
Instance Weighting for

Partitioning and Graph Based

Clustering

Paul Moggridge

University of Hertfordshire

Submitted to the University of Hertfordshire in partial

fulfilment of the requirement of the degree of PhD

Supervisors:

Dr. Na Helian

Dr. Yi Sun

Dr. Mariana Lilley

February 2025

Acknowledgements

Firstly, I would like to thank my supervisory team Dr. Na Helian, Dr Yi Sun

and Dr Mariana Lilley for supporting me in taking this programme of study.

Their care and devotion has always been above and beyond my expectations.

Their invaluable advice has transformed my life and for that I am truly grateful.

I would also like to thank to my family. My parents Hayley and Kerry, who

have inspired and supported me hugely through my entire journey. Also, my

wife, Natalie for her amazing patience, when I have had to devote family-time

to my work. Also, my son Finley, who has motivated me to be the best I can be.

Finally, I would like to acknowledge all the people who have been part of this

journey, from my grandfather who first introduced me to computers, to my

form-tutor at secondary school who first saw potential in me, to the college tu-

tors and support staff who enabled me to continue my studies while recovering

from major surgery, to my friends and lecturers who encouraged my studies

while at the University of Hertfordshire, and finally my colleagues whose ad-

vice kept me motivated throughout.

1

Abstract

Clustering algorithms often struggle to achieve robust clustering performance

on datasets that contain outliers and imbalanced cluster sizes. While k-means

and spectral clustering are popular choices, they demonstrate limitations. K-

means, a partitioning-based method, while efficient and effective, is sensitive

to outliers, leading to inaccurate cluster assignments. Spectral clustering, a

graph-based approach, while it is able to model data of arbitrary shape, it

performs poorly when clusters have imbalanced instance counts. Traditional

instance selection methods address these issues by discarding instances, po-

tentially losing valuable information. This thesis proposes a more nuanced ap-

proach by integrating instance weighting into these clustering algorithms. To

achieve this, existing literature on instance weighted clustering is reviewed and

two novel instance weighted clustering algorithms (LOFIWKM and IWSE) are

proposed to demonstrate and evaluate under what conditions instance weight-

ing is effective using both intrinsic and extrinsic clustering accuracy metrics.

LOFIWKM builds on k-means and leverages the Local Outlier Factor mea-

sure of outlierness to estimate instance density and adjust centroid placement

towards higher density areas. The approach was trialled on synthetic and real-

world data to investigate how effective the approach is given different quantities

and severities of outliers. The approach is also trialled on a sample of real-

world avionics data. My experimental findings demonstrate that LOFIWKM

effectively mitigates the influence of outliers, significantly improving clustering

performance on datasets with different extents of outlier contamination.

IWSE builds on a spectral clustering ensemble framework and incorporates

2

density-based weights into the sub-sampling process. The approach is trialled

on a variety of synthetic and benchmark datasets to establish when the ap-

proach is effective. Then using further synthetic experiments and the MNIST

hand written digits dataset the applicability of the method is asserted. My

experiments show that IWSE substantially outperforms traditional spectral

clustering in terms of clustering performance on datasets with imbalanced

clusters that exhibit clear cluster density variations.

Overall, this work contributes novel instance weighting frameworks for partitioning-

based and graph-based clustering, offering a robust alternative to instance se-

lection. These approaches are generalizable to other clustering algorithms and

can be combined with other techniques, opening new avenues for developing

more accurate and robust clustering solutions for challenging real-world data.

3

Contents

1 Introduction 23

1.1 Aim . 28

1.2 Objectives . 28

1.3 Research Questions . 28

1.4 Contributions to Knowledge . 29

1.4.1 Algorithms Developed 30

1.4.2 Thesis Outline . 31

2 Instance Weighted Clustering, a review 33

2.1 Planning . 33

2.1.1 Research Protocol . 33

2.1.2 Research Questions . 34

2.1.3 Search Strategy . 34

2.1.4 Inclusion Criteria . 37

2.1.5 Exclusion Criteria . 37

2.2 Conducting the Search . 38

2.3 Analysis . 41

2.3.1 Weighting Strategy . 44

2.3.2 Actuation of the Weights 46

2.3.3 Ensemble Techniques . 48

4

2.3.4 Benefits of Instance Weighting 49

2.3.5 Compatibility . 50

2.4 Conclusion . 51

3 Methods 54

3.1 Partitioning-based Clustering 54

3.2 Graph-based Clustering . 57

3.3 Clustering Quality Metrics . 59

4 Instance Weighting for Partitioning-based Clustering 63

4.1 Introduction . 63

4.2 Related Work . 65

4.3 Local Outlier Factor . 68

4.4 Proposed Methods . 70

4.5 Experimentation . 72

4.5.1 Synthetic Dataset . 73

4.5.2 Benchmark Dataset . 80

4.6 Conclusion . 86

5 Instance Weighting for Flight Data Recorder Clustering 88

5.1 Introduction . 88

5.2 Related Work . 89

5.3 Experimental Design . 93

5.4 Results and Discussion . 102

5.5 Conclusion and Future Work . 111

6 Instance Weighting for Ensemble Graph-based Clustering 115

6.1 Introduction . 115

6.2 Related Work . 119

5

6.2.1 Variations of Spectral Clustering 119

6.2.2 Ensemble Methods . 122

6.2.3 Conclusions from Related Work 133

6.3 Proposed Approach . 134

6.4 Experimental Setup . 136

6.4.1 Experiment A . 137

6.4.2 Experiment B . 147

6.4.3 Experiment C . 150

6.5 Conclusion . 162

6.6 Future Work . 165

7 Instance Weighting Clustering for Character Clustering 168

7.1 Introduction . 168

7.2 Related Work . 170

7.2.1 Clustering Image Datasets 170

7.2.2 Imbalanced Clustering 172

7.2.3 Conclusion . 175

7.3 Experimental Design . 176

7.4 Investigation of MNIST Digits 177

7.4.1 Intra-Digit Analysis . 178

7.4.2 Inter-Digit Analysis . 182

7.4.3 Summary of Intra and Inter Digit Analysis 186

7.5 Imbalanced MNIST clustering 186

7.5.1 Experimental Design . 186

7.5.2 Results and Discussion 190

7.6 Synthetic Experiments . 195

7.6.1 Experiment Design . 195

6

7.6.2 Results and Discussion 199

7.7 Conclusion . 202

8 Final Conclusions and Future Work 205

9 Appendix 221

9.1 Literature Review Thematic Analysis Tables 221

9.2 ARI Results for LOFIWKM Experiments 240

9.3 Clustering Results of FDR Dataset 241

9.4 Worked Examples of Clustering Algorithms 244

9.4.1 Example Dataset . 244

9.4.2 K-means Example . 244

9.4.3 Spectral Example . 258

9.5 Worked Examples of NMI . 265

9.5.1 NMI Formulae . 265

9.5.2 Example of NMI score on Poor Clustering 266

9.5.3 Example of NMI score on a Moderate Clustering 267

9.5.4 Example of NMI score on Perfect Clustering 268

9.5.5 Example of NMI score on Alternative Perfect Clustering 270

9.5.6 Example of NMI score on Imbalanced Data (Most Likely

Error) . 271

9.5.7 Example of NMI score on Imbalanced Data (Less Likely

Error) . 273

9.6 Comparison of Intrinsic Measures against an Outlier 274

9.7 Worked Example of Imbalance Ratio Calculation 275

9.8 IWSE Bags Parameter . 278

9.9 IWSE mn-mx Parameter . 280

9.10 Imbalanced MNIST Digits Clustering Results 281

7

9.10.1 Three principal components 281

9.10.2 Six principal components 294

9.11 Clustering Tool . 307

9.12 Software Implementations of Algorithms 314

9.12.1 KMeans . 314

9.12.2 LOFKMeans . 318

9.12.3 ILOFKMeans . 324

9.12.4 IWSE Clustering Algorithm 331

9.13 Research Publications . 335

8

List of Figures

2.1 Count of papers per year. 38

2.2 A word cloud of the keywords from the papers. 39

2.3 PRISMA diagram of filtering process. 40

2.4 A treemap classifying the literature in terms of: Type of Clus-

tering Algorithm→Weighting Strategy→Method of Applying

the Weights → Data Quality Issue Addressed. Comparing to

size of areas shows the disparity between amount of research

found for the different categorisations of the literature. Notice

the lack of purely graph-based research. 43

4.1 Calculating the reachability distance. 69

4.2 Demonstrating the LOF scores. 70

4.3 The ILOFIWKM algorithm showing how weights change as the

algorithm executes. The three red dots are the centroids and

radius of black circles shows the outlierness which is inverted

to give the instance weight. The smaller coloured dots are the

instances of different clusters. 71

4.4 A sample of the artificial dataset used showing the 2 clusters. . 74

4.5 A visualisation of the outlier generation procedure, the ring-

shaped blue dotted area denotes where instances will uniformly

randomly generated to create probable outliers. 75

9

4.6 A sample of the generated datasets, showing the increasing out-

lier presence. 76

4.7 A sample of the generated datasets, showing the increasingly

distant outliers. 77

4.8 The average NMI score and standard deviation of k-means,

LOFIWKM and ILOFIWKM on the synthetic dataset with in-

creasing amount of outliers. 79

4.9 The average NMI score and standard deviation of k-means,

LOFIWKM and ILOFIWKM on the synthetic dataset with in-

creasingly distant outliers. 80

4.10 UCI Seeds dataset scree plot. 81

4.11 A scatter plot of the first two principal components of the Seeds

dataset. 82

4.12 The preprocessed Seeds dataset, showing the increasing outlier

presence. 83

4.13 The preprocessed Seeds dataset, showing the increasingly dis-

tant outliers. 84

4.14 The average NMI score and standard deviation of k-means,

LOFIWKM and ILOFIWKM on the Seeds dataset with an in-

creasing amount of outliers. 85

4.15 The average NMI score and standard deviation of k-means,

LOFIWKM and ILOFIWKM on the Seeds dataset with increas-

ingly distant outliers. 85

10

5.1 A sample of 4 the 19 features recorded by the FDR recorder for

1 of the 99836 flights in the dataset, the plots show the read-

outs for the features for the last 160 seconds of flight (before

touchdown). 93

5.2 Scree plot showing the first 15 principal components of the FDR

data. 96

5.3 The Flight Data Recorder Dataset in 3 principal components.

Purple “x” are nominal landings, and “blue”, “green” and “yel-

low” various types of anomalous landings. 97

5.4 The Stratified Sample of the Flight Data Recorder Dataset in 3

principal components. 99

5.5 The Stratified Sample of the Flight Data Recorder Dataset in 3

principal components with added outliers. 100

5.6 Calinski Harabasz scores for the k-means (pink), instance weighted

k-means variants (greens) and traditional techniques (grey) on

the sample of the FDR dataset. 102

5.7 Calinski Harabasz Scores for the k-means (pink), instance weighted

k-means variants (greens) and traditional techniques (grey) on

the sample of the FDR dataset with added artificial outliers. . . 103

5.8 Davies Bouldin Scores for the k-means (pink), instance weighted

k-means variants (greens) and traditional techniques (grey) on

the sample of the FDR dataset. 104

5.9 Davies Bouldin Scores for the k-means (pink), instance weighted

k-means variants (greens) and traditional techniques (grey) on

the sample of the FDR dataset with added artificial outliers. . . 105

11

5.10 Silhouette Scores for the k-means (pink), instance weighted k-

means variants (greens) and instance selection (grey) on the

sample of the FDR dataset. 106

5.11 Silhouette Scores for the k-means (pink), instance weighted k-

means variants (greens) and traditional techniques (grey) on the

sample of the FDR dataset with added artificial outliers. 106

5.12 A scatter plot showing the clusters found by k-means on a sam-

ple of the FDR dataset. 108

5.13 A scatter plot showing the clusters found by LOFIWKM on a

sample of the FDR dataset. 109

5.14 A scatter plot showing the clusters found by ILOFIWKM on a

sample of the FDR dataset. 109

5.15 A scatter plot showing the clusters found by LOF based Instance

Selection + k-means on a sample of the FDR dataset. 110

5.16 A scatter plot showing the clusters found by Winsorisation +

k-means on a sample of the FDR dataset. 110

6.1 Schematic illustration of the IWSE approach. 134

6.2 A sample of the “imbalance” datasets, the colouration repre-

sents the instance weights. The title for each sub-plot shows

the “imbalance scaling factor”. 138

6.3 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 10. 141

6.4 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 20. 141

6.5 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 30. 142

12

6.6 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 40. 143

6.7 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 50. 143

6.8 The performance IWSEU on the imbalanced data with mmin

and mmax parameters spanning a range of 60, 70 and 80. 144

6.9 The best performing mmin and mmax parameters for IWSEU on

the imbalanced data. 144

6.10 IWSEU and IWSEL perform well despite imbalanced clusters. . 146

6.11 The artificial datasets trialled, showing the class labels. 153

6.12 The artificial datasets trialled, showing the weighting applied

within IWSE. 154

6.13 Left: a co-association matrix generated by a base clustering in

IWSE using mode “H”. Centre: a co-association matrix gener-

ated by a base clustering in IWSE using mode “L”. Right: The

sum of the co-association matrices. 164

7.1 An MNIST digit before the threshold function is applied (left)

and after the threshold function is applied (right). 179

7.2 A sample of 200 of each class of digit compared per pixel using

Simple Matching Coefficient. 180

7.3 A sample of 200 of each class of digit compared per pixel using

Normalised Mutual Information. 180

7.4 Based on a sample of 800 of each class of digit, the average area

of the 25th to 75th percentile in PCA2 sub-space. 181

7.5 Based on a sample of 800 of each class of digit, the athematic

mean density of digits in a PCA2 sub-space. 182

13

7.6 A sample of 200 of each digit class compared with each other

using a pixel-wise Simple Matching Coefficient. 183

7.7 A sample of 200 of each digit class compared with each other

using a pixel-wise Normalised Mutual Information. 184

7.8 The distance between digits in a PCA2 space. 185

7.9 The distance between digits in a PCA32-t-SNE2 sub-space. . . . 185

7.10 Random selection of 50 zeroes, ones, fours and nines from MNIST,

zeros and ones are visually very different however, fours and

nines are not so different. 187

7.11 Synthetic experiment 1 (overlap extent) – a sample of the start

and finish datasets. 196

7.12 Synthetic experiment 2 (density difference) – a sample of the

start and finish datasets. 197

7.13 Synthetic experiment 2 (density difference) - showing the linear

decrease in density. 197

7.14 Synthetic experiment 3 (imbalance) – a sample of the start and

finish datasets. 198

7.15 IWSEU and IWSEL outperform traditional methods once there

is a significant difference in density between the clusters. 200

7.16 IWSEU and IWSEL remains performant despite a significant

degree of overlap between imbalanced clusters with different

densities. 200

7.17 IWSEU and IWSEL outperform traditional methods at certain

levels of imbalance. 201

14

9.1 The average ARI score and standard deviation of k-means, LOFI-

WKM and ILOFIWKM on the synthetic dataset with an in-

creasing amount of outliers. 240

9.2 The average ARI score and standard deviation of k-means, LOFI-

WKM and ILOFIWKM on the synthetic dataset with increas-

ingly distant outliers. 240

9.3 The average ARI score and standard deviation of k-means, LOFI-

WKM and ILOFIWKM on the Seeds dataset with an increasing

amount of outliers. 241

9.4 The average ARI score and standard deviation of k-means, LOFI-

WKM and ILOFIWKM on the Seeds dataset with increasingly

distant outliers. 241

9.5 Scatter plots with colouration showing the clusters found by

each of the approaches trialled across three runs. 242

9.6 Scatter plots with colouration showing the clusters found by

each of the approaches trialled across another three runs. 243

9.7 Scatter plot of the example dataset. 244

9.8 The example dataset clustered by k-means. 258

9.9 The graph derived from the example dataset using 2 nearest

neighbours. 259

9.10 The partitioned graph. 265

9.11 Comparison of how Calinski Harabasz, Davies Bouldin, Silhou-

ette Coe. are effected by the presence of an outlier in the data. . 275

9.12 A visual representation of the calculated instance counts for the

imbalanced dataset. 276

9.13 The impact on NMI when adjusting the bags count. 278

9.14 The impact on execution time when adjusting the bags count. . 278

15

9.15 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more ones) to +480% (more zeros) of either digit, using

3 principal components. 281

9.16 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more twos) to +480% (more zeros) of either digit, using

3 principal components. 282

9.17 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more threes) to +480% (more zeros) of either digit, using 3

principsl components. 282

9.18 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more fours) to +480% (more zeros) of either digit, using 3

principal components. 283

9.19 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fives) to +480% (more zeros) of either digit, using

3 principal components. 283

9.20 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more sixes) to +480% (more zeros) of either digit, using

3 principal components. 284

9.21 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more zeros) of either digit, using 3

principal components. 284

9.22 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more zeros) of either digit, using 3

principal components. 285

9.23 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more nines) to +480% (more zeros) of either digit, using 3

principal components. 285

16

9.24 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more twos) to +480% (more ones) of either digit, using

3 principal components. 286

9.25 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more threes) to +480% (more ones) of either digit, using 3

principal components. 286

9.26 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fours) to +480% (more ones) of either digit, using

3 principal components. 287

9.27 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fives) to +480% (more ones) of either digit, using

3 principal components. 287

9.28 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more sixes) to +480% (more ones) of either digit, using

3 principal components. 288

9.29 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more ones) of either digit, using 3

principal components. 288

9.30 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more ones) of either digit, using 3

principal components. 289

9.31 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more nines) to +480% (more ones) of either digit, using

3 principal components. 289

9.32 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fours) to +480% (more twos) of either digit, using

3 principal components. 290

17

9.33 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more twos) of either digit, using 3

principal components. 290

9.34 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more fives) to +480% (more threes) of either digit, using 3

principal components. 291

9.35 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more threes) of either digit, using 3

principal components. 291

9.36 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more fives) of either digit, using 3

principal components. 292

9.37 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more sixes) of either digit, using 3

principal components. 292

9.38 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more sixes) of either digit, using 3

principal components. 293

9.39 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more sevens) of either digit, using 3

principal components. 293

9.40 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more nines) to +480% (more sevens) of either digit, using . . . 294

9.41 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more ones) to +480% (more zeros) of either digit, using

6 principal components. 294

18

9.42 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more twos) to +480% (more zeros) of either digit, using

6 principal components. 295

9.43 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more threes) to +480% (more zeros) of either digit, using 6

principal components. 295

9.44 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more fours) to +480% (more zeros) of either digit, using 6

principal components. 296

9.45 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fives) to +480% (more zeros) of either digit, using

6 principal components. 296

9.46 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more sixes) to +480% (more zeros) of either digit, using

6 principal components. 297

9.47 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more zeros) of either digit, using 6

principal components. 297

9.48 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more zeros) of either digit, using 6

principal components. 298

9.49 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more nines) to +480% (more zeros) of either digit, using 6

principal components. 298

9.50 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more twos) to +480% (more ones) of either digit, using

6 principal components. 299

19

9.51 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more threes) to +480% (more ones) of either digit, using 6

principal components. 299

9.52 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fours) to +480% (more ones) of either digit, using

6 principal components. 300

9.53 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fives) to +480% (more ones) of either digit, using

6 principal components. 300

9.54 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more sixes) to +480% (more ones) of either digit, using

6 principal components. 301

9.55 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more ones) of either digit, using 6

principal components. 301

9.56 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more ones) of either digit, using 6

principal components. 302

9.57 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more nines) to +480% (more ones) of either digit, using

6 principal components. 302

9.58 NMI score for S, SER, IWSEU on across an imbalance of -

480% (more fours) to +480% (more twos) of either digit, using

6 principal components. 303

9.59 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more twos) of either digit, using 6

principal components. 303

20

9.60 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more fives) to +480% (more threes) of either digit, using 6

principal components. 304

9.61 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more threes) of either digit, using 6

principal components. 304

9.62 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more fives) of either digit, using 6

principal components. 305

9.63 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more sevens) to +480% (more sixes) of either digit, using 6

principal components. 305

9.64 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more sixes) of either digit, using 6

principal components. 306

9.65 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more eights) to +480% (more sevens) of either digit, using 6

principal components. 306

9.66 NMI score for S, SER, IWSEU on across an imbalance of -480%

(more nines) to +480% (more sevens) of either digit, using 6

principal components. 307

9.67 Start screen. 308

9.68 A dataset generated from four normal distributions. Instance

weighting (knn with k∗=30) and k-means (k = 4) has been

applied. 309

21

9.69 A dataset generated from two skewed normal distributions. In-

stance weighting (knn with k∗=10) and k-means (k = 2) has

been applied. 309

9.70 A dataset created by importing an image. Instance weighting

(knn with k∗=5) has been applied. 310

9.71 A dataset created by importing an image. k-means (k = 14)

has been applied and the results dialogue is shown (partially

implemented metrics). 310

9.72 A fictitious dataset about algae visualised using the parallel co-

ordinates plot. Instance weighting (histogram-based with bins=5)

and k-means (k = 2) has been applied. 311

9.73 A fictitious dataset about algae visualised using the parallel

coordinates plot. Instance weighting (knn with k∗=5) and k-

means (k = 2) has been applied. 312

9.74 A fictitious dataset about algae visualised using the parallel

coordinates plot. Instance weighting (range nearest neighbours

with ϵ=0.5) and k-means (k = 2) has been applied. 313

22

Chapter 1

Introduction

As of 2023, the “Volume of data/information created, captured, copied, and

consumed worldwide” is 123 zetabytes and this is projected to more than triple

to 394 zetabytes by 2028. Furthermore, as of 2023, 87.9% of the Fortune 1000

and leading global organisations identified “Investments in Data and Analytics

are a Top Organizational priority” 1.

To meet this explosion of data, and provide the most sophisticated of the

in-demand analytics, is data mining and machine learning. Within machine

learning exists unsupervised learning techniques. Most notably data clustering.

Through the lens of clustering algorithms, implicit and useful generalisations

(groupings) of data can be found. A “good” clustering is defined as one which

produces a partitioning of the data which has high intra-cluster similarity and

low inter-cluster similarity. As clustering is an unsupervised technique, this

does not depend on training with provided labels. Instead, clustering uses

1Volume of data/information created, captured, copied, and consumed worldwide from
2010 to 2023, with forecasts from 2024 to 2028 (in zettabytes) [Graph], IDC, & Statista, &
Various sources, May 31, 2024.
State of data and analytics investment at companies worldwide in 2023 [Graph], Wavestone,
& NewVantage Partners, December 25, 2023.

23

unlabelled data. The partitioning result depends entirely on the data, and the

application of some similarity measure within the clustering algorithm. Thus

in-practice the quality of clustering results is subjective. Although, a special

exception, is semi-supervised clustering, in this case, some constraints (must-

link and must-not-link) are provided, akin to labels. However, by comparing

against a suggested/intended grouping of the data we can infer clustering per-

formance. At the broadest level clustering algorithms can be grouped into soft

and hard. Soft clustering algorithms provide a degree of membership to each

cluster for each row of data (instance). While on the other hand, hard cluster-

ing algorithms assign instances to one and only one cluster. For an overview

of clustering research to date, please refer the seminal surveys of clustering lit-

erature [1] [2] and [3]. Furthermore, Aggarwal and Reddy’s book titled “Data

Clustering” provides a very comprehensive and detailed overview of the topic

of clustering [4].

Ezugwu et al. provides a recent survey of state-of-art clustering applications,

challenges, and future research prospects [5]. Their systematic literature re-

view found that clustering is useful to a plethora of disciplines: Web usage,

Speech processing, Medical science: Disease onset and progression, Image pro-

cessing and segmentation, Information retrieval, Aviation and automotive sys-

tems, Financial systems and economics, Bioinformatics, Financial systems

and economics, Robotics, Text mining, Video surveillance, Marketing, Object

recognition and character recognition, Data Mining and Big Data Mining, Di-

mensionality reduction, Data transfer through network, Urban development,

Privacy protection. As these applications suggest, clustering can be applied to

most structured (tabular) and unstructured (multimedia) data.

24

Since the formal definition of the first clustering algorithms in circa 1950s

and 1960s [6, 7], many different types of clustering algorithm have arose.

Amongst the earliest are Partitioning-based and Hierarchical-based clustering.

Partitioning-based clustering construct various partitions and then evaluates

them by some criterion (see Appendix 9.4.2 for a worked example of k-means,

a popular partitioning-based algorithm). Hierarchical-based clustering creates

a hierarchical decomposition of the data using some criterion to partition data

points (top-down) or join points (bottom-up), to form clusters. Density-based

clustering uses density information to associate data points together. Grid-

based clustering divides the feature space into a number of cells and partitions

based on the cells. Graph-based clustering constructs a graph representation

and partitions it (see Appendix 9.4.3 for a worked example of spectral cluster-

ing, a popular graph-based algorithm). Further, this is not an exhaustive list.

Despite the huge variety, of the clustering algorithms developed, there remains

space for innovation. For example, Ezugwu et al. also highlighted the need

for improved, flexible and efficient techniques. My research seeks to advance

these techniques.

Arguably the most common approach to increasing the flexibility of clustering

algorithms in regard to data quality is instance selection as a preprocessing

step. Instance selection (also known as sub-sampling) is a well established

technique. It is often used for removing instances that are deemed outliers.

Another popular technique is feature weighting (also referred to as “attribute

weighting”) this is an ongoing area of research. In feature weighting, the fea-

tures of a dataset are weighted based on various metrics typically related to

how much they enhance the accuracy of the main data mining activity. In-

spired by instance selection and feature weighting, Instance weighting assigns

25

a weight to each of the instances in a dataset. To achieve this two parts are re-

quired a weighting scheme and a method of application to integrate the weights

into the clustering algorithm or approach. However, choosing the weights, akin

clustering itself, is non-trivial.

There are infinitely many ways to assign weights to the instances of a dataset.

Instance weighting literature shows some promising results which prompted

this work [8, 9, 10]. However, between these promising results there is dis-

agreement on best approach to design the weighting scheme and method of

application. Furthermore, there is an opportunity to realise instance weight-

ing a generalised framework, similar to the way feature weighting is understood

in current practice and literature. In this context, instance weighting could

enhance the applicability of clustering algorithms by overcoming weaknesses in

specific clustering algorithms. Enhancing the variety of datasets2 to which an

algorithm can be applied would make it easier to perform clustering, leading

towards increased automation.

One interesting area to explore through the lens of instance weighting is out-

lier accommodation. Outlier accommodation is an appealing problem since

from a statistics perspective outlierness can be defined on a scale rather than

as boolean property enabling instance weighting. For example, in instance

weighting, a lesser weight could be assigned to instances that are noisy or

anomalous. A modified clustering algorithm or approach could then utilise

these weights such that the lesser weighted instances are less salient in pro-

cessing. Whilst it is true that some types and severities of outlier should be

fully discarded, some types and severity of outliers maybe best partially re-

2Consider datasets with: outliers, imbalanced clusters, noise, closely packed clusters,
high-dimensionality, high-instance-count, irregular cluster shapes etc.

26

tained for the clustering process to learn from, especially if data is limited.

Another area for investigation is handling imbalanced data, this is a typical

a use case for instance selection techniques (sub-sampling and up-sampling).

Similarly to instance selection, instance weighting could be embedded into

clustering algorithms and approaches to handle this within the algorithm or

approach and enable the discovery of small and large clusters with the need

for preprocessing.

In summary, the design of the proposed instance weighting solutions is guided

by the following core requirements. Firstly, the solutions must be designed

for integration with multiple clustering algorithms. Secondly, the solutions

must accommodate outliers by handling up to 10% of the instances as outliers.

Here, an outlier is defined as a spatial outlier: an instance that is two standard

deviations away from the nearest cluster center and is not density-connected

to any cluster. The 10% threshold is based on the average number of outliers

typically seen in real-world datasets; for example, in the seminal work by Cam-

pos et al., the average percentage of outliers across their list of 23 imbalanced

datasets is 7.24% [11]. Thirdly, the solutions must handle a moderate level of

cluster imbalance, specifically up to ∼5:1. On the one hand, mild-to-moderate

imbalance is common in popular supervised and unsupervised datasets; for

example, the Wisconsin Breast Cancer dataset has an imbalance of ∼2:1 [12],

and the Bank Marketing dataset has ∼8:1 [13]. On the other hand, addressing

extreme imbalances, such as the ∼30:1 seen in the 1200-instance version of the

Refuge Glaucoma dataset [14], often requires specialized attention beyond the

scope of the general approaches proposed here. Finally, to enhance the variety

of datasets to which clustering can be applied and increase automation, the

27

proposed methods must be robust to slight variations and noise in the dataset.

These requirements will directly inform the experimental design of this thesis.

1.1 Aim

The aim of this work is to investigate the integration of instance weighting into

different types of clustering algorithms to address data quality issues. The the-

sis hypothesis is as follows: Instance Weighted Clustering is a valuable tool for

increasing clustering performance for data with quality issues.

1.2 Objectives

• Integrate instance weighting into a partitioning-based clustering algo-

rithm.

• Integrate instance weighting into a graph-based clustering algorithm.

• Using synthetic and real-world dataset to simulate data quality issues,

in particular, outliers and class imbalance.

1.3 Research Questions

RQ1 How can instance weighting be applied to partitioning-based clustering

algorithms for outlier accommodation?

RQ2 How can instance weighting be applied to graph-based clustering algo-

rithms to handle imbalanced data.

28

RQ3 Under what conditions does instance weighting enhance clustering per-

formance on data characterized by the presence of outliers or class im-

balance?

1.4 Contributions to Knowledge

Contribution 1

Linked to RQ1, instance weighting was applied to k-means, a partitioning type

algorithm, to enhance the robustness of k-means to outliers. The experimen-

tal results found that instance weighting when using a density-based weighting

scheme was able to enhance the clustering performance on datasets that con-

tained outliers. Details of this contribution are detailed in Chapters 4 and 5.

This important initial finding demonstrates that instance weighting can per-

form at least well as instance selection.

Contribution 2

Linked to RQ2 instance weighting was applied to bagging-based spectral en-

semble. Again, a density-based instance weighting scheme was used. In this

algorithm, these weights were used to perturb the sampling of instances within

the ensemble and influence the sampling towards better representing the low

density / smaller (in terms of instance count) clusters. Experiment results

found that the instance weighting when applied to a spectral ensemble en-

abled smaller clusters to be found. The approach achieves good clustering

performance on a variety of datasets especially those with imbalanced clusters

(normally very challenging to the spectral clustering algorithm). The approach

29

also enhances spectral clustering effectiveness for image segmentation. Details

of this contribution are described in Chapter 6.

Contribution 3

Linked to RQ3 and continuing on from RQ2. Instance weighted clustering was

applied to further imbalanced datasets. To assess limitations and suitability of

the instance weighted spectral ensemble approach a series of experiments were

conducted. The experimentation isolated the characteristics a dataset should

have for my approach to be beneficial. It was found that the approach is

most beneficial when datasets include overlapping clusters, moderate to severe

imbalance, and contained a variation in density. Some algorithmic and imple-

mentation related limitations were identified too, such as the lack of suitability

for higher dimensional data. The details of this contribution are described in

Chapter 7.

1.4.1 Algorithms Developed

1: Instance weighting for partitioning-based clustering algorithms. Prototype

algorithm: Local Outlier Factor Instance Weighted K-Means (LOIWFKM).

2: Instance weighting for an ensemble of graph-based clustering algorithms.

Prototype algorithm: Instance Weighted Spectral Ensemble (IWSE).

30

1.4.2 Thesis Outline

This thesis is organised into eight chapters.

Chapter 2 Instance Weighted Clustering, a review, identifies the key themes

in literature concerning instance weighted clustering. This chapter identifies

gaps, areas to extend, and disagreements in the literature. This chapter moti-

vates and justifies choices made in the following chapters.

Chapter 3 Methods, introduces and explains the fundamental clustering tech-

niques which will be extended in the following chapters.

Chapter 4 Instance Weighting for Partitioning-based Clustering, describes the

proposed LOFIWKM algorithm and demonstrates its ability to accommodate

outliers on a simple synthetic dataset, it is shown that LOFIWKM can main-

tain good clustering performance even when presented with numerous and

severe outliers.

Chapter 5 Instance Weighting for Flight Data Recorder Clustering, furthers the

investigation of LOFIWKM and applies LOFIWKM to a real-world dataset.

It is demonstrated that the approach can find clusters in the data despite the

addition of artificial outliers. Limitations with the approach are identified and

directions for further development are suggested.

Chapter 6 Instance Weighting for Ensemble Graph-based Clustering, describes

the IWSE approach and demonstrates its effectiveness on a variety of syn-

thetic, image and benchmark datasets. It is shown that instance weighting

integrates well with bagging based clustering ensemble.

31

Chapter 7 Instance Weighting Clustering for Character Clustering, further

investigates the IWSE approach by trialling on real-world to identify the ap-

proaches strengths and weaknesses. This chapter analyses and evaluates the

IWSE approach and finds can be highly beneficial to clustering performance,

when the right conditions exist.

Chapter 8 Final Conclusions and Future Work, summarises the work. It is

highlighted how that approaches could be improved and eight areas for future

work are identified.

32

Chapter 2

Instance Weighted Clustering, a

review

2.1 Planning

2.1.1 Research Protocol

In this chapter, I conduct a semi-systematic literature review. A semi-systematic

approach is adopted as this best suits the challenge presented by the research

topic. The research topic of “instance weighting” contains the challenge that

“instance weighting” approaches are not always clearly signposted and many

different aspects of cluster analysis can be “weighted”. Additionally, “in-

stances” (rows of data) are referred to in many different ways based on the

application. For example, a study applying clustering to image data, might de-

scribe their approach as “pixel” weighted. Utilising a semi-structured approach

enables well-labelled studies to be found while allowing literature informally

identified to be scrutinised too.

33

2.1.2 Research Questions

The purpose of the semi-systematic literature review is to establish the posi-

tion of existing literature on the research questions posed in this study. To

answer the research questions the terms mentioned in the questions must first

be well-defined.

Partitioning-based clustering, clustering algorithms which partition the data

by iteratively updating a model of partitions. (typically using “centroids”).

Graph-based clustering, clustering algorithms which partition a graph repre-

sentation of the data.

Instance weighting, values are assigned to instances which inform the cluster-

ing process (in some contexts this is called “boosting”).

Outlier accommodation, handling outliers in the clustering process rather then

removing them prior to the clustering process.

Imbalanced data, data containing multiple distributions of unequal-cardinality.

Clustering performance, broadly speaking the “accuracy” of the clustering.

How meaningful are the clusters? This can be mathematically defined in var-

ious ways.

Clustering process, to mean either a clustering algorithm or ensemble of clus-

tering algorithms.

2.1.3 Search Strategy

To identify literature the IEEE Xplore database was utilised along with the

search string shown below.

34

((((”Document Title”:”clustering” OR ”Document Title”:”cluster”) AND (”Doc-

ument Title”:”partitioning” OR ”Document Title”:”graph” OR ”Document

Title”:”boosting” OR ”Document Title”:”boosted” OR ”Document Title”:”spectral”))

OR ”Document Title”:”k-means” OR ”Document Title”:”k-medoids” OR ”Doc-

ument Title”:”c-means”) AND (((”sample” OR ”instance” OR ”data” OR

”importance” OR ”sampling”) NEAR/10 (”weighted” OR ”weighting”)) OR

”boosting”) AND (”robust” OR ”robustness” OR ”noise” OR ”outlier” OR

”outliers” OR ”outlying” OR ”imbalance” OR ”imbalanced”))

The search string makes the most the of “Command Search” facility. Key-

words and their synonyms are organised using the syntax of “AND”, “OR”

and “NEAR”. The search string also utilises the ability of search engine to

search particular fields, specifically the “Document Title”. The search string

has 26 terms utilising the complexity limit imposed by the Command Search

feature.

The search string can be broken down into three parts for easy interpretation:

In the “Clustering” part (red): The “Document Title” should contain cluster-

ing with the terms “partitioning”, “graph”, “boosting” or “boosted”. Alter-

natively, the title should mention one of commonly used partitioning or graph

clustering algorithms such as “k-means” or “spectral”. The decision was made

to ensure the document title included these elements as clustering is the focus

of this research. Many studies may use clustering - but do not focus on it.

Therefore, it was necessary to preclude their inclusion in the results.

In the “Instance weighting” part (green): Searching anywhere in the docu-

35

ment. The term “instance” (or a synonym of) must be within 10 words (dis-

tance) of “weighting”. Alternatively, the text may mention “boosting” (note

“boosted” was not included since the word “boosted” is commonly used de-

scriptively). This part of the search aims to identify well labelled instances

of instance weighting. A limitation of this part of the search string is not

being able search for all the words that could be used to denote “instance” –

as mentioned earlier, the words used to mean “instance” can depend on the

application (“customer”, “flight”, “pixel”, “patient”...the list would be exten-

sive).

For the robustness part (blue): Again searching anywhere in the document,

the document must contain “robustness”, “noise”, “outliers”, or a synonym of,

one of these should be mentioned within the paper to indicate that the paper

addresses data quality challenges relating to the research questions.

The keyword NOT was not used, although its application was considered to

eliminate documents discussing more common1 techniques such as “classifica-

tion” or “feature weighting”. However, clustering is sometimes a preprocessing

step for classification (hence classification may be mentioned). Similarly, “fea-

ture weighting” is not exclusive of “instance weighting”, both can be used

together, and thus may appear together. Henceforth, the decision was made

to not utilise “NOT”.

1∼362k papers for the term “classification” versus ∼207k for “clustering” IEEE Xplore
(Aug 2024).
∼7k papers for the term “instance weighting” versus ∼70k for “feature weighting” IEEE
Xplore (Aug 2024).

36

2.1.4 Inclusion Criteria

To filter the studies selected by the search string, the following inclusion cri-

teria were produced based on the research questions:

I1 Focuses on partitioning-based or graph-based data clustering algorithms.

I2 Proposes an approach to apply weights to instances to inform the clus-

tering.

I3 Proposed an approach which is robust to noise, outliers or imbalance.

I4 Findings are empirically proven with their own experimental results us-

ing intrinsic or extrinsic clustering quality metrics comparing against a

traditional (non-weighted) algorithm.

I5 Peer reviewed conference and journal proceedings only.

2.1.5 Exclusion Criteria

E1 Studies not published in English.

E2 Studies published earlier than 2001.

E3 Studies in which the proposed method is not explained, in natural lan-

guage AND in either, mathematical formulae OR pseudocode OR soft-

ware.

E4 Studies which exclusively use datasets which are not publicly accessible.

The year 2001 was chosen as by this date the major traditional techniques were

established. For example, spectral clustering was developed in 2000. Since this

review is concerned with technical details, E3 and E4 were stated to ensure

the method described is understandable, workable and repeatable.

37

Figure 2.1: Count of papers per year.

2.2 Conducting the Search

The search string selected 60 documents within the IEEE Xplore database. A

further 8 papers were added which were the inspiration for this study, or were

snowballed from those papers. Figure 2.1 shows the breakdown by year. The

full list of documents (including filtering status) can be found Table 9.1 in the

Appendix.

The frequency distribution shows an increasing trend of papers on the topic of

instance weighting. However, this could be due to the wider increase in Data

Science related papers since circa 2010.

Figure 2.3 provides a overview of the filtering process. Filtering was broken

down into two stages, screening and eligibility. In the screening stage the

inclusion and exclude criteria were applied to the title and abstracts of the

documents. The inclusion and exclusion criteria were applied in the order

38

Figure 2.2: A word cloud of the keywords from the papers.

they are listed. Once a paper is rejected by an inclusion or exclusion criteria

it is no longer considered.

The screening and eligibility stages were effective in filtering the papers. In the

screening stage some 7 papers were rejected by I1, as they focused on boosting

for classification not clustering. These papers were selected by the search as

they mentioned clustering in their titles, which had been used typically to in-

form the weights for boosting classification. A further 14 papers were rejected

by I2. Typically, these documents weighted some other aspect clustering,

such as the features, views or clusters, rather than the instances. The screen-

ing stage followed the principle that if the title and abstract were ambiguous

against the inclusion and exclusion criteria, the document was “passed” allow-

ing a more thorough full-text evaluation to take place in the eligibility stage.

In the eligibility screening stage, the full-text of the 47 papers were down-

39

Figure 2.3: PRISMA diagram of filtering process.

40

loaded and assessed against the inclusion and exclusion criteria. At this point

a further 29 papers were rejected by I2, one by I3, and one paper was rejected

by E3 due to its brevity.

2.3 Analysis

In the analysis stage, data extraction was completed, a summary of which is

shown in Table 9.4. Then codes were developed from the literature, see Table

9.2. Then theme development was completed by organising the codes into a

total of 5 themes, see Table 9.3. These themes are summarised and discussed

below, leading to the conclusion. See the Appendix for these tables.

Figure 2.4 provides categorisation of the literature in terms of: Type of Clus-

tering Algorithm→Weighting Strategy→Method of Applying the Weights→

Data Quality Issue Addressed. The literature found vastly more partitioning-

based clustering than graph-based clustering, despite the search string includ-

ing terms for both. In Figure 2.4 at the root level, all apart from two of the

works are included in the light green partitioning-based area (top). No liter-

ature was identified that utilised an entirely graph-based clustering approach.

The next branching level of Figure 2.4 separates the literature in terms of

weighting strategy, this refers to the general philosophy for assigning the in-

stance weights. It can be seen that more than half of the literature found uses

a weighting strategy that increases the weight on the archetypal (most inlying)

instances. Three works explored using a prototypical (most outlying) weight-

ing strategy and two works explored increasing the weight on both archetypal

and prototypical instances, these are labelled “Complex (Both)” in Figure 2.4.

41

One work used angular information, assigning weight to instances based on

their directionality relative to the centroids. Also, one further work, using

both Partitioning-and Graph-based clustering assigned weights based on an

ensemble process, where more weight is given to instances that are disagreed

upon within the ensemble of clusters. The next branching level in Figure 2.4

is the method of applying the instance weights. By far the most common ap-

proach was to use the instance weights in the “Centroid Update” phase of the

clustering algorithm applied. This step is when centroid positions are calcu-

lated based on instances assigned to them. A total of 7 out of the 16 papers

utilised this approach. Conversely, 2 papers used the weights in the cluster

assignment step. The “Cluster Assignment” step refers to the step where dis-

tances are calculated in order to assign instances to clusters. A further 4 papers

utilised the instance weights both in the centroid update step and the cluster

assignment step. One paper used the weights for neither the update step or

the assignment step and instead, used them to inform a merge probability.

Finally, at the highest level of the branching in Figure 2.4, it is shown that

the most commonly addressed data quality issue is noise, with 7 out of the 16

papers tackling this data quality issue. To much lesser degree, are the logically

adjacent issues of outliers and imbalance addressed. Furthermore, on the is-

sue of outliers and imbalance, by observing the nesting in Figure 2.4, it can be

seen that increasing the weight on archetypal instances is most commonly used

to address data with imbalance and outliers. While increasing the weight on

prototypical instances is never used for these data quality issues. This makes

logical sense, since increasing the weight on prototypical instances (in essence

- outliers) would likely worsen their effect in most cases.

42

Figure 2.4: A treemap classifying the literature in terms of: Type of Cluster-
ing Algorithm → Weighting Strategy → Method of Applying the Weights →
Data Quality Issue Addressed. Comparing to size of areas shows the disparity
between amount of research found for the different categorisations of the lit-
erature. Notice the lack of purely graph-based research.

43

2.3.1 Weighting Strategy

The discourse in the identified literature finds multiple approaches to instance

weighting. Furthermore, there is disagreement in the best fundamental ap-

proach to instance weighting.

One school of thought is inspired by boosting for classification, and carries the

boosting analogy into clustering. In these studies, increased weight is given to

instances that are distant, inconsistently clustered, near boundaries or are far

away from cluster centres. [8, 9, 15, 16]. This mirrors boosting for classifica-

tion where training instances which are wrongly or uncertainly classified are

“boosted”. In the literature, the boosting analogy for clustering is practically

implemented in different ways. In Nock and Nielsen’s work data points are

iteratively weighted based on their distance from the cluster centres [8]. Simi-

larly in Hammerly and Elkan’s research, instance weights are calculated based

on distance to the cluster centres [16]. In Lei Gu’s research, the angular rela-

tionships between data points and cluster centres are used to assign weights.

Points are described as either angled between clusters or away from other clus-

ters, and based on this their instance weight is assigned based on their angle or

their distance from their nearest cluster centre. Points that are angled away

(from other clusters relative to their own) or are distant from their own clus-

ter receive a higher weight. In Topchy et al.’s work the boosting analogy is

followed very closely. They implement a boosting-style ensemble and increase

weight on inconsistency clustered instances. These are the instances that are

typically near cluster boundaries. The instance weights control the sampling

probability for the proceeding samples in the boosting ensemble [15]. No-

tably, a general trend of these works is that they do not consider datasets with

outliers or imbalanced clusters. They mostly consider noise, tightly-packed

44

clusters and non-spherical clusters. Thus it is reasonable to hypothesise that

these instance weighting strategies may not be so beneficial on datasets with

outliers as they may be inclined to assign a high weight to outlying instances,

which may skew the clustering model.

The other school of thought draws inspiration from instance selection and thus

increases the instance weights on the centrally positioned instances to avoid

being influenced by noise and outliers. Such works include [17], [18], [19],

[20], [21], [10], [22] and [23]. Each work is unique, but can be broadly cate-

gorised into three categories. The first category essentially uses some distance

to centroid [17], [18], [20] and [21]. The second category uses an information

theory approach from density information [10]. Finally, the third category

are algorithms specialised for image segmentation, these use local image patch

information, considering a pixel’s (an instance’s) consistency with its surround-

ing pixels [19, 22, 23]. Some of these studies include testing on datasets with

outliers and demonstrating their effectiveness in this use case [10, 17, 20].

Interestingly, there is a third smaller school of thought that in essence com-

bines aforementioned strategies. Zhai et al.’s approach gives higher weight to

both far and near instances [24]. Similarly, Guan et al. gives higher weight to

density peaks and connecting areas [25]. Notably, both these methods are real

ensemble “boosting” methods.

Directly comparing the experimental results is imperfect due to differences be-

tween the datasets, differences in the metrics, differences in the optimisation of

parameters and differences in the preprocessing. However, it can be observed

that across Chen et al.’s 15 datasets an overall average accuracy of 75% is

45

reported with their best instance weighted approach (P SFCM) [17]. While

in Gu’s work using their best approach (SWKMA) across their 11 datasets

an overall accuracy of 64% is reported [9]. While the selection of datasets is

different, generally Chen et al. chooses complex, noisy and high dimensional

datasets (including image datasets). While Gu uses simpler, lower dimension-

ality datasets. Considering the difference in the datasets, this adds additional

merit to 75% achieved by Chen et al. This would suggest that up-weighting

central instances has more merit than up-weighting distant instances, espe-

cially for noisy image datasets.

2.3.2 Actuation of the Weights

Instance weights have been applied to clustering algorithms in different ways.

In the case of partitioning-based methods, which typically involve iteratively

applying a “cluster assignment” step and a “centroid update” step. Instance

weights have been applied at both the cluster assignment and centroid up-

date step. The literature is divided between the approaches with some works

including [19], [20], [21], [22], [23] and [26] using the instance weights in the

“cluster assignment” step. While others applied instance weights in the “cen-

troid update” step, this includes, [8], [9], [10], [17], [18], [19], [21], [22], [23],

[26] and [27]. In two of the ensemble based approaches, sampling was used

to enact the instance weights [15, 24]. In these cases, the instance weights

were used to inform the sampling of instances within the clustering ensembles

generative mechanisms. In some respects, this is similar to simple instance se-

lection before applying the clustering approach. Although, here the difference

is that many weighted samples are taken as part of the ensemble clustering

46

approach. In particular, the sampling (informed by the instance weights) is

the generative mechanism of the clustering ensemble - rather than a separate

preprocessing step.

While no one work provides a direct comparison, reviewing the benefit each

strategy yields over a traditional non-instance weighted approaches gives a

small insight into effectiveness of the different strategies for applying the in-

stance weights. In Guo et al. an increase in accuracy of ∼3% compared to

plain k-means was reported, when using instance weighting to inform the “clus-

ter assignment” step [20]. Using the instance weights to inform the “centroid

update” step shows the largest benefit to clustering accuracy. Chen et al.,

reports increases of accuracy of ∼3% to ∼28% (with a average of ∼13%) when

comparing their instance weighted approach to k-means [17]. Similarly, Wang

and Angelova, find that their instance weighted approach increases clustering

performance (measured using Adjusted Random Index) by as much as ∼20%

compared to Fuzzy C-Means [18]. Furthermore, Gu, observed in increases in

accuracy of between ∼1% to ∼20% (with an average of ∼5%) when compar-

ing their instance weighted approach to plain k-means [9]. Topchy et al. finds

using a sampling based approach to enact the instance weights resulted in ac-

curacy gains of between ∼1% to ∼5% [15]. Overall, it seems the approach

of using the instance weights to inform the “centroid update” step is most

advantageous for accuracy. Although, the literature does not provide a fully

clear picture on this. Also, some methods such as using instance weighting to

inform sampling in a clustering ensemble is little investigated.

47

2.3.3 Ensemble Techniques

Another theme that was identified from the literature was the presence of

“true” instance weighted clustering ensembles, examples include [15], [24], [25]

and [27]. Before conducting the literature search it was known that boosting

was an inspiration of instance weighting. However, in conducting the search it

was found that the ensemble method of using multiple models had been applied

to clustering with instance weighting. The search string did contain a mention

of boosting – since it is a metaphor which inspires instance weighting. How-

ever, the literature search shows that some works took the metaphor literally,

and have implemented ensemble techniques [24, 25]. Implementing “boosting”

(traditionally a classification technique) for clustering involves slightly redefin-

ing boosting, since, traditionally boosting uses label information, which does

not exist in clustering.

Zhai et al. uses a boosting approach on fuzzy clustering which increases the

sampling probability of instances that are ambiguously clustered. Instances

which are either ambiguous assigned to multiple clusters (in terms of member-

ship degree) or instances which have been assigned to different clusters in previ-

ous iterations receive increased instance weight, increasing their probability of

being sampled in successive clusterings [24]. Liu et al. uses instance weighted

k-means on co-association matrices produced by an ensemble of k-means parti-

tioning. They demonstrate that spectral clustering on a co-association matrix

is equivalent to weighted k-means clustering on a binary matrix [27]. This

a very different way of applying instance weighting using in it the consensus

stage rather than in the generative stage of the clustering ensemble.

Applying instance weighting to an ensemble is a promising option, since ensem-

48

ble techniques can leverage increasingly abundant compute resources. How-

ever, this area also presents a gap as only three papers were identified by the

literature search - and each utilises a completely unique approach to each other.

2.3.4 Benefits of Instance Weighting

Several works highlighted or demonstrated that their instance weighted algo-

rithm could handle noise [8], [18], [19], [20], [22], [23] and [27]. Both the level

of focus and the definitions of noise varied between the works. Some works

investigated Gaussian noise [8], [19] and [23]. A couple of works investigated

“Salt and Pepper” noise (specifically in images) [19] and [23]. While other

tackled application specific noise, such as: Noise in environment sensors read-

ings (temp., humidity, etc.) [20], Noise in image textures [22], Noise in gene

expression data [18].

Two pieces of research focused on outlier accommodation by adding artificial

outliers to various datasets. Chen et al. added many outliers (up to 8% of the

size of the data) using a uniformly random approach which placed outlying

instances at a distance around the dataset [17]. Yu et al. add a single strongly

outlying instance to test the robustness of their approach to the presence of

an outlier [10].

There was some in investigation into imbalanced clusters too, although, ar-

guably imbalance was never particularly focused on. Wang et al.’s work

tested performance of their instance weighted approach with a dataset “two-

rectangles” which contained two uniformly random clusters, one with 200 in-

stances and the other with 800 instances [21]. It was shown that their approach

49

could correctly partition this dataset unlike k-means. In Gu’s research multiple

datasets with various levels of imbalance were used. One of their experiments

uses the “Bensaid-2d” dataset which has three very imbalanced clusters with

18, 141 and 20 instances respectively [9], again performance was tested against

k-means showed a significant increase in accuracy of 14% accuracy.

Overall the literature shows how instance weighting approaches have increased

the robustness of clustering in the case of noise, outliers and imbalance. It is

clear that most of the literature is focused on handling noise and that there is

much less research on accommodating outliers and handling imbalance through

instance weighting. It seems there is a gap in the literature in handling outliers

and imbalance. Positively, some of the research on noise maybe able to enjoy

successes against outliers and imbalance - since in essence, noise, outliers and

imbalance are all similar. Outliers could be argued to be a extreme case of

imbalanced clusters or noise. In addition to robustness gains, one interesting

and unexpected finding was that instance weights have been used to expedite

the runtime or convergence of clustering algorithms [15, 22, 27]. For example,

in Liu et al.’s research an instance weighted k-means algorithm was used to

establish the consensus clustering in their ensemble. This reduced the runtime

from 30 seconds (using traditional approaches for ensemble consensus) down

to just 6 seconds, on the MNIST digits dataset.

2.3.5 Compatibility

Little work discussed instance weighting as it technique in its own right. Only

three papers (all regarding partitioning-based clustering algorithms) described

instancing weighting as a generalised framework [8, 10, 16]. Only one paper

50

demonstrated how one approach to instance weighting could be applied across

multiple clustering algorithms including k-means, fuzzy c-means, Expectation

Maximization, and k-harmonic means [8]. Clearly more research in this space

could lead to a highly-compatible instance weighting techniques as better al-

ternatives to instance selection or boosting ensembles.

The other way that compatibility arose during the literature analysis, is in-

stance weighting’s compatibility to operate alongside or be integrated with

other techniques. For example in Chen et al.’s approach, PCA is iteratively

optimised during the clustering, alongside the iterative application of instances

weights [17]. In Hamerly and Elkan research, different initialisation strategies

were investigated. They trialled Forgy (chooses k data points at random as

initial centroid) and Random Partition (assigns each data point to a random

centre - then computed the resulting centroids) methods. With their instance

weighted approach “H1” they found that the Forgy method of initialization

produced the best clustering performance [16]. Wang and Angelova demon-

strate how instance weighting can be applied in a high-dimensional feature

space, calculated using a kernel method [18]. Makkhongkaew et al. showed

how instance weighting can be integrated with feature weighting and semi-

supervised clustering [26].

2.4 Conclusion

In conclusion, the themes identified some of the discussions in the literature

around instance weighted clustering. The themes themselves identify the key

considerations when designing an instance weighted clustering approach.

51

Along the theme of Weighting Strategy, two fundamentally different ap-

proaches have been trialled, one approach increases the weight on peripheral

(prototypical) instances, while the other increases the weight of archetypal

instances. Results in the literature along with logical reasoning suggest that

increasing the weight of archetypal instances is most suitable for the aim of ro-

bust clustering. There is also a less researched third approach which combines

both strategies, certainly this is an interesting gap in the literature. Look-

ing at the Actuation of the Weights, this is second ingredient required

when designing an instance weighting approach. In the case of partitioning-

based clustering the literature presents two approaches for enacting the in-

stance weights: in the “cluster assignment” step or in the “centroid update”

step. Good success with using the instance weights to inform the “centroid

update” in shown in the literature so this appears to be a sensible choice. In

the special case of clustering ensembles, the instance weights have been used to

inform the sampling probability within the generative mechanism. Generally,

results from Ensemble Techniques seem promising, but research is limited,

so therein lies a gap for further work. Regarding the Benefits of Instance

Weighting, while less researched than feature weighting, it does have good

experimental and theoretical evidence of its benefit, both in the case of noisy

and clean datasets. There is a significant gap establishing the benefit of in-

stance weighting upon datasets with outliers and datasets with imbalanced

clusters. Finally, in the theme of Compatibility it was found that there is

some but limited vision of instance weighting as unified framework for apply-

ing to across many clustering algorithms.

Now moving to reflecting on the research questions. In partial answer to RQ1

52

“How can instance weighting be applied to partitioning-based clustering algo-

rithms for outlier accommodation?”, the studies show how instance weighting

can be designed and be a valid approach to handle noise, offering accuracy

gains of ∼20% in some cases. Extending this work to give a more complete

answer that is relevant to outliers, is a direction of this work. Reflecting on RQ2

“How can instance weighting be applied to graph-based clustering algorithms to

handle imbalanced data?”, it seems there is little literature integrating graph-

based clustering and instance weighting, thus motivating this work. Finally,

regarding RQ3 “Under what conditions does instance weighting enhance clus-

tering performance on data characterized by the presence of outliers or class

imbalance?”, this review finds evidence of instance weighting being useful for

noisy data, gene expression data and image data to name but a few cases.

However, there is scope to investigate instance weightings suitability for im-

balanced data.

Finally, I make some final remarks and observations. Despite graph-based

clustering being a more promising and broadly applicable approach (in terms

of handling data of arbitrary shape), there is distinctly less research explor-

ing instance weighted graph-based clustering. Furthermore, around half of the

studies failed to compare against instance selection / sampling. So these are

areas to include in my work to build upon the previous research. Researchers

have not quantified the effectiveness of instance weighting’s suitability for out-

liers and imbalance in as much detail as is possible. Research on the subject

has been mostly restricted to comparisons on benchmark datasets either arti-

ficial or real-world, and one-off real-world applications, but few have directly

investigated the robustness by incrementing properties like outlierness and im-

balance while observing the impact on clustering performance.

53

Chapter 3

Methods

3.1 Partitioning-based Clustering

Partitioning-based based clustering algorithms iteratively optimise a partition-

ing of the data.

In practice, the common element of partitioning-based algorithms is deciding

some initial partitioning/membership of the data then iteratively updating

it to minimise some measure of fitness of the partitioning. There are many

partitioning-based algorithms proposed, the below list contains a few examples:

• k-means

• k-modes

• Fuzzy k-means clustering

• Mean shift

Possibly the most popular and most widely-used and researched partitioning-

based clustering algorithm is k-means. K-means is a very classical clustering

54

algorithm. The core ideas of the algorithm (error minimisation and represen-

tation of clusters via centroids) can be traced back to a paper by Steinhaus in

1956 [6], with MacQueen (publishing in 1967) and Lloyd (publishing in 1982)

independently developing the k-means algorithm we recognise today [7, 28].

Arguably, a couple of reasons it remains popular is its simplicity and good

performance when data is near spherical and free of quality issues. Due to its

simplicity and performance, it is often included in clustering libraries 1.

K-means takes a single input parameter of k (this is the number of clusters to

partition the data into) along with a numeric dataset. To initialise the algo-

rithm, k instances are uniformly randomly selected was the locations at which

to place centroids. Each centroid will model one cluster/partition.

K-means then iteratively repeats two steps: “cluster assignment” and “cen-

troid update”. In the “cluster assignment” step the distance between each in-

stance to each centroid is calculated using Euclidean distance (although other

distance metrics such as Minkowski can be used [29]). Using these distances,

each instance is then assigned to its nearest cluster. In the second step, “cen-

troid update”, for each cluster, the arithmetic mean position of its instances is

calculated and this becomes the new centroid position. This process repeats

until the error function (see Equation (3.1)) is convergent. In practice, this can

be identified by centroids settling at some local minima and thus no instances

change cluster assignment from the previous iteration. The error function is

given by:

1Scikit-learn, SciPy, Spark MLlib, R’s stat and cluster packages, Weka and OpenCV to
name just a software packages/libraries/module implementing k-means.

55

E =
k∑

i=1

∑
x∈Ci

|x− µi|2 (3.1)

In equation (3.1), C is the clusters. |·| represents Euclidean distance. Clusters

corresponding to the k value are denoted as Ci=1...k and µi is the arithmetic

mean of instances in each cluster, in turn.

Minimising the error function is NP-Hard [30]. To lessen the error from con-

verging to some local minima, several initialisation strategies have been pro-

posed. Arguably most commonly used is running the algorithm multiple times

with different initialisations then selecting the result with the lowest error.

Although many other initialisation methods exist (for a comparison see [31]).

Despite k-means strengths there are several drawbacks. K-means clustering

is sensitive to outliers. Outliers in the dataset influence centroids (and thus

the partitioning) away from the centres of the inlying data and this can com-

prise how well k-means fits the inlying data. Additionally, another drawback

is that k-means can have difficulty modelling data where the clusters are non-

spherical. Structures in the data such as concentric clusters, concave, skewed

or rectangular structures can be poorly modelled by k-means. K-means also

requires that the user specifies the k value from prior knowledge or alterna-

tively estimating it using a technique such as the elbow-method (which is can

give an ambiguous result). A survey of developments and usage of k-means

and be found in [32].

In the Appendix, a worked example of k-means clustering can be found along

with a Python implementation.

56

3.2 Graph-based Clustering

Graph clustering is less common and much younger than partitioning-based

clustering, but is becoming increasingly popular. Graph clustering constructs

a graph representation of data, which it uses to partition the data. In practice,

a graph clustering algorithm can be identified by one of its first steps, which

involves applying a function to convert the input data into a graph. While

there are less well known graph-based clustering algorithms, most notable are

random walk clustering and spectral clustering. Unlike k-means and most

other partitioning-based methods, most graph-based clustering methods can

fit clusters of arbitrary shape.

Focusing in on spectral clustering, broadly summarising it has three steps.

Firstly, a graph is constructed. Secondly, eigenvalues and eigenvectors are cal-

culated. These both describe the nature of the dataset and can optionally be

used to embed the data into a space in which the cluster are better separated.

Thirdly, the graph is partitioned either directly using the eigenvector informa-

tion or by applying k-means on the embedded space. Below provides a more

detailed view.

Given a dataset of size n, spectral clustering constructs a graph representa-

tion (G = V,E) of data points (instances), x1, x2, ...xn, where the vertices (V)

represent the data points in the dataset, the edges (E) of the graph represent

pairwise similarity sij = s(xi, xj) of the instances. The similarity measure can

be either 1 or 0 (called an adjacency matrix), or positive real values (called

57

an affinity matrix). The adjacency or affinity matrix (A) is a n × n matrix

constructed from the graph G defining the similarity of the instances. The

adjacency or affinity matrix can be calculated in a number of ways, common

choices include a k-nearest neighbours algorithm or a radial basis function. In

the case of the k-nearest neighbours, each point is connected to its k nearest

neighbours. These connections can be modelled into an adjacency matrix A;

where there is a connection between nodes 1 is used, where two nodes are

not connected 0 is used. From matrix A, the diagonal/degree matrix D is

calculated. Next, either the un-normalised or normalised Laplacian matrix

(L) is calculated from D − A. Then the eigenvalues(λ1, λ2, ...λn) and eigen-

vectors (l1, l2, ...ln) are calculated from L. This process involves, finding the

characteristic polynomial of L and solving for the eigenvalues. Then, from the

eigenvalues, the non-zero eigenvectors can be solved for. These are then used

to partition the graph using a clustering algorithm such as k-means. A simpler

alternative way, which can be used to partition the graph when k = 2, is the

basic Fielder method. In this method, the second eigenvector l2 associated

with the second-smallest eigenvalue λ2 is selected. This eigenvector l2 is re-

ferred to as fielder vector. The polarity of each value in this vector partitions

the corresponding data point. The partitioning of the graph aims to minimise

the number of edges connecting the two partitions and keep the size of the

partitions similar. While spectral clustering can performance well on variety

of datasets, it has some weaknesses. Spectral clustering can fail to find the

most appropriate partitions between imbalanced clusters.

An overview of research around spectral clustering can be found in [33]. In the

Appendix, a step-by-step example of spectral clustering can be found.

58

3.3 Clustering Quality Metrics

When evaluating of clustering performance there are fundamentally two ap-

proaches: intrinsic and extrinsic quality metrics.

Intrinsic metrics assess clustering results by comparing the resultant partition

against an internal model or definition of a “good” cluster structure. The pri-

mary advantage of this approach is its independence from ground truth labels.

This is crucial for real-world applications where the objective of clustering is

precisely to discover the unknown cluster structure. However, a significant

drawback is that the metric’s embedded definition of a “good” clustering may

not align with the structural definition implied by the clustering algorithm

itself. For example, the definition utilized by the silhouette coefficient is gen-

erally compatible with centroid based algorithms like k-means, but it may

incorrectly assess a density based clustering result, such as concentric clusters

identified by DBSCAN as poor.

Conversely, extrinsic metrics compare the resultant clustering partition di-

rectly against a pre-defined ground truth (some known class labels). Extrinsic

metrics offer the advantage of direct comparison against a meaningful, known

structure, allowing for the evaluation of an algorithm’s ability to recover that

specific pattern. This allows for straight a forward comparison between differ-

ent algorithms. A limitation is that the ground truth represents only one valid

partition. In many real-world datasets, multiple valid clusterings may exist

(e.g., partitioning a dataset of pet images by animal type, by color, or by body

position). Both the advantages and drawbacks of these metrics ultimately stem

from the inherent subjectivity in defining what constitutes a “good” clustering.

59

Given this work’s objective to investigate and compare clustering approaches,

extrinsic metrics will be employed where ground truth data is available. Specif-

ically, the Normalized Mutual Information (NMI) metric is selected as the pri-

mary clustering performance measure.

NMI quantifies the statistical dependency between the assigned cluster labels

and the ground truth labels, yielding a value between 0 and 1. A score of 1

indicates a perfect correlation (i.e., a complete match between the clustering

and the ground truth), whereas a score of 0 signifies that the cluster assign-

ments are statistically independent of the ground truth. NMI is a normalised

variant of the original Mutual Information (MI) metric, which is rooted in

Claude Shannon’s Information Theory. The normalisation step ensures the

score is bounded between 0 and 1, simplifying interpretation. Its application

in the context of clustering evaluation can be traced back to the 2002 work of

Strehl and Ghosh [34]. The reasons for selecting NMI as the key measure for

cluster performance in this thesis are:

1. It avoids imposing a specific model on the clustering solution, unlike

internal metrics, allowing for the unbiased evaluation of different algo-

rithms.

2. It inherently supports the inclusion of datasets with arbitrary cluster

shapes.

3. It’s widespread adoption in clustering literature makes it possible com-

pare results with other literature, to some extent.

4. NMI does not require solving the label correspondence problem, which

can be computationally expensive when dealing with a high number of

60

clusters.

A consideration for experiments involving imbalanced cluster distributions is

the known sensitivity of NMI to small clusters, which can lead the metric

to underestimate cluster performance. Rezaei and Fränti [35] illustrate this

point with a experiment, from which this example is drawn: Starting with a

ground truth of three equally sized clusters (each N=1000), with an incorrect

assignment rate of 20% between the first two clusters, gives an NMI of ∼84%.

However, when the size of the third cluster is reduced to N=50 while main-

taining the same 20% error rate between the first two clusters, the NMI score

drops sharply to ∼67%. This tendency to penalise solutions on imbalanced

datasets must be considered when assessing results from imbalanced cluster-

ing problems, particularly in the imbalance clustering experiments within this

work.

Equation (3.2) shows the calculation of NMI.

H(U) = −
|U |∑
i=1

P (i) log(P (i))

H(V) = −
|V |∑
i=1

P (i) log(P (i))

MI(U, V) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)
NMI(U, V) =

MI(U, V)

mean(H(U), H(V))

(3.2)

In this formulation, H(U) and H(V) represent the entropy (amount of informa-

tion) of the cluster assignments U and the ground truth labels V , respectively.

61

The term MI(U, V) is the Mutual Information, where P (i, j) is the joint prob-

ability that a data point belongs to cluster i in partition U and ground truth

class j in partition V . This can be visualised using a contingency table. The

marginal probabilities, P (i) and P ′(j), represent the individual probabilities

of an instance belonging to a specific cluster i ∈ U or a specific class j ∈ V .

The final NMI(U, V) is then calculated by normalising the MI by the mean

of the two entropies. Worked examples of NMI across a variety of clustering

scenarios can be seen in Appendix 9.5.

62

Chapter 4

Instance Weighting for

Partitioning-based Clustering

4.1 Introduction

This chapter begins the empirical research by investigating how can instance

weighting be applied to a partitioning-based clustering algorithm for outlier

accommodation. Arguably the most popular clustering algorithm is k-means

[28]. This partitioning-based algorithm partitions instances into a given num-

ber of clusters k. K-means iteratively assigns instances to clusters based on

their distance to the centroids of the clusters, the centroids’ positions are then

recalculated to be the means of instances in their respective clusters.

Jain provides an overview of clustering discussing the key issues in design-

ing clustering algorithms, and points out some of the emerging and useful

research directions [32]. Jain’s paper outlines six problems / research areas,

one of which is “A fundamental issue related to clustering is its stability or

consistency. A good clustering principle should result in a data partitioning

63

that is stable with respect to perturbations in the data. We need to develop

clustering methods that lead to stable solutions.”. This is the problem my

research considers solving through instance weighting. Considering outliers,

from a statistics’ perspective, outlierness is a scale rather a boolean property,

so it makes sense to use weighting rather than selection in response.

Hawkins defines an outlier as “an observation which deviates so much from the

other observations as to arouse suspicions that it was generated by a different

mechanism” [36]. Outlier accommodation enables algorithms to accommodate

outliers; it is the opposite of outlier diagnosis, where outliers are identified and

removed before processing. Instance Weighting can provide a way for clus-

tering algorithms to accommodate outliers, by adjusting how much to learn

from outlying instances. This is important since clustering algorithms, such

as k-means can be adversely effected by the presence of outliers in a dataset.

Whilst it is true that some types and severities of outlier should be fully dis-

carded, some types and severities of outliers may be best partially retained for

the clustering process to learn from. This is especially important when the

total number of instances is low.

To evaluate instance weighting for partitioning-based clustering, in this chap-

ter an instance weighted version of k-means will be proposed and evaluated on

several synthetic and benchmark datasets with outliers.

64

4.2 Related Work

Nock and Nielsen’s research [8] is inspired by boosting algorithms (from su-

pervised learning) and k harmonic means clustering [37]. They are the first

to formalise a boosting based approach, their solution penalises bad clustering

accuracy by updating the instance weights. Their algorithm gives more weight

to data points that are not well modelled. Their approach could be described

as a statistics based approach. Their paper investigates, for which scenarios,

instance weighting improves the accuracy of clustering and if instance weight-

ing can reduce initialisation sensitivity. They investigate applying instance

weighting on multiple algorithms including k-means, fuzzy k-means, harmonic

k-means and Exception Maximisation and prove the applicability of instance

weighting to a range of algorithms. Their research shows that instance weight-

ing could speed up the convergence of partitioning-based clustering algorithms.

They highlight the growing attention around instance weighted iterative clus-

tering algorithms in unsupervised learning. My research differs by proposing a

generalisable method using a density based technique. I also investigate how

instance weighting can address the presence of outliers in a dataset.

Sample Weighted Clustering by Jian Yu et al. weights instances using a prob-

ability distribution derived from an information theory approach [10]. They

point out that there is little research on sample (another name for “instance”)

weighted clustering compared to feature weighted clustering. Like my work

they investigate the benefit instance weighting for datasets with outliers, in-

tegrating instance weighting with the popular k-means algorithm. The in-

stance weights are calculated using the maximum entropy principle. Essen-

tially, the instance weights are a probability distribution p(Xk) calculated using

65

exp(−ς×dk)/
∑n

k=1 exp(−ς×dk) where ς is tunable parameter between 0 and

1 and dk is a distortion factor, which is equal to Euclidean distance from point

k to its cluster centroid in given iteration. Hence, their algorithm iteratively

calculates the weights in each cycle of the clustering algorithm. They highlight

that just one outlier can adversely effect the clustering output of k-means, fuzzy

c-means and expectation maximisation clustering algorithms. They show that

their information theory based instance weighting approach produces robust

clustering when outlier(s) are present across a variety of datasets. In addition,

it was found that their weighting also made their algorithm less sensitive to

initialisation.

Lei Gu’s research [9] uses two weighting schemes to weight instances. Their

weighting schemes operate per cluster. Instances which are considered either

“ambiguous” or “unambiguous” based on their angle relative to a vector be-

tween the cluster centre and cluster boundary. Points which are angled such

that they within a specific area (defined by an angle) between the boundary

and centroid are classed as “ambiguous” points outside this area are classified

as “unambiguous”. The “ambiguous” points are weighted using a Min-Max

Normalised distance from the centre. The “unambiguous” points are weighted

using the cosine of the of angle between the vectors: 1) the nearest cluster

centre to the given unambiguous instance, and 2) the vectors of the near-

est cluster centres to the other clusters in turn. In essence, points that are

angled away from other clusters are given a higher weight. Their algorithm

outperforms Jain Yu et al.’s algorithm (described in the previous paragraph)

for accuracy. Lei Gu’s research also considers non-image segmentation based

clustering problems.

66

Hammerly and Elkan’s research [16] investigates the k-harmonic means algo-

rithm [37]. K-Harmonics Means builds on the existing k-means algorithm using

the harmonic mean rather than the arithmetic mean. The harmonic mean has

the advantage that points which are close to multiple centroids (potentially am-

biguous points) affect the mean calculation less. Furthermore, the K-Harmonic

means algorithm also adds instance weighting and soft membership. The in-

stance weighting in K-Harmonic means recalculated iteratively weighting. The

weight for a given instance is the distance from centroids. This means higher

weights is given to points which are far from centroids. This loosely follows

the boosting analogy from classification where poorly modelled points are up-

weighted. Hammerly and Elkan show that when they isolate the effects of

the instance weighting this approach enhances the clustering performance the

case of hard clustering but not soft clustering with a selection of datasets that

do not include outliers. A criticism of their approach is that it increases the

emphasis placed on any outlying points. They show it is possible to create

unified framework for instance weighting partitioning-based algorithms.

In conclusion, successes seen with instance weighting based on the boosting

analogy (giving more weight to poorly modelled points) is promising. How-

ever, using this analogy risks increasing the impact of outliers. There is some

thought around instance weighting being generalised into an approach which

can be applied to any partitioning-based, in particular centroid-based algo-

rithm. This motivates discussion around the best way to approach the weight-

ing of an instance for optimal clustering performance across different types of

dataset. So far, instance weights have be calculated using various formulas

which consider the distance of instances from one or more centroids. How-

ever, little research has made use of instance density information to weight

67

instances. In this work, density was used to define instance weights, with the

aim of developing a clustering method that is robust to outliers. The intention

is that by reducing the weight outliers have, their misleading information can

be disregarded and a better clustering outcome can be achieved.

4.3 Local Outlier Factor

Local Outlier Factor (LOF) is an outlier detection algorithm which provides

a measure of outlierness. It is typically used for outlier removal, where a

threshold is applied to identify the most outlying instances for removal. LOF

works by comparing the density of an instance to that of its neighbours [38].

Equations (4.1), (4.2) and (4.3) show how to calculate the LOF scores as is

defined in [38]. A represents the instance for which the local density is being

calculated. k represents the number of neighbours to consider. dk NN is the

distance from a given point to its kth furthest point. NK(A) is the set of k

nearest neighbours to A, these in turn are noted as B.

dReach,k(A,B) = max{dk NN(B), d(A,B)} (4.1)

lrdk(A) :=
1(∑

B∈Nk(A) dReach,k(A,B)

|Nk(A)|

) (4.2)

LOFk(A) :=

∑
B∈Nk(A)

lrdk(B)
lrdk(A)

|Nk(A)|
(4.3)

Consider the example dataset in Figure 4.1 (left), the data point at location

(5,5) labelled a is moderately outlying. k-distance is the distance to the kth

furthest point, so if k = 3, then kth nearest neighbour of a would be the point

68

Figure 4.1: Calculating the reachability distance.

at location (1,1) labelled b. If point a is within the k neighbours of point b

(See Figure 4.1 (right)), then the reachability − distancek(a, b) will be the

k − distance of b, the distance to the kth further point (2,1) from b. Oth-

erwise, it will be the real distance of a and b. In Figure 4.1 a is not within

the k neighbours of point b so in this case it is the real distance between a and b.

To get the lrd (local reachability density) for the point a, first the reachability

distance of a to all its k nearest neighbours is calculated and the average of

that number in taken. The lrd is then simply the inverse of that average.

Since a is not the third-nearest point to b (see Figure 4.1 (right)), the reach-

ability distance in this case is always the actual Euclidean distance. A value

of LOFk(A) greater than one indicates a lower density (thus the instance is

outlier). A value of LOFk(A) equal to one indicates similar density to A’s

neighbours. In Figure 4.2, it can be seen that as point A leaves the cluster

and becomes distant, it receives an increasingly high LOF score, highlighting

it as an instance as an outlier.

One of properties that makes LOF ideal is that the LOF algorithm can work

on datasets with clusters of different densities and instance count, as long as

the number of k neighbours is below the number of instances in the smallest

69

Figure 4.2: Demonstrating the LOF scores.

cluster. This is advantageous since it places little restriction on the dataset

to which the weighted clustering algorithm can be applied to. However, one

possible drawback to the LOF algorithm is its time complexity of O(n2), where

n is the data size. However, there exists work speeding up LOF using GPU

acceleration [39].

4.4 Proposed Methods

Two novel algorithms based on k-means are proposed: Local Outlier Factor

Instance Weighted K-Means (LOFIWKM) and Iterative Local Outlier Factor

Instance Weighted K-Means (ILOFIWKM). LOFIWKM calculates the weights

over the whole dataset once upon initialisation, whereas ILOFIWKM cal-

culates the weights for each cluster upon each iteration. The weights are

generated by executing the LOF algorithm. This is the unique aspect of the

approaches, rather than applying a threshold and removing the outliers, in-

stead the outliers are weighted according to their LOF score. These weights

are then used when calculating arithmetic means for the positions of the new

centroids in the k-means algorithm. In Figure 4.3 the weights are represented

70

Figure 4.3: The ILOFIWKM algorithm showing how weights change as the
algorithm executes. The three red dots are the centroids and radius of black
circles shows the outlierness which is inverted to give the instance weight. The
smaller coloured dots are the instances of different clusters.

by black circles, where the smaller the circle the higher the weight.

More formally, LOFIWKM, starts by calculating the LOF score of every in-

stance, considering the whole dataset. Taking the whole dataset into con-

sideration, outliers are highlighted relative to the whole dataset using LOF.

Then as per k-means, centroids are initialised. However, the algorithm uses

a weighted random initialisation based on LOF scores and instance positions.

Then as per k-means, instances are assigned to the centroids they are closest

to. As standard for k-means, the algorithm iterates until converged (there is

no more reassignments of instance between clusters) or the max allowed it-

erations is met. In each iteration the algorithm calculates the new positions

of the centroids based on its’ instances, taking a weighted average using nor-

malised inverted LOF scores as weights to moderate the impact of the instance

positions on the mean. As in standard k-means, instances are assigned to the

new centroid they are nearest to in terms of Euclidean distance. Algorithm

1 shows a formal description of the algorithm where, Dataset of instances =

Di=1,...N . LOF Scores for each instance in the dataset = LOFk(Di). Clusters

corresponding the K value entered = Ck=1...K a centroid has a position and col-

71

lection of instances. The number of iterations / k-means cycles is denoted as c.

Algorithm 1 LOFIWKM
Calculate LOF for D
for all w ∈ LOF do

Assign
w−min(LOF)

max(LOF)−min(LOF)
to w∗

end for
Assign LOF ∗ to LOF
Use LOF weighted random to select K positions from D assign to C
for all Di in D do

Assign Di to k according to min(dist(Di, C))
end for
Assign 0 to c
while C not converged or c ≤ cmax do

for all k in C do

Assign

∑k0
kN

i·w∑k0
kN

w
to k

end for
for all Di in D do

Assign Di to k where min(dist(Di, C))
end for
Assign c+ 1 to c

end while

ILOFIWKM operates the same as LOFIWKM up to the end of the iteration

step. Then the algorithm recalculates LOF score of every instance by running

the LOF algorithm per cluster and normalising the LOF scores per cluster.

Algorithm 2 shows a formal description of the algorithm.

4.5 Experimentation

The purpose of the proposed algorithms is to improve k-means’s ability to

handle outliers. To evaluate the proposed algorithms, two types of dataset,

synthetic and real-world, were experimented upon.

72

Algorithm 2 ILOFIWKM
Calculate LOF for D
for all w in LOF do

Assign
w−min(LOF)

max(LOF)−min(LOF)
to w∗

end for
Use LOF weighted random to select K positions from D assign to C
for all Di in D do

Assign Di to k according to min(dist(Di, C))
end for
Assign 0 to c
while C not converged or c ≤ cmax do

for all k in C do

Assign

∑k0
kN

i·w∑k0
kN

w
to k

end for
for all Di in D do

Assign Di to k where min(dist(Di, C))
end for
for all C do

Partially recalculate LOF for i in k
for all w in k do

Assign
w−min(LOF)

max(LOF)−min(LOF)
to w∗

end for
end for
Assign c+ 1 to c

end while

4.5.1 Synthetic Dataset

Experimental Setup

This first experiment uses a variety of randomly generated datasets to study

the extent to which the proposed approaches can accommodate outliers. Two

variables, “count of outliers” and “range of outliers” are experimented upon.

Furthermore, the proposed approaches are compared against a plain k-means

implementation.

The datasets trialled contain two clusters (C0 and C1) which are generated

from two spherical Gaussian distributions. The y position of both clusters was

set to 0 and the x position of C0 was 0 while the x position of C1 was set to

1. The covariance of C0 and C1 was 0.05 in both x and y directions. C0 and

C1 each consisted of instances 100 each. Figure 4.4 shows a sample of the data.

To position the probable outliers, the following procedure was used. First, the

73

Figure 4.4: A sample of the artificial dataset used showing the 2 clusters.

standard deviation of x and y for a given generation of the dataset is calcu-

lated. The mean of these values is then calculated into m. Then, a upper u

and lower l bound is defined as multiplier of the mean standard deviations.

Using these bounds and Euclidean distance, outliers are then uniformly ran-

domly generated. Figure 4.5 shows a visualisation of the procedure.

This approach has the strength that it provides a simple scale invariant method

for defining outliers in terms of mean standard deviations away from the global

centre of the dataset. This is helpful since outliers are often defined in terms

of standard deviations away from the mean. However, a limitation of this

approach is that it should not be used on data where the range of the di-

mensions varies greatly. Furthermore, a weakness is that uniform random

generation does not guarantee that the generated points are distant from each

other (hence in places the term “probable outlier” will be used). Hence, this

method should be not used to attempt to create a too large number of out-

liers – through risk of them forming their own logical cluster. To label the

74

Figure 4.5: A visualisation of the outlier generation procedure, the ring-shaped
blue dotted area denotes where instances will uniformly randomly generated
to create probable outliers.

generated probable outliers, the labels from C0 and C1 are propagated using

a KNN procedure with k set to 10. This choice is made such that the outliers

do contain some meaning – a premise on which this thesis is based.

For the first experiment, the number of outliers varied from 0 to 25 in in-

crements of 5. The lower bound multiplier l was set to 20 global standard

deviations and the upper bound u was set to 22 global standard deviations.

Figure 4.6 shows a sample of datasets generated with these settings.

For the second experiment, the lower and upper bound i.e. the range between

which outliers are created was varied to incrementally position outliers at an

increasing Euclidean distance from the global mean. l was varied from 5 to 30

in increments of 5, and u was set to l + 5. Figure 4.7 shows a sample of the

datasets generated with these settings.

75

Figure 4.6: A sample of the generated datasets, showing the increasing outlier
presence.

For both experiments, the two proposed algorithms LOFIWKM and ILOFI-

WKM are trialled alongside k-means. For the k-means algorithm, my own

Python implementation was used. This is the implementation that was up-

dated to create the novel algorithms. This ensures that the only difference

between the k-means implementation and my instance weighted k-means al-

gorithms is the changes described in this paper. For all algorithms the k value

was set to the ground truth of 2. For LOFIWKM and ILOFIWKM, the k

value of LOF was set to 30 nearest neighbours for density estimation. Prior

to execution of the clustering, the generated datasets were min-max scaled be-

tween 0 and 1. All experiments are repeated 50 times as both the algorithms

and the synthetic dataset generation are stochastic.

76

Figure 4.7: A sample of the generated datasets, showing the increasingly dis-
tant outliers.

77

Results and Discussion

The results of the varying the outlier count show strongly positive results for

the LOF based instance weighted clustering. The results are presented using

the NMI clustering quality metrics.

The results show instance weighted algorithms were able to achieve signifi-

cantly better clustering accuracy than k-means. In Figure 4.8, when there are

no outliers all algorithms perform similarly. However, once 5 or more outliers

are introduced, the performance of k-means drops, whereas LOFIWKM and

ILOFIWKM remain approximately constant until 15 outliers are added where

clustering performance begins to slowly decrease. The results do not show a

clear difference in performance between LOFIWKM and ILOFIWKM.

In Figure 4.9, a similar finding but for outlier distance can be seen. As the dis-

tance of the outliers from the global mean of the data increases, the accuracy

of k-means quickly deteriorates. Conversely, LOFIWKM and ILOFIWKM al-

gorithms are not noticeably effected by the presence of the increasingly distant

outliers, only on the most distance value tested (30-35) does LOFIWKM and

ILOFIWKM show a decrease. Across both experiments, there is a none-to-

minimal benefit to using the iterative weighted version, ILOFIWKM.

An interesting and unexpected observation is that in both experiments LOFI-

WKM and ILOFIWKM both have a noticeably reduced standard deviation.

This indicates that their clustering performance is more consistent. This is

interesting because a commonly used strategy 1 to stabilise k-means cluster-

1For example, the popular sklearn implementation uses the multiple random initialisation
practice.

78

Figure 4.8: The average NMI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the synthetic dataset with increasing amount of
outliers.

ing performance is to randomly initialise and run k-means multiple times and

pick the best result. Whereas for LOFIWKM and ILOFIWKM, this arguably

wasteful procedure this is not so important.

These findings demonstrate that the proposed instance weighting method can

be effective given the presence of outliers in a dataset. Furthermore, the find-

ings show instance weighting can be effective even when the outliers are nu-

merous or have a large magnitude.

A secondary finding is that instance weighting combined with k-means can

lessen the variability of the clustering performance. This is a problem normally

tackled in research by using different initialisation strategies or initialising and

executing k-means multiple times. This small finding suggests that instance

79

Figure 4.9: The average NMI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the synthetic dataset with increasingly distant
outliers.

weights could be a novel alternative approach to encourage k-means to con-

verge more consistently.

4.5.2 Benchmark Dataset

Experimental Setup

Further experiments are conducted on a real-world dataset containing 210 in-

stances, 7 features and 3 clusters. The dataset presents the measurements of

damaged wheat kernels of 3 different varieties. [40] The dataset was obtained

via the UCI Machine Learning Repository [41].

To prepare the dataset for clustering some preprocessing steps were taken.

80

Figure 4.10: UCI Seeds dataset scree plot.

Firstly, the label information was removed. Secondarily, principal component

analysis was applied to reduce the dimensionality to two. Figure 4.10, shows

the scree plot for the seeds dataset. A scree plot shows the magnitude of the

eigenvalues for each principal component, this gives an indication of the vari-

ance explained (information) contained in each principal component. The first

principal component captures most of the information in the dataset, while

successive principal components represent less and less. In Figure 4.10, using

just two principal components, it is possible to represent 99.2% of the explained

variance of dataset, implying that little information is lost despite compressing

the representation down to two dimensions using principal components 1 and 2.

The benefit of reducing the dimensionality is twofold, firstly with fewer dimen-

sions the distance calculations within k-means are more meaningful and thus

theoretically the algorithm is more able to identify clusters (as well as faster

to execute, although this dataset is trivially small). Secondarily, reducing the

dimensionality of the dataset is further advantageous, as the instance weights

in my approach are defined using a density-based method which is weakened

by the presence of high-dimensionality.

81

Figure 4.11: A scatter plot of the first two principal components of the Seeds
dataset.

Same as above, two experiments are conducted. One with an increasing outlier

count and one with increasing outlier distance. The method for adding the

outliers and the parameter settings were the same, apart from k, which was set

to 3 to mirror the fact this dataset has 3 clusters rather than 2. Figure 4.11

shows and preprocessed Seeds dataset. Figure 4.12 shows the trialled versions

of the dataset with the increasing outlier presence. The x axis is PC1 and the

y axis is PC2 (axis labels on the subplots were omitted to save space). Figure

4.13 shows the preprocessed Seeds dataset with the increasingly distant out-

liers. As before, the data was min-max normalised prior to applying clustering.

Again, experiments were repeated 50 times.

Compared to the previous artificial dataset, the Seeds dataset has an extra

cluster and appears to have a greater degree of overlap between the clusters.

Furthermore, the cluster are irregular shapes.

82

Figure 4.12: The preprocessed Seeds dataset, showing the increasing outlier
presence.

Results and Discussion

Figure 4.14 shows the clustering performance of the three approaches. Again,

LOFIWKM and ILOFIWKM are much more robust to outlier presence than k-

means. Overall, the NMI scores are slightly less than with the artificial dataset

of the previous experiments, but this is expected, as it can be seen that the

clusters in the Seeds dataset are closer together and thus slightly harder to

partition.

Figure 4.15 shows similar patterns to the experiment with the artificial data.

83

Figure 4.13: The preprocessed Seeds dataset, showing the increasingly distant
outliers.

84

Figure 4.14: The average NMI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the Seeds dataset with an increasing amount of
outliers.

Figure 4.15: The average NMI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the Seeds dataset with increasingly distant outliers.

85

Again interestingly, the standard deviation (shown by the filled area around

each line), is narrower in LOFIWKM and ILOFIWKM than for k-means. This

indicates that the instance weighted methods converge more consistent than

plain k-means.

Comparing LOFIWKM and ILOFIWKM, reveals a slight difference in per-

formance when outliers are particularly distant (at more than 20 standard

deviations). In Figure 4.15 and (to a lesser extent) 4.9, ILOFIWKM can be

observed outperforming LOFIWKM. This could due to the slightly stronger

weighting effect produced by ILOFIWKM as it normalises each distribution

of LOF values per cluster. This suggests that implementing a parameter to

adjust the impact of the weights could be beneficial. This could be added to

the LOFIWKM avoid the computational cost of ILOFIWKM.

Alternative results using a different extrinsic clustering quality metric ARI

(Adjusted Random Index), are also plotted and included in the Appendix in

Figures, 9.1, 9.2, 9.3 and 9.4. They report identical findings but are included

for completeness.

4.6 Conclusion

This chapter has demonstrated the extent to which instance weighted clus-

tering can be effective for outlier accommodation, given a simple synthetic

dataset. It has been shown a density-based instance weighting approach in-

tegrated k-means is able to maintain high clustering performance despite the

presence of numerous and severe outliers.

86

Comparing against existing research, the LOFIWKM approach appears to be

comparable to other methods and possibly superior in certain conditions. Com-

paring against Chen et al. and Yu et al., in their most similar experiments to

mine they present an increase in accuracy of 16% and 19% respectively, com-

pared to k-means. While my most similar experiments achieve greater gains

compared to k-means. Although, it should be stressed that this is not a direct

comparison, so more work would be required, utilising identical metrics and

datasets to assert this claim.

Furthermore, an interesting secondary benefit is that the clustering perfor-

mance is more consistent. Consistently good clustering performance is useful

property, since this could reduce the need to use multiple initialisations of k-

means.

In these experiments, there is not a consistent benefit to using the iterative

version ILOFIWKM (which has a heightened computational cost) hence, it

seems LOFIWKM is the most useful technique based on these results.

With the approach demonstrated on synthetic and simple benchmark datasets;

the next step is to analyse and evaluate the approach on a more complex real-

world dataset. This is attempted in the following chapter.

87

Chapter 5

Instance Weighting for Flight

Data Recorder Clustering

5.1 Introduction

In the previous chapter, it was shown that the LOFIWKM algorithms can be

effective for outlier accommodation. However, the experimentation was limited

to synthetic and simple benchmark datasets. In this chapter, the investigation

of this approach continues. The experimentation is extended to trial the ap-

proach on a real-world application which contains outliers. Furthermore, the

experimentation aims to compare instance weighting to traditional instance

selection methods. This is relevant since the typical approach to handle out-

liers in production data is to remove them and my approach is pitched as

an alternative to this. The aim of this chapter is to support the findings of

the previous chapter and investigate the validity of the LOFIWKM approach

beyond simple artificial datasets. This investigation will help assert to what

extent the instance weighting can accommodate outliers and hence support

the answer to RQ1.

88

To achieve this aim, a Flight Data Recorder (FDR) dataset containing normal

and abnormal flights (outliers) is selected. FDR data was chosen, as aviation

and automotive systems are one of areas highlighted for further research by

Ezugwu et al.’s survey on the application of clustering [5]. This is an interesting

and important area to apply clustering which has received less attention than

others. Specifically a recently published FDR dataset from National Aeronau-

tics and Space Administration (NASA) was chosen as the real-world data for

this evaluation. LOWIWKM will be compared alongside plain k-means and

k-means with traditional (instance selection based) outlier removal methods.

The results will be analysed to assert if LOFIWKM has any suitability beyond

the previous chapters findings with synthetic datasets.

5.2 Related Work

Since the publishing of publicly available FDR datasets, initial literature searches

show that a limited number of clustering techniques have been applied to these

datasets. This could be because there are numerous challenges with clustering

FDR datasets: outliers, tightly-packed clusters, imbalanced cluster sizes, high-

dimensionality.

One of the most eminent initial works in this area is [42]. Li et al. used the FDR

data for the purpose of detecting abnormal flights. This is a highly valuable

activity to understand usage of airframes to support proactive maintenance of

aircraft. Enabling the enhancement of their safety by reducing accidents due to

mechanical failures. Note that mechanical failure accounts as the main cause

89

for 21% of fatal aviation accidents 1. Li et al. proposes a new method called

Cluster-Based Anomaly Detection (ClusterAD-Flight). Their approach is fo-

cused on using clustering techniques to detect abnormal flights. Their cluster

analysis was performed on two proprietary FDR datasets one provided by an

international airline company, which contained 365 Boeing B777 flights, and

another provided by a European airline, which contained 25,519 Airbus A320

landings. Li et al.’s Cluster-AD method begins by transforming the time series

data from the Flight Data Recorder (FDR) into high-dimensional vectors (each

vector represents a single flight). Ultimately, this yields a high-dimensional

dataset, so dimensionality reduction is conducted using PCA. This choice re-

duces the significant degree of the correlation between the features caused by

the aforementioned transformation, and allows the majority of the informa-

tion in the data to be retained while reducing the number of dimensions. For

clustering Li et al. use the DBSCAN algorithm. This density-based clustering

algorithm can identify both the clusters and outliers (which represent abnor-

mal flights). The results showed that the Cluster-AD approach outperformed

existing techniques at detecting operationally significant anomalies. This in-

cluded outperforming exceedance detection (ED) the technique currently used

by airlines. Through better identification of abnormal flights it is proposed

that this could support more proactive safety management in the airline in-

dustry.

Similar to Li et al.’s work, Liu et al. also focused on detecting flight abnormal-

ities [43]. Specifically, potentially hazardous “long-landings” of aircraft (when

an aircraft touches down further along the runway than is ideal for safety).

However, unlike Li et al. the purpose was not for enabling proactive mainte-

1Source: http://www.planecrashinfo.com/cause.htm

90

nance, rather, the purpose was real-time prediction for advanced warning of

a long landing on the approach to touch down. Liu et al. used Quick Access

Recorder (QAR) data from a commercial fleet of Boeing 737-800. The QAR is

similar to the FDR, but provides more detailed data. Part of Liu et al.’s work

involved clustering. A Gaussian Mixture Model (GMM) clustering method

was used to cluster pilot behaviour during take-off and landing. For prepro-

cessing, the QAR data was simplified to two dimensions, one being the ratio

of actual take-off speed to rotation speed (lift-off speed), and the other the

ratio of actual landing speed to reference speed (minimum speed that should

be maintained during landing). Three clusters of pilots were identified and

named “aggressive”, “conservative” and “balanced”. This clustering informa-

tion was then used in their classification stage (using XGBoost) to consider the

individual pilot’s operating characteristics. It was found that taking into ac-

count both flight data and pilot behaviour (via the clustering) they were more

able to predicting long landings than methods that only considered flight data,

potentially enhancing landing safety. This work demonstrates that clustering

can be a valuable tool for clustering different flying styles.

Unlike Li et al. and Liu et al., Wang performs clustering on individual flights

(rather than many) [44]. Rather than clustering a flight as a whole Wang et

al. clusters the epochs of the flight according to their risk of Loss of Con-

trol (LOC). To achieve this, Wang et al. purposes an approach called Flight

State Deep Clustering Network (FSDCN). Wang et al. uses data which in-

cludes eight variables (Airspeed, Roll angle, Climb rate, Roll rate, Angle of

attack, Pitch rate, Pitch angle and Yaw rate) in a time series. Wang et al.’s

data is from a fighter flight simulator, and the variables recorded are simi-

lar to a subset of the data collectable from a FDR. Wang et al. tested their

91

FSDCN approach on data collected from three simulation flights containing

high-difficulty manoeuvrer (such as loops, barrel rolls, s-turns, wingovers, and

nosedives) to showcase the application of FSDCN for flight risk evaluation.

Their complex approach is designed to extract hidden risk features from raw

flight parameters. The FSDCN approach constructs a low dimensional feature

space which is clustered using k-means into 5 flight states. Statistical analy-

sis is then used to assign a risk level for each flight state. By comparing the

alignment of the clustering results with the points where flight parameters (safe

maximums) were exceeded, they asserted validity of FSDCN’s clustering result.

The described literature shows a few different ways clustering analysis can be

applied to aviation (specifically aeronautical) datasets. Li et al.’s work high-

lights how outliers (in terms of the quality of landings) exist, and demonstrates

that DBSCAN can identify them. While Liu et al.’s work investigates differ-

ences between how pilots land aircraft. Both use very similar data of the same

nature and source. Thus it is reasonable to theorise that the outliers that Li

et al. describes, could present a hindrance to Liu et al.’s work, which is based

GMM clustering. Li et al.’s work is an example of outlier identification, which

conflicts with the purpose of my work which is outlier accommodation. Hence

Liu et al.’s work on clustering types of pilot is more similar to this work. Al-

though it is beyond the scope of this work to integrate classification into the

analysis pipeline.

92

Figure 5.1: A sample of 4 the 19 features recorded by the FDR recorder for 1
of the 99836 flights in the dataset, the plots show the read-outs for the features
for the last 160 seconds of flight (before touchdown).

5.3 Experimental Design

To conduct this investigation of the effectiveness of LOFIWKM the “Curated

4 Class Anomaly Detection Data Set” available at NASA DASHlink (DAta

mining and Systems Health) [45] will be used. Figure 5.1 shows a sample of

a single instance from the dataset.

Each instance in the FDR dataset represents the last 160 seconds of flight (be-

fore touchdown) and has 19 attributes recorded for each second. This means

the dataset effectively has 3040 features. The dataset documents an impressive

99,837 flights of several commercial aircraft.

In this dataset the labels identify nominal landings and various types of ab-

93

normal landings. Naturally, abnormal landings could cause the airframe to

endure additional stress and wear and which could lead to early fatigue of

components. By identifying such abnormal landings, the servicing could be

scheduled earlier as necessary to service the relevant components, before they

begin to fail. While earlier work (using DBSCAN) on similar datasets, has

shown how clustering can be useful in this application. Clustering was applied

to recognise nominal flights and identify abnormal outlying flights, which can

present in a number of ways, hence making clustering ideal for this task com-

pared to classification [42].

Ideally, the classes of landing would be treated as cluster labels to compare

against, this would allow the use of extrinsic clustering metrics, which offer a

more objective comparison. However, this transpired to not be suitable for a

few reasons.

When visualising the dataset compressed by PCA to 3 dimensions, see Figure

5.3. Firstly, the various types of anomalous flight labelled in the data are not

clear spacial outliers (at least after applying PCA to the dimensionality). All

the types of anomalous landings are no longer outlying from the nominal flights

in the data. Thus making the LOFIWKM approach unnecessary. Secondarily,

the both the nominal flights and various types of anomalous landing are not in

cohesive clusters. Instead, the labels span several visually identifiable clusters.

Not reducing the dimensionality is not an option either, as my method relies

on LOF which is a kernel-based density estimation and thus becomes increas-

ingly ineffective as more dimensions are used.

94

While the clustering against the labels is clear not worthwhile investigating,

the LOFIWKM approach can still be applied. There is an opportunity to

analyse the visually identifiable clusters in the dimensionality reduced data.

This can then be assessed using intrinsic metrics and visual assessment of the

clustering results. While this does use the data not as intended it does allow

the approach to trialled on real-world data in some capacity.

To pursue this aim, before applying the LOFIWKM clustering approach, sev-

eral items of preprocessing were conducted.

Firstly, one can infer that the selected heading, selected course, true heading

are not relevant landing quality (as they are subject only to the runway direc-

tion. Hence, these three attributes are removed. Similarly, total pressure and

altitude are very highly correlated hence, the decision was made to remove

total pressure. Next the data was flattened from a multi-array structure to a

single vector per flight.

Then PCA was applied to reduce the dimensionality to 3 dimensions (to en-

able the visual analysis of the results). Figure 5.2 shows the scree plot. For

the first 15 principal components. Taking the first 3 principal components

only retains 20.2% of the explained variance in the dataset. Reducing the di-

mensionality this much is not preferable for optimal analysis of the dataset.

However, testing revealed that using much beyond 6 dimensions is futile since

the density-based instance weight calculation would be mostly ineffective when

given so many dimensions. Figure 5.3 shows the resulting dataset.

Next sampling was applied to select a representative sample of the dataset.

95

Figure 5.2: Scree plot showing the first 15 principal components of the FDR
data.

96

Figure 5.3: The Flight Data Recorder Dataset in 3 principal components.
Purple “x” are nominal landings, and “blue”, “green” and “yellow” various
types of anomalous landings.

97

As using the entire dataset (99837 instances) would produce a too lengthy

runtime. To create the sample, stratified sampling was applied across the 3

dimensions. The strata used equal-width bins of range 50, with 10 instances

being randomly sampled from each (3-dimensional) bin. Using this approach

approach retained all the visually perceivable clusters in the dataset, while

reducing size the of the dataset to a size which the prototype implementa-

tions of the algorithms could perform promptly experiments on. Preliminary

tests showed that on a sample of ∼900 instances k-means would take 13 sec-

onds to execute, while LOFIWKM would take 16 seconds (on average). This

would be too much, considering the plan to execute multiple conditions for

many repetitions. Furthermore, it was necessary to use a stratified sampling

approach in particular, as when using simple random sampling whole clusters

would be omitted unless a large sample was taken. Figure 5.4 shows the strat-

ified sample used in this research. The resultant sample contains 331 instances.

The elbow method was used to approximate the number of clusters. The k

value of 4 was selected based on reviewing elbow plot and scatter plots.

Additionally, a version with outliers was produced. Outliers were added us-

ing aforementioned method. A total of 25 probable outliers were added at a

distance of between 5 and 10 mean standard deviations. Figure 5.5 shows the

resulting dataset.

To assess if instance weighting could improve performance, k-means was com-

pared against the two instance weighted variants LOFIWKM and ILOFIWKM.

For LOFIWKM and ILOFIWKM the parameter LOFnn (the count of neigh-

bouring instances LOF uses to assess if a given point is an outlier) was set to 10.

98

Figure 5.4: The Stratified Sample of the Flight Data Recorder Dataset in 3
principal components.

99

Figure 5.5: The Stratified Sample of the Flight Data Recorder Dataset in 3
principal components with added outliers.

100

Furthermore, instance selection methods were also trialled. As a most direct

comparison, instance selection was performed using LOF (the same density-

based outlier detection metric that LOFIWKM and ILOFIWKM use). This

method calculates the “outlierness” of each instance and removes the most

outlying instances. To avoid a straw-man comparison, three different levels of

instance selection were tested, 5, 10, and 15 (instances removed). Furthermore,

not exactly instance selection, but an interesting and traditional (and compet-

itive) technique to compare against is Winsorization. This method does not

remove instances, but instead confines the data to a user specified percentile

range. Instances outside the range are reallocated to the boundary (like clip-

ping signal processing). Again three different values were trialled, clipping

data falling in the most extreme 5%, 10% and 15% of each dimension. Each

algorithm was executed 300 times to get a reliable result, despite the stochastic

nature of the algorithms.

Each algorithm was evaluated used intrinsic clustering metrics, this choice was

made as while the dataset does contain labels, the labels denote anomalous

landings rather than different modality/clusters/types of landings. Figure 5.3

shows the labels. Purple represents nominal landings, while the other colours

represent high-speed, high-path and late-flaps landings. The intrinsic cluster

validation methods used were Silhouette Coefficient, Calinski Harabasz Score,

Davies Bouldin Score.

101

Figure 5.6: Calinski Harabasz scores for the k-means (pink), instance weighted
k-means variants (greens) and traditional techniques (grey) on the sample of
the FDR dataset.

5.4 Results and Discussion

Figures 5.6 to 5.16 show the results.

Figure 5.6, shows that k-means (pink) performs the best on average, while k-

means with winsorization set to 15, performs the worst. The Calinski Harabasz

score is the ratio of the between-cluster separation (BCSS) to the within-cluster

dispersion (WCSS), normalized by their number of degrees of freedom. Hence

the challenge with interpreting this result is that the Calinski Harabasz score

offers no reward for ignoring outlying instances. LOFIWKM and ILOFIWKM

(greens) both perform moderately compared to the other traditional methods

(grey). Performing a two-sample Welch’s t-test between k-means and LOFI-

WKM reveals a p-value of 4.206832 × 10−5, as the p-value is below 0.05 this

implies that they performed significantly differently.

In Figure 5.7, the average Calinski Harabasz score of the approaches are shown

for the FDR dataset with added artificial outliers. Again, k-means is shown

to perform best. Interestingly the standard deviation of k-means shows that

102

Figure 5.7: Calinski Harabasz Scores for the k-means (pink), instance weighted
k-means variants (greens) and traditional techniques (grey) on the sample of
the FDR dataset with added artificial outliers.

it performs more variably than the other approaches, matching the findings of

the previous experiments. Again, performing a two-sample Welch’s t-test be-

tween k-means and LOFIWKM reveals a p-value of 2.434058× 10−23, showing

that there is a more significant difference between the algorithms when outliers

are present.

Considering Figure 5.8, in this case k-means performs the best again (lower

is better) with the instance weighted methods performing moderately. The

Davies Bouldin score assesses the clustering by comparing the average similar-

ity pairwise between the most similar clusters. The similarity is defined as the

ratio between inter-cluster and intra-cluster distances. Again this metric has

no mechanism for favouring the fitting of inlying instances. However, it takes

the average of several measurements, so the result is somewhat more stable

than Calinski Harabaz score. Performing a two-sample Welch’s t-test between

k-means and LOFIWKM reveals a p-value of 9.123486× 10−16, implying that

these algorithms performed significantly differently.

103

Figure 5.8: Davies Bouldin Scores for the k-means (pink), instance weighted
k-means variants (greens) and traditional techniques (grey) on the sample of
the FDR dataset.

Figure 5.9 again shows k-means as the best performing algorithm for the FDR

dataset with outliers. Welch’s t-test between k-means and LOFIWKM reveals

a p-value of 9.764259 × 10−46, again showing that there is a more significant

difference between the algorithms when outliers are present.

Considering Figure 5.10, LOFIWKM is the most positive result. The Sil-

houette Coefficient varies from 1 (meaning the clusters are well separated)

to -1 (indicating the clusters not well separated). The Silhouette Coefficient

compares the average intra-cluster distance to the average inter-cluster dis-

tance. The Silhouette Coefficient still considers all instances equal, regardless

of outlierness. However, due to it’s design (using multiple averages), it is most

stable when used to evaluate clustering with outliers. This metric is still biased

against representing the benefit of outlier accommodation, but of the metrics

compared, it is theoretically least biased. See Figure 9.11 in the appendix,

for an example of the effect of outlier presence on the three intrinsic metrics.

Performing a two-sample Welch’s t-test between k-means and LOFIWKM re-

veals a p-value of 2.489144×10−17, implying that they performed significantly

104

Figure 5.9: Davies Bouldin Scores for the k-means (pink), instance weighted
k-means variants (greens) and traditional techniques (grey) on the sample of
the FDR dataset with added artificial outliers.

differently.

Finally, in Figure 5.11 on the dataset with additional outliers, again k-means is

shown as the best algorithm. Welch’s t-test between k-means and LOFIWKM

reveals a p-value of 8.17183× 10−34, further confirming a more significant dif-

ference between the algorithms when the additional outliers are present.

Overall, the different intrinsic metrics each tell a similar story (not forgetting

that for Davies Bloudin lower is better). Without additional outliers, the in-

stance weighted algorithms performs moderately. With the additional outliers,

the instance weighted methods are second to k-means, which very anomalously

performs significantly better.

A general trend across the results, is that k-means with instance selection, or

winsorizing, are ordered both in terms of clustering performance and magni-

tude of their parameter. For example, k-means with instance selection remov-

ing 5 instances (referred to as “kmeans is 5” in the Figures) performs most

105

Figure 5.10: Silhouette Scores for the k-means (pink), instance weighted k-
means variants (greens) and instance selection (grey) on the sample of the
FDR dataset.

Figure 5.11: Silhouette Scores for the k-means (pink), instance weighted k-
means variants (greens) and traditional techniques (grey) on the sample of the
FDR dataset with added artificial outliers.

106

similar to k-means (bar the instance weighting). While “kmeans is 15” (re-

moving 15 instances) performs worst according to the metrics.

Across all metrics, the differences are relatively small between the algorithms

on the plain (non-outlier) FDR dataset. While on the FDR dataset with

artificial outliers, the differences between the clustering algorithms is more

significant. This suggests that the nature of the anomalies in the plain FDR

dataset en-masse do not match outlier definitions used in the methods trialled

(or at least given the preprocessing conducted).

LOFIWKM and ILOFIWKM routinely come second and third and it is tempt-

ing to conclude that instance weighting is better than instance selection based

on these results, - but due to the limitations of the metrics, this is not a

safe conclusion to draw. The metrics do not treat outliers exceptionally, and

henceforth, the models which comprise to fully fit the outliers (at the expense

of fitting the inlying data) are preferred. More experimentation would be re-

quired to assert instance weighting’s superiority over instance selection.

Due to the limited suitability of the intrinsic metrics. Also, in lieu of writing

my own intrinsic clustering quality metric (which would be akin to marking

my own homework), Figures 5.12 to 5.16 allow of the visual inspection of the

clustering results. In Figure 5.12, supposedly the best clustering results ac-

cording to the intrinsic metrics is shown. However, upon inspection of the

clustering result manually, it is clear to see that k-means has failed to success-

fully partition the data. Notice that one cluster (blue) is “expended” on fitting

some of the outliers, leaving only 3 clusters to fit the four central clusters and

the remaining outliers. It is fair to say that the blue cluster is not fitting the

107

central data or representing the outliers well and hence this is a in fact a poor

clustering. Inspecting Figures 5.13 to 5.16 shows that other methods are not

typically behaving in this way. The instance weighting and selection methods

are fitting the central four clusters and are mostly capable of avoiding wasting

centroids on fitting portions of the outliers.

Figure 5.12: A scatter plot showing the clusters found by k-means on a sample
of the FDR dataset.

To support this position a random sample of clustering results is plotted in

Figures 9.5 and 9.6 in the Appendix. Upon inspection of Figures 9.5 and 9.6,

it can be observed that k-means is quite consistently failing to fit the four

inlying clusters in the dataset. It can be seen that k-means is confusing two

of the visually identifiable clusters by using a cluster to fit some outliers (this

is producing the better scores seen in the average intrinsic metrics – while in

reality producing subjectively poor models). As a general trend, LOFIWKM

and the traditional methods do not often expend a cluster on fitting the out-

108

Figure 5.13: A scatter plot showing the clusters found by LOFIWKM on a
sample of the FDR dataset.

Figure 5.14: A scatter plot showing the clusters found by ILOFIWKM on a
sample of the FDR dataset.

liers.

109

Figure 5.15: A scatter plot showing the clusters found by LOF based Instance
Selection + k-means on a sample of the FDR dataset.

Figure 5.16: A scatter plot showing the clusters found by Winsorisation +
k-means on a sample of the FDR dataset.

110

5.5 Conclusion and Future Work

In conclusion, this chapter has shown that instance weighting can help mitigate

the effect of outliers (albeit artificially added outliers) on a real-world dataset

in line with the aim originally stated. The instance weighting technique en-

abled the clustering process to spot real-world data clusters under conditions

in which k-means clustering alone would often fail.

An important secondary finding is that the discrepancy between the visual

findings and the results from the intrinsic metrics indicates the metrics are

not suitable, or at least need to be interpreted differently, when assessing out-

lier accommodation approaches. This is due to the Calinski Harabasz Score,

Davies Bouldin Score and Silhouette Coefficient all favouring fitting all the

data points regardless of outlierness. A different way to interpret the results is

looking at a high score as meaning “has fitted all the data including outliers”

and a low score as “possibly has not fitted the outliers”. This limitation of the

intrinsic metrics make it difficult for this chapter to give a clear picture regard-

ing how instance weighting compares to instance selection. It seems that novel

metrics must be developed to confidently assess outlier accommodating cluster-

ing algorithms. Some work already exists in this space. For example, Density

Based Clustering Validation (DBCV) [46]. However, DBCV is designed for

clustering algorithms which identify outliers as part of their clustering output

(not outlier accommodation). Thus this is suggested as an area for future work.

In this work, only k-means was investigated in conjunction with the LOF

algorithm. However, there are likely more useful combinations. Hammerly

and Elkan found that instance weighting did improve the performance of hard

111

membership function algorithms (i.e. k-means)[16]. But Nock and Nielsen’s

research suggests that instance weighting is more advantageous for clustering

algorithms with soft membership functions such as fuzzy k-means[8]. A recom-

mendation for future work should be to investigate soft membership function

algorithms in conjunction with the instance weighting proposed.

My proposed method decreased the weight that outliers have on the clustering

outcome. However, this is somewhat in contrast to “boosted” clustering. In

boosted clustering more weight is given to poorly fitted instances – and poorly

fitted instances would entail outliers. Hence, two questions emerge. 1. How

effective is boosted clustering on data with outliers? 2. Would a combination

weighting strategy which up-weights poorly fitted data points but does not

up-weight outlying ones overcome this?

My modifications were made to a basic version of the k-means algorithm.

However, it would be possible to combine the LOF instance weighting with

a version of k-means which has more optimisations or is being used in con-

junction with wrapper functions. Furthermore, with instance weighting there

is the potential to simultaneously apply multiple instance weights and tech-

niques which could increase robustness, applicability and/or accuracy further.

The time complexity of LOFIWKM is equivalent to LOF instance selection

O(n2) plus k-means O(n). However ILOFIWKM is significantly more costly,

as it is the complexity of k-means plus the execution of the LOF algorithm per

cluster per iteration. Thus it is apparent that ILOFIWKM may be not suit-

able for large datasets, without optimisation of the LOF algorithm, such as,

the research by Alshawabkeh et al.[39]. However, ILOFIWKM shows little no

112

benefit over LOFIWKM, so a recommendation would be to prefer LOFIWKM

for practical application.

Future work also includes testing the algorithms with a more thorough outlier

generation process. In this work, instances were added from a uniform distri-

bution, into an area that would make them outlying from existing instances

(in terms of standard deviations). However, in the process of adding probable

outliers, no approach was taken to distribute them from each other, aside from

the randomness. A key observation is that adding true while random outliers

(in terms of some definition) is non-trivial.

Currently, my algorithm requires parameter selection of k clusters and the size

of the LOF neighbourhood. Other algorithms [9, 10] require some parameter

selection exception for the state-of-the-art [47]. For simplicity, it would be

better to not include parameters which must be selected and it does seem pos-

sible to automate the selection of the neighbour size. However, for flexibility,

adding one extra parameter to adjust the impact of the weighting could be

advantageous too.

This work investigates clustering flights (specifically the landing of flights), but

an interesting area we did not explore is clustering epochs in the flight data,

such as is done Wang et al. [44]. Wang et al. considers the risk levels (in terms

of chance of LOC), this is a case of imbalanced clustering, since most of the

time the risk level is low, and it is only during the apex of manoeuvres that

the risk of LOC becomes high , making this an interesting area to explore for

future research area around RQ2.

113

In response to RQ1, it is shown how instance weighting can be applied to k-

means (a partitioning-based clustering algorithm) for outlier accommodation,

on a real-world dataset. However, unfortunately, in expanding the experimen-

tation to use a real-world dataset and comparing against instance selection, due

to limitations of the approach it is not a conclusively positive result, due the

comprises/limitation described in this chapter. Rather, the findings highlight

directions for further development of the approach and experimental design.

114

Chapter 6

Instance Weighting for

Ensemble Graph-based

Clustering

6.1 Introduction

A graph-based algorithm that can handle clusters of arbitrary shape, but can-

not robustly handle imbalanced clusters, is the spectral clustering algorithm

[48]. In this chapter, this challenge is addressed through the application of

instance weighting. The application of instance weighting is a logical choice,

since it could be used to reduce the impact of the majority cluster(s), en-

abling an accurate partitioning. Furthermore, applying ensemble techniques

is a proven approach to increase the performance and robustness of cluster-

ing [15, 49, 50, 51]. While ensemble clustering does have some disadvantages,

such as; computational complexity, sensitivity to the choice of the generative

mechanism, and added difficultly when explaining the results. However, when

given computational resources and applied effectively, ensemble clustering can

115

be a very powerful tool. Furthermore, recent promising research and reviews

have highlighted the potential of spectral clustering integrated with weighted

ensembles [49, 52].

When designing a clustering ensemble, there are three key design decisions to

be made. The first decision is the generative mechanism. This is the choice

of how to generate an ensemble of base clusterings. Typically, the goal of the

generative mechanism is to create both diverse and high quality base cluster-

ings [53]. The generative mechanism has significant impacts on performance,

and there is a variety of approaches that can be applied, including: different

algorithms, different parameters [53, 54], different subsets of instances [50, 55],

different subsets of features [51] or a combination of mechanisms [56]. Wu et al.

points out that the generative mechanism plays an important role in creating

high quality and high diversity base clusterings, which enables the ensemble

to outperform clustering alone.

The second decision is the consensus function which defines how to combine

the outputs of the base clusterings. Typically, the goal of the consensus func-

tion is to combine the base clusterings into a single clustering that is higher

quality than any of the base clusterings. Boongeon and Iam-On [57] provides

a taxonomy of four different types of consensus functions. Direct approach,

this uses voting to determine the cluster membership of each data point. It is

the least complex approach, however there is a need to solve the label corre-

spondence problem as clustering algorithms assign arbitrary labels. Feature-

based, this approach analyses the labels and finds a model describing the

results. The model is then used to assign the instances, therefore there is

no need to solve the label correspondence problem. Pairwise-similarity, this

116

type scans across all the results and counts the frequency that instances appear

in the same cluster. To do this, a n× n similarity matrix is constructed. The

similarity matrices are then merged to create a co-association matrix. Again,

this avoids the need to solve the correspondence problem. Finally Graph

based, this type of consensus function creates a graph from the clustering re-

sults. This graph can be constructed from the aforementioned co-association

matrix. Graph partitioning methods are then applied to decide the final clus-

tering. The idea of re-framing the problem in this way can be attributed to

Strelh and Ghosh’s seminal work [34]. They defined three consensus functions:

Cluster-based Similarity Partitioning Algorithm (CSPA), Hyper Graph Parti-

tioning Algorithm (HGPA) and Meta Clustering Algorithm (MCLA), which

have been broadly adopted by cluster ensemble research since their definition.

The simplest of these methods is CSPA. This consensus algorithm takes each

co-association matrix from the base clusters and combines them to create a

master co-association matrix which can then be partitioned using a graph

clustering algorithm. In Strelh and Ghosh’s research, the METIS clustering

algorithm is used to cluster the resultant graph although any graph clustering

algorithm could be used, such as spectral.

The third decision is the ensemble structure; bagging or boosting. Bagging

executes the base clusterings in parallel whereas boosting executes the base

clustering sequentially. The boosting approach has the advantage that infor-

mation discovered by a base clustering can be used to influence the next itera-

tion of base clustering. The bagging approach has the advantage that the base

clusterings can run in parallel, which is a useful property given the ubiquity of

multi-processor systems. Since, research [50] has shown that both approaches

lead to successful clustering ensembles, and that support for distributed pro-

117

cessing is an increasingly desirable property, in this work the bagging approach

will be the focus.

Cluster ensembles can be weighted in various ways, Zhang provides a taxon-

omy of methods for weighting clustering ensembles and highlights how this can

enhance the robustness of the clustering [49]. One approach is weighting the

base clusterings. This is where the base clusterings are assessed (typically for

clustering performance), then weighted accordingly in the consensus function.

Another approach is weighting the features of a dataset, such that each of the

columns has more or less influence in the base clustering outcomes. A further

approach is weighting instances. In this approach, weights are applied to the

instances. Not much research has been done in this area leaving a gap that

can be addressed. These instance weights can encode information that the

clustering process can utilise to enhance the clustering performance. One such

clustering algorithm that could benefit is the aforementioned spectral cluster-

ing algorithm. This algorithm is known to have reduced clustering performance

when clusters are imbalanced [58]. By utilising the weights to emphasize the

low density clusters this limitation could sometimes be overcome. In particu-

lar, I will focus on utilising density based instance weighting since this metric

could reveal useful information about an imbalance in a dataset.

The combination of ensemble clustering and instance weighting is interest-

ing. Since each independently is known to improve clustering performance

and there exists research (see Chapter 6.2.2) that together they can further

improve clustering performance. Furthermore, spectral clustering is a natural

choice for researching since it is amongst the most versatile and actively re-

searched clustering algorithms. Hence, the aim of this work is to investigate if

118

instance weighting can be applied usefully within the generative mechanism of

a spectral clustering ensemble. This is an important objective since spectral

clustering, ensemble clustering and instance weighting are three very promis-

ing areas of research within unsupervised learning.

This work presents some initial research into applying instance weights at the

generative stage of a bagging spectral ensemble. Experiments with a prototype

approach will be used to investigate whether a instance weighted sub-sampling

approach based on density could enhance the robustness and clustering per-

formance of spectral clustering for datasets with imbalanced cluster sizes.

The concept behind this approach is that the density based weighting scheme

up-samples sparse clusters and down-samples dense clusters. Overall, the clus-

ters would then present as more balanced to the spectral base clusterings. This

could improve clustering performance. The aim of this chapter is to investigate

if an instance weighted spectral clustering ensemble can to enhance robustness

and clustering performance on imbalanced data, as per RQ2.

6.2 Related Work

6.2.1 Variations of Spectral Clustering

Here work modifying spectral clustering to enhance its clustering performance

and robustness is explored.

In Nadler and Galun’s research, the limitations of the spectral clustering algo-

rithm are explored [59]. They make two contributions to knowledge. The first

is demonstrating the limitations with spectral clustering. When spectral clus-

119

tering creates its affinity matrix for partitioning, there are several methods that

can be applied, such as nearest neighbour or a radial basis function. These

rely on local distance (typically Euclidean) information. Nadler and Galun

identify the use of local information to create global clusters as the issue which

impedes spectral clustering from accurately partitioning the data when the

data contains “structures at different scales of size and density”. Their sec-

ond contribution is a method for assessing the quality of partitions, which can

enhance the clustering performance on datasets with varied cluster sizes (in

terms of instance count) and scales. Their coherence measure supports the

normalised-cut partitioning within spectral clustering. Their measure works

by assessing the top down partitioning of data, indicating if the partitions need

further partitioning or not, enabling spectral clustering to better find clusters

of different sizes. For example, in a dataset with three clusters (one clus-

ter with many instances and two smaller clusters with fewer instances) their

approach would first use spectral clustering to partition the data into two clus-

ters. Under the right conditions the partitioning could separate between the

large cluster and the two smaller clusters, then their metric would identify

that the partition containing the two small clusters needs further partitioning

and would repeat the spectral partitioning on that set to find all three clus-

ters. Nadler and Galun has proven that their measure can be used to augment

any graph-based clustering method. Nadler and Galun prove the suitability of

their approach on a variety of challenging datasets.

Lucińska and Wierzchoń [60] propose a algorithm called Speculus. Their imple-

mentation uses a novel approach to construct the affinity matrix for partition-

ing. Rather than using a radial basis function or nearest neighbours as normal

for spectral clustering, their approach is based on mutual nearest neighbours.

120

This works by first calculating the nearest neighbours. Then if two instances

are both found to be nearest neighbours, then the sum of their ranks that they

are nearest neighbours to each other is calculated, (for example 1st + 3rd = 4)

this becomes their “distance”, otherwise if two instances are not in each oth-

ers nearest neighbours then assign a high distance for example infinity or not

simply connecting those pairs in the graph representation for clustering. Like

[59] their method helps address the weakness of spectral clustering to handle

clusters of different scales and sizes but rather than modifying the partitioning

process, Lucińska and Wierzchoń’s approach introduces a novel way to con-

struct the affinity matrix.

Correa and Lindstrom [61] propose a local-scaled spectral clustering algo-

rithm. Their research attempts to resolve the same problem as [59] and

[60]. They propose a sophisticated novel affinity matrix construction. Cor-

rea and Lindtrom’s research has developed an approach which estimates the

scale across the dataset and embeds this information into the affinity matrix.

Instead of using k-nearest neighbours approach to construct the affinity ma-

trix (which they demonstrate is sensitive to the choice of k or ϵ (radius)) their

approach called β-skeleton uses empty region graphs, which can be adjusted

using a parameter β, which is not as sensitive to selection. Essentially, their

method defines an empty region from which neighbours are not considered. A

benefit is that it can represent clusters with fewer instances that are next to

larger clusters. This is unlike k-nearest neighbours where a small cluster could

appear as part of the large cluster due a poor selection of k or ϵ. Their method

estimates scale (neighbourhood size) automatically using novel Gaussian ker-

nel density estimation based method. Their results on a variety of 2D artificial

datasets (Ellipsoids, Gaussian and Noise Rings) and benchmark datasets (Iris,

121

Wine, Breast Cancer, Ecoli etc.) show the robustness to parameter selection

and the good performance in terms of NMI for benchmark datasets. Correa

and Lindtrom’s experiments on artificial datasets do not show results in terms

of NMI for datasets with varied cluster sizes which makes it difficult to be sure

of the performance of their method in the case of imbalanced clusters.

In summary, research finds that spectral clustering has some weaknesses in

handling data within varying density and datasets with imbalanced clusters

sizes. The approaches described have been able to mitigate the limitations

of spectral clustering through either redefining the affinity matrix [60, 61] or

modifying partitioning process [59].

6.2.2 Ensemble Methods

This subchapter presents research into how ensemble methods can enhance

the clustering performance and robustness. In searching for literature, extra

consideration was given to papers which utilised weighted methods. This part

of the related work has been organised into three paragraphs. The first para-

graph explores literature where spectral was not used as the base clustering

algorithm and instance weighting was not applied to the generative mecha-

nism. The second paragraph explores literature where spectral was not used

as the base clustering algorithm and instance weighting was applied to the

generative mechanism. Finally, the third paragraph explores literature where

spectral was used as the base clustering algorithm, but where instance weight-

ing was not applied to the generative mechanism.

In this paragraph, literature where spectral was not used as the base clustering

algorithm and instance weighting was not applied to the generative mechanism,

122

is explored. Ayad and Kamal [62] propose a bagging based approach for com-

bining the base clustering results in a clustering ensemble. Their work focuses

on consensus functions [34]. Ayad and Kamal’s work creates a modified co-

association matrix, which is calculated by evaluating the shared neighbours

of pairs of instances, using the Jaccard similarity coefficient. Their method

called Weighted Shared Nearest Neighbors Graph can then be used in Strelh

and Gosh’s consensus functions. They use the supra-consensus concept (where

CSPA, HGPA and MCLA consensus functions are executed in parallel) and

choose the consensus function with the highest Average NMI. They empirically

prove the effectiveness of their approach by using their consensus approach

within a ensemble using a variety of clustering algorithms as the generative

mechanism (k-means, graph partitioning with various distance metrics). They

found that using their improved graph in Strelh and Ghoshs’ consensus func-

tions achieved a higher f -measure than the mean of the f -measure of the

base clusterings. Their selection of clustering algorithms did include a graph

partitioning algorithm, but did not include spectral clustering. They found

that their approach could handle imbalanced datasets. While related to my

work in several ways, unlike my research, their work applies weights to pairs of

instances and focuses on the consensus function and does not use spectral clus-

tering. Al-Razgan and Domeniconi [51] propose two bagging based ensemble

methods, Weighted Similarity Partitioning Algorithm (WSPA) and Weighted

BiPartite Partitioning Algorithm (WBPA). Both ensembles use the LAC (Lo-

cally Adaptive Clustering) algorithm as their base clustering algorithm. LAC

is an iterative centroid based method developed by the authors, which applies

weights to the centroid and features. Their LAC algorithm has a h parameter,

this parameter controls the incentive to use more features for the sub-space

representation. As the generative mechanism, they vary the h parameter. The

123

focus of research is on weighted consensus functions to combine the base clus-

terings. From the LAC algorithm each cluster has a weight and this is used

in a weighted distance calculation to create a graph embedding of both the

original data and clustering information. Similar to Strelh and Ghosh, Al-

Razgan and Domeniconi use the METIS algorithm to partition their graphs

for a consensus result. Their experimentation found their WBPA approach to

be best. In the WBPA method they create n × k × m matrix (where m is

the number of bags) with the edge weights representing probability of mem-

bership with each cluster. This matrix is interpreted as a bipartite graph and

partitioned using METIS algorithm [34] to give the consensus result. Their

sub-space clustering approach has the advantage that it lessens the impact of

the curse of dimensionality. They identify experimenting with using spectral

clustering as the base clustering algorithm as an area of future work. Similar

to [62] their work focuses on weighting the consensus function rather than the

generative mechanism. Finally, Ren et al. [56] proposes three bagging-based

ensemble clustering approaches that feature boosting-style weighting. The

algorithms using weighted instances and are called, Weighted-Object Ensem-

ble Clustering (WOEC), Weighted-Object Similarity Partitioning Algorithm

(WOSP) and Weighted-Object Hybrid Bipartite Graph Partitioning Algorithm

(WOHB). For disambiguation; they use the word “objects” to describe what

my paper refers to as “instances”. The approaches are designed with the goal

of being robust to parameter settings. A bagging approach is used (i.e. base-

clusters are executed in parallel) but difficult to cluster instances are given

weight (as is typical in boosting). Difficult to cluster instances are identified

by the co-association matrix of the base clusterings. More technically, where

the normalised co-association matrix (normalised against the number of base

clusterings) is 0.5 then there is a disagreement regarding whether these in-

124

stances are in the same cluster (represented by 1) or not in the same cluster

(represented by 0). This is then mapped to a quadratic function with its peak

at 0.5 to emphasise uncertain instances. These weights from the quadratic

function are then utilised in the consensus phase. For WOSP, the weights

are used to recalculate the cluster centres. Across all three approaches for the

generative mechanism, Ren et al. created diverse base clusterings by executing

k-means with random instance and feature selection. For instances not selected

in the sub-sample for each base-clustering, these were assigned to the nearest

cluster centre. The WOEC algorithm uses a weighted version of the MCLA

algorithm proposed by [34]. The MCLA algorithm treats consensus as a graph

clustering problem and uses the METIS clustering algorithm to make the con-

sensus partitioning. Normally, MCLA treats all the instances equally when

calculating the similarity graph between clusters. However, in their weighted

version the instance weights are taken into account. Hard to cluster instances

provide more impact on the similarity calculation. They found that their three

algorithms worked equally well for their simulated and real-world datasets. A

unique feature of Ren et al.’s work is hybridisation of the ideas of bagging and

boosting. A key difference between Ren et al. and this work is that this work

assigns weights to instances before any clustering happens whereas in Ren et al.

approach, weights are assigned based on the base clusterings and then utilised

in the consensus stage. A common factor between these papers is that work

has been focused towards the consensus function. Instance weighting was ap-

plied, but to influence the consensus function, not the generative mechanism,

leaving a gap in area of applying instance weighting the generative mechanism.

In this paragraph, literature where spectral clustering was not used as the

base clustering algorithm, but instance weighting was applied to the generative

125

mechanism, is explored. Parvin et al. [50] conducts many experiments within

the space of clustering ensembles and provides an overview of the research into

clustering ensembles. While Parvin et al. experiments with both boosting and

bagging based ensembles. Their research focused on mostly boosting, their lit-

erature review found that both boosting and bagging based approaches led to

successful clustering ensembles. Their experiments showed that diversity can

be created within the cluster boundaries of an ensemble, using sampling based

techniques. For their generative function in their bagging based approach

they used non-weighted sample based techniques. While for their boosting

techniques they used a disagreement based weighting scheme where instances

which were uncertainly partitioned were sampled more frequently in the boost-

ing. Generative functions used k-means as the base clustering algorithm. For

the consensus function several approaches were trialled. They found that use

of MCLA consensus function resulted in the highest accuracy and NMI in their

boosted clustering experiments. Additionally, they found that the CSPA con-

sensus function performed robustly in a number of experiments using boosted

clustering ensembles. For their boosting method they found smaller sample

size (in region of 20%) along with approximately 10 base partitionings is a gen-

erally optimal choice for clustering performance. Their work also compared

bootstrap and sub-sampling based approaches and found that sub-sampling is

more suitable for accuracy and computing performance. Finally, while Parvin

et al. remarked that bagging sampling methods lead to successful clustering

ensembles, their experiments boosting, outperformed bagging for clustering

performance. Their experiments offered a lot of insights for designing clus-

tering ensembles. Although unlike my work their work focused on boosting

and does not explore density based techniques for weighting. Duarte, Fred and

Duarte [63] investigated instance weighted ensembles. Their work builds on the

126

bagging technique of Evidence Accumulation Clustering (EAC) [64]. Through

combining weak-clusterers such as k-means, clusters of arbitrary shape can be

recognised. EAC is similar to CSPA, in that a n × n co-association matrix

is created and then clustering is applied to the co-association matrix to form

the final clusters. In their paper, they propose three boosting based methods

based on EAC, these are AdaEAC L (emphasizes low confidence), AdaEAC

H (emphasizes high confidence) and AdaEAC U (Emphasizes low and high

confidence). They experimented on a variety of artificial datasets and bench-

mark dataset including “Wine”, “Iris” and “Breast Cancer” amongst others.

For consensus, they tried using hierarchical clustering with average-linkage

and single-linkage methods. Their experiments showed that AdaEAC L, em-

phasising the low confidence instances accompanied by average-linkage in the

boosting process was best. From their experiments with different instance

weighting approaches (“L”, “H” and “U”) they found that “L” worked best.

In addition, to the above, Duarte, Fred and Duarte introduces some novel clus-

tering validation measures, ANC (Average Neighbourhood Confidence) and

ADNC (Average Dynamic Neighbourhood Confidence). The novel ANC ap-

proach compares the neighbourhoods of instances against the co-association

matrix to validate if the assignment of the given instance is consistent with

its neighbours. They point out that their ADNC validation measure would

enable the ensemble to handle clusters of imbalanced sizes best. Similar to my

work their approaches are designed to handle data of arbitrary shape. Similar

to my work they cluster the co-association matrix to find the consensus clus-

tering. However, different to my research they use boosting, weak-clusterers

and a confidence based method for generating the instance weights. Frossyni-

otis, Likas and Stafylopatis [55] compares boosting and bagging while focusing

on boosting. They tested their ensemble methods with k-means and fuzzy

127

c-means. Frossyniotis, Likas and Stafylopatis’s boosted clustering method ap-

plies weights to instances over several iterations. They experiment with two

different ways of defining the instance weights. A simple approach based on

the membership degree to each cluster and more sophisticated approach based

on membership and entropy. In each round of clustering the most difficult

to cluster instances are upsampled in their weighted bootstrap. For the con-

sensus function a weighted vote is used, therefore, the label correspondence

problem has to be solved. Their experiments found that the boosting ap-

proaches produced better results than a comparable bagging approach. Their

approach enabled their centroid based methods to better handle non-spherical

data. Their research is similar to mine as instance weighting is applied for the

purpose of sampling the data. However, rather than using a sub-sampling ap-

proach a bootstrap approach is used to sample the data and most notably their

work focuses on centroid based clustering rather than spectral clustering. In

conclusion, research which has utilised instance weighting has mostly focused

on boosting type ensembles and has not explored density based weighting.

In this paragraph, literature where spectral clustering was used as the base

clustering algorithm, but instance weighting was not applied to the genera-

tive mechanism, is explored. In response to the research (such as [50, 65])

highlighting that it is not just the quality of the base clusterings, but also

the diversity that has an impact on the quality of clustering ensembles, Fern

and Linn investigated the diversity/quality balance [53]. To investigate this,

they created three algorithms to select base clusterings which emphasised both

quality and diversity. They confirm that concise ensembles of diverse and accu-

rate base clusterings produced the highest NMI. The approach that achieved

the best overall performance amongst those they tried, they named “Clus-

128

ter and Select”. The method clusters the clustering results into a number

of groups. Then from each group the highest quality clustering is taken. A

strength of this approach is that the selection means that it is unlikely that

any two of the base clusterings are similar. In their implementation they use

the k-means algorithm as the base clustering algorithm and for the generative

mechanism they execute k-means with different initialisations, feature subsets,

space projections and different k values between 2 and 2 ∗ c (where c is the

number of excepted clusters). To combine the resultant ensemble they used

the CSPA [34] as the consensus function. However, like my work rather than

using the METIS clustering algorithm to cluster the co-association matrix they

use spectral clustering. It was found that this approach produced robust clus-

tering performance (in terms of NMI), despite degenerate partitions amongst

the base clusterings. Fern and Linn do not use instance weighting, but it could

have been added to their method as an additional or alternative method to

achieve diversity amongst the base clusterings. In one experiment they add

spectral clustering to their base clustering algorithms (hence the inclusion of

their research into this section of this literature review). To generate diversity

in the executions of the spectral clustering algorithm, they vary the parameters

used to calculate the affinity matrix, in particular they use a Gaussian kernel

to calculate the distances and vary the bandwidth parameter. Similar to the

majority of research into clustering ensembles, their work focuses on consensus

functions. Huang et al. [54] propose two algorithms U-SPEC (Ultra-scalable

spectral clustering) and U-SENC (Ultra-scalable ensemble clustering). Their

focus is adapting spectral cluster’s scalability and robustness when working

with Big Data. This is an important problem since an issue with spectral clus-

tering is that the affinity matrix is n×n, therefore, this can be unmanageable

when using larger datasets. Hence, at the core of the U-SPEC method is data

129

reduction. Their approach hybridises random selection and k-means to pro-

duce a smaller dataset. In the “hybrid representative selection” of Huang et al.

a random sample of the dataset taken, then k-means is applied to this sample

(with a k value much higher than the number of clusters in dataset). The resul-

tant centroids are used as the “representative samples” for clustering. This is

supported by an n×p matrix, where p is the number of representatives. These

refer back to the full dataset (by being interpreted as a bipartite graph). In U-

SPEC a modified version of spectral is then used to partition the constructed

bipartite graph. The U-SENC algorithm is an extended ensemble version of U-

SPEC. It utilises multiple U-SENC base clusterings. Their ensemble method

generates diversity between the U-SPEC base clusters both by the inherent

randomness in the U-SPEC algorithm and running U-SPEC with different k

values. The consensus function is based upon stacking the k eigenvectors and

applying k-means. Their sophisticated approach enables spectral clustering

like performance on ultra large datasets. This is proven by experimentation

on datasets with as many as 20 million instances. Finally, most similar to my

work, Jia et al. [65] propose a bagging ensemble approach using the spectral

clustering algorithm. Their state-of-the-art approach involves creating diverse

spectral base clusterings. This is achieved using two main methods. One is a

random scaling parameter the other, random sampling in a Nyström approx-

imation of the affinity matrix. The Nyström approximation a very rational

choice, as it avoids the computation required to calculate the full n× n affin-

ity matrix (by approximating it using a sample) while also introducing some

useful randomness/diversity. Also, the choice of a random scaling parameter

is interesting since, in attempts to improve spectral outside of ensemble re-

search, a non-random scaling parameter was utilised [60, 61]. Similar to [51],

there is a degree of selectiveness when combining the base clusterings. Unlike

130

[51], their selection process is binary rather than weighted. Jia et al. refers

to Strehl and Ghosh’s work [34] finding that of their three consensus methods

CSPA and HPGA produced good accuracy. Although they opted for HPGA

due to the computation complexity advantages. Their work is similar as their

contribution is in the area of generative mechanisms and they adopt spectral

clustering for the base clustering algorithm. The uniqueness of my work is

that my approach uses instance weights based on density rather than Nyström

approximation. It is clear that their approach would have performance ad-

vantages on larger datasets. It is possible my approach could perform better

as diversity is more deliberately introduced rather than relying on by-product

randomness from Nyström approximation.

In summary, this subchapter presents research into how ensemble techniques

have been applied to clustering. The initial work in this area is promising.

Furthermore, several works show how instance weighting has been utilised in

boosting ensembles and applied in the consensus function. However, despite

the search placing an emphasis on spectral ensembles and instance weighting,

to the best of my knowledge, there appears to be no research into instance

weighted spectral clustering ensembles for creating diversity in the generative

mechanism, see Table 6.1.

131

Table 6.1: Overview of ensemble clustering research with similarities to my work highlighted, notice that no work combines
spectral, bagging, instance weighted generative mechanism and CSPA.

Author and Ci-
tation

Year Clustering Al-
gorithm

Ensemble
Type

Generative Mechanism Consensus Approach

Ayad and Kamal
[62]

2003 Several not in-
cluding spectral

Bagging Multi-algorithm to create di-
versity

Supra-consensus using CSPA,
HGPA and MCLA on
weighted shared nearest
neighbours graph.

Frossyniotis,
Likas and Stafy-
lopatis [55]

2004 k-means and
Fuzzy c-means

Boosting Instances weighted based on
distance to centroids

Weighted Vote

Al-Razgan and
Domeniconi [51]

2006 LAC Bagging The number of features for
the sub-space clustering is dif-
fered to create diversity

Weighted Graph + METIS
Algorithm

Fern and Linn
[53]

2008 k-means +
(briefly spectral)

Bagging Varying the k value CSPA acting on select subset
of base clustering results to
emphasise diversity

Jia et al. [65] 2011 Spectral Bagging Random Scaling Parameter to
create diversity and Nyström
approximation of affinity ma-
trix

HPGA

Duarte, Fred and
Duarte [63]

2013 k-means Boosting Instances weighted based on
disagreement

Linkage based methods + a
selection other measures

Ren et al. [56] 2013 k-means Bagging Diversity via random sub-
sampling and feature selection
(with label propagation)

Weighted MLCA + instance
weighted techniques

Parvin et al. [50] 2013 k-means Bagging +
Boosting

Instances weighted based on
disagreement

Linkage based methods +
hyper-graph methods (CSPA,
HPGA, MCLA)

Huang et al. [54] 2020 U-SPEC (based
on spectral)

Bagging Inherent randomness in and
differing k values to create di-
versity

k-means on combined eigen-
vector information

132

6.2.3 Conclusions from Related Work

Overall, the weaknesses of spectral clustering have been approached in differ-

ent ways. One way which shows particular promise is ensemble techniques,

offering significant improvements in clustering performance across a range of

datasets. Ensemble clustering research has mostly focused on boosting based

techniques and weighting the consensus function. But bagging is shown to

result in good clustering performance too. Furthermore, techniques applying

instance weighting to the generative mechanism have only have considered

boosting ensembles and disagreement based metrics to the best of my knowl-

edge.

Another conclusion, is that due the nature of clustering, boosting-based en-

sembles require additional complexity. It could be argued that bagging suits

the nature of the clustering problem better. Bagging also has the advantage

that it is simpler and it can be executed in parallel on large distributed com-

pute resources. Enhancing its suitability for application to Big Data. When

using bagging, a choice between bootstrap and sub-sampling arises. Parvin et

al. found that sub-sampling performed favourably over bootstrap for cluster-

ing ensembles [50], additionally sub-sampling has compute advantages, so this

approach will be adopted in this work.

Furthermore, within bagging based clustering ensembles there are two impor-

tant design decisions, the generative mechanism and the consensus function

[50]. For the generative mechanism it appears that an approach which gener-

ates a small, highly diverse ensemble of high quality clusterings produces the

best results [53]. For the consensus function, CSPA combines the base clus-

terings by calculating pair-wise similarity between the cluster memberships in

133

base clusterings for all instances. This approach has the advantage of being

both simple and producing robust performance [50, 65].

Finally, it is known that not all instances in a dataset represent equal informa-

tion. It also know that data can have structures which can impede the perfor-

mance of clustering and that spectral clustering is no exception [59]. Hence,

the objective of this work is to use instance weighting within an spectral en-

semble context to generate diverse base clustering to address the weaknesses

of spectral clustering.

6.3 Proposed Approach

Figure 6.1: Schematic illustration of the IWSE approach.

The first step calculates a weight for each instance, based on an exponential

kernel density estimation function using Equation (6.2), the bandwidth value,

h is chosen using the Silverman method. The Silverman method here refers

to the multivariate generalisation of Silverman’s method, as implemented in

scikit-learn1. In Equation (6.1), n is the number of rows and m is the number

of columns of the dataset for clustering.

1https://github.com/scikit-learn/scikit-learn/blob/c5497b7f7/sklearn/

neighbors/_kde.py#L222

134

https://github.com/scikit-learn/scikit-learn/blob/c5497b7f7/sklearn/neighbors/_kde.py#L222
https://github.com/scikit-learn/scikit-learn/blob/c5497b7f7/sklearn/neighbors/_kde.py#L222

h = n×
(
m + 2

4

) −1
(m+4)

(6.1)

The weights from the exponential kernel are min-max normalised between 0

and 1, using Equation (6.3). Furthermore, an additional inverted version of the

weights is created where a high value indicates low density, seen in Equation

(6.4). Within Algorithm 3, the exponential kernel density estimation function

can be seen, where n is the number of instances, y is an instance to calcu-

late the weight of, x is each of the instances, and h represents the bandwidth

parameter used to determine the weights. In the second step, the approach

uses bagging. Bagging was chosen for its computational advantages. When

using bagging, a choice between bootstrap (sampling the dataset with replace-

ment to get a sample of equal size to the original dataset) and sub-sampling

(sampling the dataset without replacement to get a smaller dataset) arises.

Sub-sampling was chosen as it has been shown to perform favourably for clus-

tering ensembles [50]. The algorithm generates instance weighted sub-samples

of the dataset, randomly sized between two user configurable parameters mmin

and mmax. These are executed in parallel (given the appropriate hardware),

corresponding to the number of bags parameter M . For example, M = 32

would indicate 32 sub-samples are created. For experimental purposes, there

are three variations of the weighting scheme. In the “L” variation the low

density instances are more likely to be selected. In the “H” variation the high

density instances are more likely to be selected. Finally, the “U” variation

uniformly randomly switches between the “L” and “H” weighting schemes. In

the third step, normalised spectral clustering [66] is utilised for the base clus-

tering of the sub-samples. In the fourth step, once all spectral base clusterings

have been executed, consensus takes place. The pair-wise similarities of the

135

cluster assignments of the instances are accumulated into a co-association ma-

trix. This approach is essentially CSPA [34]. However, instead of using METIS

clustering algorithm, (typically used in the CSPA consensus function), spectral

clustering is used to produce the final clustering output; this substitution was

made because both are similar (in that they are graph partitioning methods),

but spectral is more readily available in well-tested libraries. The approach

based on CSPA was chosen as it is simple and produces robust performance

[50, 65]. Thus in this final step, this co-association matrix is treated as an

affinity matrix to which spectral clustering is applied. This provides the final

clustering result. Algorithm 3 and Figure 6.1 provide a technical description

of my approach. A Python implementation is provided in the Appendix.

ρK(y) =
n∑

i=1

exp

(
−dist(y, xi)

h

)
(6.2)

W =
ρK −min(ρK)

max(ρK)−min(ρK)
(6.3)

W∗ = 1−W (6.4)

6.4 Experimental Setup

The experiments are arranged as follows, in Experiment A the proposed ap-

proaches parameters and suitability for imbalanced data is evaluated on simple

dynamically generated artificial datasets. In Experiment B, an initial investi-

gation will be made into the real-world suitability for a image segmentation use

case. Finally, in Experiment C, proposed approach is evaluated on artificial

and benchmark datasets from other works.

136

Algorithm 3 Instance Weighted Spectral Ensemble (U)

Input: X = {x1, ..., xn}, k, k∗, M , mmin, mmax

1: Calculate bandwidth value h using Silverman method.

2: Compute weights W using ρK(y) =
∑n

i=1 exp
(
−dist(xi,y)

h

)
for X

3: Normalise weights W using equation max(x)−min(x)
x−min(x)

4: Compute inverted weights W∗ using equation 1−W
5: for m← 1 to M do
6: Let r ∈ {0, 1} with uniform probability (for switching weighting schemes)
7: Let s ∈ {x ∈ R|x ≥ mmin and x ≤ mmax} with uniform probability
8: if r = 1 then
9: Let S ⊂ X be a sub-sample of size n× s using probability W
10: else
11: Let S ⊂ X be a sub-sample of size n× s using probability W∗

12: end if
13: Partition S into P = {C1, ..., Ck} using spectral with k and k∗

14: Construct n× n co-association matrix Am for P
15: end for
16: Let A∗ =

∑M
m=1Am

17: Partition A∗ into P∗ = {C1, ..., Ck} using spectral with k and k∗

Output: P∗ = {C1, ..., Ck}

6.4.1 Experiment A

Setup

To empirically evaluate IWSE, datasets with increasing cluster imbalance were

generated. The 2D datasets are generated per run of the experiment to min-

imise effects from artefacts of the stochastic generation process. Each dy-

namically generated dataset contains three clusters drawn from normal dis-

tributions positioned at (0,0), (0,1.5), and (0, 3), and each cluster has a

variance of 0.1 in both x and y dimensions. Cluster sizes were determined

using a scaling factor α with values from 1 to 5 in increments of 0.25 where

|C0| = 50, |C1| = |C0| × α, |C2| = |C1| × α. So, when α = 1 then

|C0| = 50, |C1| = 50 and |C2| = 50. When α = 2 then |C0| = 50, |C1| = 100

137

and |C2| = 200. A sample of the datasets can be seen in Figure 6.2.

Figure 6.2: A sample of the “imbalance” datasets, the colouration represents
the instance weights. The title for each sub-plot shows the “imbalance scaling
factor”.

For this experiment, multiple versions of the IWSE approach were compared

against spectral (S) and spectral ensemble (SER). SER is similar to IWSE

in every way, apart from using purely random sampling rather than weighted

sampling. Comparing against SER will be useful to see if the instance weight-

ing has any specific benefit. The “H” version (IWSEH) samples preferring the

high values from the exponential kernel density function, this means instances

in high density locations are more likely to be sampled. The “L” version

(IWSEL) is the opposite of the IWSEH, using the instance weights to prefer

sampling the low density areas. Finally, the “U” version (IWSEU) combines

both approaches.IWSEU uses uniform randomness to switch between the “L”

and “H” weighting strategies. This version encourages most diversity in the

sub-samples used for the base clustering.

For all algorithms, the k value was set to reflect the ground truth of the dataset

138

(3) and the k∗ nearest neighbours parameter (for calculating spectral cluster-

ings affinity matrix) was set to 9. Where applicable the bags parameter M was

set to 32. Increasing M beyond 32 sees a diminishing return in terms of cluster-

ing performance for execution time spent. See Appendix Figures 9.13 and 9.14

for a plot of the relationship between M with execution time and clustering

performance. k∗ was set to 9 based on preliminary experiments which trialled

3, 6, 9, 12. For brevity the experiment details are omitted, but a summary of

the findings was that the results are not sensitive to this parameter as long as

this parameter is suitably high, in my tests 9 was most suitable.

For the min and max sample size parameters, some hyper-parameter optimisa-

tion was completed. Pairs of mmin and mmax between 10 and 90 in increments

of 10 were trialled, see Table 6.2. The mmin and mmax parameters are inter-

esting to investigate since they control how strongly the instance weighting is

enacted. For example, when mmin = 80 and mmax = 90, each bag (base cluster-

ing) is using a sample of between 80% to 90% of the data, thus samples of data

are nearly equivalent to complete data and the instance weighting controlling

the weighted random sampling is only removing a few instance per-sample.

Whereas, in the case of mmin = 10 and mmax = 20, then the instance weighted

sampling is removing 90% to 80% of the data, thus it is most likely that only

the data with the highest weights remains in each sample.

NMI was used to evaluate the experiments. The labels were based on distribu-

tion they were generated by. This extrinsic approach to evaluation will provide

a clear picture for how well clustering fits the intended clusters without any

artefacts of intrinsic clustering validation.

139

Table 6.2: The pairs of mmin and mmax to be trialled.
Range
10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
20 10-30 20-40 30-50 40-60 50-70 60-80 70-90
30 10-40 20-50 30-60 40-70 50-80 60-90
40 10-50 20-60 30-70 40-80 50-90
50 10-60 20-70 30-80 40-90
60 10-70 20-80 30-90
70 10-80 20-90
80 10-90

Results

The results of the hyper-parameter optimisation are presented first. To avoid

overloading a single plot with too much information, the clustering perfor-

mance of each of the pairs mmin and mmax is presented over several plots by

range value.

Firstly, across all plots it can be observed that regardless of choice of mmin

and mmax IWSE’s clustering performance in terms of NMI is unaffected until

the imbalance scaling factor surpasses 3. Beyond this value, then the selection

of mmin and mmax is clearly important.

For the mmin and mmax pairs of range 10, it is clear to see that there is an

optimal choice for mmin and mmax. Figure 6.3, shows that extreme pairs with

either strong instance weighting (10-20) or weak instance weighting (60-70),

(70-80) and (80-90) tend to perform the poorest.

In Figure 6.4, the results of mmin and mmax with range 20 are shown. Again,

the extreme values perform poorly. Also similar, is that the lower values per-

form the best, with (20-40) and (30-50) performing the best for higher imbal-

ance factor values. It seems that as the imbalance increases, it is necessary to

140

Figure 6.3: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 10.

use lower values for mmin and mmax (i.e. stronger instance weighting). How-

ever, not too low such as (10-20). It is likely that (10-20) is not sampling

enough of the data to partition the data well.

Figure 6.4: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 20.

141

Interestingly, there is a drop in performance, for the highest imbalance levels

seen when the sampling range is 30 or more. This could be because the broader

the range is, the less optimised the sampling is. Comparing across the figures

this can be observed. In Figures 6.3 and 6.4, some pairs of mmin and mmax

provide very good clustering performance (in terms of NMI) of ∼0.9 for +4.5

imbalance factors, however, in Figures 6.5, 6.6, 6.7, 6.8 accuracy is only ∼0.8

for +4.5 imbalance factors.

Figure 6.5: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 30.

By calculating the average NMI across each of the imbalance factor values

for each pair of mmin and mmax an overall indication of performance can be

ascertained, see Table 9.13 in the Appendix. Based on this, the best perform-

ing mmin and mmax parameter values are (20-30), (10-50), (20-60), (50-60),

(10-60), (20-50), (30-50), (20-40), (40-50) and (30-40). As observed from the

plots, the best performing mmin and mmax values have a range of less than or

equal to 40 and involve using an mmax of ≤60%. The best performing mmin

142

Figure 6.6: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 40.

Figure 6.7: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 50.

and mmax pairs can be compared in Figure 6.9.

Further aggregating the results by range, shows two interesting correlations,

see Table 6.3. Firstly, as the range increases the clustering accuracy decreases,

143

Figure 6.8: The performance IWSEU on the imbalanced data with mmin and
mmax parameters spanning a range of 60, 70 and 80.

Figure 6.9: The best performing mmin and mmax parameters for IWSEU on
the imbalanced data.

this trend has a Pearson’s correlation coefficient of -0.665. The suspected

reason for this is that as the range becomes increasingly disperse it is less fo-

cused on the optimal sample size – i.e. the optimal level of instance weighting.

Secondarily, there is a weak positive correlation (0.317) between range and

144

Table 6.3: The NMI results of the tested mmin and mmax pairs across all
imbalance factors aggregated by mean and st. dev. by range.

Mean NMI Standard Deviation NMI
Range

10 0.870524 0.007655
20 0.870523 0.009115
30 0.871842 0.009628
40 0.876535 0.009222
50 0.879414 0.008370
60 0.862021 0.010371
70 0.861184 0.010125
80 0.849350 0.008215

clustering performance, this suggests that smaller ranges perform more stably.

Note the range of 80, does not fit the pattern seen, but this may be because it

is only the average of one series of results (10-90).

In summary, my tests provide some insights in how to select mmin and mmax

. For this dataset the best choice is 30-40 or 40-50, as this achieves the best

overall clustering performance. However, it is inferred that a broader range

will be more broadly applicable across a range of datasets. The results, (par-

ticularly Table 9.13), show that 30-50, 20-40, or 10-60 all perform very well,

but have larger ranges 20, 20, 50 respectively. Having a larger range will en-

able the IWSE method to extract a greater amount of information from the

dataset. Additionally, within that range there is an increased chance of a

high-performing sample. Thus, as a suggestion of a default values, for robust

performance, mmin = 30 and mmax=50 are suggested alongside M=32. Mov-

ing forwards, these values will be used used across a variety of datasets.

Finally, using the aforementioned parameters for the IWSE algorithms, the

IWSE approaches were compared with spectral clustering and a spectral en-

semble. Figure 6.10 shows that as the clusters become increasingly imbalanced,

145

Figure 6.10: IWSEU and IWSEL perform well despite imbalanced clusters.

the performance of spectral clustering and SER drops significantly. When the

imbalance ratio reaches 3.75, IWSEL and IWSEU offer superior performance

over S or SER. As can be expected, IWSEH performs increasingly poorly as

the imbalance increases (due to lack a sampling of the smallest cluster). How-

ever, interestingly IWSEU performs similarly to IWSEL and on occasion even

better than IWSEL. This is despite incorporating degenerate “H” partition-

ings. It seems that this could be due to the consensus function benefiting from

the degenerate partitionings, as has been observed in other research [53].

146

6.4.2 Experiment B

Setup

Image segmentation is a popular and important application of clustering algo-

rithms and image segmentation performance can easily be assessed visually.

Yudong He provides a image for assessing segmentation performance2 for the

special case of imbalanced clusters [67]. The image contains a pale wooden

surface. On the surface is a black pen, and a number of red, green, blue, or-

ange and yellow round plastic tokens/chips/coins. The image is lit from the

right, producing a graduated effect across the surface. Relatively, the areas

consumed by the different objects is much less than the background (making

this an imbalanced clustering problem). Yudong He finds that segmentation by

K-Means, Fuzzy K-Means, Maximum-Entropy Fuzzy Clustering all result in

faulty clusterings. These clustering algorithms wrongly partition the wooden

surface into two separate clusters. While their proposed method Equilibrium

K-Means is able to group the image accurately into 5 clusters: (background),

(red/orange tokens), (blue tokens), (yellow tokens) (green tokens and pen).

To trial the proposed algorithm the following setup was used. The aforemen-

tioned “chipcoin” image was saved as 64x48 (3072 pixels) JPG format image

from the original work and was then loaded using an RGB colour space. Then

S, SER, IWSEL and IWSEU were used to segment the image 5 times each. To

assess the impact of the instance weighting, settings between the algorithms

were kept consistent and sensible values were selected based on the previous

experiments findings where relevant. For spectral, k was set to 6, the affinity

2Note: Image appears in submissions v1 and v2 of [67].

147

matrix used 10 nearest neighbours. For the Spectral Ensemble, again k was

set to 6, and the affinity matrix used 10 nearest neighbours, the bagging-based

ensemble used 32 bags and randomly sampled between 30-50% of the instances

per bag. For IWSEL and IWSEU, again k was set to 6, and the affinity ma-

trix used 10 nearest neighbours, the ensemble used 32 bags sampling between

30-50% of instances per bag based on instance weighting based on density esti-

mated using the exponential function, the bandwidth value for the kernel was

chosen dynamically using the Silverman method.

Results

Figure 6.4 shows 5 outputs of the 4 algorithms on the “chipcoin” image. Col-

umn S shows the five runs of Spectral clustering, notice that the background is

not correctly identified and is subdivided. Also, the pen is mistakenly grouped

with the red/orange chip-coins. Column SER shows the five runs of Spectral

Ensemble, similar to S, the background and pen are not uniquely identified.

Column IWSEL shows the five runs of Instance Weighted Spectral Ensemble

in mode “L” (preferring low density instances), notice the background and

objects have been segmented well. Column IWSEU shows the five runs of

Instance Weighted Spectral Ensemble in mode “H” (preferring high density

instances), the result is similar to IWSEL although less reliable. IWSEL is

highly effective on this image as it meets the conditions required for it to work

well. The background is numerous and varied (low density) while the impor-

tant objects are relatively consistent (high density) even if they are in lesser

in occurrence.

This is promising initial finding and shows that the instance weighting can aid

148

in image segmentation tasks. Although, it is clear that more experimentation

with more images would be necessary to bolster this finding.

Table 6.4: Top: Chip-coin image from [67], notice large amount of graduated
background and the imbalanced quantities of chip coins. The columns show 5
execution of S, SER, IWESL, IWSEU segmenting the image.

S SER IWSEL IWSEU

149

6.4.3 Experiment C

Setup

Artificial Datasets

A variety of 2D artificial datasets were chosen. 2D datasets were chosen as

any issues with clustering results can be diagnosed visually. To test the ben-

efit of the proposed algorithm, datasets including those with imbalance were

selected. Additionally, datasets without any strong class imbalance selected

too, to assess if the algorithm would have negative consequences when apply

upon a balanced dataset. See Table 6.5 for descriptions of datasets.

“2d-20c-no0”, “2d-3c-no123” and “2d-4c-no4” contain a class imbalance. “2d-

20c-no0” has an imbalance of ×4.7 between the smallest and largest cluster.

“2d-3c-no123” has a ×4.57 imbalance and “2d-4c-no4” has a ×6.79. The na-

ture of the imbalance is between the clusters is smooth rather than harshly

stepped. The clusters are close to each other, but mostly not overlapping.

“Compound” was selected as another dataset with imbalance. “Compound”

has a large imbalance of ×9.88 between the smallest and largest cluster. Again

the imbalance is smooth with clusters of various sizes, rather than harshly

stepped. This dataset, unlike the previous choices, tests a clustering algo-

rithms ability to handle complex shapes and concentric clusters.

“Jain” also called “half-moons”. This is a popular benchmark dataset and

includes a minor imbalance of ×2.85 and interlocking clusters which require a

clustering model to fit the complex shapes which cannot be separately linearly

150

(without constructing some representational space).

“Long3” is a relatively simple dataset featuring two skewed clusters with an

imbalance of ×4, this dataset is similar to “2d-20c-no0”, “2d-3c-no123” and

“2d-4c-no4”.

“sizes5” is another imbalanced dataset. However, this dataset has a strong

imbalance of ×9.99 and the imbalance is harshly stepped. With one extremely

large cluster and three relatively very small clusters. The clusters are slightly

overlapping.

“Zelnik1”, “Zelnik2”, “Zelnik3”, “Zelnik4”, “Zelnik5” and “Zelnik6” were se-

lected as the balanced datasets. They are all relatively balanced, and have

imbalance factors of ×2.28, ×1.12, ×1.62, ×1.38, ×1.28, and ×1.79 respec-

tively. “Zelnik1” and “Zelnik6” are concentric. “Zelnik2” and “Zelnik4” con-

tain square clusters embedded with a larger noise cluster. “Zelnik3” is sim-

ilar to “Jain” but is more balanced and has 3 clusters. “Zelnik5” has four

line-shaped clusters of different sizes. As the instance count remains similar

between clusters while the size is different the density for each line is different.

“DiscTubes” and “ThreeWells” were replicated from earlier research [15, 59]

these datasets are known to challenge weaknesses in the spectral clustering

algorithm. “Discs and Tubes” datasets features geometrically defined areas

of uniformly distributed instances. For “Discs and Tubes” the entirety of

the instances within the area of the shapes are uniformly distributed. In the

“ThreeWells” dataset one large distribution is positioned next to two smaller

distributions.

151

Table 6.5: Descriptions of the synthetic datasets trialled.
Name Instances Features Clusters Dataset Type Source

2d-20c-no0 1517 2 20 cluster various sizes3 Artificial From [68]
2d-3c-no123 715 2 (264)(370)(81) Artificial From [68]

2d-4c-no4 863 2 (421)(86)(294)(62) Artificial From [68]
Compound 399 2 (50)(92)(38)(45)(158)(16) Artificial From [69]

Jain 373 2 (97)(276) Artificial Credit [32]
Long3 1000 2 (800)(200) Artificial From [68]
sizes5 1000 2 (769)(77)(77)(77) Artificial From [68]

Zelnik1 299 2 (61)(139)(99) Artificial From [70]
Zelnik2 303 2 (95)(102)(106) Artificial From [70]
Zelnik3 266 2 (118)(73)(75) Artificial From [70]
Zelnik4 622 2 (109)(150)(114)(111)(138) Artificial From [70]
Zelnik5 512 2 (117)(122)(123)(150) Artificial From [70]
Zelnik6 238 2 (100)(82)(56) Artificial From [70]

Discs and Tubes 1722 2 (1468)(132)(122) Artificial Replicated from [59]
Three Wells 1660 2 (1000)(330)(330) Artificial Replicated from [59]

Figure 6.11 shows each of the datasets, with colour being used to show the sug-

gested clustering, and Figure 6.12 shows datasets with the colouration showing

the weighting assigned by IWSE.

Where datasets not are replicated, they were downloaded from:

https://github.com/deric/clustering-benchmark/.

Benchmark Datasets

The popular “Iris”, “Ecoli”, “Wine”, “Zoo” datasets were downloaded from

the UCI Machine Learning Repository [41]. These datasets were trialled to

provide a benchmark against other methods and to assess the suitability of

the methods under different conditions. These benchmark datasets are pop-

ular choices and are of different instance, feature and cluster numbers. “Iris”

contains balanced clusters. While “Ecoli” has imbalanced clusters. “Wine”

and “Zoo” are relative high-dimensional, thus may prove challenging for my

kernel based approach. Unlike the others, which are continuous, the “Zoo”

3(106)(97)(43)(70)(85)(50)(85)(108)(65)(108)(33)(103)(23)(71)(88)(85)(84)(75)(53)(85)

152

Figure 6.11: The artificial datasets trialled, showing the class labels.

dataset contains several one-hot encoded columns, which can present a chal-

lenge to techniques not especially designed for this type of data. See Table 6.6

for a description of the datasets.

The experiment setup was as follows. As in Experiment A, IWESU, IWSEL,

IWSEH, SER and S where again compared.

153

Figure 6.12: The artificial datasets trialled, showing the weighting applied
within IWSE.

Clustering was executed with the k value matching the intended number of

clusters indicated by the dataset’s labels. Spectral clustering was applied with

k∗ nearest neighbours set to 9 (for constructing the affinity matrix). The en-

semble methods used 32 bags.

154

Table 6.6: Descriptions of the benchmark datasets trialled
Name Instances Features Clusters Dataset Type Source

Iris 150 4 (50)(50)(50) Benchmark [41]
Ecoli 336 7 (143)(77)(2)(7)(35)(20)(52) Benchmark [41]
Wine 178 13 (59)(71)(48) Benchmark [41]
Zoo 101 16 (41)(13)(20)(4)(8)(10)(5) Benchmark [41]

Additionally, instance selection based methods were evaluated for compari-

son. One method used was Stratified Sampling Instance Selection followed by

Spectral (SSIS-S). This used N-Dimensional stratified sampling to take sam-

ple of the dataset. This method divides each dimension of the dataset into

5 equal-width ranges, hence given 2-dimensions, this would create 25 bins.

From each bin, 10 instance are selected. This sample is then clustered using

spectral clustering and the labels from the clustering are then propagated by

a KNN kernel configured to use the 9 nearest neighbours. Another instance

selection method trialled is Weighted Random Sampling followed by Spectral

(WIS-S). This approach samples 50% of the data using a weighted random

function based on the output of the exponential kernel. This effectively shows

the performance of a base clusterer within IWSEL. Finally, Threshold Instance

Selection followed by Spectral (TIS-S) again uses the same exponential kernel

and again takes a 50% sample of the data but instead simply takes the least

dense 50% and then applies spectral clustering. After SSIS-S, WIS-S and

TIS-S label propagation is applied using a knn kernel with neighbours 9 to la-

bel instances that bypassed the clustering. Experiments were repeated 5 times.

Results

155

Table 6.7: Comparison of IWSE clustering performance (NMI) on imbalanced datasets.

Dataset 2
d
-2
0
c-
n
o
0

2
d
-3
c-
n
o
1
2
3

2
d
-4
c-
n
o
4

C
o
m
p
o
u
n
d

J
a
in

L
o
n
g
3

si
ze
s5

d
is
c-
tu

b
es

th
re
e-
w
el
ls

Algorithm
IWSEU 0.93 ± 0.032 0.96 ± 0.004 0.95 ± 0.098 0.79 ± 0.049 0.70 ± 0.247 1.00 ± 0.000 0.87 ± 0.148 0.61 ± 0.196 0.77 ± 0.006
IWSEL 0.94 ± 0.017 0.96 ± 0.004 1.00 ± 0.000 0.74 ± 0.008 0.75 ± 0.180 1.00 ± 0.006 0.79 ± 0.123 0.88 ± 0.217 0.52 ± 0.035
IWSEH 0.85 ± 0.028 0.75 ± 0.009 0.75 ± 0.014 0.72 ± 0.038 0.24 ± 0.008 0.85 ± 0.255 0.70 ± 0.146 0.52 ± 0.007 0.74 ± 0.008
SER 0.93 ± 0.023 0.96 ± 0.014 0.99 ± 0.006 0.76 ± 0.011 0.41 ± 0.050 0.96 ± 0.044 0.60 ± 0.017 0.69 ± 0.240 0.66 ± 0.007
SSIS-S 0.92 ± 0.025 0.71 ± 0.034 0.94 ± 0.094 0.68 ± 0.054 0.65 ± 0.199 1.00 ± 0.000 0.94 ± 0.012 0.36 ± 0.342 0.50 ± 0.039
WIS-S 0.89 ± 0.018 0.75 ± 0.012 0.87 ± 0.165 0.73 ± 0.010 0.42 ± 0.053 1.00 ± 0.000 0.88 ± 0.052 0.86 ± 0.201 0.55 ± 0.006
TIS-S 0.75 ± 0.031 0.96 ± 0.000 0.69 ± 0.000 0.75 ± 0.005 0.51 ± 0.000 1.00 ± 0.000 0.45 ± 0.000 0.51 ± 0.000 0.30 ± 0.000
S 0.91 ± 0.036 0.97 ± 0.000 0.83 ± 0.098 0.75 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 0.54 ± 0.000 0.94 ± 0.000 0.60 ± 0.000

Table 6.8: Comparison of IWSE clustering performance (NMI) on approximately balanced datasets.

Dataset Z
el
n
ik
1

Z
el
n
ik
2

Z
el
n
ik
3

Z
el
n
ik
4

Z
el
n
ik
5

Z
el
n
ik
6

Algorithm
IWSEU 1.00 ± 0.000 0.61 ± 0.007 1.00 ± 0.000 0.74 ± 0.012 1.00 ± 0.000 0.67 ± 0.008
IWSEL 0.85 ± 0.175 0.57 ± 0.026 0.97 ± 0.056 0.75 ± 0.002 0.79 ± 0.050 0.66 ± 0.026
IWSEH 0.86 ± 0.209 0.54 ± 0.086 0.92 ± 0.061 0.68 ± 0.004 0.99 ± 0.014 0.49 ± 0.001
SER 0.73 ± 0.243 0.60 ± 0.026 1.00 ± 0.009 0.72 ± 0.015 0.97 ± 0.077 0.49 ± 0.002
SSIS-S 0.77 ± 0.038 0.68 ± 0.082 0.86 ± 0.094 0.74 ± 0.032 0.81 ± 0.114 0.70 ± 0.018
WIS-S 0.66 ± 0.000 0.62 ± 0.011 0.74 ± 0.013 0.75 ± 0.010 0.78 ± 0.091 0.69 ± 0.004
TIS-S 0.73 ± 0.056 0.55 ± 0.089 0.58 ± 0.000 0.51 ± 0.048 0.68 ± 0.137 0.53 ± 0.032
S 0.81 ± 0.171 0.87 ± 0.000 0.74 ± 0.145 0.88 ± 0.000 0.71 ± 0.103 1.00 ± 0.000

156

Firstly, considering the results of the 9 imbalanced artificial datasets, seen in

Table 6.7: “2d-20c-no0”, “2d-3c-no123”, “2d-4c-no4”, “Compound”, “Jain”,

“Long3”, “sizes5”, “Disc-Tubes” and “ThreeWells”.

It can be seen that “2d-20c-no0” and “2d-3c-no123” perform very well us-

ing just the plain spectral clustering algorithm, which leaves little room for

improvement. For “2d-20c-no0” IWSEL is best performing algorithm with a

NMI score of 0.94 , but it is only a narrow improvement on SER scoring 0.93.

For “2d-3c-no123” S is best performing algorithm. Minimal to no benefit was

found for applying instance weighting to these datasets.

For “2d-4c-no4” spectral performs modestly well (0.83), but leaves room for

improvement. IWSEL performs best matching the intended label exactly, but

as seen before offers only a marginal improvement on SER scoring 0.99. This

shows the benefit is from the application of the ensemble technique rather than

instance weighting.

For “Compound” a promising result is seen on imbalanced data, IWSEU out-

performs all the other methods including the instance selection techniques. A

possible reason why IWSEU worked well in this case is that “Compound” is

very varied in terms of distribution, and thus other methods lack the nuance

and flexibility to recognise all the different distributions in the dataset.

For “Jain” spectral clustering alone provides a perfect match with the sug-

gested clustering labels, despite the imbalance cluster sizes. IWSEU and

IWSEL perform better than the instance selection or the plain ensemble meth-

ods, but still significantly worse than spectral alone.

157

Moving to “Long3” both plain spectral, the instance selection methods and

instance weighting are all able to separate this dataset.

Next “sizes5” shows an negative finding, with the stratified sampling based

instance selection performing best. This is an extreme case with a ×9.99 im-

balance. It is possible that if IWSE’s parameters were tuned to account for

more extreme imbalance it may perform better.

For “Disc-Tubes” spectral performs the best leaving little room for improve-

ment. While the other methods hinder performance. A possible reason for this

negative finding is that this dataset has a lack of a useful variation in density,

which logically prevents the density based techniques “IWSE”, “WIS-S” and

“TIS-S” from improving upon SER or S respectively. However, it is suspected

that is only part of the issue, since all methods perform worse that S, not

approximately equal to. The thing that all methods other S have in common

is that they take sample(s) of the data. Therefore, it seems likely that therein

lies the problem. The sample taken may “fracture” the clusters and thus mis-

lead the partitioning and decrease the clustering performance. Notice that in

6.12, there are misleading density “hotspots” in the uniform randomly noise,

which could cause misleading fractures after sampling.

Lastly, for the imbalance datasets “ThreeWells” shows a positive outcome for

IWSEU on a highly overlapping dataset. It seems that the combination of

instance weighting and the ensemble method has allowed IWSEU to identify a

variety of partitions separating different pairs of clusters well. Then by com-

bining this information it has been able to devise an overall partitioning which

158

is more accurate than its individual components (this can be deduced by com-

paring with the WIS-S result). This positive result supports the findings of

Experiment A, as “ThreeWells” is similar to the generated datasets in Exper-

iment A.

Secondarily, considering the 6 (mostly) balanced datasets: “Zelnik1”, “Zel-

nik2”, “Zelnik3”, “Zelnik4”, “Zelnik5” and “Zelnik6”, see in Table 6.8. On

these datasets, as there are no severe imbalances, it is not expected that the

IWSE approach will excel. These datasets are included to see under what

conditions the proposed approach may detract from performance.

“Zelnik1” tests two aspects of a clustering algorithm. Firstly, it tests a clus-

tering algorithms ability to handle concentric clusters and it also tests a clus-

tering algorithms ability to recognise clusters of different densities. For “Zel-

nik1” IWSEU performs best outperforming all other test techniques. Again,

this shows instance weighting and the ensemble technique complimenting each

other. Similarly, “Zelnik3” and “Zelnik5” show somewhat similar results (al-

though in their cases, more of the benefit appears to be originating from the

use of an ensemble - notice the NMI score of SER). “Zelnik3” and ‘Zelnik5” are

similar to “Zelnik1”, but are less concentric, and not concentric, respectively.

“Zelnik2”, “Zelnik4” and “Zelnik6” show similar findings. For these datasets,

it is most advantageous to simply apply spectral. Unfortunately, applying my

approach (albeit where it is not required) does comprise performance in these

cases. For “Zelnik2” and “Zelnik4”, it is likely the case that DBSCAN/OP-

TICS, would perform best on this dataset, as these datasets, have a “noise”

cluster surrounding well-grouped clusters. The “Zelnik6” result is interesting,

159

because visually the dataset is similar to “Zelnik1”, on which the proposed al-

gorithm performs well, however here it does not. By examining the weighting

shown in 6.12, it can be hypothesised that this is similar to “DiscTubes” the

instance weighting could be generating unhelpful fractures in the samples.

An important observation is that often IWSE is better WIS-S or SER, this

shows the combination of these technique allows them to perform better than

either one individually. Demonstrating some promise for the instance weight-

ing technique.

Other general observations, include that stratified sampling is quite an ef-

fective technique for handling imbalanced clusters, with a minimum of user

intervention. Of the instance selection methods trialled stratified sampling

was frequently the best of the instance selection based techniques. Although

there is a couple of exceptions to this, notably “Compound” and “disc-tubes’.

In these cases, it likely that the bin boundaries create artefacts which misled

the clustering. This can be overcome by careful bin-width and bin-sample-size

selection. But when the dimensionality is moderate it can be very costly to

increase the number of bins (i.e. reduce the bin-width)4.

Another observation is that SER is not always better than spectral. Ensem-

ble techniques are often praised in the literature as a reliable way to increase

clustering performance, but these experiments show that ensembles can also

detract from clustering performance, despite reasonable choices. In this case,

a possible cause is that the individual samples (at most 50% of the data) fail

to capture the representative view of the data.

4For example: in 7-Dimensional dimensional space dividing each dimension into 5 equal-
width bins creates 57 bins, but dividing into 15 bins creates 157 (170859375) bins.

160

Normalized Mutual Info Score

Dataset E
co

li

Ir
is

W
in
e

Z
o
o

Algorithm
IWSEU 0.64 ± 0.007 0.78 ± 0.030 0.87 ± 0.022 0.83 ± 0.015
IWSEL 0.65 ± 0.005 0.73 ± 0.009 0.86 ± 0.027 0.83 ± 0.011
IWSEH 0.57 ± 0.020 0.83 ± 0.045 0.86 ± 0.018 0.78 ± 0.024
SER 0.56 ± 0.016 0.78 ± 0.007 0.87 ± 0.013 0.83 ± 0.019
SSIS-S 0.64 ± 0.000 0.78 ± 0.000 X X
WIS-S 0.65 ± 0.014 0.71 ± 0.076 0.85 ± 0.022 0.75 ± 0.037
TIS-S 0.69 ± 0.000 0.57 ± 0.000 0.89 ± 0.000 0.68 ± 0.025
S 0.65 ± 0.000 0.76 ± 0.000 0.88 ± 0.000 0.79 ± 0.000

Considering the imbalanced datasets “Ecoli” and “Zoo”. “Ecoli” shows a small

success for TIS-S. Instance weighting nor instance selection based on weight-

ing (ensemble or not) does not outperform spectral. This could be due to

two factors. Firstly, the Ecoli dataset has 7 features, which would weaken

the effectiveness of kernel-based methods. Secondly, some of the clusters are

very small (the two smallest clusters are just 2 and 7 instances respectively),

causing the random sampling methods to risk omitting them entirely. TIS-S’s

success may have been due to only removing instances from the largest most

dense cluster. “Zoo” is quite unlike all other datasets tested so far as it is

makes use of one-hot encoding. On this dataset, ensemble techniques perform

best, but an advantage to instance weighting is not seen. A positive takeaway

from this is that IWSE does not fail on one-hot encoded data. Note that due

to higher number of features in “Zoo” the n-dimensional stratified sample was

not feasible.

Regarding the more balanced datasets, “Iris” and “Wine”. For “Iris” inter-

estingly, the approach with the greatest clustering performance is IWSEH.

This indicates that ignoring the less-dense noise is beneficial. For the “Wine”

dataset TIS-S performed best, it is interesting to see that this simple method

works well in practice on real-world datasets. Again, due to the higher num-

161

ber of features, the n-dimensional stratified sample was not feasible for “Wine”.

On a positive note, across all the benchmark datasets tested, the application of

IWSE is does not decrease performance, when it is not required or necessarily

well-suited.

6.5 Conclusion

In summary, all three experiments show that the IWSE method can be ef-

fective on imbalanced data. Additionally, Experiment B, shows how IWSE

could be useful for image segmentation where the objects in the image are of

imbalanced sizes. While Experiment C indicates that IWSE is most beneficial

when datasets have a density variation between clusters (as anticipated), note

the successes with “Compound”, “ThreeWells” and “Zelnik1”.

It is believed that this research is the first attempt at creating diversity in the

generative mechanism by using instance weighting to sub-sample for a spectral

bagging ensemble. The goal of this initial research was to answer RQ2 (“How

can instance weighting be applied to graph-based clustering algorithms to han-

dle imbalanced data?”). The chapter has discussed some of the options when

designing an instance weighted cluster ensemble and presents an implementa-

tion of a promising approach from this discussion. The results, particularly

Figure 6.10 demonstrate that IWSE leads to higher clustering performance in

terms of NMI than a spectral clustering ensemble when handling simple im-

balanced datasets.

162

A further benefit of the approach is that the bagging element of the design

makes execution on distributed hardware trivial. Furthermore, this approach

can mostly be implemented using a readily available libraries. However, the

IWSE approach does have some drawbacks. Most notably its current CSPA

based consensus function is computationally expensive. This because it cre-

ates a n × n matrix comparing the co-membership of instances amongst the

base clusterings. Selecting a more computationally efficient consensus function

(such as HGPA, as recommended by [65]) could overcome this weakness.

Comparing against instance selection, these experiments do not show a per-

fectly consistent advantage over instance selection or just plain spectral. Rather,

the result is more mixed. It seems the instance weighting technique is not as

widely applicable has was theorised, the mixed results suggest that further

work is required to mitigate the risk of the IWSE approach performing worse

than plain spectral under certain conditions.

An interesting secondary finding is an insight into why the IWSEU method is

effective. To illustrate this point, Figure 6.13 shows some of the partitionings

created within the IWSEU approach and the resultant accumulated affinity

matrix to be used for the final clustering. On the left of Figure 6.13, IWSEU

randomly chose the “H” mode, in this weighting scheme the base clusterings

confuse the small cluster with the medium cluster, but they do encode some

information about the largest cluster that the “L” mode does not capture.

In the centre of Figure 6.13, IWSEU randomly chose the “L” mode, in this

weighting scheme the base clusterings consistently identify the smallest clus-

ter and achieve good clustering performance. It seems the CSPA method of

summing the pairwise similarity across the bags (Figure 6.13 right) then clus-

163

tering, can handle some degenerate partitionings and even benefit from the

information they provide.

Figure 6.13: Left: a co-association matrix generated by a base clustering in
IWSE using mode “H”. Centre: a co-association matrix generated by a base
clustering in IWSE using mode “L”. Right: The sum of the co-association
matrices.

Finally and briefly, image segmentation is an important use of clustering for

example image segmentation is used in enhancing and annotating medical im-

ages (see [71]). In Experiment B, while limited, it was demonstrated how

IWSE can be useful in an imbalanced image segmentation use case. This ex-

periment demonstrates some initial promise on real-world data. The practical

application of the proposed clustering approach will be further investigated in

the followed chapter.

In conclusion, this chapter shows some promising initial research into how in-

stance weights could be used to perturb sub-sampling in the generative mech-

anism for a spectral bagging ensemble, enhancing its robustness to challenging

structures and enhancing clustering performance.

164

6.6 Future Work

To make IWSE easier to use mmin and mmax could be simplified, to a mean

sample value and co-variance value, this allows the range of sample sizes and

their average size to be controlled independently, rather than by adjusting two

values together. This would simplify hyper-parameter optimisation for the

IWSE approaches.

Looking over the results and weighting the created by the exponential kernel

using the Silverman bandwidth choice on the artificial, some cases, such as

“2d-3c-no123”, “Zelnik5”, “Zelnik6” and “disctubes”. Tuning the bandwidth

manually may be have been beneficial as is possible that the mmin and mmax

choices could have been too small. In Figure 6.12, notice that the weight within

a particular clusters is effected by the nearby clusters (see “2d-3c-no123”, “Zel-

nik5” and “Zelnik6” for examples of interactions between clusters) or even the

noise in the uniform distribution (see “disctubes” hotspots) these artefacts are

potentially causing unwanted sampling behaviour by IWSE. Causing fragmen-

tation in the partitions.

IWSE weights instances, but Zhang [49] highlights the importance of weight-

ing the base clusterings. This could be easily integrated into my method. The

base clusterings could be compared in terms of pair-wise similarity, mutual in-

formation or other intrinsic quality metrics to establish which should have the

greatest impact on the clustering outcome. Naturally, the feature weighting

techniques could be integrated too [26, 72].

It is also suggested that weighting methods could combine several metrics to

165

encode as much information about the dataset as possible [49, 65]. The IWSEU

approach only uses density (and inverse density), but could be extended with

other weighting schemes to emphasise different aspects of a dataset. This is

pertinent because relying on density information alone is imperfect, since den-

sity variation does not always accompany a difference in cluster sizes (in terms

of instance count). As suggestions to integrate with our approach, methods

from previous research have used angular information or information about the

connectivity of the clusters [9, 25] to encode information beyond the density

and further perturb the samples for the bagging ensemble proposed.

This work focused on the generative mechanism, and used CSPA with spec-

tral clustering for the consensus function. However other works [65] have found

that HPGA can produce better results, in terms of clustering performance and

computational cost, hence further study into combing the best practices re-

garding the generative mechanism and consensus function could yield a higher

performance algorithm.

Another consideration is multi-view clustering. This is currently a very ac-

tive research area and very relevant to high-dimensional data collected across

a number of modalities, as is typical in Big Data Analysis. Multi-view clus-

tering involves selecting different sub-sets of features to cluster and combines

the results. Our method could complement a multi-view ensemble approach.

Furthermore, the inherent dimensionality reduction in this technique would

allow my kernel based methods to work without suffering from the curse of

dimensionality.

Finally, inspired by “Evidence Accumulation Clustering”’s split and merge

166

strategy, a further improvement could be executing the bags with a k value

sometimes higher than the number natural/expected clusters, while still using

the natural k value for the consensus clustering. This could possibly enhance

the clustering performance of the approach as seen in [63].

167

Chapter 7

Instance Weighting Clustering

for Character Clustering

7.1 Introduction

The previous chapter introduced an instance weighted clustering ensemble

framework using the spectral algorithm and showed the approach had some

merit on imbalanced simple benchmark and artificial datasets. To further this

investigation this chapter conducts more trials with IWSE approach. The aim

of this chapter is to answer RQ3 “Under what conditions does instance weight-

ing enhance clustering performance on data characterized by the presence of

outliers or class imbalance?” assessing the conditions in which IWSE can

increase clustering performance on more complex datasets. To assert if the

instance weighted spectral ensemble findings based on artificial and diagnostic

datasets extrapolate to more complex data.

To achieve this aim, the objective of this chapter is to investigate the appli-

cation of IWSE upon image data. This is a worthwhile objective since an

168

increasing multi-media rich world, (thanks to developments such as image and

video based social-media platforms, and advanced computer vision embedded

into automotive systems, modern data warehouses storing all this data) an

ever important area for clustering is image data.

Clustering can be applied to image datasets in two ways: 1. At the image-

by-image level, separating images. Torres et al. provides a recent example

of this [73]. In their work, images from Synthetic-Aperture Radar (SAR) are

cropped into image tiles and clustered to identify different types of vegetation,

(specifically crops). 2. The other way in which clustering can be applied to

image data is on individual images to segment areas within the image. This

can be highly useful medical in a context to enhance or emphasis certain parts

of medical images. For example in Sinha et al.’s work, clustering is used to

enhance fundus photography1 for the purpose of identifying damage to blood

vessels (typically caused by diabetic retinopathy) [71]. This is accomplished

by segmenting the images using clustering. Then using the under utilised

green and blue channels (naturally retinae are mostly red) the different areas

of the image can be differentiated, making it easier for trained staff to identify

pathologies of the retina.

While agriculture and medicine are important areas for data science to be ap-

plied, they require domain expertise to investigate thoroughly. On the other

hand, the MNIST handwritten digits dataset [74] is much more accessible and

does not require specialist knowledge to interpret. The MNIST handwrit-

1Fundus photography is a non-invasive medical procedure that uses a specialized camera
to capture images of the inside-back of the human eye. This area, called the fundus, includes
the retina, macula, and retinal blood vessels. By illuminating the fundus through the pupil
(which is dilated using medicated eye drops) and then capturing the reflected light, the
images produced are useful for diagnosing and monitoring conditions.

169

ten digits is very well researched dataset, and highly optimal approaches have

been suggested for classifying this dataset. However, the focus of this work not

proposing an more optimal strategy for character classification, rather the pur-

pose is to investigate clustering of imbalanced datasets of images. The MNIST

handwritten digits dataset complexity is derived from the natural variation in

how handwritten digits can be drawn. This should provide a meaningfully

complex challenge for the IWSE, while remaining within a simple to reason

about domain. Through investigating, if and where the IWSE approach is

effective on MNIST then these findings may be translated into other domain

requiring specialist knowledge.

7.2 Related Work

In this subchapter, literature related to clustering, images datasets and han-

dling imbalance is investigated. The aim of this literature review is to identify

the extent to which imbalance has been investigated and the extent to which

any techniques benefit clustering performance. This review will give particular

attention to the MNIST handwritten digits dataset, and challenge of separat-

ing the digits using clustering.

7.2.1 Clustering Image Datasets

Pei and Ye investigated the application of k-means and Mini-Batch k-means

on MNIST digits dataset, with the purpose of evaluating the effectiveness of

clustering techniques applied to the MNIST digits dataset [75]. No particu-

lar preprocessing was applied, although after the clustering step t-Distributed

170

Stochastic Neighbour Embedding (t-SNE) was used to visualise results seen

in the paper. Using Mini-Batch k-means, 87% accuracy was achieved. This

performance surpasses some classification techniques, which have the benefit

of the label information for training. This shows that clustering is an effective

tool for this task. Furthermore, based on the results, it was found that “0”,

“6”, and “8” were the easiest digits for k-means and Mini-Batch k-means to

identify, while “1” was very difficult. It was found that “4”, “7” and “9” are

hard to distinguish, as are “3” and “5”, the author reasonably hypothesises

that this is due to their somewhat similar shape. It was concluded that fur-

ther experimentation with other clustering algorithms would likely surpass the

accuracy achieved. Unlike my work this work focuses on partitioning-based

clustering, and does not address imbalanced data. As described, this work

provides useful insights into the challenge of differentiating the different char-

acters within the MNIST dataset.

Another work performing clustering on the MNIST digits dataset is [76]. Pour-

mohammad et al.’s research highlights the benefit of preprocessing the digits

prior to analysis. The preprocessing steps are as follows, a pixel cut (to crop-

out/remove inactive pixels), Principle Component Analysis (PCA), k-means,

Linear Discriminant Analysis (LDA) then finally a Bayesian discriminator us-

ing Mahalonobis distance is applied to provide the final cluster labels. In-

terestingly, this approach uses k-means as a preprocessing step. The label

from k-means analysis enables the use of LDA. LDA transforms the dataset to

have better separation between the clusters. Values between 32-to-96 princi-

pal components and 9-to-69 LDA components were experimented with. PCA

32 followed by LDA 29 was recommended for best performance with minimal

computational cost. The approach outperforms [75], achieving an error-rate of

171

3.5% across the full dataset with the best setting found.

Similar to [75] it was again found that “3”, “7” and “9” were difficult to dis-

tinguish. Furthermore, Pourmohammad et al. highlights that each character

is not unimodal, meaning that, there are several stereotypical forms of each

character [76]. It was suggested to cluster the digits that have high error, using

a higher k-value to model the different stereotypical ways that certain digits

can be written.

Yang et al. applies a deep clustering approach [77]. In deep clustering, the

data is embedded into a subspace (using an auto-encoder/decoder) in which

it can be more easily separated. In this study spectral clustering is used to

cluster the digits. The approach was empirically validated using datasets in-

cluding, MNIST digits, Fashion MNIST, US Postal Service Digits and the

YouTube Faces Dataset. The approach was highly effective and achieved 0.94

NMI score on the full MNIST dataset. This success highlights the value of an

effective embedding strategy. The results show that deep clustering is robust

against noise, but does not conclude if it is robust to class imbalance.

The studies presented thus far provide evidence that image datasets such as

the MNIST digits dataset can separated with a high degree of accuracy using

clustering techniques. Two studies also highlight the variable difficulty of

separating out certain digits.

7.2.2 Imbalanced Clustering

Similar to [76], Singh and Dhall use clustering as a preprocessing step for

classification [78]. Singh and Dhall proposes a method called Cluster-Based

172

Over-Sampling (CBOS). CBOS finds the centres of distributions in data and

calculates the Euclidean distance of a given point to the nearest centre to de-

cide how many points to create around that point. Therefore, their method

effectively calculates a weight per-instance. To empirically validate CBOS, the

MNIST dataset was used. Four imbalanced datasets were generated. One con-

taining the digits “1” and “4” with an imbalance of 6%. A second containing

the digits “2” and “6” with a imbalance of 8%. A third containing the digits

“5” and “7” with an imbalance of 12%. Finally, a fourth containing the digits

“8” and “9” with an imbalance 10%. They also trialled the SPI dataset (from

the SAPA Personality Inventory) and an automotive insurance dataset with a

5% and 6% imbalance respectively, both are structured datasets. Unlike my

work they train and use a classification algorithm (DNN) with the label in-

formation. It was found that (1, 4) achieved a lowest accuracy of the MNIST

datasets trialled and that (5, 7) received the highest accuracy. This is an in-

teresting finding as it is shows that weighting based methods can support the

separation of digits with a imbalance of 12%.

Rezaei et al.’s proposed approach StatDEC uses two DNNs, one to assess the

imbalance and another perform the clustering [79]. A key contribution is the

application of meta-learning for the modelling of the statistics of a dataset.

StatDEC uses a “statistic pooling block layer” in a DNN model which consid-

ers cardinality, mean and variance. The MNIST digits dataset, as well as three

imbalanced image datasets CIFAR-10, CIFAR-100 and Refuge-2 Glaucoma X-

ray dataset are utilised to empirically validate the approach. The datasets

have an imbalance of 1:10, 1:100, and 1:30. The work investigates the different

ways imbalance can occur in multi-distribution datasets (stepped or long-tail).

Three different ways to address imbalance are identified. Through modify-

173

ing the distribution, by adjusting cost-functions and (the authors approach)

through statistical representations using meta-learning. On the CIFAR-10 im-

balanced dataset, it was found StatDEC increased NMI by 20%.

Yudong He proposes an evolution of the fuzzy k-means algorithm called Equi-

librium K-Means (EKM) [67]. Yudong He discusses that the “Uniform Effect”

appears in many clustering algorithms. The uniform effect is the tendency

of clustering algorithms to produce uniformly sized clusters. In the case of

partitioning-based algorithms such as k-means this manifests as the clump-

ing of centroids. This is a serious problem in the case of imbalanced data

clustering. The proposed method EKM implements repulsive forces between

the centroids to discourage them from clumping together on the same distribu-

tion/cluster. EKM was empirically validated using synthetic and real datasets,

including the MNIST digits dataset, using digits “0”, “2”, “3”, “4”, “5”, “6”,

“7”, “8” with a max imbalance of ∼1:7, where “0” has 6900 digits and the

other digits have 1000. When handling the MNIST dataset, deep clustering

(an auto-encoder and decoder, were jointly trained to reduce reconstruction

error) was used to reduce the dataset to 10 features. EKM increased the NMI

score on the described imbalanced NMIST digits dataset by 12% compared to

Fuzzy K-Means.

Additionally, Yudong He highlights two different ways the problem of imbal-

ance clustering can be overcome; through weighting (as EKM uses) and Multi-

prototype clustering.

Another contribution is the production of a diagnostic image for testing clus-

tering techniques for imbalanced datasets. This image contains items (coloured

174

plastic coins and a pen) on table. There is a class imbalance in terms of area

of background (in pixels) compared to the area of the items (in pixels), also

there is further imbalance between items themselves. It is shown that k-means,

fuzzy k-means and maximum entropy fuzzy clustering cannot accurately seg-

ment the image while EKM can successfully segment the items in the image

from the background.

You et al. proposes a novel method for defining a subspace for clustering

[80]. Their subspace method is designed to represent data well, even in the

case of imbalance, noise and big data. The algorithm works by selecting a

number of data points using an optimised Farthest-First search with a cost

function based on sparse-subspace clustering which was updated to perform

better given imbalanced data. The approach was empirically validated us-

ing the Extended MNIST (EMNIST) dataset. The EMINST is similar to the

MNIST digits dataset however, rather the numbers, it contains the English

alphabet. EMINST has some imbalance, ∼1:16 between the most frequent

letter “e” and the least frequent letter “j”. Additionally, the German traffic

Sign Recognition Benchmark GTSRB dataset was used. PCA was applied

to reduce the dimensionality to 500 dimensions for both datasets. The pro-

posed subspace spectral clustering method performed 10% more accurately

than spectral clustering alone on the EMINST dataset.

7.2.3 Conclusion

Together these studies provide insights into how clustering algorithms have

been applied to complex image datasets, such the MNIST digits dataset and

others. All but [75] emphasize feature reduction has an important step. The

studies showing consideration towards feature reduction achieve the best ac-

175

curacy. In terms of preprocessing, different theories regarding how to do this

exist. Deep clustering is utilised by [77, 79, 67] and good results are achieved.

Conversely, [76] uses traditional feature reduction methods and also achieves

a good accuracy.

There is some literature discussing clustering imbalanced datasets, and a num-

ber of methods are proposed. Weighting-based techniques, multi-prototype

clustering, modification of the distribution, adjusting cost-functions, and using

meta-learning. Current approaches to handling imbalance on the MNIST digits

dataset show an increase in NMI score of between 10% to 12% [67, 78, 80]. On

other datasets, state-of-the-art methods can increase NMI as much as 20% [79].

Overall, it appears that much of the current literature on imbalanced cluster-

ing pays particular attention to k-means and similar methods, however, there

is a relatively small body of literature that is concerned with non-partitioning

algorithms such as spectral clustering (graph-based) despite this being a more

recent and sophisticated technique for clustering complex data, leaving a gap

for this work.

7.3 Experimental Design

To address the partial gap found on applying non-partitioning-based algo-

rithms to complex imbalanced datasets and to investigate the effectiveness of

instance weighting on a real-world dataset (in particular MNIST handwritten

digits) the following steps will be taken:

Intra and inter analysis of MNIST handwritten digits: Individual digits will

be compared to other digits of the same class (this will be referred to as “intra-

176

digit” analysis). Additionally, digits will be compared to digits of other classes

(this will be referred to as “inter-digit” analysis). This analysis will inform the

design of the experiments and analysis of the results.

Imbalanced clustering experiment using MNIST handwritten digits: Experi-

ments will be conducted to evaluate the effectiveness of spectral clustering and

IWSE, on balanced and very imbalanced versions of the MNIST handwritten

digits dataset. The goal is ascertain the effectiveness of instance weighting

with graph-based algorithms on complex real-world imbalanced data.

Synthetic experiments: Experiments will be used to isolate and generalise the

conditions under which instance weighting can enhance clustering performance

on imbalanced data. The goal is to support findings from the MNIST dataset

by conducting experiments to infer what aspects of the real-world data are

influencing the performance of the approach. This information should be use-

ful to understand the required properties a dataset should have for it to be

worthwhile to apply the IWSE approach.

Diagnostic segmentation experiment: Further to the above experimentation,

IWSE will be trialled for the use case of image segmentation using a diagnostic

imbalanced image.

7.4 Investigation of MNIST Digits

The MNIST digits dataset was chosen as it well-researched and has complex-

ity level suitable for meaningfully testing machine learning techniques. The

177

MNIST handwritten digits dataset contains 70,000 instances, each with 28x28

(784 pixels) greyscale pixels. The dataset is balanced and contains the hand-

written digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 in equal quantity. This dataset is

traditionally used for classification based tasks and thus includes class labels.

The class labels identify which digit each handwritten digit represents. These

labels will be considered the ground truth for clustering quality assessment

and will only be used to assess clustering performance.

An interesting feature of the MNIST handwritten digits dataset is that some

digits can be written in a variety of ways (see Figure 7.10). Ultimately, this

adds complexity to the distributions that represent the different digits. This

adds a layer of challenge for clustering approaches applied to this dataset.

7.4.1 Intra-Digit Analysis

For the intra-digit analysis the “training” portion of the dataset was sampled,

using simple random sampling without replacement.

The first analysis conducted applied the Simple Matching Coefficient (SMC)

pixel-wise between all pairs of digits in the sample. See Equation (7.1) where a,

b, c, and d are counts representing the frequency of different types of matches

between two instances a = 1-1 (match), b = 0-1 (mismatch), c = 1-0 (mis-

match), d = 0-0 (match). To enable the SMC to be applied, a threshold

function (see Equation (7.2)) was applied to the greyscale pixel values (which

vary between 0-255). The result of the threshold function can be seen in Fig-

ure 7.1. The sample size was 200 of each class. Sampling 200 digits randomly

proved to be more than adequate to ensure repeatable results. The average

178

SMC is calculated for each of the pairs of digits within the sample of 200 digits

representing the same number and this is shown in Figure 7.2.

SMC =
b + c

a + b + c + d
(7.1)

f(x) =


1 if x ≥ 128

0, otherwise

(7.2)

Figure 7.1: An MNIST digit before the threshold function is applied (left) and
after the threshold function is applied (right).

Figure 7.2 suggests that “0” and “2” are the most variable digits and that “1”

and “7” are the most consistent. However, this measure is partly skewed as

a lot of the matching is likely coming from 0 - 0 matches. For example with

“1”’s there are less coloured pixels, and thus more blank pixels to match.

The second analysis utilised NMI. As with the previous analysis, NMI is ap-

plied pixel-wise after the threshold function has been applied. As before, the

values shown in Figure 7.3 represent the average NMI calculated between the

digits representing the same number. Again, the sample size was 200 of each

class. Sampling 200 digits randomly proved to be more than adequate to en-

sure repeatable results.

179

Figure 7.2: A sample of 200 of each class of digit compared per pixel using
Simple Matching Coefficient.

Figure 7.3: A sample of 200 of each class of digit compared per pixel using
Normalised Mutual Information.

Unlike with the previous analysis using SMC, NMI is a measure of similarity,

thus a high value indicates consistency. In Figure 7.3, it can be seen that “1”

is less varied (meaning that “1”’s are most similar with each other), which

supports the finding based on SMC. Furthermore, NMI indicates that “2” and

180

“5” are most varied, this agrees with SMC too.

The third analysis calculates the first and second principal components. Then

in this space calculates the 25th and 75th percentiles for each of the digit classes

in each of the 2 dimensions. The area of the space within the 25th to 75th per-

centiles for each digit is then calculated and is shown in Figure 7.4. For this

analysis, the sample size was 800 per digit. Sampling 800 of each digit ran-

domly proved to be more than adequate to ensure repeatable results.

Figure 7.4: Based on a sample of 800 of each class of digit, the average area
of the 25th to 75th percentile in PCA2 sub-space.

Figure 7.4 suggests that “0” is very variable and that “1” is very consistent

(followed by “7” and “9”).

In the forth and final intra-digit analysis, the average density is calculated. All

aspects are similar to the previous analysis, however in this analysis, rather

than average area of the 25th and 75th percentiles being calculated, the expo-

nential density kernel is used to estimate the density for each instance within

181

the space. The average density for each class digit is min-max normalised and

shown in Figure 7.5.

Figure 7.5: Based on a sample of 800 of each class of digit, the athematic mean
density of digits in a PCA2 sub-space.

Figure 7.5 suggests that “1” is much more dense than the other digits and

therefore less varied. “2”, “3”, “4”, “5”, “6”, “8” have similar density. “7”

and “9” are slightly less varied. While “0” is the most diffuse and varied. In

summary, “0” and “1” are different in terms of density and variation from the

other digits. While the others have relatively similar levels of density/variation.

7.4.2 Inter-Digit Analysis

As with the intra-digit analysis, the inter-digit analysis uses the “training”

portion of the dataset. Simple random sampling without replacement was

used to select a sample for analysis.

182

Firstly, SMC was used pixel-wise to compare samples of 200 instances of each

digit from two different classes of digit. As with the intra-digit analysis, to

enable the SMC to be applied, a threshold function (see Equation (7.2)) was

applied. Randomly sampling 200 of each of the two digit classes compared

proved to be more than adequate to ensure repeatable results.

Figure 7.6: A sample of 200 of each digit class compared with each other using
a pixel-wise Simple Matching Coefficient.

Figure 7.6 suggests that digit “0” is most distinguishable (highest mismatch)

followed by “2”, “3” and “6”. “1” had the lowest value suggesting that “1”

is similar to other digits. Although, this could be skewed by the imbalance of

black versus white pixels, as “1” is likely to have more white pixels to match,

as it is the character requiring the least ink to write.

The next analysis uses NMI to compare digits. As with the previous analysis,

200 of each digit class is sampled and compared after applying a threshold

function.

In Figure 7.7 the shading is inverted to be consistent in meaning with others, as

conversely to SMC (for example), a high NMI value indicates similarity and low

value indicates disagreement. Figure 7.7 suggests that “0” is the most unique

183

Figure 7.7: A sample of 200 of each digit class compared with each other using
a pixel-wise Normalised Mutual Information.

digit followed by “1”, “2”, “5”, “6” and “7”. This metric agrees with SMC in

that “0”, “2” and “6” are very unique characters. Looking at specific pairs, the

most different digits according to NMI is (“0” and “1”) and the most similar

digits are (“4” and “9”) closely followed by (“7” and “9”). Anecdotally, this

seems correct, (“0” and “1”) are most easily visually distinguishable. While

“4” or a “7” can be modified to represent a “9” with minimal ink/modification.

The third inter-digit analysis calculates the first and second principal com-

ponents, then in this space calculates the Euclidean distance between mean

centroids of the different classes of digit. Figure 7.8 shows the results. For

this analysis, the sample size was 800 per digit. Sampling 800 of each digit

randomly proved to be more than adequate to ensure repeatable results.

Figure 7.8 suggests that “0” followed by “1”, “2” and “7” are most unique

universally. With again [0, 1] being most distance from each other, while (“7”

and “9”) followed by (“2” and “6”) and (“5” and “8”) are most similar. This

partly echoes the previous finding. Again, anecdotally (“2” and “6”) and (“5”

and “8”) are somewhat mistakable characters.

184

Figure 7.8: The distance between digits in a PCA2 space.

Finally, the forth analysis use PCA and t-SNE to produce sub-space in which

Euclidean distance is used to access the difference between the digits. Firstly,

PCA is used to reduce the dimensionality to 32 dimensions; then t-SNE is

applied to reduce the 32 dimensional space down to 2. Here PCA is applied

first for computation efficiency and noise suppression, then t-SNE is applied to

produce the final result. This approach of using PCA before t-SNE is typical

practice when applying t-SNE to high dimensional datasets [81].

Figure 7.9: The distance between digits in a PCA32-t-SNE2 sub-space.

Figure 7.9 suggests that “0”, “1”, “6” and “7” are most unique. Again (“0”

and “1”) are most distance from each other followed by (“6” and “7”) and

(“0” and “7”). As with some of the previous methods (“7” and “9”) and (“4”

and “9”) appear again as very similar.

185

7.4.3 Summary of Intra and Inter Digit Analysis

The intra-digit analysis finds that the digits have different distributions, “1”

is highly consistently written and has high density. “7” and “9” have medium

density and medium level consistency in how they are written. “2”, “3”, “4”,

“5”, “6” and “8” have a similar lower level of density and lower level of con-

sistency in how they are written and “0” has the lowest level of density and

lowest consistency in how it is written.

Summarising the inter-digit analysis methods applied is that “0”, “1”, “2” are

the most unique, from all digits generally. Across all methods, the general

consensus is that (“0” and “1”) is the most different and that (“4” and “9”)

and (“7” and “9”) are the most similar/overlapping. Other literature such as

Pei and Ye who also found “4”, “7”, “9” most difficult to distinguish [75].

This analysis of MNIST handwritten digits are useful for studies investigat-

ing clustering and classification of MNIST handwritten digits. These findings

can aid understanding why algorithms confuse particular digits and succeed

in at distinguishing others. In this research these findings will be used to

meaningfully select different sub-sets of digits to analyse.

7.5 Imbalanced MNIST clustering

7.5.1 Experimental Design

To investigate how imbalance effects spectral clustering on the MNIST hand-

written digits dataset, the following experiment was designed.

186

Figure 7.10: Random selection of 50 zeroes, ones, fours and nines from MNIST,
zeros and ones are visually very different however, fours and nines are not so
different.

Firstly, pairs of digits are carefully chosen, based on the findings of the analy-

sis. Based on the previous analysis, it is possible to categorise different pairs

of digits in terms of overlap and density. The intra-digit analysis provided

insight in the density of digits. While the inter-digit analysis provided insight

into similarity/overlap between digits. For example, (“0” and “1”) have very

different densities, and are most distant from each other. Hence, (“0” and

“1”) can be classified as having large difference in density and a small degree

of overlap. Ultimately, this allows the construction of a table, categorising

pairs of digits that have similar properties. Such a table, makes it possible

to see which scenarios have been tested. Table 7.1, shows the categorisation

of the digit combinations to be trialled. Note that, not all combination of

density/overlap exist within the possible combinations of the MNIST digits,

this is limitation of this experiment. Furthermore, some density/overlap com-

187

binations have many options. The combinations chosen aim to best cover as

many density/overlap combinations as possible. The choice to cover only some

pairs of digits was made to enable simple understanding and visualisation of

the results as well as limiting the computation resources required to execute

the experiments.

Table 7.1: The selection of digits to be evaluated, based on the previous anal-
ysis.

Cluster Density Variation

Tiny Small Medium Large

O
v
er
la
p Small No such example in

MNIST
No such example in
MNIST

1-2 0-1

Medium 2-7 0-3, 0-4, 0-7, 0-8, 0-
9

1-3, 1-5, 1-6, 1-8 No such example in
MNIST

Large 2-4, 3-5, 3-7, 5-7, 6-
7, 6-8, 7-8, 7-9

0-2, 0-5, 0-6 1-4, 1-7, 1-9 No such example in
MNIST

In order to investigate imbalance, the MNIST handwritten digits training

dataset was sampled in various ratios of each digit in the combinations. The

datasets trialled were sampled with an imbalance ranging from an extra 480%

(in steps of 20%) of each digit in the pair while keeping the total number of

instances in consistent at 2000. To achieve this, Equation (7.3), is proposed.

Given the combination of (“0” and “1”) at 0% imbalance there would be 1000

zeros and 1000 ones (perfectly balanced). At 200% imbalance there would be

1500 zeros and 500 ones, (1000 more zeros (200% of 500) than ones). At 400%

imbalance there would be 1666 zeros and 334 ones (1332 more zeros (400%

of 334) than ones). Conversely, at -200% imbalance there would be 500 zeros

and 1500 ones. At -400% imbalance there would be 334 zeros and 1666 ones.

To approximate the integer values for various degrees of imbalance percentage,

188

Equation (7.3) is devised. Where N is the number of instances. N remains

consistent at 2000 in this experiment. i is the imbalance factor (for example

400 (percent)). L is the large side of the ratio, and S is the small side of the

ratio. Worked examples are provided in Appendix 9.7. Using the proposed

equation enables the experiments to smoothly increment the imbalance using

a single variable i while maintaining a consistent N . Prior research has mostly

omitted devising such an experiment in an instance weighted clustering con-

text, see Section 2.4.

L = ⌊ N

2 + (i
100

)
× (1 + (

i

100
))⌋

S = N − L

(7.3)

To compare the effectiveness of instance weighting against traditional meth-

ods, spectral (S), Spectral Ensemble (SER), and Instanced Weighted Spectral

Ensemble Union (IWSEU) will be executed on each imbalance condition with a

randomly chosen sample of data for 5 repetitions for each of the chosen pairs of

digits. Spectral clustering provides a baseline result for graph clustering. Spec-

tral Ensemble (with random weighting) will provide another baseline showing

the effectiveness of spectral ensemble clustering and my approach IWSEU,

shows the benefit of instance weighting integrated into a spectral clustering

ensemble. To assess the impact of the instance weighting, settings between

the algorithms were kept consistent. For spectral, k was set to 2, the affinity

matrix used 10 nearest neighbours. For the Spectral Ensemble, again k was

set to 2, and the affinity matrix used 10 nearest neighbours, the bagging-based

ensemble used 36 bags, and uniformly randomly sampled between 30-50% of

189

the instances per bag. For IWSEU, again k was set to 2, and the affinity ma-

trix used 10 nearest neighbours, the ensemble used 36 bags, sampling between

30-50% of instances per bag using weighted random sampling based on the

instance weights from the density estimation using the exponential function.

The bandwidth value for the kernel was chosen dynamically using the Silver-

man method.

Prior to applying each of the clustering algorithms, each of the randomly sam-

pled experimental datasets was standard scaled (z-score normalised). After

scaling, PCA was applied to reduce the dataset to either 3 or 6 dimensions,

the results of both are presented. A known limitation of applying kernel based

density estimation methods is that they fail to recognise dense areas on high

dimensional datasets. Hence, only 3 and 6 principal components were trialled.

Preliminary tests showed that much beyond 6 dimensions will render the den-

sity estimation ineffective. Three principal components was has selected, while

loses more information, it benefits from be possible to visual for analysis of

the clustering results.

7.5.2 Results and Discussion

For each algorithm, executing on each combination of digits, a series of data

is produced, and this information is shown in Figures 9.15 to 9.66. As multi-

ple executions were completed the mean value (the plotted line) and variance

(the corresponding shaded area) are shown. Figures 9.15 to 9.66 use a two

sample t-test to annotate where there is a significant difference (p-value <

0.05) between IWSEU (purple) and SER (orange) (shown by a vertical green

or red line). A vertical green line indicates the IWSEU significantly outper-

190

formed SER (indicating instance weighting is beneficial), while a vertical red

line indicates that SER outperformed IWSEU (indicating instance weighting

is detrimental).

Firstly, considering PCA3 results seen in Table 7.2. Across the variety of digit

combinations the proposed approach is shown to both decrease and increase

clustering performance. In (“0” and “1”), (“0” and “6”), (“0” and “8”), (“0”

and “9”), (“1” and “2”), (“1” and “3”), (“1” and “4”), (“1” and “5”), (“1”

and “6”), (“1” and “7”), (“1” and “8”), (“1” and “9”), (“5” and “7”) and (“7”

and “9”) instance weighting significantly increases clustering performance for

some imbalance factor. The most positive result was (“0” and “1”), where the

average NMI was increased by as much ∼60%. In this case, instance weighting

was the sole factor separating between a unintelligible or accurate clustering.

Elsewhere, results showed more modest gains in NMI: (“0” and “6”), (“0” and

“8”), (“1” and “3”), (“1” and “8”) in places showed a ∼5% increase, (“5” and

“7”) in places showed a ∼10% increase, (“1” and “4”) and (“1” and “5”) in

places showed a ∼15% increase, (“0” and “9”), (“1” and “6”), (“1” and “7”),

(“1” and “9”) in places showed a ∼20% increase. There was one poor result

(“7” and “9”) where all algorithms performed poorly, in this case it seems likely

that due to the similarity of digits “7” and “9” and the simplistic preprocessing

choices, the selected clustering algorithms were unable to distinguish the digits.

Secondarily, looking at PCA6 results in Table 7.3 the outcome is less posi-

tive for instance weighting. There are much fewer digit combinations where

IWSEU is able to meaningfully, increase clustering performance. In (“0” and

“5”) and (“1” and “7”) NMI in (for certain imbalance levels) showed a ∼5%

increase, (“0” and “6”) in places showed a ∼10% increase. Again (“7” and

191

“9”) proved to be too difficult the separate for any of the algorithms. It seems

that 6 dimensions is still too few principal components to separate “7” and

“9”. Overall, using 6 dimensions the decreased the performance gap between

IWSEU and SER. But increased the overall performance in terms of NMI. The

reduced gap is likely due to reduced effectiveness of IWSEU’s kernel based den-

sity estimation when presented higher dimensional data.

A general observation is that IWSEU most often performs best when the ma-

jority cluster is also the higher density cluster. Notice that in (“0” and “1”)

and (“0” and “9”) in Figures 9.15 and 9.23 respectively, IWSEU significantly

outperforms when there are more ones and more nines. Although this not

always the case for example see (“0” and “6”) and (“0” and “8”) in Figures

9.20 and 9.22 respectively.

Broadly comparing the PCA3 and PCA6 results, reveals a general pattern

that using 3 less dimensions reduces clustering performance in terms of NMI

by about 10%. Using 6 dimensions narrows and in some cases removes the per-

formance advantage of IWSEU. Generally, the best overall results are IWSEU

with PCA6. Other research has found that preprocessing plays a significant

role in clustering performance. While outside the scope of this work, find-

ing the best approach for the separating the MNIST digits using clustering

would likely involve more attention to the preprocessing, to create a a optimal

sub-space in which to apply clustering algorithms such as spectral clustering

and IWSEU. Some approaches that could address this are using a pixel-cut

to manually reduce dimensionality prior to automatic methods (as is done by

Pourmohammad et al. [76]). Additionally, You et al. and Yang et al.’s sub-

space methods would likely to more effective than the Principle Component

192

Analaysis utilised in this work [77, 80].

To provide an overview of the results and able to discover trends, the results

of significance test from Figures 9.15 – 9.66 were summarised into Tables 7.2

and 7.3. This reveals some useful and interesting patterns. When the dig-

its combination has either a medium or large difference in density, or a large

overlap between clusters IWSEU often aided performance, represented by the

green and blue highlights in Tables 7.2 and 7.3 . IWSEU helped when there

is a density difference between the clusters, this is a positive result and in-line

the hypothesis. However, an unexpected result is that IWSEU can somewhat

help in the case of overlapping clusters. Other researchers [75, 76, 78] found

that the overlapping digits are most difficult to separate and thus it appears

my approach maybe able help in these cases.

Table 7.2: Summary of results of the imbalanced MNIST digits datasets using
3 principal components. Green highlight indicates IWSEU aided clustering
performance for some imbalance level(s) compared to SER. Blue highlight indi-
cates that IWSEU both aided and hindered clustering performance across the
imbalance levels trialled compared to SER. Orange highlight indicates IWSEU
hindered clustering performance for some imbalance level(s) compared to SER.
Finally grey highlight indicates that IWSEU made no significant difference for
any of the imbalance levels trialled.

Cluster Density Variation

Tiny Small Medium Large

O
v
er
la
p Small No such example in

MNIST
No such example in
MNIST

1-2 0-1

Medium 2-7 0-3 , 0-4 , 0-7 ,

0-8 , 0-9

1-3 , 1-5 , 1-6 ,

1-8

No such example in
MNIST

Large 2-4 , 3-5 , 3-7 ,

5-7 , 6-7 , 6-8 ,

7-8 , 7-9

0-2 , 0-5 , 0-6 1-4 , 1-7 , 1-9 No such example in
MNIST

The size of the clustering performance gains seen in this work are similar to

193

Table 7.3: Summary of results of the imbalanced MNIST digits datasets using
6 principal components. Green highlight indicates IWSEU aided clustering
performance for some imbalance level(s) compared to SER. Blue highlight indi-
cates that IWSEU both aided and hindered clustering performance across the
imbalance levels trialled compared to SER. Orange highlight indicates IWSEU
hindered clustering performance for some imbalance level(s) compared to SER.
Finally grey highlight indicates that IWSEU made no significant difference for
any of the imbalance levels trialled.

Cluster Density Variation

Tiny Small Medium Large

O
v
er
la
p Small No such example in

MNIST
No such example in
MNIST

1-2 0-1

Medium 2-7 0-3 , 0-4 , 0-7 ,

0-8 , 0-9

1-3 , 1-5 , 1-6 ,

1-8

No such example in
MNIST

Large 2-4 , 3-5 , 3-7 ,

5-7 , 6-7 , 6-8 ,

7-8 , 7-9

0-2 , 0-5 , 0-6 1-4 , 1-7 , 1-9 No such example in
MNIST

the gains seen in other works attempting to cluster imbalanced image datasets.

While none of the following are a direct comparison, they give an indication to

position my work within. Yudong He et al. creates and clusters an imbalanced

version of the MNIST digits dataset [67]. Different to my experimentation,

their experiment uses 8 out of 10 of the digit classes rather 2 out of 10 of the

digit classes. In their experiments their imbalance factor is 600% rather than

my 480% between the most frequent and least frequent digits. They find that

their approach (called EKM) performs 12% better than the tradition alterna-

tive to their algorithm fuzzy k-means. Rezaei et al reports an increase of 20%

NMI when using StatDec compared to a traditional alternative (Deep Neural

Network) on the CIFAR-10 image dataset (similar to MNIST, but objects in

instead of characters) with an imbalance of 900%. You et al trialled the full

EMNIST (which similar MNIST digits but contains the letters of the alphabet

instead) dataset which has at most 1500% imbalance factor and was able to

achieve 10% increase in NMI over spectral.

194

7.6 Synthetic Experiments

7.6.1 Experiment Design

To enable generalisation of the findings from the previous analysis, and un-

derstand the limitations of IWSEU, synthetic experiments where conducted

to isolate which properties (in terms of overlap and difference in density) a

dataset should have to be effectively clustered by IWSE. Based on the theory,

analysis and results converging in Tables 7.2 and 7.3, three synthetic experi-

ments were planned.

The first experiment investigates the impact overlap has upon clustering per-

formance. In Table 7.2, a pattern emerged that suggests that IWSEU is most

beneficial when the overlap extent was large. To test this, two Gaussian dis-

tributions were used to generate two spherical clusters, C0 and C1. In this

experiment, the independent variable is the x position of C1. The x position

of C1 was varied from 1.5 to 0.5 in decrements of 0.01, this moves it from a

relatively distant position to a position where it largely overlaps C0, see Fig-

ure 7.11. All other aspects of the experiment were fixed. The covariance of

C0 was 0.01 in both x and y. C0 contained 1800 instances, and C1 contained

200 instances. Experiments were repeated 5 times and the mean NMI and it’s

variance is shown in Figure 7.15.

The second experiment investigates the impact of the difference in density be-

tween clusters. Again, in Table 7.2, a pattern could be seen that suggested

that IWSEU is most beneficial when density difference between cluster was

195

Figure 7.11: Synthetic experiment 1 (overlap extent) – a sample of the start
and finish datasets.

large. Hence, in this experiment, there are two clusters C0 and C1 which start

with equal density. The density of C1 is linearly decreased by increasing the

covariance of it’s distribution. Figure 7.13 shows how the density decreases

approximately linearly over the experiment. However, increasing the covari-

ance of C1 naturally increases the overlap. As C1 grows spacially so it would

encroach upon C0, creating a confounded variable in experiment. To adjust

for this, C1 is moved in the x dimension proportionally in response to the in-

crease in co-variance using o+ (v× 2), where o is a fixed offset of 1.2, and v is

covariance of C1. In Figure 7.12 it can be seen that the C0 and C1 are equally

adjacent to despite the change in spacial size of C1. The covariance of C1 was

varied from 0.05 to 0.27 in increments of 0.002. As in the previous experiment,

C0 had 1800 instances and C1 had 200 instances. Experiments were repeated

5 times and the mean NMI and it’s variance is shown in Figure 7.16.

The third experiment investigates the imbalance extent between the clusters.

In Figures 9.15 to 9.40, it could be seen that extent to which IWSEU aided

196

Figure 7.12: Synthetic experiment 2 (density difference) – a sample of the start
and finish datasets.

Figure 7.13: Synthetic experiment 2 (density difference) - showing the linear
decrease in density.

performance varied across imbalance factors. Generally, it was observed that

IWSEU performed best when the majority cluster was the denser cluster (for

197

example see (“0” and “1”)). To investigate the impact of imbalance between

the clusters. The imbalance factor between C0 and C1 was varied. At the

start of the experiment the clusters are perfectly balanced with 1000 instances

each. Over the experiment, the size of C0 is incrementally increased by 10

instances and C1 was incrementally decreased by 10 instances, until the size

of C1 reached 50 instances, see Figure 7.14. To replicate the conditions in

which IWSEU performed well in the MNIST experiments, C0 (which becomes

the more numerous cluster over the experiment) had a co-variance of 0.1 in

both x and y, and C1 had a covariance of 0.2. C0 and C1 were separated by a

distance of 0.8 in the x dimension. It should be noted that this experiment has

some limitations. Since as the numerosity of each cluster changes, so does it’s

average density, hence the this simple experiment should be interpreted with

this in mind. Experiments were repeated 5 times and the mean NMI and it’s

variance is shown in Figure 7.17.

Figure 7.14: Synthetic experiment 3 (imbalance) – a sample of the start and
finish datasets.

198

7.6.2 Results and Discussion

The first experiment investigates how the overlap of clusters effects the clus-

tering performance of instance weighting. Initially, when the clusters are well

separated the all algorithms perform well, however as the distance between

the cluster decreases (to ∼1.3) and the overlap becomes non-trivial the per-

formance of traditional methods drops, while IWSEL and IWSEU continue

to perform well, this trend continues until ∼1.0 where the IWSEU begins to

drop and destabilise. For IWSEL this point comes a little later around 0.8.

On the right of Figure 7.15, all algorithms converge on a very poor cluster-

ing performance, once the C0 is engulfed by C1, (this happens at ∼0.7). A

possible explanation is that the problem of uniformity (the tendency of some

clustering algorithms (such as spectral) to produce clusters of equal size) is non-

issue when the clusters are well separated. However, as the clusters increas-

ingly overlapped, instance weighting begins helps to alleviate this (through

the weighted sub-sampling balancing the numerosity of the clusters somewhat

leading to a more representative partitioning). This outcome aligns with pat-

terns seen in Table 7.2.

The second experiment investigates how the difference in density between clus-

ters impacts clustering performance. Again, inline the pattern seen in Table

7.2, IWSEU and IWSEL perform best when there is a difference in the density

between the clusters. Figure 7.16 shows that IWSEU and IWSEL perform

approximately equal to SER until the difference in density exceeds ∼40% (as

per Figure 7.13) this happens when the covariance of C1 reaches 0.15. After

this point, the instance weighting based techniques are able to perform ∼20%

better.

199

Figure 7.15: IWSEU and IWSEL outperform traditional methods once there
is a significant difference in density between the clusters.

Figure 7.16: IWSEU and IWSEL remains performant despite a significant
degree of overlap between imbalanced clusters with different densities.

200

Finally, the third experiment investigated how a difference imbalance factor

effects clustering performance. Initially, when the clusters are balanced, Figure

7.16 shows that initially all algorithms perform well. Between 400% imbalance

factor (334:1666) to around 750% imbalance factor (211:1789), the benefit of

IWSEU and IWSEL is clear. It seems there is not a simple answer to what

degree of imbalance IWSEU and IWSEL will be most beneficial. This experi-

ment indicates that IWSEU and IWSEL is most beneficial at 400%-750% but

in the previous MNIST experiments, a variety of ranges where IWSEU helped

were observed, see Figures 9.15 to 9.40. A general observation across all ex-

periments is that instance weighting modestly extends clustering performance

from the point that traditional methods fail, given the right conditions (in

terms of density and overlap).

Figure 7.17: IWSEU and IWSEL outperform traditional methods at certain
levels of imbalance.

201

In summary, the synthetic experiments are useful as they confirm some trends

suspected and partially observed in the previous MNIST handwritten digits

experiments.

Firstly, it was identified that where the clusters are overlapping then IWSEU

and IWSEL can in beneficial up to point at which clusters are totally over-

lapping. Secondarily, a difference in density of ∼40% upwards was necessary

in these experiments for instance weighting to benefit clustering performance.

Finally, the third experiment, in conjunction with the other experiments, do

not conclusively indicate that there is a specific range of imbalance factors

on which IWSEU or IWSEL works best, but a general observation is that it

can help for a limited period when tradition methods are failing to provide

satisfactory clustering performance. The results indicate that when the above

conditions present then IWSE may be beneficial.

7.7 Conclusion

This chapter has investigated to what extent and under what conditions the

novel framework IWSE can address imbalance by conducting experiments with

different degrees of cluster density variation, overlap and imbalance, using

the MNIST digits dataset. This chapter provides some insights for answer-

ing RQ3 “Under what conditions does instance weighting enhance clustering

performance on data characterized by the presence of outliers or class imbal-

ance?”. Summarising, the results are mixed and show the framework can be

both beneficial and sometimes detrimental to clustering performance. For in-

stance using the approach developed, the following caveats exist. Firstly, the

202

approach developed has the limitation that it is not suitable for high dimen-

sional datasets. Users will have to utilise preprocessing methods to first reduce

the dimensionality to level at which the exponential kernel produces meaning-

ful results. To overcome this issue with the IWSE approach to calculating the

density would need to be reconsidered. Secondly, for the IWSE approach, as

expected, a variation in density between the clusters is beneficial for the IWSE

algorithm to perform well on imbalanced data. Experiments showed that a dif-

ference in covariance of 200% (0.05 to 0.15) (in terms of clusters derived from

Gaussian distributions) provides adequate information for the instance weight-

ing implement effective sampling to alleviate the “uniform effect”. The other

aspect related to density is that for the IWSE “U” (and likely “L”) variants,

the majority cluster should be the denser cluster.

A more surprising result was that Instance Weighting was how beneficial in-

stance weighting was as clusters in the dataset become overlapped. The exper-

iment showed that when the imbalanced clusters are well separated traditional

methods are adequate. However, once the clusters are overlapping the imbal-

ance becomes problematic for the traditional methods. The instance weighting

approach is able to maintain good clustering performance in this case until

up to nearly the point at which the clusters engulf each other. In terms of

imbalance and using the parameter setting described, the instance weighting

approach was able to address a cluster imbalance of 800%.

In practice, the limitation of kernel density estimation restricted cluster perfor-

mance by limiting the dimensionality of the datasets input into the approach.

The kernel-trick [18] or deep clustering [77, 79, 67] approaches discussed in

other work overcome this issue. More research would be required to integrate

203

these aspects.

204

Chapter 8

Final Conclusions and Future

Work

This thesis set out with the aim of addressing data quality challenges for

clustering algorithms using an instance weighting approach. To achieve this

aim, two novel clustering approaches, LOFIWKM and IWSE, were developed

and analysed. LOFIWKM demonstrated integrating instance weighting into a

partitioning-based clustering algorithm. While IWSE demonstrated integrat-

ing instance weighting into a graph-based clustering ensemble. The experi-

mentation evaluated the abilities of LOFIWKM and IWSE to handle outliers

and imbalanced clusters respectively. In response to the thesis hypothesis,

while some aspects of the findings showed negative results, the overall results

support the central claim that “instance weighted clustering is a valuable tool

for increasing clustering performance for data with quality issues”.

Reflecting on my research, there are a number of limitations to my research

method and approaches. My research method has focused on using literature

and practical experimentation with novel prototype algorithms. However, us-

205

ing the prototype algorithms limits the generalisability of the findings beyond

these prototype algorithms. A more theoretical and mathematical reasoning

based approach would lead to findings with better generalisability. Examples

of works using this approach include [8], [27] and [17]. A further limitation

is the limited pool of datasets used. While in-places depth was achieved, the

breadth of experimentation could be expanded to give a broader and clearer

picture of the benefits of the proposed approaches. A final limitation which

arose was due to the ill-defined nature of clustering. When evaluating the ef-

fectiveness of new clustering approaches on datasets without suggested labels

and for datasets with data quality challenges. The effectiveness of intrinsic

clustering metrics is reduced, since they are not beyond being comprised by

the data quality issues themselves. Thus in places the assessment of results

involves a degree of subjectivity. These challenges were most notable in Chap-

ter 5.

This thesis identifies the following new knowledge. Firstly, it demonstrates the

effectiveness of a density-based weighting scheme integrated into a partitioning-

based clustering algorithm for outlier accommodation, in turn addressing RQ1.

Secondarily, (again using density-based weighting scheme) how instance weight-

ing be applied to graph-based clustering algorithm to handle imbalanced data.

In this case, a clustering ensemble is utilised. A particular merit of this ap-

proach is that it does not require adapting the implementation of the clustering

algorithm. Meaning that it is practical to implement and adapt into real-

world applications. Arguably, the general approach proposed could be taken

as a general framework for creating other instance weighting approaches. The

proposed approach targetted imbalanced data thus addressing RQ2 and RQ3,

but aspects of the framework could be adapted to meet different data quality

206

issues. Overall, these contributions are significant as they clarify the compo-

nents and design decisions required to implement instance weighting for two

different clustering approaches. Also, a somewhat generalisable framework is

presented through the use of the ensemble method.

Finally, 8 directions for future work are identified:

1. This research focused on “how” and “to what extent”. But to further the “to

what extent” discussion, optimisation and exploration the hyper-parameters

could be furthered. It would be interesting to explore if more conclusive hyper-

parameter tuning would allow the proposed techniques to handle more extreme

outliers / imbalance.

2. Optimisation of the approaches themselves. The proposed approaches

mostly are constructed favouring traditional methods and simplicity (to aid

understanding of where benefits are emerging from), but integrating more com-

plex and optimal features, into the proposed approach could yield versions of

these algorithms that more suitable for a production environment.

3. Both LOFIWKM and IWSE both use density-based weighting schemes,

but the literature survey in Chapter 2 showed some other possibilities. Fur-

thermore, it is possible to apply multiple weighting schemes [24]. Multiplexing

between different weighting schemes could be a way to address multiple data

quality issues, which appears to be a open gap in the research.

4. The exploration of soft clustering combined with instance weighting would

be an interesting area to investigate. Nock and Nielsen found that instance

207

weighting benefited the clustering performance of soft clustering techniques

more than hard clustering [8].

5. In this work, semi-supervised clustering was not explored. However, Makkhongkaew

et al. showed how instance weighting can be integrated with semi-supervised

clustering and presented good results [26]. It would be interesting to research

if the instance weights could be used to propagate the information contained

by the constraints provided.

6. A key weakness of this work, is the use of methods which do not scale for

high-dimensional data. Hence, a future direction of research is towards high-

dimensional instance weighting, there is some work in this direction such as

Chen et al. who integrate PCA directly into their clustering approach [17].

Also Makkhongkaew et al. who uses feature weighting. Furthermore, Wang

and Angelova who use a kernel-based version of FCM [18]. Others explore

deep clustering [77, 79, 67].

7. Noise, outliers and imbalance are all similar in nature, however, this work

addresses them as separate issues. A future direction could be developing an

instance weighting framework to address all these issues.

8. This work explored partitioning-based and graph-based methods, although

density-based methods, in particular Density-Based Spatial Clustering of Ap-

plications with Noise (DBSCAN) [82] (and Ordering Points To Identify the

Clustering Structure (OPTICS)) are effective for clustering data with outliers.

One such practical example is Li et al.’s work detecting aircraft landing anoma-

lies [42]. A key benefit of DBSCAN’s approach to clustering is its ability to

208

handle arbitrary and concentric shapes. Different to my work, DBSCAN iden-

tifies outliers unlike my outlier accommodation approach. This makes instance

weighting for outlier accommodation unnecessary. However, there are a couple

weaknesses with DBSCAN that instance weighting could address. For exam-

ple, DBSCAN struggles to achieve good clustering performance when clusters

are tightly packed / highly connected. There is limited research into address-

ing this weaknesses. In fact, most research proposing variations of DBSCAN

focuses on lowering DBSCAN’s execution time [83]. However, one work that

explored enhancing DBSCAN’s robustness proposed a instance weighted DB-

SCAN variant called Varied DBSCAN (VDBSCAN) [84]. VDBSCAN uses

instance weighting to vary ϵ. The instance weights are calculated based on the

distance to each instances’ Kth nearest neighbour. Drawbacks of this method

are computational complexity and sensitivity to noise. Also, it is not clear

if their method can handle tightly packed clusters. Hence, there is room for

future work exploring different weighting schemes to overcome this challenge.

209

Bibliography

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transac-

tions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[3] P. Berkhin, “A survey of clustering data mining techniques,” in Group-

ing multidimensional data: Recent advances in clustering, pp. 25–71,

Springer, 2006.

[4] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Ap-

plications. Chapman & Hall/CRC, 1st ed., 2014.

[5] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O.

Agushaka, C. I. Eke, and A. A. Akinyelu, “A comprehensive survey of

clustering algorithms: State-of-the-art machine learning applications, tax-

onomy, challenges, and future research prospects,” Engineering Applica-

tions of Artificial Intelligence, vol. 110, p. 104743, 2022.

[6] H. Steinhaus et al., “Sur la division des corps matériels en parties,” Bull.

Acad. Polon. Sci, vol. 1, no. 804, p. 801, 1956.

210

[7] J. MacQueen, “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of 5-th Berkeley Symposium on Mathe-

matical Statistics and Probability/University of California Press, 1967.

[8] R. Nock and F. Nielsen, “On weighting clustering,” IEEE transactions on

pattern analysis and machine intelligence, vol. 28, no. 8, pp. 1223–1235,

2006.

[9] L. Gu, “A novel sample weighting k-means clustering algorithm based on

angles information,” in 2016 International Joint Conference on Neural

Networks (IJCNN), pp. 3697–3702, IEEE, 2016.

[10] J. Yu, M.-S. Yang, and E. S. Lee, “Sample-weighted clustering methods,”

Computers & Mathematics with Applications, vol. 62, no. 5, pp. 2200–

2208, 2011.

[11] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková,

E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of unsu-

pervised outlier detection: measures, datasets, and an empirical study,”

Data mining and knowledge discovery, vol. 30, no. 4, pp. 891–927, 2016.

[12] M. O. S. N. Wolberg, William and W. Street, “sBreast Cancer Wis-

consin (Diagnostic).” UCI Machine Learning Repository, 1993. DOI:

https://doi.org/10.24432/C5DW2B.

[13] R. P. Moro, S. and P. Cortez, “Bank Marketing.” UCI Machine Learning

Repository, 2014. DOI: https://doi.org/10.24432/C5K306.

[14] J. I. Orlando, H. Fu, J. B. Breda, K. Van Keer, D. R. Bathula, A. Diaz-

Pinto, R. Fang, P.-A. Heng, J. Kim, J. Lee, et al., “Refuge challenge:

A unified framework for evaluating automated methods for glaucoma

211

assessment from fundus photographs,” Medical image analysis, vol. 59,

p. 101570, 2020.

[15] A. Topchy, A. K. Jain, and W. Punch, “A mixture model for clustering

ensembles,” in Proceedings of the 2004 SIAM international conference on

data mining, pp. 379–390, SIAM, 2004.

[16] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that

find better clusterings,” in Proceedings of the eleventh international con-

ference on Information and knowledge management, pp. 600–607, 2002.

[17] J. Chen, J. Zhu, H. Jiang, H. Yang, and F. Nie, “Sparsity fuzzy c-means

clustering with principal component analysis embedding,” IEEE Trans-

actions on Fuzzy Systems, vol. 31, no. 7, pp. 2099–2111, 2023.

[18] Y. Wang and M. Angelova, “Weighted kernel fuzzy c-means method for

gene expression analysis,” in 2012 Spring Congress on Engineering and

Technology, pp. 1–4, 2012.

[19] M. Gong, Y. Liang, J. Shi, W. Ma, and J. Ma, “Fuzzy c-means clustering

with local information and kernel metric for image segmentation,” IEEE

Transactions on Image Processing, vol. 22, no. 2, pp. 573–584, 2013.

[20] W. Guo, Z. Huang, Y. Hou, Q. Xiao, J. Jia, and L. Mao, “Environment pa-

rameter rating evaluation for smart museum based on improved k-means

clustering algorithm,” in 2020 Chinese Control And Decision Conference

(CCDC), pp. 5449–5453, 2020.

[21] Z. Wang, G. Q. Liu, and J. C. Guo, “An improved k-means algorithm

based on multiple feature points,” in 2009 International Workshop on

Intelligent Systems and Applications, pp. 1–5, 2009.

212

[22] J. Chen, Z. Li, and B. Huang, “Linear spectral clustering superpixel,”

IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3317–3330,

2017.

[23] Z. Ji, Y. Xia, Q. Chen, Q. Sun, D. Xia, and D. D. Feng, “Fuzzy c-means

clustering with weighted image patch for image segmentation,” Applied

soft computing, vol. 12, no. 6, pp. 1659–1667, 2012.

[24] S.-l. Zhai, B. Luo, and Y.-t. Guo, “Fuzzy clustering ensemble based on

dual boosting,” in Fourth International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD 2007), vol. 2, pp. 240–244, 2007.

[25] J. Guan, S. Li, X. Chen, X. He, and J. Chen, “Demos: Clustering by prun-

ing a density-boosting cluster tree of density mounts,” IEEE Transactions

on Knowledge and Data Engineering, vol. 35, no. 10, pp. 10814–10830,

2023.

[26] R. Makkhongkaew, K. Benabdeslem, and H. Elghazel, “Semi-supervised

co-selection: Features and instances by a weighting approach,” in 2016

International Joint Conference on Neural Networks (IJCNN), pp. 3477–

3484, 2016.

[27] H. Liu, J. Wu, T. Liu, D. Tao, and Y. Fu, “Spectral ensemble clustering

via weighted k-means: Theoretical and practical evidence,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 29, no. 5, pp. 1129–1143,

2017.

[28] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on

information theory, vol. 28, no. 2, pp. 129–137, 1982.

213

[29] R. Cordeiro de Amorim and B. Mirkin, “Minkowski metric, feature

weighting and anomalous cluster initializing in k-means clustering,” Pat-

tern Recognition, vol. 45, no. 3, pp. 1061–1075, 2012.

[30] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of eu-

clidean sum-of-squares clustering,” Machine learning, vol. 75, pp. 245–

248, 2009.

[31] S. Harris and R. C. De Amorim, “An extensive empirical comparison of k-

means initialization algorithms,” IEEE Access, vol. 10, pp. 58752–58768,

2022.

[32] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recog-

nition letters, vol. 31, no. 8, pp. 651–666, 2010.

[33] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey of

kernel and spectral methods for clustering,” Pattern recognition, vol. 41,

no. 1, pp. 176–190, 2008.

[34] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-

work for combining multiple partitions,” Journal of machine learning re-

search, vol. 3, no. Dec, pp. 583–617, 2002.

[35] M. Rezaei and P. Fränti, “Set matching measures for external cluster

validity,” IEEE transactions on knowledge and data engineering, vol. 28,

no. 8, pp. 2173–2186, 2016.

[36] D. M. Hawkins, Identification of outliers, vol. 11. Springer, 1980.

[37] B. Zhang, “Generalized k-harmonic means,” Hewlett-Packard Laboratoris

Technical Report, 2000.

214

[38] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying

density-based local outliers,” in ACM sigmod record, vol. 29, pp. 93–104,

ACM, 2000.

[39] M. Alshawabkeh, B. Jang, and D. Kaeli, “Accelerating the local outlier

factor algorithm on a gpu for intrusion detection systems,” in Proceed-

ings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units, pp. 104–110, 2010.

[40] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Lukasik,

and S. Żak, “Complete gradient clustering algorithm for features analysis

of x-ray images,” in Information technologies in biomedicine, pp. 15–24,

Springer, 2010.

[41] D. Dua and C. Graff, “Uci machine learning repository,” 2017.

[42] L. Li, S. Das, R. John Hansman, R. Palacios, and A. N. Srivastava, “Anal-

ysis of flight data using clustering techniques for detecting abnormal oper-

ations,” Journal of Aerospace information systems, vol. 12, no. 9, pp. 587–

598, 2015.

[43] Y. Liu, R. Sun, and P. He, “Research on the pre-warning method of

aircraft long landing based on the xgboost algorithm and operation char-

acteristics clustering,” Aerospace, vol. 10, no. 5, p. 409, 2023.

[44] G. Wang, H. Xu, B. Pei, and H. Cheng, “Flight risk evaluation based

on flight state deep clustering network,” Complex & Intelligent Systems,

vol. 9, no. 5, pp. 5893–5906, 2023.

[45] B. Matthews, “NASA DASHlink curated 4 class anomaly detec-

tion data set.” https://c3.ndc.nasa.gov/dashlink/resources/1018/,

2022. Accessed: 2023-02-18.

215

https://c3.ndc.nasa.gov/dashlink/resources/1018/

[46] D. Moulavi, P. A. Jaskowiak, R. J. Campello, A. Zimek, and J. Sander,

“Density-based clustering validation,” in Proceedings of the 2014 SIAM

international conference on data mining, pp. 839–847, SIAM, 2014.

[47] K. Efimov, L. Adamyan, and V. Spokoiny, “Adaptive nonparametric

clustering,” IEEE Transactions on Information Theory, vol. 65, no. 8,

pp. 4875–4892, 2019.

[48] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis

and an algorithm,” in Advances in neural information processing systems,

pp. 849–856, 2002.

[49] M. Zhang, “Weighted clustering ensemble: A review,” Pattern Recogni-

tion, p. 108428, 2021.

[50] H. Parvin, B. Minaei-Bidgoli, H. Alinejad-Rokny, and W. F. Punch, “Data

weighing mechanisms for clustering ensembles,” Computers & Electrical

Engineering, vol. 39, no. 5, pp. 1433–1450, 2013.

[51] M. Al-Razgan and C. Domeniconi, “Weighted clustering ensembles,” in

Proceedings of the 2006 SIAM International Conference on Data Mining,

pp. 258–269, SIAM, 2006.

[52] Z. Wang, S. Zhao, Z. Li, H. Chen, C. Li, and Y. Shen, “Ensemble selection

with joint spectral clustering and structural sparsity,” Pattern Recogni-

tion, p. 108061, 2021.

[53] X. Z. Fern and W. Lin, “Cluster ensemble selection,” Statistical Analysis

and Data Mining: The ASA Data Science Journal, vol. 1, no. 3, pp. 128–

141, 2008.

216

[54] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, “Ultra-

scalable spectral clustering and ensemble clustering,” IEEE Transactions

on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1212–1226, 2019.

[55] D. Frossyniotis, A. Likas, and A. Stafylopatis, “A clustering method based

on boosting,” Pattern Recognition Letters, vol. 25, no. 6, pp. 641–654,

2004.

[56] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, “Weighted-object ensemble

clustering,” in 2013 IEEE 13th International Conference on Data Mining,

pp. 627–636, IEEE, 2013.

[57] T. Boongoen and N. Iam-On, “Cluster ensembles: A survey of ap-

proaches with recent extensions and applications,” Computer Science Re-

view, vol. 28, pp. 1–25, 2018.

[58] J. Qian and V. Saligrama, “Spectral clustering with imbalanced data,”

in 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 3057–3061, IEEE, 2014.

[59] B. Nadler and M. Galun, “Fundamental limitations of spectral cluster-

ing,” in Advances in neural information processing systems, pp. 1017–

1024, Citeseer, 2007.

[60] M. Lucińska and S. T. Wierzchoń, “Spectral clustering based on k-nearest

neighbor graph,” in IFIP International Conference on Computer Infor-

mation Systems and Industrial Management, pp. 254–265, Springer, 2012.

[61] C. D. Correa and P. Lindstrom, “Locally-scaled spectral clustering using

empty region graphs,” in Proceedings of the 18th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pp. 1330–1338,

2012.

217

[62] H. Ayad and M. Kamel, “Refined shared nearest neighbors graph for

combining multiple data clusterings,” in International Symposium on In-

telligent Data Analysis, pp. 307–318, Springer, 2003.

[63] J. M. Duarte, A. L. Fred, and F. J. F. Duarte, “Adaptive evidence ac-

cumulation clustering using the confidence of the objects’ assignments,”

in Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pp. 70–87, Springer, 2012.

[64] A. L. Fred and A. K. Jain, “Combining multiple clusterings using evidence

accumulation,” IEEE transactions on pattern analysis and machine intel-

ligence, vol. 27, no. 6, pp. 835–850, 2005.

[65] J. Jia, X. Xiao, B. Liu, and L. Jiao, “Bagging-based spectral clustering

ensemble selection,” Pattern Recognition Letters, vol. 32, no. 10, pp. 1456–

1467, 2011.

[66] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,

pp. 888–905, 2000.

[67] Y. He, “Imbalanced data clustering using equilibrium k-means,” arXiv

preprint arXiv:2402.14490v2, 2024.

[68] J. Handl and J. Knowles, “An evolutionary approach to multiobjective

clustering,” IEEE Transactions on Evolutionary Computation, vol. 11,

no. 1, pp. 56–76, 2007.

[69] C. Zahn, “Graph-theoretical methods for detecting and describing gestalt

clusters,” IEEE Transactions on Computers, vol. C-20, no. 1, pp. 68–86,

1971.

218

[70] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” Ad-

vances in neural information processing systems, vol. 17, 2004.

[71] S. Sinha, A. K. Bhandari, and R. Kumar, “Low quality retinal blood

vessel image boosting using fuzzified clustering,” IEEE Transactions on

Artificial Intelligence, vol. 5, no. 6, pp. 3022–3033, 2024.

[72] S. Chowdhury, N. Helian, and R. C. de Amorim, “Feature weighting in

dbscan using reverse nearest neighbours,” Pattern Recognition, vol. 137,

p. 109314, 2023.

[73] D. L. Torres, L. C. La Rosa, D. A. B. Oliveira, and R. Q. Feitosa, “Evalu-

ation of unsupervised deep clustering methods for crop classification using

sar image sequences,” in 2021 IEEE International Geoscience and Remote

Sensing Symposium IGARSS, pp. 4240–4243, 2021.

[74] L. Deng, “The mnist database of handwritten digit images for machine

learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,

pp. 141–142, 2012.

[75] Y. Pei and L. Ye, “Cluster analysis of mnist data set,” in Journal of

Physics: Conference Series, vol. 2181, p. 012035, IOP Publishing, 2022.

[76] S. Pourmohammad, R. Soosahabi, and A. S. Maida, “An efficient char-

acter recognition scheme based on k-means clustering,” in 2013 5th in-

ternational conference on modeling, simulation and applied optimization

(ICMSAO), pp. 1–6, IEEE, 2013.

[77] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral cluster-

ing using dual autoencoder network,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 4066–4075,

2019.

219

[78] N. D. Singh and A. Dhall, “Clustering and learning from imbalanced

data,” arXiv preprint arXiv:1811.00972, 2018.

[79] M. Rezaei, E. Dorigatti, D. Rügamer, and B. Bischl, “Joint debiased

representation learning and imbalanced data clustering,” in 2022 IEEE

International Conference on Data Mining Workshops (ICDMW), pp. 55–

62, IEEE, 2022.

[80] Y. Chong, L. Chi, D. P. Robinson, R. Vidal, V. Ferrari, M. Hebert,

C. Sminchisescu, and Y. Weiss, “A scalable exemplar-based subspace clus-

tering algorithm for class-imbalanced data,” in Proc. European Conference

on Computer Vision (ECCV), pp. 68–85, 2018.

[81] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal

of machine learning research, vol. 9, no. 11, 2008.

[82] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algo-

rithm for discovering clusters in large spatial databases with noise.,” in

kdd, vol. 96, pp. 226–231, 1996.

[83] T. Ali, S. Asghar, and N. A. Sajid, “Critical analysis of dbscan vari-

ations,” in 2010 international conference on information and emerging

technologies, pp. 1–6, IEEE, 2010.

[84] P. Liu, D. Zhou, and N. Wu, “Vdbscan: varied density based spatial

clustering of applications with noise,” in 2007 International conference

on service systems and service management, pp. 1–4, IEEE, 2007.

220

Chapter 9

Appendix

9.1 Literature Review Thematic Analysis Ta-

bles

Table 9.1: Papers identified by the literature search, with filtering.

Document Title Publication

Year

Include Title &

Abstract (Screen-

ing)

Include Full Text

(Eligibility)

Spectral Ensemble Clustering via Weighted K-Means: Theo-

retical and Practical Evidence

2017 PASS PASS

Weighted Multiview Possibilistic C-Means Clustering With L2

Regularization

2022 FAIL I2

CUSBoost: Cluster-Based Under-Sampling with Boosting for

Imbalanced Classification

2017 PASS FAIL I2

Fuzzy K-Means with Variable Weighting in High Dimensional

Data Analysis

2008 PASS FAIL I2

Research on Text Categorization of KNN Based on K-Means

for Class Imbalanced Problem

2016 PASS FAIL I2

Adaptive Ensemble Clustering With Boosting BLS-Based Au-

toencoder

2023 FAIL I2

Incomplete Multi-View Clustering Based on Dynamic Dimen-

sionality Reduction Weighted Graph Learning

2024 FAIL I2

A Dissimilarity Measure Powered Feature Weighted Fuzzy C-

Means Algorithm for Gene Expression Data

2024 FAIL I2

Multi-View Feature Boosting Network for Deep Subspace Clus-

tering

2022 FAIL I2

Context-Aware Hypergraph Construction for Robust Spectral

Clustering

2014 PASS FAIL I2

Feature Weighted Multi-View Graph Clustering 2024 FAIL I2

Robust guidewire segmentation through boosting, clustering

and linear programming

2010 PASS FAIL I2

221

Image Segmentation Using Fuzzy C-Means Algorithm Incor-

porating Weighted Local Complement Membership and Local

Data Distances

2016 PASS FAIL I2

Customer Churn Prediction in the Telecom Sector with Ma-

chine Learning and Adaptive k-Means Cluster using Imbalance

Data

2024 PASS FAIL I2

Sparsity Fuzzy C-Means Clustering With Principal Component

Analysis Embedding

2023 PASS PASS

Fuzzy C-means algorithm incorporating local data and mem-

bership information for noisy medical image segmentation

2015 PASS FAIL I2

Fuzzy K-Means Clustering With Discriminative Embedding 2022 PASS FAIL I2

K-means clustering based on self-adaptive weight 2012 PASS FAIL I2

Fuzzy Clustering Ensemble Based on Dual Boosting 2007 PASS PASS

An intelligent Weighted Kernel K-Means algorithm for high

dimension data

2009 PASS FAIL E3

Boosting K-Nearest Neighbour (KNN) Classification using

Clustering and AdaBoost Methods

2022 FAIL I1

On implementing a spectral clustering controlled islanding al-

gorithm in real power systems

2013 PASS FAIL I2

Smartphone TBI Sensing using Deep Embedded Clustering

and Extreme Boosted Outlier Detection

2021 PASS FAIL I2

Research on Ship Track Clustering Method Based on Opti-

mized Spectral Clustering Algorithm

2021 PASS FAIL I2

Using Boosting and Clustering to Prune Bagging and Detect

Noisy Data

2009 FAIL I1

Adaptive Graph Representation for Clustering 2022 PASS FAIL I2

Distributed Weighted Fuzzy C-Means Clustering for Wireless

Sensor Network Data Analysis

2023 FAIL I2

Cluster-Based Boosting 2015 FAIL I1

DEMOS: Clustering by Pruning a Density-Boosting Cluster

Tree of Density Mounts

2023 PASS PASS

A new brain MRI image segmentation strategy based on

wavelet transform and K-means clustering

2015 PASS FAIL I2

A k-means-based and no-super-parametric Improvement of

AdaBoost and its Application to Transaction Fraud Detection

2020 FAIL I1

Public Sector Corruption Analysis with Modified K-means Al-

gorithm Using Perception Data

2020 PASS FAIL I2

An Automatic Kernel of Graph Clustering Method in Con-

forming Clustering Number

2007 PASS FAIL I2

Weighted Kernel Fuzzy C-Means Method for Gene Expression

Analysis

2012 PASS PASS

Cluster Density Properties Define a Graph for Effective Pat-

tern Feature Selection

2020 FAIL I2

Multi-Channel Augmented Graph Embedding Convolutional

Network for Multi-View Clustering

2023 PASS FAIL I2

MFWK-Means: Minkowski metric Fuzzy Weighted K-Means

for high dimensional data clustering

2013 PASS FAIL I2

Dempster-Shafer theory of evidence in Single Pass Fuzzy C

Means

2013 PASS FAIL I2

Weighted Spectral Cluster Ensemble 2015 PASS FAIL I2

A Privacy-Preserving Smart Body Scale with K-Means

Anonymization towards GDPR-Compliant IoT

2023 FAIL I2

Fuzzy C-Means Clustering With Local Information and Kernel

Metric for Image Segmentation

2013 PASS PASS

222

Weight based movie recommendation system using K-means

algorithm

2017 PASS FAIL I3

Boosting Home WiFi Throughputs via Adaptive DAS Cluster-

ing of PLC Extenders

2021 FAIL I1

Boosting the Computational Performance of Feature-Based

Multiple 3D Scan Alignment by iat-k-means Clustering

2012 FAIL I2

Boosting performance of I/O-intensive workload by preemptive

job migrations in a cluster system

2003 FAIL I1

Bias field estimation and segmentation of MR image using

modified fuzzy-C means algorithms

2015 PASS FAIL I2

LUCID: Author name disambiguation using graph Structural

Clustering

2017 PASS FAIL I2

An Image Segmentation Algorithm Based on Fuzzy C-Means

Clustering

2009 PASS FAIL I2

Sampled Data Debugging via Fuzzy C-Means 2021 FAIL I2

A novel controlled islanding algorithm based on constrained

spectral clustering

2011 FAIL I2

Boosting Meaningful Dependency Mining with Clustering and

Covariance Analysis

2024 FAIL I1

Initializing FWSA K-Means With Feature Level Constraints 2022 FAIL I2

Low Quality Retinal Blood Vessel Image Boosting Using Fuzzi-

fied Clustering

2024 PASS FAIL I2

R - Tree Index Construction of Dynamic K-means Algorithm 2018 PASS FAIL I2

Environment Parameter Rating Evaluation for Smart Museum

Based on Improved K-Means Clustering Algorithm

2020 PASS PASS

Graphic: Graph-Based Hierarchical Clustering For Single-

Molecule Localization Microscopy

2021 PASS FAIL I2

An Improved K-Means Algorithm Based on Multiple Feature

Points

2009 PASS PASS

Convex Hierarchical Clustering for Graph-Structured Data 2019 PASS FAIL I2

FCAN-MOPSO: An Improved Fuzzy-Based Graph Clustering

Algorithm for Complex Networks With Multiobjective Particle

Swarm Optimization

2023 PASS FAIL I2

Hidden Markov Model with Parameter-Optimized K-Means

Clustering for Handwriting Recognition

2011 FAIL I2

Sample-weighted clustering methods 2011 PASS PASS

On Weighting Clustering 2006 PASS PASS

Linear Spectral Clustering Superpixel 2017 PASS PASS

Fuzzy c-means clustering with weighted image patch for image

segmentation

2012 PASS PASS

A Novel Sample Weighting K-Means Clustering Algorithm

based on Angles Information

2016 PASS PASS

Semi-supervised co-selection: features and instances by a

weighting approach

2016 PASS PASS

Adaptive clustering ensembles 2004 PASS PASS

Alternatives to the k-means algorithm that find better cluster-

ings

2002 PASS PASS

223

Table 9.2: The codes linked to data extraction sources.
Code Data Extraction Source

Boosting [24, 25, 15]

Bagging [27]

Weighting used in Assignment
Membership Degree

[19, 20, 21, 22, 23, 26]

Weighting used in Centroid Update [27, 17, 18, 19, 21, 8, 10, 22, 23, 9] [26]

Weights used for Sampling [24, 15]

Merge Probability [25]

Outlier Accommodation [17, 20, 10, 8]

Expediting Runtime/Convergence [27, 22, 15]

Noise Accommodation [27, 18, 19, 20, 10, 8]

Imbalanced Clusters [21]

Distant Instances have Higher
Weight

[8, 16]

Complex Weighting Schemes [24, 25]

Boundary points have Higher
Weight

[9, 15]

Distant Instances have Low Weight [17, 18, 19, 20, 21, 10, 22, 23, 26]

Feature Weighting [26]

Generalised Framework [10, 8]

Feature Reduction [17, 16]

Kernel Method [18]

Table 9.3: The themes linked to codes.
Theme Codes

Actuation of the Weights Weights used in Assignment/Membership Degree
Weights used in Centroid Update
Weights used for Sampling
Weights used for Merge Probability

Ensemble Techniques Boosting
Bagging

Benefits of Instance Weighting Expediting Runtime/Convergence
Outlier Accommodation
Noise Accommodation
Imbalanced Clusters

Weighting Strategy Distant Instances have Higher Weight
Complex Weighting Schemes
Boundary points have Higher Weight
Distant Instances have Low Weight

Compatibility Generalised Framework
Feature Weighting
Feature Reduction
Kernel Method

224

Table 9.4: Data extraction table.

Title and citation What clustering

algorithms were

investigated/de-

veloped?

How were the weights de-

fined?

How were the

weights applied?

For what dataset-

s/applications?

Data quality is-

sues addressed

Clustering Qual-

ity Metrics used

Notes – interesting fea-

tures

Spectral Ensem-

ble Clustering

via Weighted K-

Means: Theoreti-

cal and Practical

Evidence [27]

Spectral Ensem-

ble using an In-

stance Weighted

K-Means

Delta (difference) between

assignment of instances

across the ensemble of

clusterings is used to in-

form the weighting.

When calculating

the centroids.

Many Benchmark

datasets: breast

w, iris, wine,

cacmcisi, classic,

cranmed, hitech,

k1b, la12, mm,

re1, reviews,

sports, tr11, tr12,

tr41, tr45, letter.

Real-world data

sets from UCI:

MNIST, Hand-

written Digits,

three-Sources,

Multilingual,

Four-Areas.

Sina Weibo

(Tweets-like)

Noise, while no

specific type of

noise mentioned,

the selection of

datasets includes

some noisy parti-

tions. Also, the

challenge of big

data is partially

addressed.

(Intrinsic) Cus-

tom measures.

(Extrinsic) Nor-

malized Rand

Index.

In places, the

instances weights

improved cluster-

ing performance

by ∼20%.

Additionally,

runtime and

execution com-

plexity is reduced

significantly.

Applies an instance

weighted k-means at the

consensus stage of a clus-

tering ensemble.

Demonstrates distributed

processing.

In two benchmark datasets

(breast w

and cacmcisi). Instance

weighting made the dif-

ference between a total

failure to cluster the data-

points and good clustering

(for example: 82% vs 7%

with UCI breast w).

Instance weights en-

abled the simplification

of the spectral ensemble

clustering to a weighted

K-means. This reduced

runtime.

225

Sparsity Fuzzy C-

Means Clustering

With Principal

Component Anal-

ysis Embedding

[17]

Fuzzy C-Means Sum of all distances to

cluster centres from a

instance point. These are

sorted, for the identifica-

tion of outliers.

A threshold is used to

covert the rank, to a

weight of either 0 or 1.

The weights of

the outliers iden-

tified is set to 0.

The resulting ef-

fect is the outliers

have 0 distance

to all clusters and

thus, do not im-

pact the centroid

update step.

15 bench-

mark datasets:

COIL20,

USPS, ORL,

MNIST, PALM,

MSRA, YALE,

UMIST, LEUML,

dermatology,

prostateCan-

cerPSA410ML,

lymphoma, Solar,

MALDIML, and

MLLML. These

datasets are from

UCL

Synthetic out-

liers, uniformly

random but

gapped from the

dataset

Accuracy and

NMI was used

to evaluate the

results. Gains

of 3% to 28%

(average 13%) in

accuracy when

comparing their

instance weighted

approach to

k-means.

This approach simultane-

ously applies PCA and

clustering.

Weighted Kernel

Fuzzy C-Means

Method for

Gene Expression

Analysis [18]

Fuzzy C-Means Kernel version of the FCM

algorithm.

A Gaussian function

is fitted to describe the

local distribution around

a cluster, such that noise

can be mitigated.

Points closer to the centre

of the distribution, receive

a higher weight. The

impact of the weighting

to can be adjusted using

a parameter. Where 0 is

strongly applied and 1 and

degrades the clustering to

non-weighted.

The weights im-

pact the calcula-

tion of the new

cluster centroids

positions.

Gene Expression

Analysis Dataset:

Rat CNS and

Yeast Cell cycle

These are noisy

Microarray

datasets.

Noise - applica-

tion specific (the

natural noise in

gene expression

data). They do

not describe the

nature of the

noise.

Non-linear par-

titions and

overlapping data.

ARI was used

to evaluate the

effectiveness of

approach. Gains

of as much as

20% ARI when

using their in-

stance weighted

method compared

to plain FCM.

By mapping the data to a

higher dimensional space,

their kernel approach en-

ables FCM to handle non-

spherical and overlapped

clusters with noise.

226

Fuzzy C-Means

Clustering With

Local Informa-

tion and Kernel

Metric for Image

Segmentation

[19]

Fuzzy C-Means Based on the intensity of

neighbouring pixels.

Their trade-off weighting

approach has two param-

eters, a spatial constraint

and grey level constraint.

Higher weight is given

to neighbouring pix-

els which are close and

similar in intensity. Ul-

timately, noise pixels

receive less weight.

The instance

weights are used

in the assignment

step and in the

centroid update

step.

Image segmenta-

tion

Simple diag-

nostic images.

Brain MR im-

ages.

Natural images.

Gaussian noise,

Salt and Pepper

noise, and Rician

noise in greyscale

images.

Accuracy

Increases in

accuracy of ∼5%

were observed

across the variety

of images.

Bandwidth selection for

their Gaussian Radial

Basis Function kernel is

difficult so they use an

estimation method.

Maps data to a higher

dimensional space using

the kernel method.

Environment

Parameter Rat-

ing Evaluation

for Smart Mu-

seum Based on

Improved K-

Means Clustering

Algorithm [20]

K-Means Weights are calculated

based on distance to cen-

troid.

Weight per cluster are

calculated to sum up to 1.

Instances are ranked

in terms of distance away

from the centre.

The instance

weights are used

in the cluster as-

signment phase.

A mix of real-

world and bench-

mark data is

used. Real-world:

Museum Environ-

ment Recordings

UCI Bench-

mark datasets:

Glass and Iris

The work claim

to address noise

and outliers, is

fair to assume

their environ-

mental readings

contained some

natural noise.

Accuracy was

calculated using

a train-test split.

Gains of ∼2% on

the Iris dataset

and gains of ∼4%

on the Glass

dataset were

observed.

Their algorithm uses a his-

togram to calculate den-

sity information to assist

initialisation.

227

An Improved

K-Means Algo-

rithm Based on

Multiple Feature

Points [21]

K-means Based on distance to

“Feature Points” (multiple

points represent a cluster

in their implementation)

Instance weights

are used in both

the cluster as-

signment phase

and in the cen-

troid update

phase.

Calculates

weighted dis-

tances to dis-

tribute the data

points to clusters

and to build new

feature point

sets.

Circle and ring.

(Uniformly ran-

dom instances,

concentric clus-

ters)

Two rectan-

gles.

(Uniformly ran-

dom instances,

imbalanced clus-

ters)

UCI Segment

Challenge

(20 features, 1500

instances)

Imbalanced Clus-

ters.

Concentric clus-

ters.

Somewhat lim-

ited experiments.

Experiments

only ran once.

Metric is simply

“Correct” or

“Incorrect”.

Their algorithm (MF-

PKM) selects multiple

feature points as initial

cluster centres rather than

just one.

Requires tuning hy-

perparameters (feature

point number and sparse

factor)

Their approach im-

proved performance on

imbalanced clusters.

228

Fuzzy Clustering

Ensemble Based

on Dual Boosting

[24]

Fuzzy C-means Iteratively creates new

training sets that include

both “hard” instances

(those that are difficult

to cluster) and “fuzzy”

instances (those with

ambiguous cluster assign-

ments). This is done by

updating the probability

of selecting each instance

based on its clustering

performance in previous

iterations, based on the

membership degree.

Up weights “hard” and

“fuzzy” instances. In

summary, instances that

have similarity affinity

with all clusters OR are

very well clustered are

up-weighted.

The instance

weights are used

to guide sampling

probability in

their boosting

based approach.

The experiments

were conducted

on an artificial

dataset and

UCI benchmark

datasets: Iris,

Wine

Stability/robustness

of results was

their goal.

Error Rate used

to assess results.

Their results

showed their

method de-

creased error

rates by: 9% for

Iris, 2% for Wine

and 0.7% for

x8d5k, compared

to FCM.

Experiments

were repeated 50

times.

The final clustering solu-

tion is obtained using a co-

association matrix of the

assignments from the en-

semble.

229

DEMOS: Cluster-

ing by Pruning a

Density-Boosting

Cluster Tree of

Density Mounts

[25]

Based on K-

means and

Density Peak

Clustering

(Density peak

clustering is

based on Mean-

shift)

High density peaks are

given more weight.

Also, more weight is

given in valleys with

strong connectivity, based

on number of linking

instances.

In this dual boosting

approach, essentially, high

density areas and connect-

ing areas are considered

important.

Based on local density

data.

Weights effect the

likelihood of den-

sity peaks merg-

ing into clusters.

Synthetic

datasets: Agg,

Flame, Jain,

Compound, R15,

Spiral, Path-

based, D31, S3,

and T48k, with

instance counts

ranging from 240

to 8000. Cluster

count ranging

from 2 to 31. All

are 2d dimen-

sional datasets.

Real datasets:

Iris, Wine, Seg-

ment, Drivedata,

Breastcancer,

YTF, USPS,

MNIST.

Complex shapes

Automatically

finding the cor-

rect number of

clusters.

Big data.

Very impressive

results. Mostly

100% accuracy

on the variety

of synthetic

datasets trialled.

Adjusted Mu-

tual Information,

Adjusted Ran-

dom Index, F1

and DGCI scores

used to assess

performance.

Results included

100% ARI on

the Jain datasets

and 85% ARI on

the compound

dataset.

A strength of this work is

that they are clear on their

definition of a cluster.

“A cluster is assumed

to be a density-connected

area with multiple (or a

single) density mounts

and a relatively large

dis-connectivity from

density-connected areas of

higher densities.”

Produces a clustering

tree (dendrogram).

The classification of points

is similar to DBSCAN.

230

Sample-weighted

clustering meth-

ods [10]

K-Means,

Fuzzy C-Means,

Expectation

Maximisation

Based on the Maxi-

mum Entropy Principle

(Information theory) a

probability distribution

is calculated over the

dataset to inform the

instance weights.

Using the maximum

entropy principle, noise

points receive a smaller

weight. Essentially, points

that appear to be uniform

noise will have a lower

entropy and receive less

weight.

This is based on a

distortion factor, which is

the squared distance from

the cluster centre that

an instance is currently a

member of.

Their approach assigns

lower weight to outliers.

Using exponential func-

tion. Note that Zeta (seen

in their Equation 3) is

essentially the bandwidth.

Instance weights are

greater than 0 and to-

gether add up to 1.

Weights are used

to inform clus-

ter centre posi-

tions only.

Synthetic data

and the Iris

dataset are tri-

alled with a

single strongly

outlying instance

added.

Explicitly men-

tions robustness

to outliers and

noise. Evalu-

ates performance

against an added

artificial outlier.

Average and min-

imum error rate

are used to assess

performance.

They compare

their instance

weighted al-

gorithm with

different cluster-

ing algorithms

and with and

without instance

weighting. The

results show a

large perfor-

mance gain,

especially with

the single outlier

datasets.

Their work offers a gener-

alised approach to instance

weighting multiple clus-

tering algorithms: “The

new clustering framework

can be applied to most

clustering algorithms.” It

is implied, centroid-based

clustering algorithms only.

This work highlights that

instance (sample) weight-

ing is less researched than

feature weighting.

231

On Weighting

Clustering [8]

K-Means,

Fuzzy C-means,

EM and K-

Harmonic Means

Iteratively weighted ap-

proach.

Their approach focuses

on the harder to cluster

points using a probabilis-

tic framework.

Points far from clus-

ter centres have higher

weights.

Boosting inspired.

Instance weights

are only used to

update centroid

positions.

Various synthetic

datasets, includ-

ing normal, uni-

form and concen-

tric distributions.

Mix of datasets

included some-

what noisy and

sometimes over-

lapping Gaussian

distributions.

Their results use

three metrics

including extrin-

sic and intrinsic

metrics, most

notably KNM-

loss and missed

clusters.

The weighted algorithms

(apart from fuzzy k-

means) performed better

as the dimensionality

increases. The instance

weighted algorithms

worked better with the

fuzzy (soft membership)

clustering algorithms par-

ticularly fuzzy k-means.

Their describe their

method as a framework

and show how it can be

applied to a selection

partitioning-based algo-

rithms.

Uses Bregman divergences

to calculate weights, which

compared to traditional

distance measures, offer

several advantages, such

as robustness to outliers

and the ability to handle

non-Euclidean data.

232

Linear Spec-

tral Clustering

Superpixel [22]

Spectral Cluster-

ing and k-means

Uses both colour and

space information in dis-

tance calculation.

Distance metric is ap-

plied as a kernel function

in a high dimensional

feature space.

Simplifies N-cuts com-

ponent in spectral clus-

tering by replacing with a

weighted k-means.

The weight of a pixel

(instance) is based on it’s

similarity with all other

pixels. Pixels which are

similar to all other pixels

are given higher weight.

The weighted

k-means uses the

instance weights

in both the as-

signment and

centroid update

phases.

Brekley Image

segmentation

dataset.

Noise in natural

images.

Interestingly,

here the use of

weights enables

the integrated

k-means to per-

form equivalently

to N-cuts, this

makes the spec-

tral clustering

algorithm more

efficient.

State of the art

clustering perfor-

mance – shown

by compari-

son with other

improved algo-

rithms. Although

still somewhat

slower than some

algorithms.

Accuracy gains of

∼3-4%

This is a super-pixel seg-

mentation algorithm.

Their algorithm requires

the manual specification

of k - this the number of

superpixels.

233

Fuzzy C-Means

clustering with

weighted image

patch for image

segmentation [23]

Fuzzy C-Means Uses local spatial informa-

tion to inform the instance

weights.

First, the mean and

standard deviation of

patch around an (in-

stance) pixel is calculated.

Next, the exponential

kernel is applied to image

patch.

These weights are then

normalised.

Pixels that are very

different to their neigh-

bours have a low, often 0

weights.

The instance

weights are used

in both the clus-

ter assignment

and centroid

update stages.

Instances that

have a low weight

(thus do not

belong in their

patch) effect the

distance calcula-

tion and centroid

calculation less.

Note that, pix-

els are replaced

with a patch of

pixels. These

will respond

differently to dif-

ferent centroids.

Their approach is

sophisticated.

The MRI images

were from Brain-

Web.

Gaussian noise,

salt-and-pepper

noise and a com-

bination of both

are applied to

synthetic images

and Brain MRI

images.

Three metrics are

used to assess

accuracy.

To assess the

image segmenta-

tion performance

extrinsically, the

percent of the of

correctly classi-

fied pixels was

used.

To assess the

performance of

the clustering

intrinsically, the

fuzzy partition

coefficient and

partition entropy

were used.

Their algorithm relies on

the user specifying an

image patch size, which

depends on the amount

of noise in the image.

The authors highlight au-

tomating this as future

work.

234

A Novel Sam-

ple Weighting

K-Means Clus-

tering Algorithm

based on Angles

Information [9]

K-Means Instances are considered

either “ambiguous” or

“unambiguous” based

on their angle relative

to a vector between the

cluster centre and cluster

boundary.

Points which are an-

gled such that they are

within a specific area

between the boundary and

centroid are classed as

“ambiguous”, while points

outside this area are clas-

sified as “unambiguous”.

The “ambiguous” points

are weighted using a Min-

Max Normalised distance

from the centre.

The “unambiguous”

points are weighted using

the cosine of the of an-

gle between the vectors:

nearest cluster centre to

the given unambiguous in-

stance AND the vector of

the nearest cluster centre

to the other clusters in

turn.

Points that are angled

away from other clusters

are given a higher weight.

Cluster centres

are calculated

using the weight.

They use real

and synthetic

datasets. Two

artificial and nine

real datasets:

Bensaid1, Ben-

said2, Tae,

Sonar, Seeds,

Svmguide4,

Column2C, Col-

umn3C, Liver,

Diabetes, Vehi-

cle.

The data qual-

ity issues are

not explicitly

mentioned, but

small imbalanced

datasets are used.

Accuracy in-

creases of be-

tween 1 to 20%

(average 5%)

are observed,

compared to

k-means.

This work is based on the

principle that points that

are closer to a boundary

may be homogenous with a

different cluster.

235

Semi-supervised

co-selection:

features and

instances by

a weighting

approach [26]

Custom Initially the instance

weights are randomly

generated.

They are then itera-

tively optimised according

to an objective function:

For each instance, the

distance from each cluster

according to each weighted

feature.

Their approach assigns

higher weight instances

closer to centroids.

Instance weights

inform the fea-

ture weights.

The instance

weights inform

the assignment

and the centroid

positions, the

higher the weight

the more an

instance attracts

the centroid.

UCI:

Dermathology

Lymphoma

Multiple

Ovarian

Semeion

Sonar

Some datasets

used a large num-

ber of features

403.

High dimensional

datasets

Accuracy.

Often signifi-

cantly better

than non-

weighted ap-

proaches.

Performs both feature and

instance weighting.

They claim that prior

to their work none have

previously combined

instance and feature

weighting approaches.

Semi-supervised ap-

proach.

Their Beta hyperpa-

rameter allows for tuning

of the weighting.

A interesting advan-

tage of instance weighting

which they point out is

that the final weighting

shows the importance of

instances to the clustering

result.

236

Adaptive cluster-

ing ensembles [15]

K-Means Designed to focus on

problematic areas of the

feature space.

Uses a boosting based

ensemble.

The generative mecha-

nism for the ensemble is

resampling.

Sampling probability

for each data point dy-

namical depending on

the consistency of it’s

previous assignments in

the ensemble.

Their adaptive sam-

pling favours points from

regions close to the deci-

sion boundaries.

Their clustering con-

sistency index requires

solving the label corre-

spondence problem.

Essentially, a high weight

is given to points that

inconsistently assigned.

Weights decide

the sampling

(with replace-

ment) probabil-

ity.

Artificial and

real-world

datasets: Galaxy,

Half-rings, Wine,

3-gaussains, Iris,

LON.

Challenging clus-

ter structures.

Non-spherical

clusters.

Their instance

weighting ap-

proach produced

∼1 – 5% gains in

accuracy.

Experiment

results show

instance weight-

ing is better

than random

sampling.

They also compared

against instance selection.

They found that it is

best to use a larger k

value, than the actual k

(that is used in the con-

sensus stage, to provide

the final result) for the

clustering in the ensemble.

Experiments demon-

strate faster convergence.

MCLA, CSPA and EM

where used for the ensem-

ble consensus function.

237

Alternatives to

the k-means al-

gorithm that find

better clusterings

[16]

K-Harmonic

Means

The instance weights for

a given instance is the

distance from centroids.

Higher weight is given to

points which are far from

centroids. This loosely

follows the analogy of

boosting.

Naturally, the harmonic

mean is less influenced by

points that are close to

multiple centroids.

Weights are taken

into considera-

tion assigning

instance member-

ship to clusters.

The experiments

are conducted

with two different

datasets, BIRCH

100 clusters

two dimensions

10,000 instances

and the Pelleg

dataset, with 2, 4

and 6 dimension

versions each

with 50 clusters,

2500 instances,

they adjust the

dataset slightly

to make the

clusters more

separated, which

makes centroid

jumping between

clusters harder

but separation

easier.

Challenging

structures.

To assess the

quality of the

clustering algo-

rithm, in their

main experiment

they use square of

the k-means ob-

jective function

rather than ob-

jective function

of the algorithm

tested, this is an

intrinsic measure.

They use the

square root to

exaggerate the

severity of poor

solutions.

KHM is shown to

work better than

KM.

Their work uses the har-

monic mean rather than

the arthritic mean and has

both instance weights and

soft membership added.

The paper makes the

point that varying in-

stance weights is similar

to boosting. They point

out dimensionality re-

duction helps KHM, but

don’t compare this in their

experiments.

Their include some

suggestion of generalising

instance weighting into a

unified framework.

They investigated ini-

tialisation methods to get

stable/robust clustering

performance.

The paper tests with

two different initialisation

strategies, Forgy (chooses

random data points to

place the cluster centres

on) and Random Parti-

tion (assigns data points

to random centres then

calculates the positions

of the centres to initialise

the centroids).

238

239

9.2 ARI Results for LOFIWKM Experiments

Figure 9.1: The average ARI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the synthetic dataset with an increasing amount
of outliers.

Figure 9.2: The average ARI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the synthetic dataset with increasingly distant
outliers.

240

Figure 9.3: The average ARI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the Seeds dataset with an increasing amount of
outliers.

Figure 9.4: The average ARI score and standard deviation of k-means, LOFI-
WKM and ILOFIWKM on the Seeds dataset with increasingly distant outliers.

9.3 Clustering Results of FDR Dataset

These plots show a random sample of the results of the different approaches

trialled on the FDR dataset. A total of six runs of each technique is seen across

Figure 9.5 and 9.6.

241

Figure 9.5: Scatter plots with colouration showing the clusters found by each
of the approaches trialled across three runs.

242

Figure 9.6: Scatter plots with colouration showing the clusters found by each
of the approaches trialled across another three runs.

243

9.4 Worked Examples of Clustering Algorithms

9.4.1 Example Dataset

Id x y
P1 20 10
P2 21 8
P3 10 12
P4 9 13
P5 16 12
P6 8 15
P7 18 12

Table 9.5: The values of the example
dataset.

Figure 9.7: Scatter plot of the exam-
ple dataset.

9.4.2 K-means Example

Assignment step, (first iteration).

d(C1, P1) =
√

(20− 20)2 + (10− 10)2

d(C1, P1) =
√

(0)2 + (0)2

d(C1, P1) =
√
0 + 0

d(C1, P1) =
√
0 = 0.0

d(C2, P1) =
√

(21− 20)2 + (8− 10)2

d(C2, P1) =
√

(1)2 + (−2)2

d(C2, P1) =
√
1 + 4

d(C2, P1) =
√
5 = 2.236

244

d(C1, P2) =
√

(20− 21)2 + (10− 8)2

d(C1, P2) =
√

(−1)2 + (2)2

d(C1, P2) =
√
1 + 4

d(C1, P2) =
√
5 = 2.236

d(C2, P2) =
√

(21− 21)2 + (8− 8)2

d(C2, P2) =
√

(0)2 + (0)2

d(C2, P2) =
√
0 + 0

d(C2, P2) =
√
0 = 0.0

d(C1, P3) =
√

(20− 10)2 + (10− 12)2

d(C1, P3) =
√

(10)2 + (−2)2

d(C1, P3) =
√
100 + 4

d(C1, P3) =
√
104 = 10.198

d(C2, P3) =
√

(21− 10)2 + (8− 12)2

d(C2, P3) =
√

(11)2 + (−4)2

d(C2, P3) =
√
121 + 16

d(C2, P3) =
√
137 = 11.705

d(C1, P4) =
√

(20− 9)2 + (10− 13)2

d(C1, P4) =
√

(11)2 + (−3)2

d(C1, P4) =
√
121 + 9

d(C1, P4) =
√
130 = 11.402

d(C2, P4) =
√

(21− 9)2 + (8− 13)2

d(C2, P4) =
√

(12)2 + (−5)2

d(C2, P4) =
√
144 + 25

d(C2, P4) =
√
169 = 13.0

d(C1, P5) =
√

(20− 16)2 + (10− 12)2

d(C1, P5) =
√

(4)2 + (−2)2

d(C1, P5) =
√
16 + 4

d(C1, P5) =
√
20 = 4.472

245

d(C2, P5) =
√

(21− 16)2 + (8− 12)2

d(C2, P5) =
√

(5)2 + (−4)2

d(C2, P5) =
√
25 + 16

d(C2, P5) =
√
41 = 6.403

d(C1, P6) =
√

(20− 8)2 + (10− 15)2

d(C1, P6) =
√

(12)2 + (−5)2

d(C1, P6) =
√
144 + 25

d(C1, P6) =
√
169 = 13.0

d(C2, P6) =
√

(21− 8)2 + (8− 15)2

d(C2, P6) =
√

(13)2 + (−7)2

d(C2, P6) =
√
169 + 49

d(C2, P6) =
√
218 = 14.765

d(C1, P7) =
√

(20− 18)2 + (10− 12)2

d(C1, P7) =
√

(2)2 + (−2)2

d(C1, P7) =
√
4 + 4

d(C1, P7) =
√
8 = 2.828

d(C2, P7) =
√

(21− 18)2 + (8− 12)2

d(C2, P7) =
√

(3)2 + (−4)2

d(C2, P7) =
√
9 + 16

d(C2, P7) =
√
25 = 5.0

Assigning each instance its nearest cluster produces the below partitioning.

Instance Cluster
P1 C1

P2 C2

P3 C1

P4 C1

P5 C1

P6 C1

P7 C1

Centroid update step (first iteration).

246

Cx∗
1 =

(20 + 10 + 9 + 16 + 8 + 18)

6
= 13.5

Cy∗1 =
(10 + 12 + 13 + 12 + 15 + 12)

6
= 12.333

Cx∗
2 =

(21)

1
= 21.0

Cy∗2 =
(8)

1
= 8.0

Assignment step, (second iteration).

d(C1, P1) =
√

(13.5− 20)2 + (12.333− 10)2

d(C1, P1) =
√

(−6.5)2 + (2.333)2

d(C1, P1) =
√
42.25 + 5.443

d(C1, P1) =
√
47.693 = 6.906

d(C2, P1) =
√

(21− 20)2 + (8− 10)2

d(C2, P1) =
√

(1)2 + (−2)2

d(C2, P1) =
√
1 + 4

d(C2, P1) =
√
5 = 2.236

d(C1, P2) =
√

(13.5− 21)2 + (12.333− 8)2

d(C1, P2) =
√

(−7.5)2 + (4.333)2

d(C1, P2) =
√
56.25 + 18.775

d(C1, P2) =
√
75.025 = 8.662

d(C2, P2) =
√

(21− 21)2 + (8− 8)2

d(C2, P2) =
√

(0)2 + (0)2

d(C2, P2) =
√
0 + 0

d(C2, P2) =
√
0 = 0.0

247

d(C1, P3) =
√

(13.5− 10)2 + (12.333− 12)2

d(C1, P3) =
√

(3.5)2 + (0.333)2

d(C1, P3) =
√
12.25 + 0.111

d(C1, P3) =
√
12.361 = 3.516

d(C2, P3) =
√

(21− 10)2 + (8− 12)2

d(C2, P3) =
√

(11)2 + (−4)2

d(C2, P3) =
√
121 + 16

d(C2, P3) =
√
137 = 11.705

d(C1, P4) =
√

(13.5− 9)2 + (12.333− 13)2

d(C1, P4) =
√

(4.5)2 + (−0.667)2

d(C1, P4) =
√
20.25 + 0.445

d(C1, P4) =
√
20.695 = 4.549

d(C2, P4) =
√

(21− 9)2 + (8− 13)2

d(C2, P4) =
√

(12)2 + (−5)2

d(C2, P4) =
√
144 + 25

d(C2, P4) =
√
169 = 13.0

d(C1, P5) =
√

(13.5− 16)2 + (12.333− 12)2

d(C1, P5) =
√

(−2.5)2 + (0.333)2

d(C1, P5) =
√
6.25 + 0.111

d(C1, P5) =
√
6.361 = 2.522

d(C2, P5) =
√

(21− 16)2 + (8− 12)2

d(C2, P5) =
√

(5)2 + (−4)2

d(C2, P5) =
√
25 + 16

d(C2, P5) =
√
41 = 6.403

d(C1, P6) =
√

(13.5− 8)2 + (12.333− 15)2

d(C1, P6) =
√

(5.5)2 + (−2.667)2

d(C1, P6) =
√
30.25 + 7.113

d(C1, P6) =
√
37.363 = 6.113

248

d(C2, P6) =
√

(21− 8)2 + (8− 15)2

d(C2, P6) =
√

(13)2 + (−7)2

d(C2, P6) =
√
169 + 49

d(C2, P6) =
√
218 = 14.765

d(C1, P7) =
√

(13.5− 18)2 + (12.333− 12)2

d(C1, P7) =
√

(−4.5)2 + (0.333)2

d(C1, P7) =
√
20.25 + 0.111

d(C1, P7) =
√
20.361 = 4.512

d(C2, P7) =
√

(21− 18)2 + (8− 12)2

d(C2, P7) =
√

(3)2 + (−4)2

d(C2, P7) =
√
9 + 16

d(C2, P7) =
√
25 = 5.0

Assigning each instance its nearest cluster produces the below partitioning.

Instance Cluster
P1 C2

P2 C2

P3 C1

P4 C1

P5 C1

P6 C1

P7 C1

Centroid update step (second iteration).

Cx∗
1 =

(10 + 9 + 16 + 8 + 18)

5
= 12.2

Cy∗1 =
(12 + 13 + 12 + 15 + 12)

5
= 12.8

Cx∗
2 =

(20 + 21)

2
= 20.5

Cy∗2 =
(10 + 8)

2
= 9.0

Assignment step, (third iteration).

249

d(C1, P1) =
√

(12.2− 20)2 + (12.8− 10)2

d(C1, P1) =
√

(−7.8)2 + (2.8)2

d(C1, P1) =
√
60.84 + 7.84

d(C1, P1) =
√
68.68 = 8.287

d(C2, P1) =
√

(20.5− 20)2 + (9− 10)2

d(C2, P1) =
√

(0.5)2 + (−1)2

d(C2, P1) =
√
0.25 + 1

d(C2, P1) =
√
1.25 = 1.118

d(C1, P2) =
√

(12.2− 21)2 + (12.8− 8)2

d(C1, P2) =
√

(−8.8)2 + (4.8)2

d(C1, P2) =
√
77.44 + 23.04

d(C1, P2) =
√
100.48 = 10.024

d(C2, P2) =
√

(20.5− 21)2 + (9− 8)2

d(C2, P2) =
√

(−0.5)2 + (1)2

d(C2, P2) =
√
0.25 + 1

d(C2, P2) =
√
1.25 = 1.118

d(C1, P3) =
√

(12.2− 10)2 + (12.8− 12)2

d(C1, P3) =
√

(2.2)2 + (0.8)2

d(C1, P3) =
√
4.84 + 0.64

d(C1, P3) =
√
5.48 = 2.341

d(C2, P3) =
√

(20.5− 10)2 + (9− 12)2

d(C2, P3) =
√

(10.5)2 + (−3)2

d(C2, P3) =
√
110.25 + 9

d(C2, P3) =
√
119.25 = 10.92

d(C1, P4) =
√

(12.2− 9)2 + (12.8− 13)2

d(C1, P4) =
√

(3.2)2 + (−0.2)2

d(C1, P4) =
√
10.24 + 0.04

d(C1, P4) =
√
10.28 = 3.206

250

d(C2, P4) =
√

(20.5− 9)2 + (9− 13)2

d(C2, P4) =
√

(11.5)2 + (−4)2

d(C2, P4) =
√
132.25 + 16

d(C2, P4) =
√
148.25 = 12.176

d(C1, P5) =
√

(12.2− 16)2 + (12.8− 12)2

d(C1, P5) =
√

(−3.8)2 + (0.8)2

d(C1, P5) =
√
14.44 + 0.64

d(C1, P5) =
√
15.08 = 3.883

d(C2, P5) =
√

(20.5− 16)2 + (9− 12)2

d(C2, P5) =
√

(4.5)2 + (−3)2

d(C2, P5) =
√
20.25 + 9

d(C2, P5) =
√
29.25 = 5.408

d(C1, P6) =
√

(12.2− 8)2 + (12.8− 15)2

d(C1, P6) =
√

(4.2)2 + (−2.2)2

d(C1, P6) =
√
17.64 + 4.84

d(C1, P6) =
√
22.48 = 4.741

d(C2, P6) =
√

(20.5− 8)2 + (9− 15)2

d(C2, P6) =
√

(12.5)2 + (−6)2

d(C2, P6) =
√
156.25 + 36

d(C2, P6) =
√
192.25 = 13.865

d(C1, P7) =
√

(12.2− 18)2 + (12.8− 12)2

d(C1, P7) =
√

(−5.8)2 + (0.8)2

d(C1, P7) =
√
33.64 + 0.64

d(C1, P7) =
√
34.28 = 5.855

d(C2, P7) =
√

(20.5− 18)2 + (9− 12)2

d(C2, P7) =
√

(2.5)2 + (−3)2

d(C2, P7) =
√
6.25 + 9

d(C2, P7) =
√
15.25 = 3.905

Assigning each instance its nearest cluster produces the below partitioning.

Centroid update step (third iteration).

251

Instance Cluster
P1 C2

P2 C2

P3 C1

P4 C1

P5 C1

P6 C1

P7 C2

Cx∗
1 =

(10 + 9 + 16 + 8)

4
= 10.75

Cy∗1 =
(12 + 13 + 12 + 15)

4
= 13.0

Cx∗
2 =

(20 + 21 + 18)

3
= 19.667

Cy∗2 =
(10 + 8 + 12)

3
= 10.0

Assignment step, (fourth iteration).

d(C1, P1) =
√

(10.75− 20)2 + (13− 10)2

d(C1, P1) =
√

(−9.25)2 + (3)2

d(C1, P1) =
√
85.562 + 9

d(C1, P1) =
√
94.562 = 9.724

d(C2, P1) =
√

(19.667− 20)2 + (10− 10)2

d(C2, P1) =
√

(−0.333)2 + (0)2

d(C2, P1) =
√
0.111 + 0

d(C2, P1) =
√
0.111 = 0.333

d(C1, P2) =
√

(10.75− 21)2 + (13− 8)2

d(C1, P2) =
√

(−10.25)2 + (5)2

d(C1, P2) =
√
105.062 + 25

d(C1, P2) =
√
130.062 = 11.404

252

d(C2, P2) =
√

(19.667− 21)2 + (10− 8)2

d(C2, P2) =
√

(−1.333)2 + (2)2

d(C2, P2) =
√
1.777 + 4

d(C2, P2) =
√
5.777 = 2.404

d(C1, P3) =
√

(10.75− 10)2 + (13− 12)2

d(C1, P3) =
√

(0.75)2 + (1)2

d(C1, P3) =
√
0.562 + 1

d(C1, P3) =
√
1.562 = 1.25

d(C2, P3) =
√

(19.667− 10)2 + (10− 12)2

d(C2, P3) =
√

(9.667)2 + (−2)2

d(C2, P3) =
√
93.451 + 4

d(C2, P3) =
√
97.451 = 9.872

d(C1, P4) =
√

(10.75− 9)2 + (13− 13)2

d(C1, P4) =
√

(1.75)2 + (0)2

d(C1, P4) =
√
3.062 + 0

d(C1, P4) =
√
3.062 = 1.75

d(C2, P4) =
√

(19.667− 9)2 + (10− 13)2

d(C2, P4) =
√

(10.667)2 + (−3)2

d(C2, P4) =
√
113.785 + 9

d(C2, P4) =
√
122.785 = 11.081

d(C1, P5) =
√

(10.75− 16)2 + (13− 12)2

d(C1, P5) =
√

(−5.25)2 + (1)2

d(C1, P5) =
√
27.562 + 1

d(C1, P5) =
√
28.562 = 5.344

d(C2, P5) =
√

(19.667− 16)2 + (10− 12)2

d(C2, P5) =
√

(3.667)2 + (−2)2

d(C2, P5) =
√
13.447 + 4

d(C2, P5) =
√
17.447 = 4.177

253

d(C1, P6) =
√

(10.75− 8)2 + (13− 15)2

d(C1, P6) =
√

(2.75)2 + (−2)2

d(C1, P6) =
√
7.562 + 4

d(C1, P6) =
√
11.562 = 3.4

d(C2, P6) =
√

(19.667− 8)2 + (10− 15)2

d(C2, P6) =
√

(11.667)2 + (−5)2

d(C2, P6) =
√
136.119 + 25

d(C2, P6) =
√
161.119 = 12.693

d(C1, P7) =
√

(10.75− 18)2 + (13− 12)2

d(C1, P7) =
√

(−7.25)2 + (1)2

d(C1, P7) =
√
52.562 + 1

d(C1, P7) =
√
53.562 = 7.319

d(C2, P7) =
√

(19.667− 18)2 + (10− 12)2

d(C2, P7) =
√

(1.667)2 + (−2)2

d(C2, P7) =
√
2.779 + 4

d(C2, P7) =
√
6.779 = 2.604

Assigning each instance its nearest cluster produces the below partitioning.

Instance Cluster
P1 C2

P2 C2

P3 C1

P4 C1

P5 C2

P6 C1

P7 C2

Centroid update step (fourth iteration).

Cx∗
1 =

(10 + 9 + 8)

3
= 9.0

Cy∗1 =
(12 + 13 + 15)

3
= 13.333

254

Cx∗
2 =

(20 + 21 + 16 + 18)

4
= 18.75

Cy∗2 =
(10 + 8 + 12 + 12)

4
= 10.5

Assignment step, (fifth iteration).

d(C1, P1) =
√

(9− 20)2 + (13.33− 10)2

d(C1, P1) =
√

(−11)2 + (3.33)2

d(C1, P1) =
√
121 + 11.089

d(C1, P1) =
√
132.089 = 11.493

d(C2, P1) =
√

(18.75− 20)2 + (10.5− 10)2

d(C2, P1) =
√

(−1.25)2 + (0.5)2

d(C2, P1) =
√
1.562 + 0.25

d(C2, P1) =
√
1.812 = 1.346

d(C1, P2) =
√

(9− 21)2 + (13.33− 8)2

d(C1, P2) =
√

(−12)2 + (5.33)2

d(C1, P2) =
√
144 + 28.409

d(C1, P2) =
√
172.409 = 13.13

d(C2, P2) =
√

(18.75− 21)2 + (10.5− 8)2

d(C2, P2) =
√

(−2.25)2 + (2.5)2

d(C2, P2) =
√
5.062 + 6.25

d(C2, P2) =
√
11.312 = 3.363

d(C1, P3) =
√

(9− 10)2 + (13.33− 12)2

d(C1, P3) =
√

(−1)2 + (1.33)2

d(C1, P3) =
√
1 + 1.769

d(C1, P3) =
√
2.769 = 1.664

255

d(C2, P3) =
√

(18.75− 10)2 + (10.5− 12)2

d(C2, P3) =
√

(8.75)2 + (−1.5)2

d(C2, P3) =
√
76.562 + 2.25

d(C2, P3) =
√
78.812 = 8.878

d(C1, P4) =
√

(9− 9)2 + (13.33− 13)2

d(C1, P4) =
√

(0)2 + (0.33)2

d(C1, P4) =
√
0 + 0.109

d(C1, P4) =
√
0.109 = 0.33

d(C2, P4) =
√

(18.75− 9)2 + (10.5− 13)2

d(C2, P4) =
√

(9.75)2 + (−2.5)2

d(C2, P4) =
√
95.062 + 6.25

d(C2, P4) =
√
101.312 = 10.065

d(C1, P5) =
√

(9− 16)2 + (13.33− 12)2

d(C1, P5) =
√

(−7)2 + (1.33)2

d(C1, P5) =
√
49 + 1.769

d(C1, P5) =
√
50.769 = 7.125

d(C2, P5) =
√

(18.75− 16)2 + (10.5− 12)2

d(C2, P5) =
√

(2.75)2 + (−1.5)2

d(C2, P5) =
√
7.562 + 2.25

d(C2, P5) =
√
9.812 = 3.132

d(C1, P6) =
√

(9− 8)2 + (13.33− 15)2

d(C1, P6) =
√

(1)2 + (−1.67)2

d(C1, P6) =
√
1 + 2.789

d(C1, P6) =
√
3.789 = 1.947

d(C2, P6) =
√

(18.75− 8)2 + (10.5− 15)2

d(C2, P6) =
√

(10.75)2 + (−4.5)2

d(C2, P6) =
√
115.562 + 20.25

d(C2, P6) =
√
135.812 = 11.654

256

d(C1, P7) =
√

(9− 18)2 + (13.33− 12)2

d(C1, P7) =
√

(−9)2 + (1.33)2

d(C1, P7) =
√
81 + 1.769

d(C1, P7) =
√
82.769 = 9.098

d(C2, P7) =
√

(18.75− 18)2 + (10.5− 12)2

d(C2, P7) =
√

(0.75)2 + (−1.5)2

d(C2, P7) =
√
0.562 + 2.25

d(C2, P7) =
√
2.812 = 1.677

Assigning each instance its nearest cluster produces the below partitioning.

Instance Cluster
P1 C2

P2 C2

P3 C1

P4 C1

P5 C2

P6 C1

P7 C2

As no instances switch between clusters, the algorithm has converged. The

final clustering result with Voronoi diagram can be seen in Figure 9.8.

257

Figure 9.8: The example dataset clustered by k-means.

9.4.3 Spectral Example

Firstly, using 2 nearest neighbours using Euclidean distance on the example

dataset produces a graph, see 9.9. The distance calculations have been omitted

for brevity.

Note that, on this toy dataset using specifically 2 nearest neighbours does pro-

duce two separate graphs, this could be manually detected at this stage. But

for the purpose of the demonstration, let’s continue with the spectral cluster-

258

Figure 9.9: The graph derived from the example dataset using 2 nearest neigh-
bours.

ing method.

The connectivity of the graph in Figure 9.9 can be modelled by a symmetric

matrix, A.

A =



0 1 0 0 1 0 1

1 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

1 0 0 0 0 0 1

0 0 1 1 0 0 0

1 1 0 0 1 0 0


To partition matrix A, first the degree matrix is calculated. This is simply the

sum of each row, placed on the diagonal.

259

D =



3 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 3


A is then subtracted from D to produce a symmetric matrix L.

L = D − A

L =



3 −1 0 0 −1 0 −1

−1 2 0 0 0 0 −1

0 0 2 −1 0 −1 0

0 0 −1 2 0 −1 0

−1 0 0 0 2 0 −1

0 0 −1 −1 0 2 0

−1 −1 0 0 −1 0 3


L has a determinant of 0. Multiply this matrix by the λ times I. Where I is

the identity matrix (the “do nothing” matrix) to and retain a determinant of

0.

260

I =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



λI =



λ 0 0 0 0 0 0

0 λ 0 0 0 0 0

0 0 λ 0 0 0 0

0 0 0 λ 0 0 0

0 0 0 0 λ 0 0

0 0 0 0 0 λ 0

0 0 0 0 0 0 λ



det(L−(λI)) = det





3− λ −1 0 0 −1 0 −1

−1 2− λ 0 0 0 0 −1

0 0 2− λ −1 0 −1 0

0 0 −1 2− λ 0 −1 0

−1 0 0 0 2− λ 0 −1

0 0 −1 −1 0 2− λ 0

−1 −1 0 0 −1 0 2− λ





= 0

Next, the eigenvalues λ1..n are found. To do this the characteristic polynomial

is found and solved for the eigenvalues. For the 7 × 7 example arranging the

formula to find the characteristic polynomial and then solving for the 7 eigen-

261

values is very complex (although finding the 2 eigenvalues of a 2× 2 matrix is

quite manageable by hand). Below shows the characteristic polynomial (cal-

culated by wolfram-alpha - not by hand).

−λ7 + 16λ6 − 101λ5 + 314λ4 − 480λ3 + 288λ2

Once the eigenvalues are obtained, the non-zero eigenvectors can then be solved

for ensuring that L−→v = λ−→v is true. Again this is non-trivial to by hand.

Thankfully using python, the eigenvalue and eigenvector pairs can be calcu-

lated. 1

calculate eigenvalues and eigenvectors

vals, vecs = np.linalg.eig(L)

sort both based on eigenvalue

vecs = vecs[:,np.argsort(vals)]

vals = vals[np.argsort(vals)]

Table 9.4.3 shows the resultant values:

1William Fleshman’s 2019 post on Towards Data Science titled Spectral Clustering- Foun-
dation and Application demonstrates this clearly: https://towardsdatascience.com/

spectral-clustering-aba2640c0d5b.

262

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b
https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

Eigenvalue λx
−→v Eigenvector

0



0
0

−0.577
−0.577

0
−0.577

0



0



−0.5
−0.5
0
0

−0.5
0

−0.5



2



0
−0.707

0
0

0.707
0
0



3



0
0

−0.408
0.816
0

−0.408
0



3



0
0

0.513
0.293
0

−0.807
0



4



0.866
−0.289

0
0

−0.289
0

−0.289



4



−0.127
−0.361

0
0

−0.361
0

0.85


Table 9.6: The eigenvalues their corresponding eigenvectors for the example
dataset.

These can be checked for correctness. Lets check the Eigenvalue of 2 follows

L−→v = λ−→v should be true.

263



3 −1 0 0 −1 0 −1

−1 2 0 0 0 0 −1

0 0 2 −1 0 −1 0

0 0 −1 2 0 −1 0

−1 0 0 0 2 0 −1

0 0 −1 −1 0 2 0

−1 −1 0 0 −1 0 3





0

−0.707

0

0

0.707

0

0



= 2 ·



0

−0.707

0

0

0.707

0

0


On the left side of the equation, there is matrix multiplication:



(3× 0) + (−1×−0.707) + (0× 0) + (0× 0) + (−1× 0.707) + (0× 0) + (−1× 0)

(−1× 0) + (2×−0.707) + (0× 0) + (0× 0) + (0× 0.707) + (0× 0) + (−1× 0)

(0× 0) + (0×−0.707) + (2× 0) + (−1× 0) + (0× 0.707) + (−1× 0) + (0× 0)

(0× 0) + (0×−0.707) + (−1× 0) + (2× 0) + (0× 0.707) + (−1× 0) + (0× 0)

(−1× 0) + (0×−0.707) + (0× 0) + (0× 0) + (2× 0.707) + (0× 0) + (−1× 0)

(0× 0) + (0×−0.707) + (−1× 0) + (−1× 0) + (0× 0.707) + (2× 0) + (0× 0)

(−1× 0) + (−1×−0.707) + (0× 0) + (0× 0) + (−1× 0.707) + (0× 0) + (3× 0)


=



0

−1.414

0

0

1.414

0

0



On right right of the equation, their is scalar multiplication:

2 ·



0

−0.707

0

0

0.707

0

0



=



0

−1.414

0

0

1.414

0

0


Now the graph can be partitioned. The Fiedler vector is the eigenvector cor-

responding to the second smallest eigenvalue, in this case, this is the vector

264

containing: -0.5, -0.5, 0, 0, -0.5, 0, -0.5. Here, the polarity of values indicates

their class assignment. Assigning negative values to cluster 0 (green) and pos-

itive values to cluster 1 (blue), a suitable partitioning of the graph is obtained,

see Figure 9.10.

Figure 9.10: The partitioned graph.

9.5 Worked Examples of NMI

9.5.1 NMI Formulae

H(U) = −
|U |∑
i=1

P (i) log(P (i))

H(V) = −
|V |∑
i=1

P (i) log(P (i))

MI(U, V) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)
NMI(U, V) =

MI(U, V)

mean(H(U), H(V))

265

9.5.2 Example of NMI score on Poor Clustering

When there is no correlation between the ground truth (U) and the cluster

labels (V), the NMI score is 0.

U = [0, 0, 0, 0, 1, 1, 1, 1]

V = [1, 0, 1, 0, 1, 0, 1, 0]

H(U) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(U) = −((0.5×−1) + (0.5×−1))

H(U) = 1

H(V) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(V) = −((0.5×−1) + (0.5×−1))

H(V) = 1

Table 9.7: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 2
8

2
8

4
8

1 2
8

2
8

4
8

4
8

4
8

266

MI(U, V) = (
2

8
× log2(

2
8

4
8
× 4

8

)) + (
2

8
× log2(

2
8

4
8
× 4

8

)) + (
2

8
× log2(

2
8

4
8
× 4

8

)) + (
2

8
× log2(

2
8

4
8
× 4

8

))

MI(U, V) = (0.25× log2(1)) + (0.25× log2(1)) + (0.25× log2(1) + (0.25× log2(1))

MI(U, V) = 0 + 0 + 0 + 0

MI(U, V) = 0

NMI(U, V) =
0

(1.0+1.0
2

)

NMI(U, V) =
0

1

NMI(U, V) = 0

9.5.3 Example of NMI score on a Moderate Clustering

A discrepancy between the ground truth and the cluster labels produces a

moderate NMI score.

U = [0, 0, 0, 0, 1, 1, 1, 1]

V = [0, 0, 1, 0, 1, 1, 1, 1]

H(U) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(U) = −((0.5×−1) + (0.5×−1))

H(U) = 1

267

H(V) = −((
3

8
)× log2(

3

8
)) + ((

5

8
)× log2(

5

8
)))

H(V) = −((0.375×−1.415) + (0.625×−0.678))

H(V) = 0.9544.

Table 9.8: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 3
8

0
8

3
8

1 1
8

4
8

5
8

4
8

4
8

MI(U, V) = (
3

8
× log2(

3
8

3
8
× 4

8

)) + (
1

8
× log2(

1
8

5
8
× 4

8

)) + (
0

8
× log2(

0
8

4
8
× 3

8

)) + (
4

8
× log2(

4
8

4
8
× 5

8

))

MI(U, V) = (0.375× log2(2)) + (0.125× log2(0.4)) + (0× log2(0) + (0.5× log2(1.6))

MI(U, V) = 0.375 +−0.165. + 0 + 0.339.

MI(U, V) = 0.5487949406953986

NMI(U, V) =
0.5487949406953986

(1.0+0.95443
2

)

NMI(U, V) =
0.5487949406953986

0.977217

NMI(U, V) = 0.5615896374043826

9.5.4 Example of NMI score on Perfect Clustering

The best possible NMI score is 1. This is seen when the ground truth and

cluster labels match exactly.

268

U = [0, 0, 0, 0, 1, 1, 1, 1]

V = [0, 0, 0, 0, 1, 1, 1, 1]

H(U) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(U) = −((0.5×−1) + (0.5×−1))

H(U) = 1

H(V) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(V) = −((0.5×−1) + (0.5×−1))

H(V) = 1

Table 9.9: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 4
8

0
8

4
8

1 0
8

4
8

4
8

4
8

4
8

MI(U, V) = (
4

8
× log2(

4
8

4
8
× 4

8

)) + (
0

8
× log2(

0
8

4
8
× 4

8

)) + (
0

8
× log2(

0
8

4
8
× 4

8

)) + (
4

8
× log2(

4
8

4
8
× 4

8

))

MI(U, V) = (0.5× log2(2) + (0× log2(0) + (0× log2(0) + (0.5× log2(2))

MI(U, V) = 0.5 + 0 + 0 + 0.5

MI(U, V) = 1

269

NMI(U, V) =
1

(1+1
2

)

NMI(U, V) =
1

1

NMI(U, V) = 1

9.5.5 Example of NMI score on Alternative Perfect Clus-

tering

It is not necessary to solve label correspondence problem.

U = [0, 0, 0, 0, 1, 1, 1, 1]

V = [1, 1, 1, 1, 0, 0, 0, 0]

H(U) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(U) = −((0.5×−1) + (0.5×−1))

H(U) = 1

H(V) = −((
4

8
)× log2(

4

8
)) + ((

4

8
)× log2(

4

8
)))

H(V) = −((0.5×−1) + (0.5×−1))

H(V) = 1

270

Table 9.10: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 0
8

4
8

4
8

1 4
8

0
8

4
8

4
8

4
8

MI(U, V) = ((
0

8
× log2(

0
8

4
8
× 4

8

)) +
4

8
× log2(

4
8

4
8
× 4

8

)) + (
4

8
× log2(

4
8

4
8
× 4

8

) + (
0

8
× log2(

0
8

4
8
× 4

8

)))

MI(U, V) = (0.5× log2(0) + (0× log2(2) + (0× log2(2) + (0.5× log2(0))

MI(U, V) = 0 + 0.5 + 0.5 + 0

MI(U, V) = 1

NMI(U, V) =
1

(1+1
2

)

NMI(U, V) =
1

1

NMI(U, V) = 1

9.5.6 Example of NMI score on Imbalanced Data (Most

Likely Error)

The NMI score accounts for imbalanced distributions of the class labels. As-

suming errors randomly are randomly distributed, there is greater chance of

an error occurring in a position in V where 0 should be as per the ground truth

U. Hence, NMI penalises the score less compared to the mistake being in the

opposition direction.

271

U = [0, 0, 0, 0, 0, 0, 1, 1]

V = [0, 0, 1, 0, 0, 0, 1, 1]

H(U) = −((
6

8
)× log2(

6

8
)) + ((

2

8
)× log2(

2

8
)))

H(U) = −((0.75×−0.4150374992788438) + (0.25×−2.0))

H(U) = 0.8113.

H(V) = −((
5

8
)× log(

5

8
)) + ((

3

8
)× log2(

3

8
)))

H(V) = −((0.625×−0.678) + (0.375×−1.415))

H(V) = 0.9544.

Table 9.11: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 5
8

0
8

5
8

1 1
8

2
8

3
8

6
8

2
8

MI(U, V) = (
5

8
× log2(

5
8

5
8
× 6

8

)) + (
0

8
× log2(

0
8

5
8
× 2

8

)) + (
1

8
× log2(

1
8

3
8
× 6

8

)) + (
2

8
× log2(

2
8

3
8
× 2

8

))

MI(U, V) = (0.625× log2(1.3)) + (0× log2(0)) + (0.125× log2(0.4) + (0.25× log2(2.6))

MI(U, V) = 0.2594. + 0 +−0.1462. + 0.3538.

MI(U, V) = 0.4669.

272

NMI(U, V) =
0.4669.

(0.9544.+0.8113.
2

)

NMI(U, V) =
0.4669.

0.8829.

NMI(U, V) = 0.5289.

9.5.7 Example of NMI score on Imbalanced Data (Less

Likely Error)

Conversely, to the above example, again assuming errors randomly are ran-

domly distributed, there is lesser chance of an error occurring in a position in

V where 1 should be as per the ground truth U. Hence, NMI penalises the

score more compared to the mistake being in the opposition direction.

U = [0, 0, 0, 0, 0, 0, 1, 1]

V = [0, 0, 0, 0, 0, 0, 0, 1]

H(U) = −((
6

8
)× log2(

6

8
)) + ((

2

8
)× log(

2

8
)))

H(U) = −((0.75×−0.4150374992788438) + (0.25×−2.0))

H(U) = 0.8113.

H(V) = −((
7

8
)× log(

7

8
)) + ((

1

8
)× log2(

1

8
)))

H(V) = −((0.875×−0.1923) + (0.125×−3))

H(V) = 0.5436.

273

Table 9.12: The joint and marginal (grey) probabilities for U compared to V.
i

j

0 1

0 6
8

1
8

7
8

1 0
8

1
8

1
8

6
8

2
8

MI(U, V) = (
6

8
× log2(

6
8

7
8
× 6

8

)) + (
1

8
× log2(

1
8

7
8
× 2

8

)) + (
0

8
× log2(

0
8

1
8
× 6

8

)) + (
1

8
× log2(

1
8

1
8
× 2

8

))

MI(U, V) = (0.75× log2(1.1429.)) + (0.125× log2(0.5714.)) + (0× log2(0)) + (0.125× log2(4))

MI(U, V) = 0.1445 +−0.1001. + 0 + 0.25

MI(U, V) = 0.2936.

NMI(U, V) =
0.2936.

(0.8113.+0.5436.
2

)

NMI(U, V) =
0.2936.

0.6774.

NMI(U, V) = 0.4334.

9.6 Comparison of Intrinsic Measures against

an Outlier

In Figure 9.11, the colour represent the labels from a “perfect” clustering.

Left: The scores executed on the dataset and labels with no outlier. Right:

one point is move into an outlying position, again the scores are shown. Notice

that the huge 7.4x flucation in the Calinski Harabasz score, compared to the

(relatively) more modest changes in the other scores.

274

Figure 9.11: Comparison of how Calinski Harabasz, Davies Bouldin, Silhouette
Coe. are effected by the presence of an outlier in the data.

9.7 Worked Example of Imbalance Ratio Cal-

culation

Given a dataset size N of 2000 and given an imbalance (percentage) target i

= +400%.

L = ⌊ N

2 + (i
100

)
× (1 + (

i

100
))⌋

S = N − L

275

L = ⌊ 2000

2 + (4
100

)
× (1 + (

4

100
))⌋

L = ⌊2000

6
× (1 + 4)⌋

L = ⌊333.3× 5⌋

L = ⌊1666.6⌋

L = 1666

S = 2000− 1666

S = 334

Figure 9.12: A visual representation of the calculated instance counts for the
imbalanced dataset.

The solution, 1666 : 334 can be thought of as the ratio of: (334 + 400%) : 334.

Here is a another example, this time with i = +100%.

276

L = ⌊ 2000

2 + (1
100

)
× (1 + (

1

100
))⌋

L = ⌊2000

3
× (1 + 1)⌋

L = ⌊666.6× 2⌋

L = ⌊1333.3⌋

L = 1333

S = 2000− 1333

S = 667

The solution, 1333 : 667 can be thought of as the ratio of: (667 + 100%) : 667.

Here is another example with i = 0%.

L = ⌊ 2000

2 + (0
100

)
× (1 + (

0

100
))⌋

L = ⌊2000

2
× (1 + 0)⌋

L = ⌊1000× 1⌋

L = ⌊1000⌋

L = 1000

S = 2000− 1000

S = 1000

Of course, with 0% imbalance factor, and an even number of instances, the

ratio is perfectly balanced 1000 : 1000.

277

9.8 IWSE Bags Parameter

The results in Figures 9.13 and 9.14 show that for the values of M tested,

generally the higher M values yielded better clustering performance for the

“Three Sizes” and “Ball Line” datasets.

Figure 9.13: The impact on NMI when adjusting the bags count.

Figure 9.14: The impact on execution time when adjusting the bags count.

278

Figure 9.14 also shows that execution time has a almost linear relationship

with the M parameter (0.99 Pearson coefficient). This makes it trivial to ap-

proximate the execution time once you have executed two runs with different

values of M parameter for a given dataset.

Another finding from Figure 9.13 is that while more bags tends to increase

clustering performance, the NMI tends to plateau. Comparing with literature,

these results contradict [50] as in their bagging experiments they found that

increasing the number of base partitioning sometimes decreased clustering per-

formance in terms of NMI.

A final insight from this experiment is that a stopping condition could be

introduced. The base clustering and consensus function could be executed in

batches and once the clustering outcomes are not changing more than some

threshold, the execution could be stopped, potentially saving computational

resources.

279

9.9 IWSE mn-mx Parameter

Table 9.13: Overall clustering performance of each mn-mx pair.
mn-mx Range Mean NMI Standard Deviation NMI

0 10-20 10 0.803938 0.010669
7 80-90 10 0.822080 0.007340
8 10-30 20 0.829483 0.014354
14 70-90 20 0.832231 0.011013
20 60-90 30 0.837999 0.009589
32 30-90 60 0.844852 0.010259
25 50-90 40 0.844869 0.009746
6 70-80 10 0.848947 0.009808
35 10-90 80 0.849350 0.008215
31 20-80 60 0.851372 0.010901
13 60-80 20 0.851907 0.010792
19 50-80 30 0.853923 0.011257
34 20-90 70 0.855437 0.011224
29 40-90 50 0.859561 0.010915
28 30-80 50 0.866337 0.008847
33 10-80 70 0.866930 0.009026
5 60-70 10 0.868767 0.006549
15 10-40 30 0.869577 0.011954
12 50-70 20 0.873468 0.007117
24 40-80 40 0.874291 0.007715
18 40-70 30 0.879356 0.008483
23 30-70 40 0.882014 0.009516
17 30-60 30 0.887799 0.009619
11 40-60 20 0.888517 0.008541
27 20-70 50 0.889830 0.006979
30 10-70 60 0.889839 0.009955
1 20-30 10 0.890095 0.011182
21 10-50 40 0.890168 0.009519
22 20-60 40 0.891330 0.009611
4 50-60 10 0.894980 0.007636
26 10-60 50 0.901927 0.006742
16 20-50 30 0.902397 0.006865
10 30-50 20 0.908275 0.005600
9 20-40 20 0.909780 0.006387
3 40-50 10 0.917547 0.003953
2 30-40 10 0.917840 0.004104

280

9.10 Imbalanced MNIST Digits Clustering Re-

sults

9.10.1 Three principal components

Figure 9.15: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more ones) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

281

Figure 9.16: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more twos) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

Figure 9.17: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more threes) to +480% (more zeros) of either digit, using 3 principsl compo-
nents.

282

Figure 9.18: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

Figure 9.19: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

283

Figure 9.20: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sixes) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

Figure 9.21: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

284

Figure 9.22: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

Figure 9.23: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more zeros) of either digit, using 3 principal compo-
nents.

285

Figure 9.24: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more twos) to +480% (more ones) of either digit, using 3 principal compo-
nents.

Figure 9.25: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more threes) to +480% (more ones) of either digit, using 3 principal compo-
nents.

286

Figure 9.26: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more ones) of either digit, using 3 principal compo-
nents.

Figure 9.27: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more ones) of either digit, using 3 principal compo-
nents.

287

Figure 9.28: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sixes) to +480% (more ones) of either digit, using 3 principal compo-
nents.

Figure 9.29: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more ones) of either digit, using 3 principal compo-
nents.

288

Figure 9.30: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more ones) of either digit, using 3 principal compo-
nents.

Figure 9.31: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more ones) of either digit, using 3 principal compo-
nents.

289

Figure 9.32: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more twos) of either digit, using 3 principal compo-
nents.

Figure 9.33: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more twos) of either digit, using 3 principal compo-
nents.

290

Figure 9.34: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more threes) of either digit, using 3 principal compo-
nents.

Figure 9.35: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more threes) of either digit, using 3 principal com-
ponents.

291

Figure 9.36: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more fives) of either digit, using 3 principal compo-
nents.

Figure 9.37: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more sixes) of either digit, using 3 principal compo-
nents.

292

Figure 9.38: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more sixes) of either digit, using 3 principal compo-
nents.

Figure 9.39: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more sevens) of either digit, using 3 principal com-
ponents.

293

Figure 9.40: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more sevens) of either digit, using .

9.10.2 Six principal components

Figure 9.41: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more ones) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

294

Figure 9.42: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more twos) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

Figure 9.43: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more threes) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

295

Figure 9.44: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

Figure 9.45: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

296

Figure 9.46: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sixes) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

Figure 9.47: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

297

Figure 9.48: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

Figure 9.49: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more zeros) of either digit, using 6 principal compo-
nents.

298

Figure 9.50: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more twos) to +480% (more ones) of either digit, using 6 principal compo-
nents.

Figure 9.51: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more threes) to +480% (more ones) of either digit, using 6 principal compo-
nents.

299

Figure 9.52: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more ones) of either digit, using 6 principal compo-
nents.

Figure 9.53: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more ones) of either digit, using 6 principal compo-
nents.

300

Figure 9.54: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sixes) to +480% (more ones) of either digit, using 6 principal compo-
nents.

Figure 9.55: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more ones) of either digit, using 6 principal compo-
nents.

301

Figure 9.56: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more ones) of either digit, using 6 principal compo-
nents.

Figure 9.57: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more ones) of either digit, using 6 principal compo-
nents.

302

Figure 9.58: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fours) to +480% (more twos) of either digit, using 6 principal compo-
nents.

Figure 9.59: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more twos) of either digit, using 6 principal compo-
nents.

303

Figure 9.60: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more fives) to +480% (more threes) of either digit, using 6 principal compo-
nents.

Figure 9.61: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more threes) of either digit, using 6 principal com-
ponents.

304

Figure 9.62: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more fives) of either digit, using 6 principal compo-
nents.

Figure 9.63: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more sevens) to +480% (more sixes) of either digit, using 6 principal compo-
nents.

305

Figure 9.64: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more sixes) of either digit, using 6 principal compo-
nents.

Figure 9.65: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more eights) to +480% (more sevens) of either digit, using 6 principal com-
ponents.

306

Figure 9.66: NMI score for S, SER, IWSEU on across an imbalance of -480%
(more nines) to +480% (more sevens) of either digit, using 6 principal compo-
nents.

9.11 Clustering Tool

A small graphical application was created using Java with only core libraries.

This application was for visualising the clustering problems and instance weight-

ing solutions. The list of features includes:

• Loading datasets, ARFF, CSV

• Importing images as datasets.

• Generating datasets from Gaussian distributions and uniform random-

ness.

• Instance weighting method based on k-nearest neighbours.

• Instance weighting method based on range-nearest neighbours.

• Instance weighting method based frequency count from equal-width bins

(N-d histogram).

• K-means clustering (animated)

307

• Visualising datasets as a 2-d scatter plot.

• Visualising datasets as a N-d parallel coordinates plot.

• Visualising instance weighting as a graduation colour.

• Calculating intrinsic metrics: Silhouette Coe., B-Cubed Precision

Figures 9.67 to 9.74 show some screenshots of the application.

Figure 9.67: Start screen.

Ultimately, development was abandoned the in favour of the using the rapidly

maturing Python data science libraries at the time of writing. This decision

was made as implementing everything from scratch and adequately testing it

was unnecessarily time-consuming and risk-prone.

308

Figure 9.68: A dataset generated from four normal distributions. Instance
weighting (knn with k∗=30) and k-means (k = 4) has been applied.

Figure 9.69: A dataset generated from two skewed normal distributions. In-
stance weighting (knn with k∗=10) and k-means (k = 2) has been applied.

309

Figure 9.70: A dataset created by importing an image. Instance weighting
(knn with k∗=5) has been applied.

Figure 9.71: A dataset created by importing an image. k-means (k = 14) has
been applied and the results dialogue is shown (partially implemented metrics).

310

Figure 9.72: A fictitious dataset about algae visualised using the parallel coor-
dinates plot. Instance weighting (histogram-based with bins=5) and k-means
(k = 2) has been applied.

311

Figure 9.73: A fictitious dataset about algae visualised using the parallel co-
ordinates plot. Instance weighting (knn with k∗=5) and k-means (k = 2) has
been applied.

312

Figure 9.74: A fictitious dataset about algae visualised using the parallel co-
ordinates plot. Instance weighting (range nearest neighbours with ϵ=0.5) and
k-means (k = 2) has been applied.

313

9.12 Software Implementations of Algorithms

9.12.1 KMeans

import numpy as np

import pandas as pd

name = "K-Means"

version = "1.0.0.1"

class Cluster:

def __init__(self, cycle, centroid, cols):

self.cy = cycle

self.c = centroid

self.i = pd.DataFrame(columns=cols)

def p_root(value, root):

root_value = 1 / float(root)

return float(value) ** float(root_value)

def calculate_distance(a, b, p):

if (len(a) != len(b)) :

raise Exception(

"Array item counts are different. A:" + str(a) +

" B:" + str(b))

return (p_root(sum(pow(abs(i-j), p) for i, j in zip(a, b)), p))

def clusters_to_labels(clusters):

labels = pd.DataFrame({’label’:[]})

for cluster_index in range(len(clusters)):

for instance_id in clusters[cluster_index].i.index:

labels.at[instance_id, ’label’] = cluster_index

labels.sort_index(inplace=True)

labels[’label’] = labels[’label’].astype(int)

return labels

class Kmeans:

def __init__(self, k, p, max_cycles, verbose):

self.k = k

self.p = p

self.max_cycles = max_cycles

314

self.verbose = verbose

Resultant labels for querying after fit

self.labels_ = []

self.centroids_ = []

def fit(self, df):

INITIALISING KMEANS

Basic sanity checks

if((df is None) or (self.k is None) or (self.p is None) or

(self.max_cycles is None) or (self.verbose is None)):

print("Missing parameters.")

return

if(self.k < 2):

print("The k value must be 2 or higher.")

return []

if(len(df) < self.k):

print("There is too few data points.")

return []

if(self.max_cycles < 1):

print("Max cycles (the limit on the number of iterations) must be positive.")

return []

Copy data set

data = df.copy()

Create clusters position

clusters = [];

num_features = len(data.values[0])

Initially randomly choose instances to place cluster centroids at

centroid_instances = data.sample(frac=1).head(self.k)

for centroid_index in centroid_instances.index:

clusters.append(Cluster(0,

centroid_instances.loc[centroid_index].values, data.columns))

Assign instances to their nearest centroid

for instance_index, instance in data.iterrows():

nearest_cluster_distance = None

nearest_cluster = None

315

Find cluster with nearest centroid

for cluster in clusters:

Work out the distance

distance = calculate_distance(instance, cluster.c, self.p)

Is this centroid near the nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster = cluster

Add instance to cluster it is nearest to

nearest_cluster.i.loc[instance_index] = instance

Quantisation error indicates fast the clustering

converges and can indicate if there are issues

for each iteration, the instances report how

far they are from their assigned cluster.

if self.verbose:

quant_error = []

Run algorithm, until no more instances are reassigned to clusters or max cycles is

exceeded

cycles = 0;

reassignment = True;

while(reassignment and cycles < self.max_cycles):

Print the intrim states

#print(’#’, end=’’)

if self.verbose:

print("Cycle " + str(cycles))

for cluster_index in range(len(clusters)):

print("Cluster: " + str(cluster_index))

print("Position: " + str(clusters[cluster_index].c))

print("Instances: " + str(len(clusters[cluster_index].i)))

Calculate the quantisation error

if self.verbose:

total_distance = 0

316

total_count_distances = 0

for cluster_index in range(len(clusters)):

for instance_index, instance in clusters[cluster_index].i.iterrows():

measure the distance between cluster and instance

total_distance = total_distance + calculate_distance(instance,

clusters[cluster_index].c, self.p)

total_count_distances = total_count_distances + 1

quant_error.append(total_distance / total_count_distances)

Used later to decide to whether to loop again

reassignment = False;

Create clusters position

new_clusters = []

Clusters compute their new centroids

for cluster_index in range(len(clusters)):

Average this clusters instances to find new centroid location

if len(clusters[cluster_index].i) > 0:

new_centroid = []

Sum up values for each feature

for feature in range(num_features):

Work out average

average = clusters[cluster_index].i.iloc[:, feature].sum() /

len(clusters[cluster_index].i)

Build up new centroid position

new_centroid.append(average)

else:

No instances to calculate new position

new_centroid = clusters[cluster_index].c

Create new cluster at new position

new_clusters.append(Cluster(cycles, new_centroid[:], data.columns))

Assigning points from the old clusters positions to the new cluster positions

for cluster_index in range(len(clusters)):

For each instance in the old clusters...

for instance_index, instance in clusters[cluster_index].i.iterrows():

Which of the new clusters is nearest?

nearest_cluster_distance = None

nearest_cluster_index = None

nearest_cluster = None

317

Find cluster with the nearest centroid, try each cluster

for new_cluster_index in range(len(new_clusters)):

Work out the distance to the new cluster

distance = calculate_distance(instance,

new_clusters[new_cluster_index].c, self.p)

Is this centroid nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster_index = new_cluster_index

nearest_cluster = new_clusters[new_cluster_index]

Is this cluster the cluster the instance was previously assigned to?

if cluster_index != nearest_cluster_index :

Yes the instances are still moving around we will loop again

reassignment = True

Add instance to cluster it is nearest to

nearest_cluster.i.loc[instance_index] = instance

Over write old clusters

clusters = new_clusters[:]

Increment cycles

cycles = cycles + 1

self.labels_ = clusters_to_labels(clusters)[’label’].to_numpy()

self.centroids_ = [cluster.c for cluster in clusters]

9.12.2 LOFKMeans

import random

import numpy as np

import pandas as pd

from sklearn import preprocessing

from sklearn import neighbors

class Cluster:

def __init__(self, cycle, centroid, cols):

self.cy = cycle

self.c = centroid

self.i = pd.DataFrame(columns=cols)

318

def p_root(value, root):

root_value = 1 / float(root)

return float(value) ** float(root_value)

def calculate_distance(a, b, p):

if (len(a) != len(b)) :

raise Exception(

"Array item counts are different. A:" + str(a) +

" B:" + str(b))

return (p_root(sum(pow(abs(i-j), p) for i, j in zip(a, b)), p))

def clusters_to_labels(clusters):

labels = pd.DataFrame({’label’:[]})

for cluster_index in range(len(clusters)):

for instance_id in clusters[cluster_index].i.index:

labels.at[instance_id, ’label’] = cluster_index

labels.sort_index(inplace=True)

labels[’label’] = labels[’label’].astype(int)

return labels

class LOFKmeans:

def __init__(self, k, p, max_cycles, lofk, verbose):

Capture parameters

self.k = k

self.p = p

self.max_cycles = max_cycles

self.lofk = lofk

self.verbose = verbose

Resultant labels for querying after fit

self.labels_ = []

self.centroids_ = []

def fit(self, df):

Basic sanity checks

if((df is None) or (self.k is None) or

(self.p is None) or (self.max_cycles is None) or

(self.lofk is None) or (self.verbose is None)):

319

print("Missing parameters!")

return

if(len(df.columns) < 2):

print("Minimum 2 dimmensional data")

return

if(self.k < 2):

print("The k value must be 2 or higher")

return

if(len(df) < self.k):

print("There is too few data points!")

return

if(self.max_cycles < 1):

print("Max cycles (the limit on the number of iterations) must be positive!")

return

if(len(df) < self.lofk):

print("The neighbours for LOF algorithm must be less than number of data points!")

return

Copy data set

data = df.copy()

Create clusters position

clusters = [];

num_features = len(data.values[0])

Calculate the LOF for instance weights over the whole dataset pre-clustering

clf = neighbors.LocalOutlierFactor(n_neighbors=self.lofk)

y_pred = clf.fit_predict(data)

Scores for how outlying each instance is

LOF -1 for anomalies/outliers and 1 for inliers.

x_scores = clf.negative_outlier_factor_

Normalise weights between 0 and 1

min_max_scaler = preprocessing.MinMaxScaler()

x_scores = min_max_scaler.fit_transform(x_scores.reshape(-1, 1))

Create the weights column contianing the weights

data["weight"] = x_scores

List the columns, this is for each cluster list of instances

320

cols = list(data.columns)

Choose less outlying instances to initially place the centroids

never choose the same instance twice clusters need to be in different places

centroid_index = 0

used_indexes = []

while centroid_index < self.k:

Randomly pick an instance

potential_index = random.randint(0,len(data)-1)

Have we already used this instance as cluster position

if potential_index not in used_indexes:

instance = data.iloc[potential_index].values

look at the weight column and draw a random number, if the higher the weight

the more likely the random is going to be less and active the statement

which set the position of instance as a centroid location

random_float_a = random.random()

random_float_b = random.random()

Using two random and threshold to further basis towards higher values

if((random_float_a + random_float_b) > 1):

random_float = 1

else:

random_float = (random_float_a + random_float_b)

instance_weight = instance[len(instance)-1]

if(random_float <= instance_weight):

This instance becomes gets centroid place on it

if self.verbose:

print("Using instance as centroid: " +

str(instance[0:(len(instance)-1)]))

clusters.append(Cluster(0, instance[0:(len(instance)-1)], cols))

centroid_index = centroid_index + 1

used_indexes.append(potential_index)

Assign instances to their nearest centroid

for instance_index, instance in data.iterrows():

nearest_cluster_distance = None

nearest_cluster = None

Find cluster with nearest centroid

for cluster in clusters:

distance = calculate_distance(instance.iloc[0:(len(instance)-1)].values,

cluster.c, self.p)

321

Is this centroid near the nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster = cluster

Add instance to cluster to its nearest cluster

nearest_cluster.i.loc[instance_index] = instance

Quantisation error indicates fast the clustering

converges and can indicate if there are issues

for each iteration, the instances report how

far they are from their assigned cluster.

if self.verbose:

quant_error = []

Run algorithm, until no more instances are reassigned to clusters or max cycles is

exceeded

cycles = 0;

reassignment = True;

while(reassignment and cycles < self.max_cycles):

Print the intrim states

#print(’#’, end=’’)

if self.verbose:

print("Cycle " + str(cycles))

for cluster_index in range(len(clusters)):

print("Cluster: " + str(cluster_index))

print("Position: " + str(clusters[cluster_index].c))

print("Instances: " + str(len(clusters[cluster_index].i)))

Calculate the quantisation error

if self.verbose:

total_distance = 0

total_count_distances = 0

for cluster_index in range(len(clusters)):

for instance_index, instance in clusters[cluster_index].i.iterrows():

measure the distance between cluster and instance

322

total_distance = total_distance +

calculate_distance(instance.iloc[0:(len(instance)-1)].values,

clusters[cluster_index].c, self.p)

total_count_distances = total_count_distances + 1

quant_error.append(total_distance / total_count_distances)

Used later to decide to whether to loop again

reassignment = False;

Create clusters position

new_clusters = []

Clusters compute their new centroids

for cluster_index in range(len(clusters)):

Average this clusters instances to find new centroid location

new_centroid = []

Sum up values for each feature

for feature in range(num_features):

Work out the position of the new centroid,

taking the weight into consideration

average = 0

total_instance = 0

total_weight = 0

for instance_index, instance in clusters[cluster_index].i.iterrows():

instance_weight = instance.iloc[len(instance)-1]

total_instance = total_instance + (instance.iloc[feature] *

instance_weight)

total_weight = total_weight + instance_weight

if total_weight > 0:

average = total_instance / total_weight

Build up new centroid position

new_centroid.append(average)

else:

No weight the centroid doesn’t move

new_centroid.append(clusters[cluster_index].c[feature])

Create new cluster at new position

new_clusters.append(Cluster(cycles, new_centroid[:], data.columns))

Assigning points from the old clusters positions to the new cluster positions

for cluster_index in range(len(clusters)):

For each instance in the old clusters...

323

for instance_index, instance in clusters[cluster_index].i.iterrows():

Which of the new clusters is nearest?

nearest_cluster_distance = None

nearest_cluster_index = None

nearest_cluster = None

Find cluster with the nearest centroid, try each cluster

for new_cluster_index in range(len(new_clusters)):

distance = calculate_distance(instance.iloc[0:(len(instance)-1)].values,

new_clusters[new_cluster_index].c, self.p)

Is this centroid near the nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster_index = new_cluster_index

nearest_cluster = new_clusters[new_cluster_index]

Is this cluster the cluster the instance was previously assigned to?

if cluster_index != nearest_cluster_index :

Yes the instances are still moving around we will loop again

reassignment = True

Add instance to cluster it is nearest to

nearest_cluster.i.loc[instance_index] = instance

Over write old clusters

clusters = new_clusters[:]

Increment cycles

cycles = cycles + 1

self.labels_ = clusters_to_labels(clusters)[’label’].to_numpy()

self.centroids_ = [cluster.c for cluster in clusters]

9.12.3 ILOFKMeans

import random

import numpy as np

import pandas as pd

from sklearn import preprocessing

from sklearn import neighbors

class Cluster:

324

def __init__(self, cycle, centroid, cols):

self.cy = cycle

self.c = centroid

self.i = pd.DataFrame(columns=cols)

def p_root(value, root):

root_value = 1 / float(root)

return float(value) ** float(root_value)

def calculate_distance(a, b, p):

if (len(a) != len(b)) :

raise Exception("Array item counts are different. A:" + str(a) + " B:" + str(b))

return (p_root(sum(pow(abs(i-j), p) for i, j in zip(a, b)), p))

def clusters_to_labels(clusters):

labels = pd.DataFrame({’label’:[]})

for cluster_index in range(len(clusters)):

for instance_id in clusters[cluster_index].i.index:

labels.at[instance_id, ’label’] = cluster_index

labels.sort_index(inplace=True)

labels[’label’] = labels[’label’].astype(int)

return labels

class ILOFKmeans:

def __init__(self, k, p, max_cycles, lofk, verbose):

Capture parameters

self.k = k

self.p = p

self.max_cycles = max_cycles

self.lofk = lofk

self.verbose = verbose

Resultant labels for querying after fit

self.labels_ = []

self.centroids_ = []

def fit(self, df):

INITIALISING KMEANS

Basic sanity checks

325

if((df is None) or (self.k is None) or

(self.p is None) or (self.max_cycles is None) or

(self.lofk is None) or (self.verbose is None)):

print("Missing parameters!")

return

if(len(df.columns) < 2):

print("Minimum 2 dimmensional data")

return

if(self.k < 2):

print("The k value must be 2 or higher")

return

if(len(df) < self.k):

print("There is too few data points!")

return

if(self.max_cycles < 1):

print("Max cycles (the limit on the number of iterations) must be positive!")

return

if(len(df) < self.lofk):

print("The neighbours for LOF algorithm must be less than number of data points!")

return

Copy data set

data = df.copy()

Create clusters position

clusters = [];

num_features = len(data.values[0])

Calculate the LOF for instance weights over the whole dataset pre-clustering

clf = neighbors.LocalOutlierFactor(n_neighbors=self.lofk)

y_pred = clf.fit_predict(data)

Scores for how outlying each instance is

LOF -1 for anomalies/outliers and 1 for inliers.

x_scores = clf.negative_outlier_factor_

Normalise weights between 0 and 1

min_max_scaler = preprocessing.MinMaxScaler()

x_scores = min_max_scaler.fit_transform(x_scores.reshape(-1, 1))

Create the weights column contianing the weights

326

data["weight"] = x_scores

List the columns, this is for each cluster list of instances

cols = list(data.columns)

Choose less outlying instances to place the initially place the centroids

never choose the same instance twice clusters need to be in different places

centroid_index = 0

used_indexes = []

while centroid_index < self.k:

Randomly pick an instance

potential_index = random.randint(0,len(data)-1)

Have we already used this instance as cluster position

if potential_index not in used_indexes:

instance = data.iloc[potential_index].values

look at the weight column and draw a random number, if the higher the weight

the more likely the random is going to be less and active the statement

which set the position of instance as a centroid location

random_float_a = random.random()

random_float_b = random.random()

Using two random and threshold to further basis towards higher values

if((random_float_a + random_float_b) > 1):

random_float = 1

else:

random_float = (random_float_a + random_float_b)

instance_weight = instance[len(instance)-1]

if(random_float <= instance_weight):

This instance becomes gets centroid place on it

if self.verbose:

print("Using instance as centroid: " +

str(instance[0:(len(instance)-1)]))

clusters.append(Cluster(0, instance[0:(len(instance)-1)], cols))

centroid_index = centroid_index + 1

used_indexes.append(potential_index)

Assign instances to their nearest centroid

for instance_index, instance in data.iterrows():

nearest_cluster_distance = None

nearest_cluster = None

Find cluster with nearest centroid

327

for cluster in clusters:

Work out the distance

distance = calculate_distance(instance.iloc[0:(len(instance)-1)].values,

cluster.c, self.p)

Is this centroid near the nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster = cluster

Add instance to cluster to its nearest cluster

nearest_cluster.i.loc[instance_index] = instance

Quantisation error indicates fast the clustering

converges and can indicate if there are issues

for each iteration, the instances report how

far they are from their assigned cluster.

if self.verbose:

quant_error = []

Run algorithm, until no more instances are reassigned to clusters or max cycles is

exceeded

cycles = 0;

reassignment = True;

while(reassignment and cycles < self.max_cycles):

Print the intrim states

#print(’#’, end=’’)

if self.verbose:

print("Cycle " + str(cycles))

for cluster_index in range(len(clusters)):

print("Cluster: " + str(cluster_index))

print("Position: " + str(clusters[cluster_index].c))

print("Instances: " + str(len(clusters[cluster_index].i)))

Calculate the quantisation error

if self.verbose:

total_distance = 0

total_count_distances = 0

328

for cluster_index in range(len(clusters)):

for instance_index, instance in clusters[cluster_index].i.iterrows():

measure the distance between cluster and instance

total_distance = total_distance +

calculate_distance(instance.iloc[0:(len(instance)-1)].values,

clusters[cluster_index].c,

self.p)

total_count_distances = total_count_distances + 1

quant_error.append(total_distance / total_count_distances)

Used later to decide to whether to loop again

reassignment = False;

Create clusters position

new_clusters = []

Clusters compute their new centroids

for cluster_index in range(len(clusters)):

Average this clusters instances to find new centroid location

if len(clusters[cluster_index].i) > 0:

new_centroid = []

Sum up values for each feature

for feature in range(num_features):

Work out the position of the new centroid,

taking the weight into consideration

average = 0

total_instance = 0

total_weight = 0

for instance_index, instance in clusters[cluster_index].i.iterrows():

instance_weight = instance.iloc[len(instance)-1]

total_instance = total_instance + (instance.iloc[feature] *

instance_weight)

total_weight = total_weight + instance_weight

if total_weight > 0:

average = total_instance / total_weight

Build up new centroid position

new_centroid.append(average)

else:

No weight the centroid doesn’t move this should never happen

new_centroid.append(clusters[cluster_index].c[feature])

Create new cluster at new position

329

new_clusters.append(Cluster(cycles, new_centroid[:], data.columns))

Calculate the weight of each instance in each cluster

for cluster_index in range(len(clusters)):

Check there is enough instance in the cluster

calculate the a LOF value

if(len(clusters[cluster_index].i) > 3):

Prediction of which instances are outliers using LOF

y_pred = clf.fit_predict(clusters[cluster_index].i)

Scores for how outlying each instance is

x_scores = clf.negative_outlier_factor_

Normalise weights between 0 and 1

min_max_scaler = preprocessing.MinMaxScaler()

x_scores = min_max_scaler.fit_transform(x_scores.reshape(-1, 1))

clusters[cluster_index].i["weight"] = x_scores

else:

clusters[cluster_index].i["weight"] = 1.0

Assigning points from the old clusters positions to the new cluster positions

for cluster_index in range(len(clusters)):

For each instance in the old clusters...

for instance_index, instance in clusters[cluster_index].i.iterrows():

Which of the new clusters is nearest?

nearest_cluster_distance = None

nearest_cluster_index = None

nearest_cluster = None

Find cluster with the nearest centroid, try each cluster

for new_cluster_index in range(len(new_clusters)):

distance = calculate_distance(instance.iloc[0:(len(instance)-1)].values,

new_clusters[new_cluster_index].c, self.p)

Is this centroid near the nearest to this instance

if (nearest_cluster_distance == None) or (distance <

nearest_cluster_distance):

nearest_cluster_distance = distance

nearest_cluster_index = new_cluster_index

nearest_cluster = new_clusters[new_cluster_index]

330

Is this cluster the cluster the instance was previously assigned to?

if cluster_index != nearest_cluster_index :

Yes the instances are still moving around we will loop again

reassignment = True

Add instance to cluster it is nearest to

nearest_cluster.i.loc[instance_index] = instance

Over write old clusters

clusters = new_clusters[:]

Increment cycles

cycles = cycles + 1

self.labels_ = clusters_to_labels(clusters)[’label’].to_numpy()

self.centroids_ = [cluster.c for cluster in clusters]

9.12.4 IWSE Clustering Algorithm

import os

import warnings

import random

from joblib import Parallel, delayed

import pandas as pd

import numpy as np

from scipy import spatial

from sklearn.neighbors import KernelDensity

from sklearn.cluster import SpectralClustering

warnings.simplefilter("ignore") # to ignore spectral clustering not fully connected graph

warning.

name = "Instance Weighted Spectral Ensemble"

version = "1.0.0.2"

def execute_base_cluster(index, df_copy, k, nn, mn, mx, weighting_method):

To avoid instances never being sampled, job index 0 always performs 1 full clustering

of the dataset.

if index == 0:

mn = 100

mx = 100

331

Matrix for the results of this set of bags base clusterers, this is co assoication

matrix

coassoc = np.array([[0] * len(df_copy) for _ in range(len(df_copy))], dtype=np.byte) #

byte allows for soft max of 128 bags.

df_temp = df_copy.copy()

SRSWOR (replace = False) - sampling data using the instance weights

if weighting_method == ’U’:

flip a coin to decide, approximtely 50% of bags executed will each type in this mode

if bool(random.getrandbits(1)):

weighting_method = ’H’

else:

weighting_method = ’L’

Randomly choose a sample size between mn and mx

sample = random.randint(mn, mx) / 100

if weighting_method == ’H’:

sample favouring points far from neighbors

df_sample = df_temp.sample(n=int(len(df_temp)*sample), weights=’_w’, replace=False)

elif weighting_method == ’L’:

sample favouring points near to neighbors

df_sample = df_temp.sample(n=int(len(df_temp)*sample), weights=’_iw’, replace=False)

elif weighting_method == ’R’:

uniformly random sub-sample, (no weights)

df_sample = df_temp.sample(n=int(len(df_temp)*sample), replace=False)

else:

raise ValueError("Invalid weighting option")

We can now remove weight columns

df_sample = df_sample.loc[:, df_sample.columns != ’_w’]

df_sample = df_sample.loc[:, df_sample.columns != ’_iw’]

Run the spectral clustering

spectral = SpectralClustering(n_clusters=k, affinity=’nearest_neighbors’, n_neighbors=nn,

n_jobs=-1)

spectral.fit(df_sample)

df_sample["label"] = spectral.labels_

332

Update affinity matrix

index = df_sample.index.to_numpy()

labels = df_sample["label"].to_numpy()

label_look_up = dict(zip(index, range(len(index)))) # necessary becuase index 5 is not

necessarily in position 5 anymore, this remembers where 5 is in the order of index

and labels

for y in index:

for x in index:

if x >= y:

if labels[label_look_up[x]] == labels[label_look_up[y]]:

coassoc[y][x] = coassoc[y][x] + 1

coassoc_flipped = np.rot90(np.fliplr(np.copy(coassoc)))

np.fill_diagonal(coassoc_flipped, 0)

return coassoc + coassoc_flipped

def add_exp_weights(df, bandwidth):

Calcualate density and inverted density

kde = KernelDensity(kernel=’exponential’, bandwidth=bandwidth).fit(df)

exp_scores = kde.score_samples(df)

0.01 to avoid 0 values

exp_scores_norm = (exp_scores - min(exp_scores)) / (max(exp_scores) - min(exp_scores)) +

0.01

exp_scores_norm_inverted = abs(exp_scores_norm + -1.0) + 0.01

df["_w"] = exp_scores_norm

df["_iw"] = exp_scores_norm_inverted

return df

class IWSE:

def __init__(self, k, nn, mn, mx, bags, weighting_method):

Capture parameters

self.k = k

self.nn = nn

self.mn = mn

self.mx = mx

self.bags = bags

self.weighting_method = weighting_method

333

Initialise variables for querying

self.labels_ = []

def fit(self, df):

check reserves column names are not used

if self.weighting_method != "R" and ("_w" not in df.columns or "_iw" not in

df.columns):

raise ValueError("Dataframe is missing weight column _w! Use IWSE.add_mnn_weights

or IWSE.add_exp_weights functions to generate _w and _iw columns")

check data frame size

if len(df) <= self.k or len(df) <= self.nn:

raise ValueError("Dataframe is too small for specified k and nn values.")

Take a copy of the dataset, which we will work with

df_copy = df.copy()

df_copy.sort_index(inplace=True)

Parallel process the bags

results = Parallel(n_jobs=os.cpu_count())(delayed(execute_base_cluster)(job_index,

df_copy, self.k, self.nn, self.mn, self.mx, self.weighting_method) for job_index

in range(self.bags))

Sum coassoc matrices together from the sets of bags

coassoc = np.array([[0] * len(df) for _ in range(len(df))])

for i in range(self.bags):

coassoc = coassoc + results[i]

Run final spectral clustering, using the affinity matrix calculated by the above

runs

final_spectral = SpectralClustering(n_clusters=self.k, affinity=’precomputed’,

n_neighbors=self.nn)

final_spectral.fit(coassoc) # use the combined co-association matrix as the affinty

matrix for spectral.

self.labels_ = final_spectral.labels_

334

9.13 Research Publications

The research reported in this thesis resulted a two publications:

Moggridge, P, Helian, N, Sun, Y & Lilley, M 2023, On Instance

Weighted Clustering Ensembles, Paper presented at The 31th Euro-

pean Symposium on Artificial Neural Networks, Computational In-

telligence andMachine Learning, Bruges, Belgium, 4/10/23 - 6/10/23

Abstract: Ensemble clustering is a technique which combines multiple cluster-

ing results, and instance weighting is a technique which highlights important

instances in a dataset. Both techniques are known to enhance clustering per-

formance and robustness. In this research, ensembles and instance weighting

are integrated with the spectral clustering algorithm. We believe this is the

first attempt at creating diversity in the generative mechanism using density

based instance weighting for a spectral ensemble. The proposed approach is

empirically validated using synthetic datasets comparing against spectral and

a spectral ensemble with random instance weighting. Results show that using

the instance weighted sub-sampling approach as the generative mechanism for

an ensemble of spectral clustering leads to improved clustering performance

on datasets with imbalanced clusters.

Moggridge, P, Helian, N, Sun, Y, Lilley, M & Veneziano, V 2020, In-

stance Weighted Clustering: Local Outlier Factor and K-Means. in

L Iliadis, PP Angelov, C Jayne & E Pimenidis (eds), Proceedings of

the 21st EANN (Engineering Applications of Neural Networks) 2020

Conference: Proceedings of the EANN 2020. Proceedings of the In-

335

ternational Neural Networks Society, Springer Nature, pp. 435-446.

https://doi.org/10.1007/978-3-030-48791-1 34

Abstract: Clustering is an established unsupervised learning method. Sub-

stantial research has been carried out in the area of feature weighting, as well

instance selection for clustering. Some work has paid attention to instance

weighted clustering algorithms using various instance weighting metrics based

on distance information, geometric information and entropy information. How-

ever, little research has made use of instance density information to weight

instances. In this paper we use density to define instance weights. We propose

two novel instance weighted clustering algorithms based on Local Outlier Fac-

tor and compare them against plain k-means and traditional instance selection.

There was also some research made in an adjacent field prior to a change to

the current topic:

Moggridge, P, Helian, N, Sun, Y, Lilley, M, Veneziano, V & Eaves,

M 2019, Improving the MXFT Scheduling Algorithm for a Cloud

Computing Context, International Journal of Grid and Utility Com-

puting (IJGUC), vol. 10, no. 6, pp. 618 – 638. https://doi.org

/10.1504/IJGUC.2019.102711

Abstract: In this paper, the Max-Min Fast Track (MXFT) scheduling algo-

rithm is improved and compared against a selection of popular algorithms. The

improved versions of MXFT are called Min-Min Max-Min Fast Track (MM-

MXFT) and Clustering Min-Min Max-Min Fast Track (CMMMXFT). The key

difference is using Min-Min for the fast track. Experimentation revealed that

336

despite Min-Min’s characteristic of prioritising small tasks at the expense of

overall makespan, the overall makespan was not adversely affected and the

benefits of prioritising small tasks were identified in MMMXFT. Experiments

were conducted by using a simulator with the exception of one real-world ex-

periment. The real-world experiment identified challenges faced by algorithms

which rely on accurate execution time prediction.

Moggridge, P, Helian, N, Sun, Y, Lilley, M, Veneziano, V & Eaves, M

2017, Revising Max-min for Scheduling in a Cloud Computing Con-

text. in 2017 IEEE 26th International Conference on Enabling Tech-

nologies: : Infrastructure for Collaborative Enterprises (WETICE).

IEE, The 26th IEEE International Cnference on Enable Technolo-

gies: Infrastructure for Collaborative Enerprises, Poznan , Poland,

21/06/17. https://doi.org/10.1109/WETICE.2017.58

Abstract: Adoption of Cloud Computing is on the rise and many datacenter

operators adhere to strict energy efficiency guidelines. In this paper a novel

approach to scheduling in a Cloud Computing context is proposed. The algo-

rithm Maxmin Fast Track (MXFT) revises the Max-min algorithm to better

support smaller tasks with stricter Service Level Agreements (SLAs), which

makes it more relevant to Cloud Computing. MXFT is inspired by queuing

in supermarkets, where there is a fast lane for customers with a smaller num-

ber of items. The algorithm outperforms Max-min in task execution times

and outperforms Min-min in overall makespan. A by-product of investigating

this algorithm was the development of simulator called “ScheduleSim” which

makes it simpler to prove a scheduling algorithm before committing to a spe-

cific scheduling problem in Cloud Computing and therefore might be a useful

337

precursor to experiments using the established simulator CloudSim.

338

	Introduction
	Aim
	Objectives
	Research Questions
	Contributions to Knowledge
	Algorithms Developed
	Thesis Outline

	Instance Weighted Clustering, a review
	Planning
	Research Protocol
	Research Questions
	Search Strategy
	Inclusion Criteria
	Exclusion Criteria

	Conducting the Search
	Analysis
	Weighting Strategy
	Actuation of the Weights
	Ensemble Techniques
	Benefits of Instance Weighting
	Compatibility

	Conclusion

	Methods
	Partitioning-based Clustering
	Graph-based Clustering
	Clustering Quality Metrics

	Instance Weighting for Partitioning-based Clustering
	Introduction
	Related Work
	Local Outlier Factor
	Proposed Methods
	Experimentation
	Synthetic Dataset
	Benchmark Dataset

	Conclusion

	Instance Weighting for Flight Data Recorder Clustering
	Introduction
	Related Work
	Experimental Design
	Results and Discussion
	Conclusion and Future Work

	Instance Weighting for Ensemble Graph-based Clustering
	Introduction
	Related Work
	Variations of Spectral Clustering
	Ensemble Methods
	Conclusions from Related Work

	Proposed Approach
	Experimental Setup
	Experiment A
	Experiment B
	Experiment C

	Conclusion
	Future Work

	Instance Weighting Clustering for Character Clustering
	Introduction
	Related Work
	Clustering Image Datasets
	Imbalanced Clustering
	Conclusion

	Experimental Design
	Investigation of MNIST Digits
	Intra-Digit Analysis
	Inter-Digit Analysis
	Summary of Intra and Inter Digit Analysis

	Imbalanced MNIST clustering
	Experimental Design
	Results and Discussion

	Synthetic Experiments
	Experiment Design
	Results and Discussion

	Conclusion

	Final Conclusions and Future Work
	Appendix
	Literature Review Thematic Analysis Tables
	ARI Results for LOFIWKM Experiments
	Clustering Results of FDR Dataset
	Worked Examples of Clustering Algorithms
	Example Dataset
	K-means Example
	Spectral Example

	Worked Examples of NMI
	NMI Formulae
	Example of NMI score on Poor Clustering
	Example of NMI score on a Moderate Clustering
	Example of NMI score on Perfect Clustering
	Example of NMI score on Alternative Perfect Clustering
	Example of NMI score on Imbalanced Data (Most Likely Error)
	Example of NMI score on Imbalanced Data (Less Likely Error)

	Comparison of Intrinsic Measures against an Outlier
	Worked Example of Imbalance Ratio Calculation
	IWSE Bags Parameter
	IWSE mn-mx Parameter
	Imbalanced MNIST Digits Clustering Results
	Three principal components
	Six principal components

	Clustering Tool
	Software Implementations of Algorithms
	KMeans
	LOFKMeans
	ILOFKMeans
	IWSE Clustering Algorithm

	Research Publications

