 32.27 26.58
1D to 2D CNN 95.00 98.49 34.62 97.12 78.29 70.02 89.50 72.60 31.93 29.01
FEP STFT CNN 94.74 96.49 30.94 96.46 89.47 70.01 88.25 55.69 33.10 25.98
Wavelet CNN 96.39 97.82 32.86 96.12 90.44 52.25 98.01 80.70 35.19 32.65
HHT CNN 94.53 96.91 33.19 97.66 86.83 70.52 96.93 65.14 32.59 25.70
1D to 2D CNN 95.00 98.29 33.93 97.18 78.65 69.54 89.60 70.55 34.53 28.65
MA-SW STFT CNN 94.74 96.76 31.65 97.16 87.69 70.06 88.06 56.68 32.32 25.02
Wavelet CNN 96.25 98.27 33.48 96.14 86.72 53.41 97.49 79.58 36.13 36.30
HHT CNN 94.54 97.84 30.67 97.20 86.53 69.85 97.28 65.16 32.96 29.20
4.1. Case 1: Tennessee Eastman process
ACC = TP + TN 4) .
T TP+ TIN+FP+FN Developed by the Eastman chemical company, the Tennessee East-
man (TE) process is used in the literature as a benchmark for evaluating
The following cases have been used in this paper to test the pro- developed algorithms (Downs & Vogel, 1993). The Tennessee Eastman

posed algorithm.

Process is a model which is based on a real-world chemical process. The

11

M.H.T. Najaran

Table 11
The accuracy of different algorithms (Eq. (4)) on the Three-Phase Flow Facility
benchmark (case 2) for different evolutionary algorithms. The data are averaged over
30 runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5
1D to 2D CNN 77.45 70.36 98.93 34.85 99.84
A3 STFT CNN 52.27 80.25 98.28 32.40 100.00
Wavelet CNN 69.58 81.91 99.13 34.21 99.74
HHT CNN 72.42 78.71 99.17 36.68 99.51
1D to 2D CNN 70.32 70.35 98.70 31.20 99.63
PSO STFT CNN 51.32 79.12 98.36 32.90 99.73
Wavelet CNN 68.86 79.85 99.10 36.69 99.69
HHT CNN 71.88 78.08 99.19 36.78 99.67
1D to 2D CNN 65.31 70.25 98.77 30.79 99.70
GA STFT CNN 52.21 79.61 98.31 35.24 99.90
Wavelet CNN 68.49 80.80 99.08 34.71 99.67
HHT CNN 70.87 75.66 99.19 36.78 99.56
1D to 2D CNN 73.30 70.15 98.90 30.41 99.83
DE STFT CNN 48.84 78.69 98.29 33.06 99.95
Wavelet CNN 69.24 79.52 99.13 37.09 99.62
HHT CNN 71.09 75.80 99.18 36.70 99.70
1D to 2D CNN 75.08 70.26 98.80 34.04 99.78
ES STFT CNN 50.59 79.72 98.36 33.98 99.85
Wavelet CNN 68.16 81.11 99.04 36.83 99.67
HHT CNN 72.10 76.14 99.21 36.74 99.64
1D to 2D CNN 71.10 70.01 98.87 34.15 99.68
FES STFT CNN 52.10 79.45 98.34 33.71 99.85
Wavelet CNN 68.24 80.11 99.07 35.03 99.68
HHT CNN 72.09 76.23 99.24 36.70 99.72
1D to 2D CNN 70.31 70.20 98.80 30.99 99.75
EP STFT CNN 47.42 79.77 98.34 34.14 99.89
Wavelet CNN 69.26 80.12 98.95 34.68 99.69
HHT CNN 71.90 78.56 99.22 36.80 99.66
1D to 2D CNN 68.23 69.88 98.73 32.29 99.66
FEP STFT CNN 48.92 80.00 98.37 33.99 99.95
Wavelet CNN 68.80 81.37 99.03 36.12 99.66
HHT CNN 71.65 76.65 99.19 36.81 99.65
1D to 2D CNN 73.50 70.19 98.86 32.60 99.64
MA-SW STFT CNN 47.37 79.29 98.35 33.29 99.98
Wavelet CNN 68.36 79.89 99.06 35.96 99.69
HHT CNN 71.18 77.31 99.28 36.76 99.71

model consists of a separator, a reactor and a recycle arrangement that
involves two simultaneous gas-liquid exothermic reactions. The system
is a nonlinear open-loop unstable process that presents a model of a
complex system that has found applications in many research as case
study for fault detection.

In this paper, the first fifteen faults of the TE process are used, where
640 samples are used for the training phase, and 640 are used to test
the algorithms. The 161st and the 960th samples are selected as the
injection and the clear time respectively. The aim of this paper is to
identify the fault class of the abnormal samples, so it is assumed that
the selected faults are detected at the 161st sample.

In order to compare different algorithms and feature extraction
methods, the performance of the accuracy of the algorithms is summa-
rized in Table 2. On average, the rival algorithms reach a performance
around 65%-70% accuracy. The base learner algorithms reach similar
performance. As the data suggest, the proposed ensemble algorithm
achieves better performance than the base learners. This is what is
expected in ensemble learning, where the voting system improves
the performance of the individual learners. The ensemble algorithm
achieves around 5% better performance compared to the best base
learner algorithm which is Statistical features via Walsh transform.
Also, it is clear from the data that the CNN algorithms, on average
perform better than traditional feature extraction methods. This could
be attributed to the fact that CNNs are better at extracting features that
are representative of different anomalies in the fault signals, anomalies
that are not reflected in statistical features. The data for true positive
rate and positive predictive rate for the same experiments are presented

12

Expert Systems With Applications 233 (2023) 120678

in Tables 3 and 4. While the proposed algorithm performs the best in
terms of accuracy, in terms of TPR in Table 3, in some cases, other
algorithms perform better. For example for the case of class 1, SAE
performs better than the proposed algorithm. However, in terms of PPV
in Table 4 the proposed algorithm performs much better.

Although in some cases like Cls 7, the proposed algorithm is out-
performed with the existing methods, on average, as presented in the
last column of the table, the proposed algorithm reaches the best
performance among the algorithms.

The performance of all the algorithms is very low for Cls 3 in
Tables 2, 3, and 4. This is because this class is a hard problem to
identify. An overview on

4.2. Case 2: Three-phase flow facility

Designed by Cranfield University, the three-phase flow (TPF) facility
provides a controlled and measured flow rate of air, oil, or water to
a pressurized system (Ruiz-Carcel, Cao, Mba, Lao, & Samuel, 2015).
The problem used in this paper to test the proposed algorithms is
defined as identifying five typical faults of the system. In this paper,
2/3 of the data are used as the training, and 1/3 are used to test the
algorithms. In all our experiments, the selection is performed without
insertion, so there is no shared data record between the train and
test data. A comparison between the performance of the algorithms
in terms of accuracy is performed in Table 5. The performance of
the rival algorithms and the base learner algorithms is around 70%.
The proposed ensemble algorithm can boost the performance of the
rival algorithms by around 5% and reach the accuracy of 78.63%. The
performance of the algorithms in terms of TPR and PPV are summarized
in Tables 6 and 7.

The last column in these tables presents the average performance of
each of the algorithms. As the data suggest, on average, the proposed
algorithm outperform the other algorithms. Note that on average, the
other ensemble algorithms also outperform the base-learners which is
expected from an ensemble algorithm.

4.3. Case 3: Motor Bearing Fault Diagnosis

The third set of experiments in this paper is applied to the motor
bearing fault diagnosis benchmark designed by Case Western Reserve
University (Smith & Randall, 2015). There are three types of faults in
this benchmark, which are roller fault, outer race fault, and inner race
fault. Each of these fault types has three different damage sizes which
are 0.18 mm, 0.36 mm, and 0.54 mm. Thus, there are ten possible
conditions, nine corresponding to the 9 types of faults and one to the
normal condition. To test the performance of the proposed method, the
signals in these systems are collected under four load conditions (0, 1,
3, 4 hp). In our experiments, we select randomly 2000 samples per load
condition for the training and 400 samples per load condition for the
testing phase. The accuracy, true positive rate, and positive predictive
rate of the algorithms are summarized in Table 8. The best performance
among the rival algorithms is achieved by SVM and the best algorithms
among the base learners are HHT CNN. The data suggest that the
proposed ensemble learning algorithm improves the performance of the
base learners.

4.4. Case 4: Self-priming centrifugal pump fault diagnosis

The fourth benchmark in this paper is the self-priming centrifugal
pump problem (Lu, Lin et al., 2019). In this benchmark, acceleration
sensors are installed on a pedestal above the motor housing. The rota-
tion speed of the motor is 2900 per minute and the sampling frequency
of the vibration signal is 10240 Hz. There are four fault conditions that
are bearing roller wearing, inner race wearing, outer race wearing, and
impeller wearing. The training set contains 200 and the test set contains
400 samples per condition. Overall, there are 50,000 images in the

M.H.T. Najaran

Table 12

Expert Systems With Applications 233 (2023) 120678

The performance of different algorithms in terms of accuracy, true positive rate, and positive predictive rate on the Motor Bearing Fault
Diagnosis, the Self-Priming Centrifugal Pump Fault Diagnosis, and Axial Piston Hydraulic Pump Fault Diagnosis benchmarks for different

evolutionary algorithms. The data are averaged over 30 runs.

Algorithm Case 3 (TSP) Case 4 (SPCP) Case 5 (APHP)
ACC TPR PPV ACC TPR PPV ACC TPR PPV
1D to 2D CNN 99.67 99.65 99.84 99.39 99.21 99.40 99.73 99.82 99.90
A3 STFT CNN 99.54 99.39 99.77 99.28 99.34 99.27 99.99 99.89 99.83
Wavelet CNN 99.71 99.81 99.74 99.42 99.32 99.32 99.79 99.77 100.00
HHT CNN 99.76 99.68 99.75 99.27 99.35 99.16 99.82 99.93 99.74
1D to 2D CNN 99.66 99.60 99.73 99.31 99.21 99.40 99.76 99.82 99.87
PSO STFT CNN 99.55 99.49 99.75 99.29 99.32 99.30 99.89 99.90 99.81
Wavelet CNN 99.65 99.65 99.71 99.41 99.31 99.34 99.80 99.78 99.86
HHT CNN 99.75 99.76 99.71 99.29 99.34 99.18 99.88 99.90 99.80
1D to 2D CNN 99.65 99.64 99.82 99.35 99.21 99.40 99.75 99.81 99.90
GA STFT CNN 99.55 99.46 99.68 99.29 99.33 99.29 99.86 99.90 99.82
Wavelet CNN 99.67 99.77 99.72 99.37 99.31 99.36 99.79 99.79 99.92
HHT CNN 99.75 99.69 99.70 99.30 99.32 99.27 99.82 99.92 99.80
1D to 2D CNN 99.65 99.63 99.82 99.34 99.20 99.40 99.78 99.80 99.82
DE STFT CNN 99.55 99.39 99.77 99.30 99.32 99.27 99.89 99.90 99.82
Wavelet CNN 99.65 99.61 99.73 99.39 99.32 99.36 99.79 99.79 99.89
HHT CNN 99.76 99.75 99.72 99.29 99.30 99.24 99.87 99.92 99.80
1D to 2D CNN 99.66 99.63 99.73 99.32 99.21 99.40 99.77 99.80 99.87
ES STFT CNN 99.55 99.40 99.73 99.30 99.31 99.29 99.91 99.90 99.82
Wavelet CNN 99.70 99.63 99.73 99.38 99.31 99.34 99.80 99.77 99.86
HHT CNN 99.75 99.71 99.73 99.28 99.31 99.27 99.86 99.91 99.88
1D to 2D CNN 99.67 99.60 99.84 99.37 99.21 99.40 99.79 99.80 99.84
FES STFT CNN 99.55 99.46 99.70 99.29 99.31 99.28 99.96 99.90 99.81
Wavelet CNN 99.69 99.65 99.72 99.35 99.30 99.39 99.80 99.78 99.82
HHT CNN 99.76 99.75 99.71 99.30 99.33 99.21 99.83 99.93 99.84
1D to 2D CNN 99.67 99.61 99.82 99.38 99.21 99.40 99.76 99.82 99.82
Ep STFT CNN 99.55 99.40 99.76 99.30 99.33 99.28 99.91 99.90 99.81
Wavelet CNN 99.67 99.78 99.73 99.36 99.31 99.37 99.80 99.79 99.93
HHT CNN 99.76 99.74 99.71 99.30 99.33 99.30 99.87 99.92 99.90
1D to 2D CNN 99.66 99.65 99.83 99.36 99.21 99.40 99.76 99.82 99.82
FEP STFT CNN 99.55 99.48 99.72 99.28 99.32 99.27 99.89 99.89 99.81
Wavelet CNN 99.67 99.79 99.70 99.42 99.31 99.37 99.79 99.79 99.90
HHT CNN 99.75 99.77 99.72 99.28 99.32 99.28 99.83 99.91 99.88
1D to 2D CNN 99.66 99.63 99.76 99.32 99.21 99.40 99.76 99.81 99.84
MA-SW STFT CNN 99.55 99.50 99.64 99.28 99.31 99.28 99.86 99.89 99.81
Wavelet CNN 99.70 99.76 99.72 99.38 99.30 99.35 99.79 99.78 99.80
HHT CNN 99.75 99.76 99.71 99.28 99.30 99.24 99.88 99.91 99.75

training and 10,000 images in the test dataset. The performance of the
algorithms in terms of ACC, TPR, and PPV is summarized in Table 8.
The best performance among the rival algorithms is achieved by SVM
and among CNN algorithms by the HHT-CNN algorithm. The proposed
ensemble algorithm improves the performance of the base learners by
around 0.5%.

4.5. Case 5: Axial piston hydraulic pump fault diagnosis

The Axial Piston Hydraulic Pump Fault Diagnosis (Lu, Lin et al.,
2019) is defined as diagnosing two fault conditions of a pump via
the signals collected from an accelerograph installed at the end face
of a pump with a sampling frequency of 1 kHz. The two fault types
are the piston shoes and swashplate wearing (PS wearing) and valve
plate wearing (VP wearing). So there are three fault conditions of
PS, VP, and normal conditions. The rotation speed of the system is
5280 rpm and the corresponding spindle frequency is 88 Hz. The
performance of different algorithms is summarized in Table 8. The
best performance among the rival algorithms is achieved by BLS and
the best performance among CNN algorithms is reached by short term
Fourier transform. The proposed algorithm reaches the accuracy of
100% in all the experiments.

As the data in these tables suggest, the performance of the algo-
rithms for Cls 3 and Cls 9 in case 1 and Cls 4 in case 2 is much lower
than other benchmarks. An overview on other research in the literature
shows that other works have achieved similar results (for example, the
work presented in Yu & Zhao, 2019). This suggest that these cases are

13

hard to solve for learning algorithms and further research is required
to improve the performance further.

In order to compare the algorithms in terms of computational com-
plexity, Table 9 presents the time it takes to train and test each of them
in seconds. The data in this table are averaged over 30 independent
runs. The time it takes for the ensemble algorithms in this table is
greater than the other algorithms because ensemble algorithms employ
the base-learners and so the time they require should be in the order
of the sum of the time it takes for the base-learners to process data.
The training time for the proposed algorithm is larger than the base-
learners. This is because any ensemble learning algorithm involves the
training of the base-learners. It takes around half an hour to train
the learning algorithm. However, in these systems, the training is
performed only once and it is testing that will perform continuously.
Therefore, the testing time is more important and should be taken into
account. In terms of testing, the time it takes for the proposed algorithm
to generate the results is around the sum of the time it takes for the
base-learners to produce the output. All the testing times are in the
order of milliseconds.

In order to compare the performance of different evolutionary al-
gorithms, including GA (Holland, 1975), PSO (Kennedy, Eberhart, &
Shi, 2001), Evolutionary Programming (EP) (Fogel, Owens, & Walsh,
1966), Fast Evolutionary Programming (FEP) (Yao, Liu, & Lin, 1999),
Evolutionary Strategy (ES) (Schwefel, 1995), Fast Evolutionary Strategy
(FES) (Yao & Liu, 1997), Ma-ssw-chains (MASSW) (Molina, Lozano,

M.H.T. Najaran

Expert Systems With Applications 233 (2023) 120678

Table 13
The accuracy of different algorithms (Eq. (4)) on the Tennessee Eastman benchmark (case 1) for different CNN architectures. The data are averaged over 30 runs.
Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9 Cls 10
1D to 2D CNN 94.99 98.50 33.53 97.11 79.74 70.29 89.69 76.75 31.17 31.35
Al STFT CNN 94.76 96.83 30.28 97.29 89.56 70.16 88.92 56.90 34.41 26.23
Wavelet CNN 96.52 98.51 32.71 96.18 91.27 53.53 98.84 81.50 37.66 37.71
HHT CNN 94.56 98.06 34.48 98.02 90.69 70.64 97.71 65.25 31.93 23.78
1D to 2D CNN 94.50 97.65 36.95 96.70 79.35 69.20 87.70 71.45 34.25 25.20
LSTM STFT CNN 94.60 96.85 32.50 96.50 85.30 63.65 88.80 55.65 32.65 24.85
Wavelet CNN 95.80 97.00 32.65 95.75 86.80 52.55 97.20 72.30 32.85 31.85
HHT CNN 94.30 97.90 34.00 97.20 86.10 68.15 96.70 61.55 33.65 30.35
1D to 2D CNN 94.90 97.75 33.20 96.90 77.50 66.90 88.40 76.85 33.90 30.45
S 3 STFT CNN 94.75 96.40 32.10 96.35 88.95 65.85 87.10 53.20 33.60 23.15
Wavelet CNN 96.30 98.20 31.30 96.05 87.90 52.15 98.35 75.65 37.05 35.15
HHT CNN 94.30 97.15 31.65 96.90 86.40 62.65 95.60 62.15 29.60 33.95
1D to 2D CNN 94.60 97.55 34.30 96.40 77.35 65.35 89.15 73.00 33.05 27.30
TIRBM STFT CNN 94.80 96.50 33.75 95.95 85.05 68.60 88.35 55.30 32.70 28.55
Wavelet CNN 96.15 97.10 32.25 95.60 90.10 52.00 98.10 81.00 34.00 37.15
HHT CNN 94.50 97.70 34.95 97.30 89.40 70.45 97.45 63.35 34.85 24.65
1D to 2D CNN 94.75 97.25 34.35 96.85 77.50 63.40 89.50 73.70 34.85 28.40
PGBMDN-1 STFT CNN 94.75 96.20 33.90 96.85 88.95 66.20 88.70 55.35 32.50 23.55
Wavelet CNN 95.85 98.15 30.75 96.05 90.70 51.30 95.00 75.45 37.15 30.25
HHT CNN 94.40 97.40 33.95 97.35 90.20 67.45 95.45 61.65 33.00 31.95
1D to 2D CNN 94.60 98.30 35.85 96.95 78.95 69.60 87.75 72.30 36.85 27.50
ScatNet-2 STFT CNN 94.70 96.20 31.70 96.05 85.70 66.80 89.25 55.00 32.40 28.40
Wavelet CNN 95.95 97.05 30.20 96.20 90.95 49.80 94.45 74.90 35.75 28.40
HHT CNN 94.25 97.40 32.05 97.25 87.75 67.80 96.25 62.80 32.25 29.00
1D to 2D CNN 94.75 98.20 33.95 96.90 77.60 62.65 87.90 76.25 34.20 25.55
RandNet-2 STFT CNN 94.60 96.20 29.15 96.65 86.10 64.40 87.45 54.85 31.95 25.45
Wavelet CNN 96.10 96.75 30.50 95.65 90.50 51.00 97.10 74.15 29.55 32.35
HHT CNN 94.25 97.30 32.90 96.75 87.70 63.35 93.40 59.50 32.65 31.10
1D to 2D CNN 94.85 97.45 34.25 96.70 79.50 67.70 88.95 74.35 33.30 24.40
LDANet-2 STFT CNN 94.60 95.90 32.45 96.70 87.60 66.75 87.65 54.25 32.20 25.45
Wavelet CNN 95.80 97.90 35.15 96.00 90.90 50.10 95.25 80.10 35.05 32.30
HHT CNN 94.25 97.55 31.95 96.50 89.45 70.00 97.25 64.90 32.70 25.20
1D to 2D CNN 94.60 97.20 34.90 96.20 78.20 67.15 87.55 75.30 35.35 23.30
NNet STFT CNN 94.80 95.95 29.85 96.35 85.65 66.50 87.90 56.60 32.45 24.70
Wavelet CNN 95.85 97.95 33.55 95.95 91.25 51.35 96.60 75.00 35.50 30.80
HHT CNN 94.30 97.60 33.80 96.85 86.65 65.60 93.40 62.60 32.90 30.15
1D to 2D CNN 94.85 98.20 30.50 96.35 79.10 62.05 87.25 74.90 35.60 28.05
SONet STFT CNN 94.65 96.05 30.40 96.25 89.25 68.90 89.30 55.20 30.70 23.70
Wavelet CNN 95.75 97.00 33.60 95.70 86.20 53.35 98.00 79.25 33.30 35.80
HHT CNN 94.35 97.55 30.95 97.55 86.10 67.65 96.30 62.10 30.90 28.75
1D to 2D CNN 94.95 98.20 35.15 97.15 77.45 62.75 89.25 75.85 33.05 28.15
MobileNetva STFT CNN 94.50 96.65 35.30 96.80 85.75 68.25 88.80 53.90 33.25 23.05
Wavelet CNN 96.10 97.35 32.15 95.70 88.45 50.10 97.15 73.30 33.70 30.95
HHT CNN 94.45 97.15 32.15 96.70 88.95 63.95 96.55 66.50 32.50 26.30
1D to 2D CNN 94.75 98.30 36.45 96.95 78.30 64.75 87.30 71.70 34.65 29.00
DEN-3 STFT CNN 94.75 96.30 33.30 96.50 85.45 63.75 87.20 55.50 32.45 24.40
Wavelet CNN 96.05 97.60 32.30 95.55 90.75 49.85 98.60 79.25 33.95 33.55
HHT CNN 94.25 97.75 31.35 97.35 88.40 70.80 95.15 62.45 32.65 28.95

Sanchez, & Herrera, 2011) and Differential Evolution (DE). These al-
gorithms have been compared with algorithm 3 and the experimental
results are summarized in Tables 10-12.

Table 10 presents the accuracy of different optimization algorithms
when they are used in the training phase of the CNNs. In this table, A3
represents algorithms 3 and the data are averaged over 30 runs. As the
data in this table suggest, the best performance is achieved when the
scheme in algorithm 3 is employed. The explanation for this could be
that the proposed algorithm uses a set of sub-populations which help
the algorithm escape from local optima.

Table 11 presents the accuracy of different evolutionary algorithms
on the Three-Phase Flow Facility benchmark (case 2), where the data
are averaged over 30 runs. As the data suggest, the proposed algorithm
achieves the best performance among the rival algorithms.

Table 12 presents the performance of different algorithms in terms
of accuracy, true positive rate and positive predictive rate on the motor
bearing fault diagnosis, the self-priming centrifugal pump fault diagno-
sis, and axial piston hydraulic pump fault diagnosis benchmarks. The

14

data in this table are averaged over 30 independent runs. A comparison
between the performance of different evolutionary algorithms suggests
that the proposed evolutionary algorithm outperforms the existing
algorithms.

To compare the proposed algorithm with other CNN architectures
we use a set of algorithms in this paper. The algorithms include SAAA-
3 (Larochelle et al., 2007), TIRBM (Sohn & Lee, 2012), PGBM+DN-
1 (Sohn & Lee, 2012), ScatNet-2 (Bruna & Mallat, 2013), RandNet-
2 (Chan et al., 2015), LDANet-2 (Chan et al., 2015), NNet (Larochelle
et al., 2007), SqweezNet (SQNet) (Iandola et al., 2016), MobileNetV2
(Sandler et al., 2018), DBN-3 (Larochelle et al., 2007), and LSTM.

Table 13 shows the experimental results for different CNN architec-
tures. Al in this table represents the performance of CNNs when the
proposed architecture optimization algorithm (presented in algorithm
1) is used to find the optimal architecture for the CNNs. The table
summarizes the accuracy of the algorithms for different classes in case
study 1. As the data suggest in this table, the proposed algorithm
achieves the best performance among the existing architectures. This

M.H.T. Najaran

Table 14

The accuracy of different algorithms (Eq. (4)) on the Three-Phase Flow Facility
benchmark (case 2) for different CNN architectures. The data are averaged over 30
runs.

Algorithm Cls 1 Cls 2 Cls 3 Cls 4 Cls 5
1D to 2D CNN 77.45 70.36 98.93 34.85 99.84
Al STFT CNN 52.27 80.25 98.28 32.40 100.00
Wavelet CNN 69.58 81.91 99.13 34.21 99.74
HHT CNN 72.42 78.71 99.17 36.68 99.51
1D to 2D CNN 64.95 69.00 98.80 30.25 99.60
LSTM STFT CNN 53.45 77.50 98.55 33.90 99.65
Wavelet CNN 62.70 79.00 98.95 35.65 99.60
HHT CNN 65.85 75.95 99.15 35.55 99.75
1D to 2D CNN 64.25 69.30 98.70 33.05 99.60
S 3 STFT CNN 47.25 76.35 98.55 33.85 99.65
Wavelet CNN 57.85 77.50 99.15 38.35 99.60
HHT CNN 68.75 76.00 99.05 31.40 99.80
1D to 2D CNN 63.75 69.15 98.75 32.25 99.60
TIRBM STFT CNN 51.05 78.80 98.45 32.40 99.65
Wavelet CNN 59.00 79.90 99.05 36.60 99.60
HHT CNN 65.70 77.50 99.35 33.75 99.75
1D to 2D CNN 67.10 69.95 98.85 34.30 99.60
PGEM STFT CNN 45.55 77.35 98.60 34.20 99.65
Wavelet CNN 60.05 79.95 98.90 35.70 99.60
HHT CNN 61.85 78.45 99.15 35.70 99.75
1D to 2D CNN 63.35 69.25 98.80 31.10 99.60
STFT CNN 48.50 78.15 98.55 39.05 99.65
ScatNet-2
Wavelet CNN 58.85 79.10 99.10 35.25 99.60
HHT CNN 65.80 76.80 99.30 31.05 99.75
1D to 2D CNN 66.45 70.05 98.65 32.50 99.60
RandN-2 STFT CNN 49.90 77.25 98.40 33.70 99.65
Wavelet CNN 64.75 78.40 98.95 35.25 99.60
HHT CNN 61.70 76.30 99.20 33.90 99.75
1D to 2D CNN 69.05 69.85 98.60 30.45 99.60
LDANet-2 STFT CNN 50.25 76.30 98.40 37.45 99.60
Wavelet CNN 60.25 79.70 99.00 37.00 99.60
HHT CNN 68.60 77.10 99.30 34.80 99.75
1D to 2D CNN 70.75 68.90 98.60 31.30 99.60
NNet STFT CNN 50.60 78.65 98.55 38.55 99.65
Wavelet CNN 70.20 79.55 99.05 38.40 99.60
HHT CNN 67.15 76.30 99.05 33.00 99.75
1D to 2D CNN 63.80 69.95 98.70 31.55 99.60
SONet STFT CNN 53.40 78.00 98.55 34.95 99.65
Wavelet CNN 64.15 78.35 99.25 34.35 99.60
HHT CNN 63.00 74.75 99.15 35.75 99.80
1D to 2D CNN 64.40 69.60 98.80 33.00 99.60
MobileNet STFT CNN 45.55 78.55 98.45 35.85 99.65
Wavelet CNN 66.65 82.20 99.00 35.60 99.60
HHT CNN 67.75 76.45 99.15 35.75 99.80
1D to 2D CNN 75.50 68.70 98.65 34.65 99.60
DBN-3 STFT CNN 49.15 76.90 98.45 35.75 99.65
Wavelet CNN 64.75 77.60 99.25 34.25 99.60
HHT CNN 69.00 77.05 99.15 34.55 99.75

is because the proposed algorithm designs the optimal architecture for
the given problem, while the existing architectures are generic and are
not particularly tuned for a given problem.

Table 14 summarizes the accuracy of different algorithms (Eq. (4))
on the Three-Phase Flow Facility benchmark (case 2) for different
CNN architectures. As the data suggest, in most cases, the proposed
algorithm outperforms the existing architectures.

Table 15 presents the performance of different architectures in
terms of accuracy, true positive rate, and positive predictive rate on
the Motor Bearing Fault Diagnosis, the Self-Priming Centrifugal Pump
Fault Diagnosis, and Axial Piston Hydraulic Pump Fault Diagnosis
benchmarks for different CNN architectures. The data suggest that the
proposed algorithm outperforms the existing architectures in terms of
ACC, TPR and PPV in many cases.

15

Expert Systems With Applications 233 (2023) 120678
5. Conclusion
5.1. Conclusional remarks

There are many feature extraction approaches proposed in the liter-
ature for fault diagnosis problem. While each of these sets of features
has its own advantages, there is not much research in the literature to
develop a method to take advantage of all these approaches. In this
paper, we propose an ensemble learning algorithm that combines a
number of base learner algorithms, where each of these base learners
uses a particular set of features. The features used in this paper are
extracted from time-domain, Fourier transforms, Wavelet transforms,
Walsh transforms and Hilbert-Huang transforms. Two main approaches
are used for feature extraction. One is a set of statistical features,
which include mean, Kurtosis, Entropy estimation, etc of the original
signal. The other approach is to use a Convolutional Neural Network to
automatically extract features from these signals. Using CNNs to extract
features from signals (particularly images) is very popular due to its
potentials. This paper uses CNNs to extract automatically features from
time-domain and frequency-domain signals. Each set of features is used
to train a base learner algorithm, the output of which is used in a
weighted voting paradigm. Finding the optimal weight of the votes is
an optimization process that is performed via an evolutionary algorithm
in this paper. The process is not much time consuming as the output
of the classifiers for each of the training data can be stored in a lookup
table which makes evaluating the fitness of a weight vector very quick.

The structure of the CNNs has a great deal of effect on their
performance. This paper proposes an evolutionary algorithm to find
the best structure for CNNs in extracting features for fault diagnosis.
We could use the generic architectures that are used in the literature
for different problems; however, we believe that there is no optimal
architecture that suits all the problems. The existing CNN architectures
in the literature are tuned for particular or generic problems and are not
necessarily the optimal ones for fault diagnosis problem. The proposed
approach in this paper has the advantage that it fine-tunes CNNs for
not only fault diagnosis problem but also different signals. That is, CNN
architectures for wavelet, short-term Fourier transform, etc. signals are
optimized independently.

This work shows that employing new features and using ensemble
methods can improve the performance of fault diagnosis algorithms.
Because fault diagnosis is a very important problem in many com-
panies, adopting this method can increase the rate of fault detection
and thus reduce the costs due to system failure. The proposed method
requires adequate processing units as it employs sophisticated fea-
ture extraction methods in combination with a number of learning
algorithms. Using this system requires proper computational systems
and cannot be implemented with simple micro-processing units. This
should be taken into account, although it would not prove problematic
for most industrial companies as today proper computers are easily
available. Implementation of this system can be improved by the use
of application-specific processing units. For example, applying Fourier,
wavelet and other forms of signal processing tasks could be efficiently
performed with fast, low cost, and readily available micro-chips. Some
of the learning algorithms can also be found readily available in the
form of VLSI.

5.2. Future work and discussion

There are still a number of open questions that can be targeted in
future work. The learning process in CNNs is an optimization problem
which was performed in this paper via a combination of gradient de-
scent and evolutionary operators. It is known in the community of opti-
mization that studying and understanding the fitness landscape of prob-
lems can help develop better optimization algorithms (Prugel-Bennett &
Tayarani-Najaran, 2012; Tayarani-N. & Priigel-Bennett, 2014; Tayarani-
N. & Priigel-Bennett, 2015, 2016). As future work, studying the fitness

M.H.T. Najaran

Table 15

Expert Systems With Applications 233 (2023) 120678

The performance of different algorithms in terms of accuracy, true positive rate, and positive predictive rate on the Motor Bearing Fault
Diagnosis, the Self-Priming Centrifugal Pump Fault Diagnosis, and Axial Piston Hydraulic Pump Fault Diagnosis benchmarks for different CNN

architectures. The data are averaged over 30 runs.

Algorithm Case 3 (TSP) Case 4 (SPCP) Case 5 (APHP)
ACC TPR PPV ACC TPR PPV ACC TPR PPV
1D to 2D CNN 99.67 99.65 99.84 99.39 99.21 99.40 99.73 99.82 99.90
Al STFT CNN 99.54 99.39 99.77 99.28 99.34 99.27 99.99 99.89 99.83
Wavelet CNN 99.71 99.81 99.74 99.42 99.32 99.32 99.79 99.77 100.00
HHT CNN 99.76 99.68 99.75 99.27 99.35 99.16 99.82 99.93 99.74
1D to 2D CNN 99.65 99.59 99.67 99.25 99.18 99.40 99.76 99.74 99.76
LSTM STFT CNN 99.49 99.47 99.60 99.22 99.22 99.30 99.82 99.87 99.78
Wavelet CNN 99.56 99.51 99.66 99.28 99.23 99.32 99.73 99.75 99.74
HHT CNN 99.68 99.77 99.62 99.22 99.27 99.22 99.80 99.85 99.87
1D to 2D CNN 99.59 99.56 99.64 99.24 99.16 99.35 99.75 99.74 99.74
S 3 STFT CNN 99.46 99.45 99.58 99.28 99.22 99.26 99.83 99.80 99.78
Wavelet CNN 99.66 99.61 99.61 99.29 99.25 99.33 99.80 99.75 99.78
HHT CNN 99.69 99.64 99.62 99.25 99.30 99.30 99.88 99.83 99.87
1D to 2D CNN 99.64 99.53 99.66 99.26 99.19 99.32 99.72 99.74 99.74
TIREM STFT CNN 99.47 99.44 99.53 99.20 99.28 99.26 99.85 99.86 99.80
Wavelet CNN 99.63 99.51 99.69 99.27 99.29 99.22 99.72 99.77 99.70
HHT CNN 99.65 99.64 99.65 99.22 99.21 99.22 99.89 99.80 99.80
1D to 2D CNN 99.69 99.60 99.79 99.28 99.18 99.32 99.79 99.73 99.78
PGBM4DN-1 STFT CNN 99.48 99.47 99.52 99.30 99.21 99.29 99.83 99.84 99.72
Wavelet CNN 99.64 99.52 99.67 99.33 99.25 99.34 99.72 99.73 99.71
HHT CNN 99.68 99.71 99.61 99.24 99.23 99.23 99.81 99.84 99.89
1D to 2D CNN 99.64 99.55 99.70 99.30 99.19 99.40 99.78 99.78 99.77
ScatNet-2 STFT CNN 99.48 99.48 99.55 99.21 99.27 99.21 99.81 99.86 99.71
Wavelet CNN 99.61 99.65 99.64 99.33 99.25 99.34 99.77 99.77 99.73
HHT CNN 99.64 99.61 99.69 99.23 99.29 99.30 99.85 99.82 99.82
1D to 2D CNN 99.64 99.59 99.63 99.29 99.14 99.34 99.77 99.77 99.78
RandNet-2 STFT CNN 99.50 99.45 99.54 99.28 99.24 99.25 99.79 99.85 99.71
Wavelet CNN 99.64 99.70 99.70 99.22 99.25 99.29 99.76 99.72 99.77
HHT CNN 99.73 99.80 99.62 99.21 99.29 99.24 99.88 99.87 99.89
1D to 2D CNN 99.64 99.51 99.74 99.27 99.16 99.31 99.71 99.74 99.79
LDANet-2 STFT CNN 99.47 99.50 99.55 99.20 99.22 99.30 99.82 99.88 99.75
Wavelet CNN 99.68 99.65 99.60 99.25 99.30 99.34 99.78 99.78 99.74
HHT CNN 99.72 99.75 99.65 99.23 99.23 99.28 99.89 99.82 99.83
1D to 2D CNN 99.69 99.57 99.77 99.22 99.20 99.37 99.72 99.75 99.73
NNet STFT CNN 99.46 99.43 99.53 99.28 99.21 99.24 99.78 99.89 99.79
Wavelet CNN 99.64 99.57 99.61 99.32 99.28 99.32 99.74 99.74 99.75
HHT CNN 99.67 99.60 99.63 99.26 99.27 99.25 99.87 99.88 99.89
1D to 2D CNN 99.58 99.54 99.61 99.25 99.17 99.39 99.73 99.79 99.75
SONet STFT CNN 99.50 99.43 99.55 99.24 99.30 99.25 99.79 99.88 99.71
Wavelet CNN 99.60 99.57 99.68 99.31 99.26 99.33 99.76 99.78 99.78
HHT CNN 99.70 99.72 99.68 99.23 99.21 99.27 99.85 99.87 99.81
1D to 2D CNN 99.62 99.55 99.61 99.21 99.16 99.33 99.79 99.73 99.73
MobileNetv2 STFT CNN 99.52 99.50 99.51 99.25 99.20 99.20 99.85 99.84 99.71
Wavelet CNN 99.69 99.68 99.64 99.25 99.22 99.34 99.79 99.70 99.76
HHT CNN 99.68 99.78 99.66 99.27 99.21 99.24 99.84 99.84 99.81
1D to 2D CNN 99.62 99.57 99.62 99.21 99.12 99.38 99.75 99.76 99.76
DBN-3 STFT CNN 99.52 99.43 99.54 99.26 99.23 99.26 99.75 99.84 99.76
Wavelet CNN 99.56 99.59 99.63 99.24 99.27 99.25 99.78 99.76 99.78
HHT CNN 99.68 99.63 99.65 99.21 99.21 99.28 99.88 99.85 99.87

landscape of the learning process in CNNs can be conducted which can
provide insight into how to avoid the local optima problem and to have
a better chance of finding better optima.

In this paper, we used a wide variety of features including the statis-
tical features from the original signal, automatically extracted featured
via CNNs, and transform functions on the signal to classify the data.
However, clearly, not all these features, especially the CNN features
are not necessarily discriminative enough to improve the classification
process. As future work, a feature analysis research to find the best set
of features among a wide variety of signal processing approaches can be
performed. A feature selection research, a filter or wrapper paradigm,
can provide insights into finding the best signal processing and feature
extraction methods.

The optimization process in evolutionary architecture design re-
quires the measurement of the fitness of each architectural design
(individual). In the proposed algorithm (and in the algorithms proposed

16

in the literature), in order to find the fitness of an individual, a CNN
is constructed based on the architecture that the individual suggests.
Then the CNN is trained, tested and its performance in classification is
used as the fitness. This process involves some uncertainty, stemming
from the fact that the training process is the non-deterministic process
of gradient descent algorithms. Managing the uncertainty in the evo-
lutionary design of CNN architectures is a line of research for future
work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

M.H.T. Najaran
Data availability
Data will be made available on request.

References

Azamfar, M., Singh, J., Bravo-Imaz, I., & Lee, J. (2020). Multisensor data fusion for
gearbox fault diagnosis using 2-D convolutional neural network and motor current
signature analysis. Mechanical Systems and Signal Processing, 144, Article 106861.

Baldominos, A., Saez, Y., & Isasi, P. (2018). Evolutionary convolutional neural networks:
An application to handwriting recognition. Neurocomputing, 283, 38-52.

Ben Ali, J., Fnaiech, N., Saidi, L., Chebel-Morello, B., & Fnaiech, F. (2015). Application
of empirical mode decomposition and artificial neural network for automatic
bearing fault diagnosis based on vibration signals. Applied Acoustics, 89, 16-27.

Benediktsson, J. A., Sveinsson, J. R., Ersoy, O. K., & Swain, P. H. (1997). Parallel
consensual neural networks. IEEE Transactions on Neural Networks, 8(1), 54-64.

Bingham, G., Macke, W., & Miikkulainen, R. (2020). Evolutionary optimization of deep
learning activation functions. In Proceedings of the 2020 genetic and evolutionary
computation conference (pp. 289-296).

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (1996b). Stacked regressions. Machine Learning, 24(1), 49-64.

Breiman, L. (1999). Pasting small votes for classification in large databases and on-line.
Machine Learning, 36(1-2), 85-103.

Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8), 1872-1886.

Bryll, R., Gutierrez-Osuna, R., & Quek, F. (2003). Attribute bagging: improving accuracy
of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6),
1291-1302.

Biihlmann, P., Yu, B., et al. (2002). Analyzing bagging. The Annals of Statistics, 30(4),
927-961.

Buja, A., & Stuetzle, W. (2006). Observations on bagging. Statistica Sinica, 323-351.

Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., &
Pineda-Sanchez, M. (2017). Short-frequency Fourier transform for fault diagno-
sis of induction machines working in transient regime. IEEE Transactions on
Instrumentation and Measurement, 66(3), 432-440.

Cai, Q.-T., Peng, C.-Y., & Zhang, C.-S. (2008). A weighted subspace approach for
improving bagging performance. In Acoustics, speech and signal processing, 2008.
ICASSP 2008. IEEE international conference on (pp. 3341-3344). IEEE.

Cao, P., Zhang, S., & Tang, J. (2018). Preprocessing-free gear fault diagnosis using
small datasets with deep convolutional neural network-based transfer learning. Ieee
Access, 6, 26241-26253.

Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple
deep learning baseline for image classification?. IEEE Trans. Image Process., 24(12),
5017-5032. http://dx.doi.org/10.1109/TIP.2015.2475625.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3), 1-27.

Chen, C. P., & Liu, Z. (2017). Broad learning system: An effective and efficient incre-
mental learning system without the need for deep architecture. IEEE Transactions
on Neural Networks and Learning Systems, 29(1), 10-24.

clu (2022). University of Hertfordshire computing cluster. https://uhhpc.herts.ac.uk/
wiki/index.php/Architecture.

Cruz, Y. J., Rivas, M., Quiza, R., Villalonga, A., Haber, R. E., & Beruvides, G. (2021).
Ensemble of convolutional neural networks based on an evolutionary algorithm
applied to an industrial welding process. Computers in Industry, 133, Article 103530.

DeepLearn toolbox. (2015). https://github.com/rasmusbergpalm/DeepLearnToolbox.

Downs, J., & Vogel, E. (1993). A plant-wide industrial process control problem.
Computers & Chemical Engineering, 17(3), 245-255, Industrial challenge problems
in process control.

Fernandes Junior, F. E., & Yen, G. G. (2019b). Particle swarm optimization of deep
neural networks architectures for image classification. Swarm and Evolutionary Com-
putation, 49, 62-74. http://dx.doi.org/10.1016/j.swevo0.2019.05.010, URL: https:
//www.sciencedirect.com/science/article/pii/S2210650218309246.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through Simulated
Evolution. New York, USA: John Wiley.

Gawali, N. U., Hasabe, R., & Vaidya, A. (2015). A comparison of different mother
wavelet for fault detection & classification of series compensated transmission line.
International Journal of the Innovations Research Science and Technology, 1(9), 57-63.

Gottapu, R. D., & Dagli, C. H. (2020). Efficient architecture search for deep neural
networks. Proc. Comput. Sci., 168, 19-25.

Guo, X., Chen, L., & Shen, C. (2016). Hierarchical adaptive deep convolution neural
network and its application to bearing fault diagnosis. Measurement, 93, 490-502.

Guo, M., Yang, N., & Chen, W. (2019). Deep-learning-based fault classification using
Hilbert-Huang transform and convolutional neural network in power distribution
systems. IEEE Sensors Journal, 19(16), 6905-6913.

Haidong, S., Junsheng, C., Hongkai, J., Yu, Y., & Zhantao, W. (2020). Enhanced deep
gated recurrent unit and complex wavelet packet energy moment entropy for early
fault prognosis of bearing. Knowledge-Based Systems, 188, Article 105022.

Han, Y., Tang, B., & Deng, L. (2018). Multi-level wavelet packet fusion in dynamic
ensemble convolutional neural network for fault diagnosis. Measurement, 127,
246-255.

17

Expert Systems With Applications 233 (2023) 120678

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(10), 993-1001.

Hashem, S. (1997). Optimal linear combinations of neural networks. Neural Networks,
10(4), 599-614.

He, Z., Shao, H., Zhang, X., Cheng, J., & Yang, Y. (2019). Improved deep transfer
auto-encoder for fault diagnosis of gearbox under variable working conditions with
small training samples. IEEE Access, 7, 115368-115377.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844.

Hoang, D.-T., & Kang, H.-J. (2019). Rolling element bearing fault diagnosis using
convolutional neural network and vibration image. Cognitive Systems Research, 53,
42-50.

Holland, J. H. (1975). Adaption in Natural and Artificial Systems (first ed.). Ann Arbor
MI.

Hu, Q., He, Z., Zhang, Z., & Zi, Y. (2007). Fault diagnosis of rotating machinery based
on improved wavelet package transform and SVMs ensemble. Mechanical Systems
and Signal Processing, 21(2), 688-705.

Hu, Q., Qin, A., Zhang, Q., He, J., & Sun, G. (2018). Fault diagnosis based on weighted
extreme learning machine with wavelet packet decomposition and KPCA. IEEE
Sensors Journal, 18(20), 8472-8483.

Huang, W., Cheng, J., Yang, Y., & Guo, G. (2019). An improved deep convolu-
tional neural network with multi-scale information for bearing fault diagnosis.
Neurocomputing, 359, 77-92.

Huang, R., Liao, Y., Zhang, S., & Li, W. (2018). Deep decoupling convolutional neural
network for intelligent compound fault diagnosis. IEEE Access, 7, 1848-1858.
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., & Keutzer, K.
(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 1MB

model size. CoRR.

Jiao, J., Zhao, M., Lin, J., & Zhao, J. (2018). A multivariate encoder information based
convolutional neural network for intelligent fault diagnosis of planetary gearboxes.
Knowledge-Based Systems, 160, 237-250.

Jing, L., Zhao, M., Li, P., & Xu, X. (2017). A convolutional neural network based feature
learning and fault diagnosis method for the condition monitoring of gearbox.
Measurement, 111, 1-10.

Johner, F. M., & Wassner, J. (2019). Efficient evolutionary architecture search for
CNN optimization on GTSRB. In 2019 18th IEEE international conference on machine
learning and applications (ICMLA) (pp. 56-61). http://dx.doi.org/10.1109/ICMLA.
2019.00018.

Junior, F. E. F., & Yen, G. G. (2019a). Particle swarm optimization of deep neural
networks architectures for image classification. Swarm Evol. Comput., 49, 62-74.

Kennedy, J., Eberhart, R. C., & Shi, Y. H. (2001). The Morgan Kaufmann Series in
Evyolutionary Computation, Swarm Intelligence (first ed.). Morgan Kaufmann.

Konar, P., & Chattopadhyay, P. (2015). Multi-class fault diagnosis of induction motor
using Hilbert and wavelet transform. Applied Soft Computing, 30, 341-352.

Kuncheva, L. I. (2005). Diversity in multiple classifier systems. Elsevier.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th International Conference on Machine Learning (pp. 473-480).

Li, C., & Liang, M. (2012). Time-frequency signal analysis for gearbox fault diagnosis
using a generalized synchrosqueezing transform. Mechanical Systems and Signal
Processing, 26, 205-217.

Liang, P., Deng, C., Wu, J., Yang, Z., Zhu, J., & Zhang, Z. (2019). Compound fault
diagnosis of gearboxes via multi-label convolutional neural network and wavelet
transform. Computers in Industry, 113, Article 103132.

Lindu, Z., & Zhaohan, S. (1996). Combination of discrete cosine transform with neural
network in fault diagnosis for rotating machinery. In Proceedings of the IEEE
international conference on industrial technology (ICIT’96) (pp. 450-454). IEEE.

Liu, Y., Mu, Y., Chen, K., Li, Y., & Guo, J. (2020). Daily activity feature selection
in smart homes based on pearson correlation coefficient. Neural Processing Letters,
1-17.

Liu, H., Zhou, J., Xu, Y., Zheng, Y., Peng, X., & Jiang, W. (2018). Unsupervised fault
diagnosis of rolling bearings using a deep neural network based on generative
adversarial networks. Neurocomputing, 315, 412-424.

Lou, X., & Loparo, K. A. (2004). Bearing fault diagnosis based on wavelet transform
and fuzzy inference. Mechanical Systems and Signal Processing, 18(5), 1077-1095.

Lu, X., Lin, P., Cheng, S., Lin, Y., Chen, Z., Wu, L., et al. (2019). Fault diagnosis for
photovoltaic array based on convolutional neural network and electrical time series
graph. Energy Conversion and Management, 196, 950-965.

Ly, S., Yan, R., Liu, Y., & Wang, Q. (2019). Tacholess speed estimation in order tracking:
A review with application to rotating machine fault diagnosis. IEEE Transactions on
Instrumentation and Measurement, 68(7), 2315-2332.

Ma, B, Li, X., Xia, Y., & Zhang, Y. (2020). Autonomous deep learning: a genetic DCNN
designer for image classification. Neurocomputing, 379, 152-161.

Mo, H., Custode, L. L., & Iacca, G. (2021). Evolutionary neural architecture search for
remaining useful life prediction. Applied Soft Computing, 108, Article 107474. http:
//dx.doi.org/10.1016/j.as0c.2021.107474, URL: https://www.sciencedirect.com/
science/article/pii/S1568494621003975.

Molina, D., Lozano, M., Sanchez, A. M., & Herrera, F. (2011). Memetic algorithms
based on local search chains for large scale continuous optimisation problems:
MA-SSW-chains. Soft Comput., 15, 2201-2220.

http://refhub.elsevier.com/S0957-4174(23)01180-6/sb1
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb1
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb1
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb1
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb1
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb2
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb2
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb2
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb3
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb3
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb3
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb3
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb3
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb4
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb4
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb4
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb5
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb5
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb5
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb5
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb5
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb6
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb7
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb8
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb8
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb8
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb9
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb9
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb9
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb10
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb10
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb10
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb10
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb10
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb11
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb11
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb11
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb12
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb13
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb14
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb14
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb14
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb14
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb14
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb15
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb15
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb15
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb15
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb15
http://dx.doi.org/10.1109/TIP.2015.2475625
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb17
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb17
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb17
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb18
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb18
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb18
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb18
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb18
https://uhhpc.herts.ac.uk/wiki/index.php/Architecture
https://uhhpc.herts.ac.uk/wiki/index.php/Architecture
https://uhhpc.herts.ac.uk/wiki/index.php/Architecture
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb20
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb20
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb20
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb20
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb20
https://github.com/rasmusbergpalm/DeepLearnToolbox
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb22
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb22
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb22
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb22
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb22
http://dx.doi.org/10.1016/j.swevo.2019.05.010
https://www.sciencedirect.com/science/article/pii/S2210650218309246
https://www.sciencedirect.com/science/article/pii/S2210650218309246
https://www.sciencedirect.com/science/article/pii/S2210650218309246
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb24
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb24
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb24
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb25
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb25
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb25
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb25
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb25
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb26
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb26
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb26
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb27
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb27
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb27
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb28
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb28
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb28
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb28
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb28
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb29
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb29
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb29
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb29
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb29
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb30
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb30
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb30
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb30
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb30
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb31
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb31
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb31
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb32
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb32
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb32
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb33
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb33
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb33
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb33
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb33
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb34
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb34
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb34
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb35
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb35
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb35
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb35
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb35
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb36
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb36
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb36
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb37
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb37
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb37
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb37
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb37
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb38
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb38
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb38
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb38
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb38
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb39
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb39
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb39
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb39
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb39
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb40
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb40
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb40
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb41
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb41
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb41
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb41
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb41
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb42
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb42
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb42
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb42
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb42
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb43
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb43
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb43
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb43
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb43
http://dx.doi.org/10.1109/ICMLA.2019.00018
http://dx.doi.org/10.1109/ICMLA.2019.00018
http://dx.doi.org/10.1109/ICMLA.2019.00018
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb45
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb45
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb45
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb46
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb46
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb46
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb47
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb47
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb47
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb48
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb49
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb49
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb49
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb49
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb49
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb50
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb50
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb50
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb50
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb50
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb51
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb51
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb51
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb51
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb51
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb52
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb52
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb52
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb52
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb52
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb53
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb53
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb53
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb53
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb53
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb54
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb54
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb54
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb54
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb54
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb55
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb55
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb55
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb56
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb56
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb56
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb56
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb56
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb57
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb57
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb57
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb57
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb57
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb58
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb58
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb58
http://dx.doi.org/10.1016/j.asoc.2021.107474
http://dx.doi.org/10.1016/j.asoc.2021.107474
http://dx.doi.org/10.1016/j.asoc.2021.107474
https://www.sciencedirect.com/science/article/pii/S1568494621003975
https://www.sciencedirect.com/science/article/pii/S1568494621003975
https://www.sciencedirect.com/science/article/pii/S1568494621003975
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb60
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb60
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb60
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb60
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb60

M.H.T. Najaran

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, 6(3), 21-45.

Prugel-Bennett, A., & Tayarani-Najaran, M. (2012). Maximum satisfiability: Anatomy
of the fitness landscape for a hard combinatorial optimization problem. IEEE
Transactions on Evolutionary Computation, 16(3), 319-338. http://dx.doi.org/10.
1109/TEVC.2011.2163638.

Rai, V., & Mohanty, A. (2007). Bearing fault diagnosis using FFT of intrinsic mode
functions in Hilbert-huang transform. Mechanical Systems and Signal Processing,
21(6), 2607-2615.

Ranawana, R., & Palade, V. (2006). Multi-classifier systems: Review and a roadmap for
developers. International Journal of Hybrid Intelligent Systems, 3(1), 35-61.

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive
auto-encoders:Explicit invariance during feature extraction. In Icml.

Ruiz-Cércel, C., Cao, Y., Mba, D., Lao, L., & Samuel, R. (2015). Statistical process
monitoring of a multiphase flow facility. Control Engineering Practice, 42, 74-88.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.

Shirai, S., Kudo, M., & Nakamura, A. (2008). Bagging, random subspace method and
biding. In Joint IAPR international workshops on statistical techniques in pattern recog-
nition (SPR) and structural and syntactic pattern recognition (SSPR) (pp. 801-810).
Springer.

Smith, W. A., & Randall, R. B. (2015). Rolling element bearing diagnostics using the
case western reserve university data: A benchmark study. Mechanical Systems and
Signal Processing, 64, 100-131.

Sohn, K., & Lee, H. (2012). Learning
transformations. arXiv:1206.6418.

Stefanowski, J. (2007). Combining answers of sub-classifiers in the bagging-feature
ensembles. In International conference on rough sets and intelligent systems paradigms
(pp. 574-583). Springer.

Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2018). A particle swarm optimization-based
flexible convolutional autoencoder for image classification. IEEE Trans. Neural Netw.
Learn. Syst., 30(8), 2295-2309.

Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2020). Completely automated CNN archi-
tecture design based on blocks. IEEE Transactions on Neural Networks and Learning
Systems, 31(4), 1242-1254. http://dx.doi.org/10.1109/TNNLS.2019.2919608.

Tayarani-N., M., & Priigel-Bennett, A. (2014). On the landscape of combinatorial
optimization problems. IEEE Transactions on Evolutionary Computation, 18(3),
420-434.

Tayarani-N., M.-H., & Priigel-Bennett, A. (2015). Anatomy of the fitness landscape for
dense graph-colouring problem. Swarm and Evolutionary Computation, 22, 47-65.

Tayarani-N., M.-H., & Priigel-Bennett, A. (2016). An analysis of the fitness landscape
of travelling salesman problem. Evolutionary Computation, 24(2), 347-384, PMID:
26066806.

Tran, V. T., AlThobiani, F., Ball, A., & Choi, B.-K. (2013). An application to transient
current signal based induction motor fault diagnosis of Fourier-bessel expansion
and simplified fuzzy ARTMAP. Expert Systems with Applications, 40(13), 5372-5384.

Uddamvathanak, R., Yang, F., Yang, X., Das, A. K., Shen, Y., Salahuddin, M., et
al. (2018). Two-stage ensemble of deep convolutional neural networks for object
recognition. In 2018 international conference on intelligent rail transportation (ICIRT)
(pp. 1-5). IEEE.

invariant representations with local

18

Expert Systems With Applications 233 (2023) 120678

Wang, Y., Ma, Q., Zhu, Q., Liu, X., & Zhao, L. (2014). An intelligent approach for engine
fault diagnosis based on Hilbert-Huang transform and support vector machine.
Applied Acoustics, 75, 1-9.

Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based
data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65(7),
5990-5998.

Wu, C., Jiang, P., Ding, C., Feng, F., & Chen, T. (2019). Intelligent fault diagnosis
of rotating machinery based on one-dimensional convolutional neural network.
Computers in Industry, 108, 53-61.

Xiang, X., Zhou, J., Li, C., Li, Q., & Luo, Z. (2009). Fault diagnosis based on
walsh transform and rough sets. Mechanical Systems and Signal Processing, 23(4),
1313-1326.

Xie, Y., Chen, H.,, Ma, Y., & Xu, Y. (2022). Automated design of CNN architecture
based on efficient evolutionary search. Neurocomputing, 491, 160-171. http://
dx.doi.org/10.1016/j.neucom.2022.03.046, URL: https://www.sciencedirect.com/
science/article/pii/S092523122200340X.

Yan, R., Gao, R. X., & Chen, X. (2014). Wavelets for fault diagnosis of rotary machines:
A review with applications. Signal Processing, 96, 1-15, Time-frequency methods for
condition based maintenance and modal analysis.

Yao, X., & Liu, Y. (1997). Fast evolution strategies. Control Cybern., 26, 467-496.

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Trans.
Evol. Comput., 3(2), 82-102.

Yu, W., & Zhao, C. (2019). Broad convolutional neural network based industrial process
fault diagnosis with incremental learning capability. IEEE Transactions on Industrial
Electronics, 67(6), 5081-5091.

Zhang, Z., Wang, Y., & Wang, K. (2013). Fault diagnosis and prognosis using wavelet
packet decomposition, Fourier transform and artificial neural network. Journal of
Intelligent Manufacturing, 24(6), 1213-1227.

Zhang, Y., Xing, K., Bai, R., Sun, D.,, & Meng, Z. (2020). An enhanced convolu-
tional neural network for bearing fault diagnosis based on time—frequency image.
Measurement, 157, Article 107667.

Zhao, H., Liu, H., Xu, J., & Deng, W. (2019). Performance prediction using high-
order differential mathematical morphology gradient spectrum entropy and extreme
learning machine. IEEE Transactions on Instrumentation and Measurement.

Zhao, H., Sun, S., & Jin, B. (2018). Sequential fault diagnosis based on LSTM neural
network. IEEE Access, 6, 12929-129309.

Zhu, Z., Peng, G., Chen, Y., & Gao, H. (2019). A convolutional neural network
based on a capsule network with strong generalization for bearing fault diagnosis.
Neurocomputing, 323, 62-75.

Mohammad- H. Tayarani- N. received his Ph.D. degree
from the University of Southampton, Southampton, U.K, in
2013. Then he worked as research fellow at the University
of Birmingham, Birmingham, UK and University of Glas-
gow, Glasgow, UK. He currently holds a fellowship at the
university of Hertfordshire, Hatfield, UK. His main research
interests include evolutionary algorithms, machine learning,
and fractal image compression.

http://refhub.elsevier.com/S0957-4174(23)01180-6/sb61
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb61
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb61
http://dx.doi.org/10.1109/TEVC.2011.2163638
http://dx.doi.org/10.1109/TEVC.2011.2163638
http://dx.doi.org/10.1109/TEVC.2011.2163638
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb63
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb63
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb63
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb63
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb63
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb64
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb64
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb64
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb65
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb65
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb65
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb66
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb66
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb66
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb67
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb67
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb67
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb67
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb67
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb68
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb69
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb70
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb70
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb70
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb70
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb70
http://arxiv.org/abs/1206.6418
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb72
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb72
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb72
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb72
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb72
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb73
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb73
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb73
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb73
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb73
http://dx.doi.org/10.1109/TNNLS.2019.2919608
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb75
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb75
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb75
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb75
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb75
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb76
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb76
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb76
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb77
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb77
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb77
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb77
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb77
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb78
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb78
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb78
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb78
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb78
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb79
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb80
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb80
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb80
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb80
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb80
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb81
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb81
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb81
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb81
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb81
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb82
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb82
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb82
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb82
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb82
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb83
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb83
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb83
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb83
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb83
http://dx.doi.org/10.1016/j.neucom.2022.03.046
http://dx.doi.org/10.1016/j.neucom.2022.03.046
http://dx.doi.org/10.1016/j.neucom.2022.03.046
https://www.sciencedirect.com/science/article/pii/S092523122200340X
https://www.sciencedirect.com/science/article/pii/S092523122200340X
https://www.sciencedirect.com/science/article/pii/S092523122200340X
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb85
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb85
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb85
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb85
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb85
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb86
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb87
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb87
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb87
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb88
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb88
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb88
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb88
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb88
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb89
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb89
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb89
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb89
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb89
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb90
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb90
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb90
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb90
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb90
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb91
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb91
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb91
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb91
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb91
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb92
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb92
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb92
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb93
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb93
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb93
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb93
http://refhub.elsevier.com/S0957-4174(23)01180-6/sb93

	An evolutionary ensemble convolutional neural network for fault diagnosis problem
	Introduction
	Convolutional Neural Network Structure
	The Proposed Algorithm
	The Proposed Ensemble Algorithm
	Optimization of the Weights in the Voting Scheme
	Evolutionary Training of CNNs

	Experimental Results
	Case 1: Tennessee Eastman Process
	Case 2: Three-Phase Flow Facility
	Case 3: Motor Bearing Fault Diagnosis
	Case 4: Self-Priming Centrifugal Pump Fault Diagnosis
	Case 5: Axial Piston Hydraulic Pump Fault Diagnosis

	Conclusion
	Conclusional Remarks
	Future Work and Discussion

	Declaration of competing interest
	Data availability
	References

