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Abstract

The thesis carries out a series of investigations to improve the understanding

and e�ciency of the Laplace Transform Finite Di�erence Method (LTFDM).

In chapter two, I begin by investigating the noise handling properties of the

Fourier series and the Stehfest and Talbot algorithms for inverting the Laplace

transform. Here noise is added to various test functions, and the results are

compared to the exact solutions. I �nd that the Talbot algorithm successfully

reconstructs the function while both the Stehfest and the Fourier series methods

fail to invert these functions accurately.

Chapter three extends the investigation by examining the performance of �ve

of the main algorithms for inverting the Laplace transform in standard 16 digits

precision and multi-precision. The results show that Talbot generally outper-

forms the other algorithms in standard precision while the Stehfest is the best

in multi-precision.

The LTFDM is then used to solve the Fisher KPP (Kolmogorov, Petrovsky

and Piskunov) equation. This equation has a travelling wave solution, and

Fourier and Laplace transform numerical methods have di�culty reconstruct-

ing travelling waves. Using the knowledge gained in chapters two and three

and understanding the nature of the perturbations in this equation, accurate

representations of several solutions to this equation were produced.

The LTDFM is then successfully applied to a series of linear and non-linear

di�usion equations. Comparisons are then made with the Froward Time Cen-

tral Di�erence and the Crank Nicholson methods, with the LTDFM showing

advantages over these schemes in both time and accuracy.
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Chapter 1

Introduction

The di�usion process is a widely occurring natural phenomenon, and the math-

ematical expression of this process has been enormously successful in modelling

di�usive behaviour. Thus, the di�usion equation is one of the most important

partial di�erential equations in all mathematics and the applied sciences. As is

the case with most partial di�erential equations, analytic solutions exist for only

a small class of these problems [63] ,[12], [44], [85], [80] and numerical methods

are continuously being developed to solve di�usion type problems [6], [71], [86],

[115].

The most commonly used methods for numerically solving the di�usion equa-

tion usually employ a time stepping process that can impose stringent stability

restrictions on the time step size. As an alternative, the Laplace transform can

be used so that the solution at a particular time is not dependent on the solution

at any other time, apart from the initial conditions. This gives the potential to

attain the required solution in just one time step.

This research aims to improve the Stehfest and Talbot algorithms' understand-

ing when using the Laplace transform to �nd numerical solutions to di�usion
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type problems, emphasising the Laplace Transform Finite Di�erence method

(LTFDM). This was done by testing the algorithm's response to noisy data,

applying the algorithms within the context of the LTFDM and testing their

performance with extended precision.

However, the drawback of using this method is that the Laplace transform's

numerical inversion is known to be an ill-posed problem meaning that changes

in the solution's behaviour are not continuous with the initial conditions so that

small errors in the initial data can result in much larger errors in the solution

[23],[26],[45], [64], [45],[61].

So the thesis also examines how the ill-posed nature of the numerical inversion

of the Laplace transform might be mitigated to more successfully apply the

LTFDM to solve di�usion type problems. To achieve these aims, I:

1. Tested the performance of three widely used algorithms used to invert the

Laplace transform numerically; The Fourier Series method [28], The Stehfest al-

gorithm [99] and the method developed by Talbot [104] for their noise handling

properties, to discern which of these algorithms are best suited for handling

errors in the input data. The study was new work as no systematic analysis of

these algorithms' ability to cope with noise had been done before.

2. Extended the LTFDM to solve the reaction-di�usion Fisher-KPP equation.

This equation typically results in a travelling wave pro�le for which Laplace

transform methods are not usually employed. Accurate solutions to this prob-

lem were attained with some adjustments to the LTFDM and using our previous

knowledge of the inversion schemes. Laplace transform methods had not been

previously employed to solve this equation.

3. Investigated the performance of various forms of these algorithms in a multi-

precision environment on di�erent test functions to see what e�ect this had on

reducing the ill-posed nature of the numerical inversion. This investigation al-
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lowed us to determine which algorithm works best in standard 16-digit double

precision and performed best in extended precision. This investigation extended

and deepened a previous study [1] on the e�ects of multi-precision on numer-

ically inverting the Laplace transform to include previously untested versions

of the algorithms. Multi-precision computing allows the user to stipulate the

number of signi�cant digits needed for a particular calculation.

4. Employed the LTFDM to solve a wide variety of linear and non-linear dif-

fusion type equations. The method was successfully tested on equations with

various initial and boundary conditions and varying degrees of non-linearity.

This demonstrated the successful application of the LTFDM to a wide variety

of previously untested linear and non-linear parabolic partial di�erential equa-

tions with Dirichlet conditions.

1.0.1 Brief Background

Many advanced numerical methods are available for solving the di�usion equa-

tion. For the most part, they require the use of the Finite Di�erence Method

(FDM), Finite Element Method (FEM), Boundary Element Method (BEM)

and Finite Volume Method (FVM). These methods involve the discretisation

of both the time and spatial variables. This combined discretisation introduces

stringent stability criteria that limit the time step size used in these meth-

ods. While methods such as the Crank-Nicholson scheme introduce conditions

that can improve the solution's stability for more extensive time steps, stabil-

ity criteria involving incremental time stepping still need to be applied. The

�nite-di�erence solution at each time step can involve hundreds and sometimes

thousands of matrix inversions to arrive at a solution. For non-linear cases, the

problem is further compounded as another iterative step is usually required.
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The Laplace transform can transform a function (or numerical data) from the

time domain into the Laplace s domain. This transform allows for removing

time marching procedures in the �nite-di�erence schemes used to solve time-

dependent parabolic partial di�erential equations. This gives us the potential

to attain a solution at any desired time.

However, using the Laplace transform can generate data in the Laplace domain,

which is not easily invertible to the real domain by analytical means, [61], [37].

Thus numerical inversion techniques have to be used to convert the Laplace do-

main to the time domain. However, the Laplace transform's numerical inversion

is known to be ill-posed, so the output of the inversion depends discontinuously

upon the initial conditions. This means that numerically inverting the Laplace

transform is a perturbed problem, so errors introduced into the input data can

cause oscillations in the output data making numerical solutions potentially un-

stable. While this perturbation cannot be removed entirely, it can be curtailed

through the choice of the inversion method and by working in unlimited preci-

sion.

1.0.2 Layout

The thesis is set out as follows;

Chapter one

In chapter one, I contextualise the thesis by introducing some preliminary ma-

terial on the heat equation, �nite-di�erence schemes, the Laplace transform and

a literature review.

Chapter two. This chapter investigated the noise handling properties of three

of the most widely used algorithms for numerically inverting the Laplace trans-

form. Here I examine the algorithms' genesis, and their error handling properties
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are evaluated through a series of standard test functions in which noise is added

to the inverse transform. Comparisons are then made with the exact data.

Chapter three

In this section, I apply a modi�ed version of the LTFDM to solve the Fisher-KPP

equation [48]. The travelling wave solutions usually associated with the Fisher-

KPP equation are generally not deemed suitable for treatment using Fourier or

Laplace transform numerical methods [8]. However, I was able to obtain accu-

rate results when some degree of time discretisation and a reinitialising of the

initial conditions were inbuilt into the process.

Chapter four

In this chapter, I examine the performance of �ve algorithms for numerically

inverting the Laplace transform in standard, 16-digit and multi-precision envi-

ronments to determine the e�ect of this might have on reducing the perturba-

tions of the inverse transform. The algorithms are taken from three of the four

main classes of numerical methods used to invert the Laplace transform [1].

Because the numerical inversion of the Laplace transform is a perturbed problem

[23], [45], and [61], rounding errors that are generated in numerical approxima-

tions can adversely a�ect the accurate reconstruction of the inverse transform.

This chapter demonstrates that working in a multi-precision environment can

substantially reduce these errors and the resulting perturbations that exist in

transforming the data from the s-space into the time domain, thus overcoming

the main drawback of numerically inverting the Laplace transform.

Chapter �ve

In this chapter, the Laplace Transform Finite-Di�erence Method LTFDM is

used to solve several linear and non-linear di�usion type problems with Dirich-

let (or �rst-type) boundary conditions. This chapter uses the method to solve

one dimensional linear and non-linear di�usion problems with various initial
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and boundary conditions. For each of the equations considered, the time do-

main solution is provided via the numerical inversion Laplace transform using

the algorithms proposed by Stehfest and Talbot. [99], [104]. The accuracy of

the algorithms is then compared.

11



1.0.3 The Di�usion Equation

Fourier, one of the �rst people to study this phenomenon, showed through ex-

perimentation that an empirical relationship exists between the conduction rate

in a material and the temperature gradient in the direction of energy �ow. He

concluded that �the heat �ux resulting from thermal conduction is proportional

to the magnitude of the temperature gradient and opposite to its sign�, [16].

The di�erential form expressing this relationship can be stated as,

q = −α∆T (1.1)

where with SI units

q is the local heat �ux density, Wm−2

α is the thermal conductivity, W−1K−1m−1

and ∆T is the temperature gradient, Km−1

For unidirectional conduction in the x direction then the equation can be ex-

pressed as

qx = −α∂T
∂x

(1.2)

Consider a long thin bar of constant cross section which conducts heat uniformly

throughout its length. Let the bar be perfectly insulated so that heat �ows only

laterally along the bar and the temperature distribution T (x, t) depends only

on its distance x along the bar at a time t. In this situation Fourier's law gives

the rate of heat �ow q as

q = −αA∂T
∂x

(1.3)

where A is the cross-selectional area of the bar. Next consider an in�nitesimally

small section of the bar of length dx which has a rate of heat �ow across its

ends and q2 with temperature distributions T at x and T + ∂T
∂x dx at x + dx

12



respectively. So the net heat �ow across that section in an element of time dt is

= −αA
[
∂T (x+ dx, t)

∂x
− ∂T (x, t)

∂x

]
dt (1.4)

= −αA
[
∂

∂x

(
T +

∂T

∂x
dx

)
− ∂T (x, t)

∂x

]
dt (1.5)

= αA
∂2T

∂x2
dxdt (1.6)

The conductor's speci�c heat under consideration is the total amount of heat

required per unit mass per unit temperature. Hence the heat gained by the

element in time dt is proportional to the massmdx and the temperature increase

in time dt.

the heat gained in time dt = cpρAdx
∂T

∂t
dt (1.7)

Where cp and ρ is the speci�c heat capacity and density of the medium respec-

tively. Equating (1.6) and (1.7) we get the heat equation

∂T

∂t
= κ

∂2T

∂x2
(1.8)

where κ = α
ρcp

is the thermal di�usivity. In the literature the notation for

temperature distribution u(x, t) is usually used instead of T (x, t). I follow this

practice in this thesis. So in this form (1.8) becomes

∂u

∂t
= κ

∂2u

∂x2
(1.9)

1.1 Finite Di�erence Method

With the Laplace transform, I will incorporate �nite-di�erence schemes to solve

the di�usion equation. Most partial di�erential equations cannot be solved in
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terms of explicit analytical formulas [12] [44] [85] [80] and so numerical methods

have to be used for �nding solutions to these equations. Besides the Finite Dif-

ference Method the most widely used numerical methods are the Finite Element

Method (FEM), [9] the Finite Volume Method (FVM) [46], [108], and Boundary

Element Method (BEM), [22], [22]. These methods all involve using domains

modelled by mesh systems to discretise the region of integration. Many mesh-

free numerical methods are used to solve certain types of partial di�erential

equations,[53], [21]. This section looks at how the partial derivatives particu-

larly, the spatial partial derivatives, are approximated. These �nite-di�erence

approximations are derived using Taylor series expansions. The basic idea can

be seen in how the di�erential dy
dx can be written in terms of an approximate

�nite-di�erence. If y = f(x) then,

dy

dx
= lim
h→0

f(x+ h)− f(x)

h
(1.10)

So if h is su�ciently small then

dy

dx
≈ f(x+ h)− f(x)

h
(1.11)

This is called the forward di�erence approximation and so the backward di�er-

ence approximation is given by

dy

dx
≈ f(x)− f(x− h)

h
(1.12)

A Taylor series expansion can provide expressions for various orders of partial

derivatives accompanied by error bounds for these approximations. The Taylor

series for the function u(x, y) expanded about the point (x, y) in the x variable

14



is

u(x+ h, y) = u(x, y) + h
∂u(x, y)

∂x
+
h2

2!

∂2u(x, y)

∂x2
+
h3

3!

∂3u(x, y)

∂x3
+ ... (1.13)

where the spatial step h is su�ciently small to ensure that the series converges.

Similarly

u(x− h, y) = u(x, y)− h∂u(x, y)

∂x
+
h2

2!

∂2u(x, y)

∂x2
− h3

3!

∂3u(x, y)

∂x3
+ ... (1.14)

These two expansions allows us to get the expressions for the partial derivatives,

from (1.13) which can be truncated and so approximated by

∂u(x, y)

∂x
=
u(x+ h, y)− u(x, y)

h
+O(h) (1.15)

and from (1.14) by

∂u(x, y)

∂x
=
u(x, y)− u(x− h, y)

h
+O(h) (1.16)

where O(h) is the leading term of the truncation error given by

h

2!

∂2u(x, y)

∂x2

Also 1.13 and 1.14 can be rearranged to get the central di�erence scheme

∂u(x, y)

∂x
=
u(x+ h, y)− u(x− h, y)

2h
− h2

3!

∂3u(x, y)

∂x3
+ ... (1.17)

written as

∂u(x, y)

∂x
=
u(x+ h, y)− u(x− h, y)

2h
+O(h2) (1.18)
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If (1.13) and (1.14) are added and rearranged, the central di�erence for the

second order derivative is obtained.

∂2u

∂x2
=
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
+O(h2) (1.19)

These di�erence approximations can now be expressed using mesh (or grid no-

tation) where x = ih and y = jk where h and k are the respective step sizes, to

get

∂2ui,j
∂x2

=
ui+1,j − 2ui,j + ui−1,j

h2
+O(h2) (1.20)

It is then possible to develop several �nite-di�erence approximations as forward,

backward and central di�erences for higher order derivatives. Moreover it is

possible to �nd expressions for them with higher order accuracy for example

∂2ui,j
∂x2

=
−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2
+O(h4) (1.21)

[105], [82]. However, as there are more nodes to calculate, this can lead to un-

necessarily long computation times, and the values of some of the nodal points,

particularly on the boundary, may not be available to us. Thus most �nite

di�erence schemes which model the di�usion make extensive use of (1.20) for

approximating the spatial derivative ∂2u
∂x2 .

For general �nite di�erence methods, both time and spatial dimensions exist.

As such, convergence and stability issues arise as important factors for obtaining

the correct solution of the governing partial di�erential equation. Convergence

involves controlling the discretisation error (the di�erence between the exact

solution and the �nite di�erence approximation). The magnitude of this error

at each mesh point depends on the size and relationship between the spatial

mesh length δx and δt. In an explicit scheme such as the Forward Time Central

Space (FTCS) we must have that r = δx
δt2 ≤

1
2 . For more stable implicit schemes
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such as the Crank Nicholson method, which is valid for all �nite values of r a

large value will lead to an inaccurate solution, [96].

Then there are stability conditions to consider. This concerns the unbounded

growth of truncation error which accompanies the time row advances from the

initial line denoting the initial conditions to the �nal line denoting the desired

time.

The critical point here is that because the Laplace transform can get rid of the

time derivative, we can have more con�dence in the convergence and stability

of our method as we have no restrictions on the time step.

1.2 The Laplace Transform

The project involves the use of the Laplace transform so that the time devel-

opment is obtained using a hybrid Laplace Transform Finite Di�erence Method

LTFDM. The Laplace transform is an integral transform de�ned as follows:

Let f(t) be de�ned for t ≥ 0, then the Laplace transform of f(t) is given by,

L{f(t)} =

∫ ∞
0

f(t)e−st dt (1.22)

Thus L{f(t)} is a function of s denoted as F (s). The Laplace transform can be

shown to exist for any function which can be integrated over any �nite interval

0 < t < l for l > 0, and for which f(t) is of exponential order, i.e.

| f(t) |< Meat (1.23)

as t → ∞, where M > 0 is a �nite real number and a is a small real positive

number.

The recovery of the function f(t) is via the inverse Laplace transform which is
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most commonly de�ned via the Bromwich contour integral. [98]

L−1{F (s)} = f(t) =
1

2πi

∫ α+i∞

α−i∞
f(s) est ds (1.24)

However, using the Laplace transform can generate data in the Laplace domain,

which is not easily invertible to the real domain by analytical means. Thus

numerical inversion techniques have to be used to convert the data from the s

domain to the time domain. The main problem with the numerical inversion

of the Laplace transform is that it is known to be an ill posed or perturbed

problem (thus, small changes in the input function can lead to large oscillations

in the solution) [23],[45],[60]. to illustrate this, consider Bellman and Roth's

analysis [10] of the Laplace transform and its inversion.

They begin by examining the choice of s in (1.22). If s is allowed to be any

arbitrary complex parameter, then by (1.22), the function f(s) will also be

complex. This situation leads to solving two integral equations, which involve

singularities and oscillations for s ≤ 1. To demonstrate this consider again the

Laplace transform,

L{f(t)} ≡ f(s) =

∫ ∞
0

f(t)e−st dt (1.25)

and s to be any complex number. As s is complex then F (s) must be a function

of a complex number. From a numerical standpoint the limits of integration of

the Laplace Transform can create di�culties in evaluating the integral. Thus

they apply the transformation r = e−t and the integral becomes,

−
∫ 1

0

f(− ln r)
rs

r
dt =

∫ 1

0

g(r) rs−1 r dt (1.26)
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where g(r) = f(− ln t)

As s ε c then

rs−1 = ru−1−iv = ru−1eiv ln r. (1.27)

Now F (s) = a(uv)+ib(uv) thus

a(uv) =

∫ 1

0

ru−1 cos(v lnr)g(r)dr (1.28)

b(uv) =

∫ 1

0

ru−1 sin(v lnr)g(r)dr (1.29)

There are two integral equations to solve. More importantly, if u < 1, there will

be a singularity at r = 0, making numerical computation di�cult if not impos-

sible. Also, if v 6= 0 aside from the rapid oscillations at the origin, the integral

is unbounded [10]. In (1.22) and (1.24), Bellman and Roth choose s so that

the singularities of F (s) lie to the left of the Re(s) = α in the complex s-plane.

Bellman and Roth conclude, �To avoid these problems s is chosen to lie on the

positive real axis greater than unity�. The problem with this approach is that

any numerical quadrature of the integral in (1.26) leads to an ill-conditioned

matrix equation and hence instabilities in numerical inversion. As I show in

this thesis adopting procedures that treat s in (1.22) and (1.24) as complex can

reduce the e�ects of perturbation on the inverse transform.

Also, a cursory look at (1.22) shows the e�ect the e−st term can have on smooth-

ing out the values of f(t) for large t making the recovery of this `lost information

from the inverse transform di�cult. A similar examination of (1.24) shows that

the est term in the integral can amplify small changes in the input data, clearly

ful�lling the requirement of being ill-posed. However, because of Bellman and

Roth's points, using complex arithmetic cannot completely overcome the prob-

lem's ill-posed nature.

There have been other attempts to explain the ill-posed nature of the numerical
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inversion of the Laplace Transform. Craig and Thompson [26] explain this as

being inherent to forward and backward problems, noting that the instability of

the Laplace inversion is the price that has to be paid for favourable smoothening

properties of the forward transform in (1.24). They also point out that �The

trade-o� between frequency resolution and stability in the numerical solution is

a recurring feature of classical approaches to ill-posed problems�.

Epstein and Schotland [45] use harmonic analysis relevant to forward and back-

wards transforms and demonstrate the inherently perturbed nature of the prob-

lems in handling noisy data. McWhirter and Pike [70] examine the ill-posed

nature of numerically inverting the Laplace transform from the standpoint of

Fredholm integral equations of the �rst kind. This class of equations includes

the Laplace transform. Again they show how successful inversion depends on

the noise level in the calculation and �on the eigenvalue structure of the kernel�.

Despite these drawbacks, the Laplace transform's power is apparent from its

numerous applications spanning all areas of applied sciences. Thus, the above

authors' considerations were to deepen the understanding of its implementation

to further its use in solving di�erential equations. Its ability to construct fre-

quency domain representation converting (the description of the system from

the time domain to the frequency domain) the di�erential equations to alge-

braic equations, which are much easier to solve. As I show in this thesis, when

numerical Laplace transform methods are employed to solve these equations,

accurate representation of the solution is possible, posing a viable alternative to

spatial discretisation methods used for solving time-dependent parabolic partial

di�erential equations.
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1.3 Literature Review

In this section, I review important contributions in the literature which helped

inform the thesis. This covers using Laplace transform methods to solve di�u-

sion type equations and the principal methods used to invert the data numeri-

cally.

1.3.1 The Laplace Transform Boundary Element Method

(LTBEM)

Moridis and Reddel [74] introduced the Laplace Transform Boundary Element,

LTBEM, to simulate two and three-dimensional heat conduction and ground-

water �ow. Signi�cantly, the authors produced results more accurately than the

conventional BEM treatment.

Moridis [73] later developed an alternative formulation of the LTBEM in which

two time-marching schemes were compared with the LTBEM. [29], [15]. The

inversion from the Laplace space was done using the algorithms proposed by

Stehfest [99], and Dehoog [37]. Moridis concluded that the DeHoog algorithm

was less computationally e�cient than the Stehfest inversion but allowed solu-

tions at a range of times. He concluded that for this application, �The Stehfest

LTBEM seems to have a clear advantage, except in cases involving very steep

functions of time�.

Stradhar et al. [101] used the LTBEM to investigate three-dimensional problems

involving transient heat conduction in homogeneous and non-homogeneous ma-

terials. The numerical simulation is done using a Galerkin approximation [14],

and the time dependence is restored via the Stehfest algorithm. The authors

report that the results were in excellent agreement with the analytical solutions
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on the test problems tried using this method.

Zhu et al. published three papers exploring the combined Laplace transform

and dual reciprocity method (LTDRM) for solving linear and non-linear di�u-

sion equitations [117], [119], [118]. Their work showed the combined scheme's

ability to produce e�cient, accurate numerical solutions for linear and non-

linear di�usion type problems at any desired observation time.

Singh et al. [95] employed a mesh-free numerical method based on the partic-

ular solution for the modi�ed Helmholtz operator and then used the Laplace

transform to eliminate the time parameter. Describing the approach as a `time

free' `mesh-free' method, the authors report better performance than the LT-

DRM for the problems examined in the paper. The Stehfest inversion scheme

was used for this method.

For some years, members of the mathematics department at The University of

Hertfordshire have investigated some of the various solution methods for solving

the di�usion equation [31], [34], [56]. In continuing this research, the Laplace

transform was used as a viable strategy for solving these equations by removing

the time dimension and its associated time stepping procedures.

Crann's 2005 PhD thesis [27] investigated the use of the Laplace Transform com-

bined with the Boundary Element (LTBEM) method for solving di�usion type

problems. Radford's 2008 thesis, [87] looked at aspects of the Laplace Transform

Isotherm Migration Method, and Fitzharris's thesis, [49] used Laplace transform

methods to solve the di�usion type Black Scholes equation [13] .

In 2007 Kane et al. [58] investigated using a Hybrid Laplace Transform/Finite

Di�erence Boundary Element Method for Di�usion Problems. All the above

research at Hertfordshire used a time-domain decomposition suitable for imple-

mentation in a parallel computing environment. The main focus was on the

issues associated with parallel computing when using Laplace transform meth-
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ods. In all cases, the Stehfest inversion scheme was used to invert the data.

1.3.2 LTFDM

Opaunga et al. used the LTDFM on one-dimensional boundary value di�usion

problems. Their results were compared to �nite-di�erence methods, but their

method involved using closed-form solutions and did not use numerical inversion

algorithms [81]. Tagliani et al. used the technique of mixing the Laplace Trans-

form and the �nite-di�erence method to solve the Black-Scholes PDE [103], [13]

in which the Post-Widder formula was used to invert the data [23],[83].

This method for solving the Black-Scholes equation was also used by Ann et al.

[4] who used an algorithm developed by the authors but based on the Fourier

series inversion method [3].

Chen et al. applied the LTFDM to a two-dimensional non-linear heat conduc-

tion problem using the Honig and Hirdes version of the Fourier series method

for inverting the Laplace Transform. [55], [20].

Jingtang Ma et al. used the LTDFM in the context of �Pricing American op-

tions under complex models� [67] and employed the Stehfest inversion method.

Zahra et al. used an LTFDM for obtaining �solutions fractional-order electrical

circuits �[116]. As in [81] closed from solutions of the Laplace transform were

used with no numerical inversion schemes employed.

Habte et al. [54] successfully applied the LTFDM for the speci�c applica-

tion of �simulating the pressure-transient behaviour of oil/water �ow associ-

ated with water injection/fallo� tests�. The method is �coupled with the well

known Buckley-Leverett frontal-advance formula [30] to solve the radial di�u-

sivity equation�.

Mahajerin [68] combined an extension of the Fundamental Collocation Method
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�to handle two-dimensional transient heat conduction problems in solids�. The

method is applied in the Laplace space, and an inversion technique [91] is used

to retrieve the solution in time. The authors noted that there were �inherent

advantages over the domain-oriented techniques like the �nite element and, �-

nite di�erence methods, the Laplace transform-based FCM approach presented

here may be regarded as a simpler method for solving a wide variety of time-

dependent problems in heat conduction and related �elds�.

1.3.3 Numerically Inverting the Laplace Transform

Davies and Martin [36] give a detailed account of their tests on 14 methods for

numerically inverting the Laplace transform. They do so through a variety of

test functions. �The methods are presented brie�y and classi�ed theoretically

into methods that compute a sample, methods which expand f(t) in exponential

functions, methods based on Gaussian quadrature, methods based on a bilin-

ear transformation, and methods based on Fourier series�. The conclusions are

wide-ranging but note that the Stehfest and the Fourier series methods gave

good results for most of the functions tested. The survey did not, however,

evaluate the performance of the Talbot algorithm [104].

Other surveys include; Narayanan and Beskos, [78] who examined eight existing

methods for numerically inverting the Laplace Transform. They con�rm that

using the Laplace transform for time-dependent di�usion equations o�ers a sim-

ple, straightforward and uniform method of solution by reducing the complexity

of the problem through the reduction by one of the numbers of their indepen-

dent variables. At the same time, �easily handling time-dependent boundary

conditions�. They say the choice of method can depend on a compromise be-

tween methods with low accuracy but short computation times and those that
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o�er high accuracy but greater computation times.

Kuhlman [60], used a two dimensional BEM to compare �ve methods for invert-

ing the Laplace Transform. He found that for this particular application, the

�Fourier-series-based inversion algorithms work for common time behaviours,

are the most robust with respect to free parameters, and allow for straightfor-

ward image function evaluation re-use across at least a log cycle. Of time.�

Cohen [23] provides a very useful summary of the derivation of the most widely

used algorithms for numerically inverting the Laplace Transform, illuminating

further the advantages and disadvantages of using an algorithm in a variety of

applications.

Du�y [40], compares three methods; the method of Weeks [111], the Talbot

method [104], and the Laguerre polynomial scheme [40] on a series of functions

found in engineering and physics. Du�y concludes �that all the methods give

good results, and the exact choice will depend on the problem�. He also noted

that the Talbot algorithm is very fast.

Abate and Valko investigated the performance of the Gaver-Wynn-Rho (GWR)

and the Talbot algorithm in a multi-precision environment [1]. They found that

both had a greatly improved performance as the extra precision could curtail

the inherent perturbation of the numerical inversion of the Laplace transform.

Wang and Zhan [109] ran tests on seven di�erent inversion methods. Four of

these were versions of the Fourier series method; the other three were Weeks,

Talbot and Stehfest. They were used on solute transport problems. They con-

cluded that Talbot, de Hoog and Simon worked very well for radial dispersion

methods �regardless of the dispersion-dominated or advection-dominated prob-

lems�.

Krougly et al. [59] further examined the performance of the Stehfest algorithm

in a multi-precision environment. After noting the improved performance of the
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algorithm in this environment, the authors concluded: �We demonstrated that

the level of precision chosen must match algorithms properly. In the Gaver-

Stehfest algorithm, the balance is between the truncation error" (a consequence

of truncating the series representation of the algorithm) " and roundo� error�.

I expect more work to be done in this area since multi-precision is so e�ective

in increasing the accuracy of the inversion methods.
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Chapter 2

The Noise Handling

Properties of the Talbot

Algorithm for Numerically

Inverting the Laplace

Transform

2.0.1 Introduction

This chapter examines the noise handling properties of three of the most widely

used algorithms for numerically inverting the Laplace Transform. After exam-

ining the genesis of the algorithms, the regularization properties are evaluated

through a series of standard test functions in which noise is added to the in-

verse transform. Comparisons are then made with the exact data. Our main
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�nding is that the Talbot inversion algorithm performs with greater accuracy

when compared to the Fourier Series and Stehfest numerical inversion schemes,

as they are outlined in this chapter.

(This chapter was published as a research paper: First published September 13,

2018, Research Article https://doi.org/10.1177/1748301818797069)

2.1 The Laplace Transform

The Laplace Transform is an integral transform de�ned as follows:

Let f(t) be de�ned for t > 0, then the Laplace transform of f(t) is given by:

L{f(t)} =

∫ ∞
0

f(t)e−st dt (2.1)

with L{f(t)} denoted as F (s). The Laplace transform can be shown to exist

for any function which can be integrated over any �nite interval 0 < t < l for

l > 0, and for which f(t) is of exponential order, i.e.

| f(t) |< Meat (2.2)

as t→∞, where M and a are small real positive numbers.

Analytically the inverse Laplace transform is usually obtained using the tech-

niques of complex contour integration with the resulting set of standard trans-

forms presented in tables [97].

However, using the Laplace Transform to obtain solutions of di�erential equa-

tions can lead to solutions in the Laplace domain which are not easily invertible

to the real domain by analytical means. Thus numerical inversion techniques

are used to convert the solution from the Laplace to the real domain.
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2.2 The Inverse Laplace Transform Perturbation

and Precision

The recovery of the function f(t) is via the inverse Laplace transform which is

most commonly de�ned by the Bromwich integral formula

L−1{F (s)} = f(t) =
1

2πi

∫ u+i∞

u−i∞
F (s) est ds (2.3)

for some u ∈ R. [97]

The choice of s in (2.1) and so in (2.3) is not an arbitrary one. If s is chosen

so that it lies on the positive real axis, the solution of (2.3) is being treated as

a positive real integral equation. The problem here is that the inverse problem

is known to be ill-posed, meaning that small changes in the values of F (s) can

lead to large errors in the values for f(t) [10].

Hence when Laplace Transform methods are used in �nding numerical solutions

to partial di�erential equations, the corresponding inversion methods can be

highly sensitive to the inevitable noisy data that arises in their computation

via truncation and round o� error, a process which is exacerbated in non-linear

schemes. Abate and Valko [1] have shown that, to some extent, these errors

can be curtailed by working in a multi-precision environment; as I show in

the �Tests� section later, a small amount of noise in the data can signi�cantly

perturb the solution. When this is the case, it becomes di�cult for unlimited

precision to aid in the convergence of the algorithm to the correct solution.
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2.3 The Algorithms

There are over 100 algorithms available for inverting the Laplace Transform

with numerous comparative studies. Examples include Du�y [40], Narayanan

and Beskos [78], Cohen [23], and perhaps the most comprehensive by Davies and

Martin [36], However for the purposes of this investigation, we apply our tests

using �Those algorithms that have passed the test of time� [1], this is because

these algorithms are reported to give the most accurate results on the widest

variety of functions. [36],[40]. These fall into four groups,

(1) Fourier series expansion.

(2) Combination of Gaver Functionals.

(3) Laguerre function expansion.

(4) Deformation of the Bromwich contour.

Derivations of particular versions of these algorithms are given in the next sec-

tion. In the upcoming sections, we examine the Stehfest algorithm, which is a

widely used version of the Gaver functionals and Talbot Algorithm that uses a

particular deformation of the Bromwich contour.

However, for now, we do not run our tests using the Laguerre function expan-

sion. While we do intend to investigate this method later on in our work, our

choices in this work have been made based on the ease of implementation of

the inversion method, an issue connected to parameter choice and control. The

Laguerre method requires more than two parameters to e�ectively compute the

desired transform, while the other three methods can perform reasonably well

when de�ned using just the one parameter.
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2.3.1 The Fourier Series Method

In their survey of algorithms for inverting the Laplace Transform, Davies and

Martin [36] note that the Fourier series method without accelerated convergence

gives good accuracy on a wide variety of functions. Since the Laplace Transform

is closely related to the Fourier transform it is not surprising that inversion

methods based on a Fourier series expansion would yield accurate results. In

fact, the two sided Laplace transform can be derived from the Fourier transform

in the following way. We can de�ne the Fourier transform as

F{f(t)} =

∫ ∞
−∞

f(t) e−2πiνt dt (2.4)

providing f(t) is an absolutely integrable function, i.e.

∫ ∞
−∞
|f(t)| dt <∞ (2.5)

Then letting v = 2πν we have

F{f(t)} =

∫ ∞
−∞

f(t) e−ivt dt (2.6)

As many functions do not satisfy the condition in (2.5), f(t) is multiplied by

the exponential dampening factor e−ut thus

F{f(t)e−ut} =

∫ ∞
−∞

f(t) e−ivte−ut dt (2.7)

and letting s = u+ iv we obtain the two sided Laplace transform of f(t) as

F{f(t)e−ut} = L{f(t)} =

∫ ∞
−∞

e−stf(t) dt (2.8)

LePage [14] noted that the integral in (2.8) can be written in two parts as
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follows:

∫ ∞
−∞

e−stf(t) dt =

∫ 0

−∞
e−stf(t) dt+

∫ ∞
0

e−stf(t) dt (2.9)

The second term in the above expression is referred to as the one-sided Laplace

transform or simply the Laplace transform. Thus s is de�ned as a complex

variable in the de�nition of the Laplace Transform.

As before the inverse Laplace transform is given as:

f(t) =
1

2πi

∫ u+i∞

u−i∞
estF (s) ds (2.10)

With s = u+ iv in (2.10) this leads to the result

f(t) =
2eut

π

∫ ∞
0

[Re{F (u+ iv)} cos (vt)− Im {F (u+ iv)} sin (vt)] dv (2.11)

As Crump [7] points out equations (2.1) and (2.3) can be replaced by the cosine

transform pair

Re{F (u+ iv)} =

∫ ∞
0

e−ut f(t) cos (vt) dt (2.12)

f(t) =
2eut

π

∫ ∞
0

Re{F (u+ iv)} cos(vt) dv (2.13)

or by the sine transform pair

Re{F (u+ iv)} = −
∫ ∞
0

e−ut f(t) sin (vt) dt (2.14)

f(t) = −2eut

π

∫ ∞
0

Im{F (u+ iv)} sin(vt) dv (2.15)

Dunbar and Abate [11] applied a trapezoid rule to (2.13) resulting in the Fourier
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series approximation,

f(t) ≈ 2eut

T

[
1

2
F (u) +

∞∑
k=1

Re

{
F
(
u+

kπi

T

)}
cos

(
kπt

T

)]
(2.16)

where f(t) is expanded in the interval 0 ≤ t < T . For faster computation Simon

and Stroot [20] proposed the following version of equation (2.16)

f(t) ≈ eut

t

[
1

2
F (u) +

∞∑
k=1

Re

{
F
(
u+

kπi

t

)}
(−1)k

]
(2.17)

This series can be summed much faster than (2.16) as there are no cosines to

compute [25]. This algorithm is relatively easy to implement, with u being the

only real varying parameter.

However as pointed out by Crump [28] for the the expression in (2.17) the

transform F (s) must now be computed for a di�erent set of s− values for each

distinct t. Since this type of application often occurs in practice in which the

numerical computations of F (s) is itself quite time consuming this may not be

an economical inversion algorithm to use. These drawbacks to some extent, can

be overcome by using the fast Fourier transform techniques [24], [25].

Crump [28] also extends this method to one of faster convergence by making use

of the already computed imaginary parts. There are several other acceleration

schemes, for example, those outlined by Cohen [23]; however, these acceleration

methods, in general, require the introduction of new parameters, which for the

purpose of this investigation, we wish to avoid.

2.3.2 The Stehfest Algorithm

Davies and Martin [36] cite the Stehfest [99] algorithm as providing accurate

results on a variety of test functions. Since that time, this algorithm has be-

come widely used for inverting the Laplace Transform, being favoured due to
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its reported accuracy and ease of implementation.

Here we give a brief overview of the evolution of the algorithm from a probabil-

ity distribution function to the Gaver functional, whose asymptotic expansion

leads to an acceleration scheme which yields the algorithm in its most widely

used form.

Gaver [50] investigated a method for obtaining numerical information on the

time dependent behaviour of stochastic processes, which often arise in queu-

ing theory. The investigation involved examining the properties of the three

parameter class of density functions, namely

pn,m(a; t) =
(n+m)!

n!(m− 1)!
(1− e−at)nae−mat (2.18)

with n,m ∈ N. After the binomial expansion of the term (1 − e−at)n, Gaver

went on to �nd the expectation E[f(Tn,m)] where Tn,m is the random variable

with density (2.18). From this Gaver was able to express the inverse Laplace

transform in terms of the functional

fn,m(t) =
ln 2

t

(n+m)!

n!(m− 1)!

n∑
j=0

(
n

k

)
(−1)kF

(
(k +m)

ln 2

t

)
(2.19)

with certain conditions on n and m, Gaver makes n = m and expresses equation

(2.19) as

fn(t) =
ln 2

t

(2n)!

n!(n− 1)!

n∑
k=0

(
n

k

)
(−1)kF

(
(k + n)

ln 2

t

)
(2.20)

While the expression in (2.20) can be used to successfully invert the Laplace

transform for a large class of functions its rate of convergence is slow [35], [40].

However Gaver [13] has shown that (2.20), with a = ln 2
t has the asymptotic

34



expansion

fn(t) ≈ f
(

ln 2

a

)
+
α1

n
+
α2

n2
+
α3

n3
+ ... (2.21)

where the αj 's are constant coe�cients in the asymptotic series. Hence (2.21)

converges to the limit

fn(t)
n→∞

= f

(
ln 2

a

)
as n→∞. For the conditions on m and n and justi�cation for the substitution

for a referred to above, see Gaver [50]. This asymptotic expansion provides scope

for applying various acceleration techniques enabling a more viable application

of the basic algorithm.

Stehfest's acceleration scheme.

For the purposes of following Stehfest's derivation it is convenient to rewrite

(2.20) as

fn(t) = Fn =
(2n)!a

n!(n− 1)!

n∑
j=0

(
n

k

)
(−1)kF

(
(k + n)a

)
(2.22)

with a = ln 2
t . Stehfest [21] begins by supposing we have N values for F [(k+n)a]

with F (a), F (2a), F (3a), ....F (Na) for N even. Using equation(2.22) we can

then determine N
2 values F1, F2, ..., FN/2. Now each of these N/2 values satisfy

the asymptotic series in (2.21) with the same αj coe�cients.

As pointed out by Stehfest, the αj 's are the same for each of the above ex-

pressions and by using a suitable linear combination we can eliminate the �rst

(N2 − 1) error terms in equation (2.21) can be eliminated. That is

f

(
ln 2

a

)
=

N
2∑

n=1

anF(n
2 +i−1) +O

(
1

N
N
2

)
(2.23)
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which may be achieved by selecting the coe�cients to satisfy

N
2∑

n=1

an
1

(N2 + 1− n)k
= δk,0 k = 1, ..., N/2− 1 (2.24)

an =
(−1)n−1

(N2 )!

(N
2

n

)
n

(
N

2
+ 1− n)

N
2 −1

)
(2.25)

Finally, Stehfest substitutes (5.28) into (2.23) and obtains the inversion formula

f(t) ≈ ln 2

t

N∑
j=1

AjF

(
j ln 2

t

)
(2.26)

where

for N even.

Aj = (−1)
N
2 +j =

min(j,N2 )∑
k=b j+1

2 c

k
N
2 (2k)!

(N2 − k)!k!(k − 1)!(j − k)!(2k − j)!
(2.27)

[99].

2.3.3 The Talbot Algorithm.

Equations (2.4) to (2.8) showed that the Laplace transform can be seen as a

Fourier transform of the function

e−utf(t) t > 0 (2.28)

i.e.

F{e−utf(t)} = L{f(t)} = F (s) (2.29)
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Hence the Fourier transform inversion formula can be applied to recover the

function thus

F−1 {F (s)} = e−utf(t) =
1

2π

∫ ∞
−∞

F (s) eivt dv (2.30)

as s = u+ iv we have that ds = idv and so

1

2πi

∫ ∞
−∞

F (s)est ds (2.31)

as s = u+ iv we have that ds = idv and so

f(t) =
1

2πi

∫ u+i∞

u−i∞
F (s) est ds (2.32)

This result provides a direct means of obtaining the inverse Laplace transform.

In practice the integral in (2.32) is evaluated using contour integration

1

2πi

∫
B

est F (s) ds (2.33)

with B denoting the Bromwich contour [98]. The contour is chosen so that it en-

closes all the possible singularities of F (s). The idea of the contour is introduced

so that the residue theorem can be used to evaluate the integral. However, when

f(t) is to be calculated using numerical quadrature, it may be more appropriate

to devise a new contour. To ensure the convergence of (2.33) we may wish to

control the growth of the magnitude of the integrand est by moving the contour

to the left so, giving the real part of s a large negative component [1], [75].

However, the deformed contour must not be allowed to pass through any sin-

gularities of F (s). This is to ensure that the transform is analytic in the region

to the right of B.
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Derivation of the Fixed Talbot Contour.

In the derivation that follows [1] and [75], are used as the primary basis for ex-

tending the explanation of the derivation of the Talbot algorithm for inverting

the Laplace Transform.

Abate and Valko [1] begin with the Bromwich inversion integral along the

Bromwich contour B with the substitution

F (s) =
1

sα
, α > 0 (2.34)

So f(t) can be expressed as

f(t) =
1

2πi

∫
B

et(s−aloges) ds (2.35)

with a = α
t in (2.34) and (2.35). As pointed out by Abate and Valko [1]

numerically evaluating the integral in (2.35) is di�cult due to the oscillatory

nature of the integrand.

However this evaluation can be achieved by deforming the contour B into a path

of constant phase, thus eliminating the oscillations in the imaginary component.

These paths of constant phase are also paths of steepest decent for the real part

of the integrand [1],[11],[75].

There are in general a number of contours for which the imaginary component

remains constant so we choose one on which the real part attains a maximum

on the interior (a saddle point) and this occurs at g
′
(s) = 0 at some point on

the contour. At these saddle points the Im{g(s)} = 0 [75]. Here

g(s) = s− alns (2.36)
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in (2.35). Thus we have

g
′
(s) = 1− a

s
(2.37)

So the stationary point occurs when s = a.

With s = u+ iv we have

Im{u+ iv − aln(u+ iv)} = 0 (2.38)

Expressing u+ iv as Reiθ we have

Im
{

(u− alnR) + i(v − aθ)
}

= 0 (2.39)

then

v = aθ (2.40)

and as

tan(θ) =

(
v

u

)
(2.41)

then

u = aθ cot(θ) (2.42)

[1].

With v = aθ then s can be parametrized to Talbots contour:

s(θ) = aθ(cot(θ) + i) − π < θ < +π (2.43)

[104].

Conformal mapping of the Talbot contour.

While the above parametrization can be used as a basis for inverting the Laplace

Transform we proceed with the algorithm's development via a convenient con-
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formal mapping as follows.

cot θ =
i(eiθ + e−iθ)

(eiθ − e−iθ)
(2.44)

Then

θ cot θ + iθ =
2iθ

1− e−2iθ
(2.45)

with z = 2iθ then (2.45)

=
z

1− e−z
(2.46)

The function

S(z) =
z

1− e−z
(2.47)

maps the closed interval M = [−2πi, 2πi] on the imaginary z−plane onto the

curve L in the s plane giving the integral,

f(t) =
1

2πi

∫
L

F (s) est ds (2.48)

For the details of this transformation, one can refer to the study of Logan [66].

Next we follow the procedure as adopted by Logan [66] for numerically integrat-

ing equation (2.48). With the change of variable (2.48) becomes

f(t) =
1

2πi

∫
M

F (S(z)) eS(z)t S
′
(z) dz (2.49)

where

S
′
(z) =

1− (1 + z)e−z

(1− e−z)2
(2.50)

For convenience we write,

f(t) =
1

2πi

∫
M

Q(z) dz (2.51)
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where

Q(z) = F (s(z)) es(z)t s
′
(z) (2.52)

and M = [−2π, 2π]. Then if we let w = −iz for the integral in (2.51) so

the interval of integration is now real and becomes [−2π, 2π]. Then using the

trapezoid rule with n we obtain

f(t) ∼=
1

n

{
(I(2πi) + T (−2πi) + 2

n−1∑
j=1

I(iwj)

}
(2.53)

where

wj = 2π(
2j

n
− 1) (2.54)

and we note that I(2πi) = I(−2πi) = 0. [66].

The regularization properties of the Talbot algorithm

Despite the intricacies of deriving the Talbot algorithm, we have found it to be

a relatively easy algorithm to implement. Also, the tests which we have carried

out so far show that the algorithm performs with a high degree of accuracy.

Moreover, the algorithm converges much faster than the Fourier series method

without requiring the use of any acceleration schemes. Additionally, in the form

in which we have used it there is only one parameter to control.

Perhaps its greatest strength is the fact that we have found that it is able to

handle noisy data (of magnitude outlined below) with little growth in the corre-

sponding error. As we will show, this is not the case for either the Fourier series

or the Stehfest inversion algorithms presented above. Moreover, this �regular-

ization property" does not exist for many of the numerical inversion schemes, as

indicated by Egonmwan [43]. For most algorithms, this is generally overcome

by constructing some regularization scheme which then needs to be attached
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on to the inversion algorithm(s) of choice. This, of course, increases the com-

plexity of the inversion process involving new parameters, thus requiring even

greater knowledge of the desired solution. This is even more so if the scheme

also involves some additional accelerated convergence process. For the Talbot

scheme, one needs only to directly apply the algorithm, which has the ability

to mitigate this level of noise. On the other hand, for the Stehfest method, a

regularization scheme such as the Tikhonov regularisation scheme implemented

by Egonmwan may need to be constructed for this purpose, and so some esti-

mate of the noise will be required. In its simplest form, this process involves

adding positive elements to the diagonals of the ill-conditioned matrix in order

to decrease its condition number. This is unnecessary for the Talbot scheme as

these ill-conditioned matrices do not exist. In a sense, then, the Talbot scheme

has an implicit regularisation scheme when compared to the Stehfest algorithm.

As we pointed out earlier, the perturbation in the numerical schemes are a con-

sequence of the inversion being carried out in the complex plane. The inclusion

of complex arithmetic in the Talbot scheme enormously diminishes this pertur-

bation as it does not create ill conditioned matrices associated with inversion

schemes which are note done in the complex plane, [10]. Of great importance

here too is that the �regularization properties " of the Talbot algorithm means

that very good performance can be obtained on many of the test functions with-

out the necessity for multi-precision.

Egonmwan [43] examines regularised and collocation methods for the numeri-

cal inversion of the Laplace transform, which involve a Tikhonov regularisation

scheme [106] based methods. This is then applied to the Stehfest [99] and

Piessens [84] methods on various standard test functions for both exact F (s)

and noisy F (s+ ε) data, where ε denotes the level of noise added.
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For the Stehfest [99], Piessens [84] and the regularized method Egonwan [43]

added noise of a magnitude 10−3×U(1, 0) to the inverse transforms in table 2.1,

where U(1, 0) is a random number between 1 and 0,(Uniform distribution) to

the Laplace transform values. Commenting on his results, Egonwan notes �the

Gaver Stehfest method gave very nice approximate solutions for a wide range

of functions. However, it completely failed in the presence of noisy data. In the

case of exact data, the method produced better numerical approximations when

compared to the Piessins and the regularized collocation methods. However, the

Piessins method gave better results than the regularized collocation method in

the case of exact data."

In other words, methods which performed well for exact data did not do well for

noisy data, and the regularized collocation method failed (as outlined by Egon-

mwan [43]) for exact data. Thus to use such regularized methods requires some

a priori knowledge of the magnitude of the noise involved and, by implication,

a better estimation of the solution than might be otherwise possible.

2.3.4 Tests

Table 2.1 lists the functions together with a variety of properties for the pur-

pose of testing the noise handling capability of the three inversion algorithms

employed.
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No. F (s) f(t) Function type

1 s
(s2+1)2 0.5t sin(t) Oscillating increasing

2 1
(s+1)2 te−t Exponentially decreasing

3 1
s5

1
24 t

4 Increasing

4 1√
s

1
πt With singularities

5 erf{ 2√
s
} 1

πt sin(4
√
t) Oscillating with singularities

6 1
s2−0.52 sinh(0.5t) Hyperbolic

7 s3

s4+4(0.5)4
cos(0.5t) cosh(0.5t) Combination of oscillating and hyperbolic

ln s
s −(ln t+ γ) Natural log

Table 2.1: Test Functions

These functions are the same used by Egonmwan [43]. This sample of test

functions has a variety of properties which we think form a basis for testing the

robustness of the inversion schemes. We use three error measures, the L2 norm

de�ned as

E2 =

√√√√ 40∑
i=1

∣∣∣∣fnumerical(ti)− fexact(ti)∣∣∣∣2, i = 1..40 (2.55)
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the L∞ norm as

E∞ = max

∣∣∣∣fnumerical(ti)− fexact(ti)∣∣∣∣, i = 1..40 (2.56)

and the percentage error as

Emax = max

∣∣∣∣fnumerical(ti)− fexact(ti)fexact(ti)
× 100

∣∣∣∣, i = 1, ..40 (2.57)

To give a good estimation of the errors involved we have sampled t over 40

points for t = 0.1 to 4. The L2 norm is chosen as a measure which averages

out the error over the sample points, while the L∞ norm and the % error as

de�ned above choose the maximum error obtained for these measures. In all

cases, the magnitude of noise added is 10−3 × U(1, 0), where U is the uniform

distribution.

The precision used for implementing the three algorithms is 1.8M , where M

is the number of weights for the Stehfest algorithm and 2M where M is the

number of terms in the summation for the Talbot and the Fourier methods.

The choice of these levels of precision is based on trial and error for the best

performance of these methods.

They are perhaps larger than they need to be, but as our interest in this inves-

tigation is not on their e�ciency but on their ability to handle noisy data, we

wanted to ensure that the precision played as little part as possible in assessing

their performance. Thus in cases where the extended precision decreases the

accuracy of the noisy data, we used the usual double precision for these inver-

sions.

For functions which have sine, cosine and hyperbolic properties, we increase the

weights for the Stehfest. This is because these functions require more weights

and a corresponding increase in precision for the Stehfest method to produce
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accurate results. For the Fourier Series method we choose the parameter value

of a = 4. Once again this choice is based on trial and error. We have found that

this choice for a gives the best results for inverting the widest class of functions.

2.3.5 Results

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 30 9.4(-4) 5.0(-4) 3.8(-2) 4.6(16) 3.6(16) 1.2(18)

Talbot 55 2.0(-6) 5.4(-7) 2.3(-4) 6.2(-4) 2.7(-4) 3.7(-2)

Fourier 55 4.2(-2) 1,8(-3) 3.1(-1) 8.9(1) 2.9(0) 1.1(3)

Table 2.2: f(t) = 0.5t sin(t) = L−1{ s
(s2+1)2 }

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 16 1.1(-4) 4.0(-5) 5.4(-1) 3.0(7) 2.4(7) 2.6(10)

Talbot 55 7.3(-6) 6.4(-6) 2.1(-3) 7.8(-4) 2.3(-4) 3.1(-1)

Fourier 55 3.6(-3) 1.0(-2) 4.9(-0) 1.1(0) 9.0(-1) 9.7(2)

Table 2.3: f(t) = te−t = L−1{ 1
(s+1)2 }

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 16 6.7(-6) 3.0(-54) 2.8(-3) 3.8(3) 2.4(3) 1.1(12)

Talbot 55 3.8(-10) 3.4(-10) 5.1(-4) 2.3(-3) 8.8(-4) 1.5(-1)

Fourier 55 6.2(-1) 2.9(-1) 2.7(0) 7.6(0) 16.3(1) 2.5(3)

Table 2.4: f(t) = 1
24 t

4 = L−1{ 1
(s)5 }
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No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 16 2.7(-8) 1.3(-8) 7.2(-7) 1.5(7) 1.2(7) 6.5(8)

Talbot 55 9.2(-2) 9.2(-3) 5.2(-2) 9.2(-2) 9.2(-3) 5.2(-2)

Fourier 55 6.2(-1) 2.9(-1) 2.7(0) 1.4(1) 6.3(0) 7.1(6)

Table 2.5: f(t) = 1√
πt

= L−1{ 1
(
√
s)
}

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 16 2.6(-4) 1.6(-4) 6.6(-1) 1.2(7) 9.6(6) 7.2(9)

Talbot 55 2.2(-2) 2.2(-2) 7.1(-1) 2.2(-1) 2.2(-2) 7.1(-1)

Fourier 55 1.8(1) 1.1(1) 4.3(3) 3.9(3) 2.2(3) 4.1(6)

Table 2.6: f(t) = 1
πt sin(4

√
t) = L−1{erf

(
2√
s

)
}

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 36 9.8(-3) 9.2(-3) 2.1(-5) 2.6(7) 2.0(7) 7.0(6)

Talbot 55 7.2(-6) 7.2(-6) 4.6(-6) 4.5(-4) 3.1(-4) 7.6(-3)

Fourier 55 1.4(-1) 1.4(-1) 1.9(0) 1.7(1) 5.8(0) 3.4(2)

Table 2.7: f(t) = sinh(0.5t)
0.5 = L−1

{
1

s2−0.52

}

47



No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 36/16 3.7(-4) 3.0(-4) 3.0(-4) 3.1(6) 2.4(6) 1.0(8)

Talbot 55 5.8(-4) 5.8(-4) 5.8(-1) 7.0(-4) 6.0(-4) 6.0(-2)

Fourier 55 9.4(-2) 6.0(-2) 3.5(-1) 9.0(1) 2.8(1) 5.2(4)

Table 2.8: f(t) = cosh(0.5t) cos(0.5t) = L−1
{

s3

s4+0.52

}

No Noise Noise

Method M L2 L∞ %error L2 L∞ %error

Stehfest 16 1.9(-8) 1.2(-7) 2.8(-5) 1.4(7) 1.8(7) 2.4(9)

Talbot 55 6.9(-3) 6.9(-3) 4.0(-1) 7.1(-3) 7.1(-3) 4.1(-1)

Fourier 55 8.6(-1) 8.3(-2) 4.0(3) 1.2(2) 3.8(2) 6.3(3)

Table 2.9: f(t) = −(ln(t) + γ) = L−1
{

ln s
s

}
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Figure 2.1: Numerical Reconstruction of f(t) = 0.5t. sin(t) = L−1{ s
(s2+1)2 }
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Figure 2.2: Numerical Reconstruction of f(t) = te−t = L−1{ 1
(s+1)2 }
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Figure 2.3: Numerical Reconstruction of f(t) = 1
24 t

4 = L−1{ 1
s5 }
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Figure 2.4: Numerical Reconstruction of f(t) = 1
πt = L−1{ 1√

s
}
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Figure 2.5: Numerical Reconstruction of f(t) = 0.5t. sin(t) = L−1{ s
(s2+1)2 }
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Figure 2.6: Numerical Reconstruction of f(t) = 0.5t. sin(t) = L−1{ s
(s2+1)2 }
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Tables 2.2-2.9 and Figures 2.1 to 2.4 show very good performance of the Tal-

bot algorithm in handling noisy data. (For brevity, we have included only four

graphical results for the eight functions using di�erent weights as the perfor-

mance of these functions with a higher number of weights is well illustrated in

the tables).

With the exception of the function f(t) = 1
πt in Table 2.5 (for which the L2

norm and L∞ norm maintain their very small size) the error for the Talbot

inversion diminishes considerably as a function of M . However, for both the

Fourier series and the Stehfest inversion methods, both measures of error in-

crease as M increases.

In Table 2.6, we also observe that the erf( 2√
s
) performs badly for the Fourier

series method in both the noisy and noise free environment. Table 2.8 includes

two sets of weights for the Stehfest inversion algorithm. For the accurate inver-

sion of sinusoidal functions, this algorithm requires more weights for increasing

values of t; here, for example, we use 36 weights. However, when noise is added,

the accuracy decreases with the number of weights used; thus, in this case, for

better performance, we have used 16 weights.

Table 2.9 again shows minimal error involved for the Talbot inversion when

noise is added. Figure 2.5 and Figure 2.6 demonstrate that the Stehfest algo-

rithm handles noisy data more accurately by decreasing the number of weights

used. This is because the error generated in reconstructing the function from

noisy data increases as the number of weights used rises. However the accu-

racy achieved by decreasing the number of weight is not su�cient to justify

such an approach for handling noisy data. Moreover as we have stated a larger

number of weights and the corresponding increase in precision is necessary for

handling trigonometric and hyperbolic functions. We again note that no such

considerations are necessary when employing the Talbot algorithm.
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2.4 Summary.

This chapter investigated the noise handling properties of three of the most

widely used algorithms for numerically inverting the Laplace transform. This

aids in understanding the perturbed nature of these algorithms and helps deter-

mine which is a�ected least by perturbation. This is important since, in applying

these inversion schemes to solving di�usion problems, understanding how they

perform when inevitable errors are introduced by truncation and round o� error

can be critical.

The results show that the Talbot algorithm handles the noisy data extremely

well, having very little impact on the �nal outcome. Both the Stehfest and the

Fourier series methods fail to handle the noise. This is because rounding errors

worsen as the number of weights used increases. This is due to the fact that a

signi�cant part of the perturbation in these numerical schemes is a consequence

of the inversion being carried out on the real axis in the complex plane. The

inclusion of complex arithmetic in the Talbot scheme enormously diminishes

this perturbation. This has implications for implementing the LTFDM when

solving nonlinear di�usion or time dependent parabolic partial di�erential equa-

tions, which can generate noisy data through a combination of measurement,

truncation and round o� error. Using the Talbot algorithm in these circum-

stances avoids additional complications such as having to devise regularized

collocation methods to attain accurate solutions to these problems.

Having examined the noise handling properties of the algorithms, in the next

chapter, the performance of �ve algorithms for numerically inverting the Laplace

transform are investigated in standard double precision and multi-precision.

This investigation will explain how these algorithms handle their perturbations

in these precision environments. The knowledge gained can help make an in-

formed choice of the best algorithm to use in double and multi-precision.
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Chapter 3

The Numerical Inversion of

the Laplace Transform in a

Multi�Precision .
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3.1 Introduction

This paper examines the performance of �ve algorithms for numerically inverting

the Laplace transform in standard 16-digit and multi-precision environments.

The algorithms, whose derivations are outlined in Section 4, are taken from

three of the four main classes of numerical methods used to invert the Laplace

transform [1].

The Abate-Valko [1] and Logan schemes [66] belong to the class of inversion

algorithms which deform the Bromwich contour [98]. They are closely related

versions of this approach as they both use Talbot's method for deformation

of the contour [104]. Logan, however, chooses an exponential transform while

Abate-Valko extends the original Talbot formulation expressing the contour in

trigonometric form.

The Stehfest and Salzer-Gaver algorithms [99], are again two closely related

schemes based on the acceleration of the Gaver functional [50]. Stehfest applied

a modi�ed Salzer acceleration scheme [112] onto the Gaver functional simplify-

ing this result to yield one of the most widely used algorithms for inverting the

Laplace transform. We �nd, however, that when we implement a direct applica-

tion of the Salzer acceleration scheme onto the Gaver functional (Salzer-Gaver)

with Stehfest's modi�cations, we do not obtain the same results as those pro-

duced by the Stehfest scheme. We conclude that Stehfest's simpli�cation process

is at least in part responsible for the di�erences in performance of these two ver-

sions.

Finally, we examine the Fourier series method [28], which expresses the inver-

sion integral as a Fourier series and then uses the trapezium rule to evaluate

the integral numerically. The Fourier series method di�ers from the other four

algorithms as no acceleration scheme is used to force convergence. This means

that the series is not truncated, and therefore precision environments do not
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a�ect the accuracy of the inversion process. The algorithm is only used in a

standard 16 digit precision environment and is compared with the four other

schemes using standard precision.

(This chapter was �rst published as a paper on May 23 2022https://doi.org/10.4236/am.2022.135027)

(Section 2 and the �rst paragraph of Section 3 are taken from our earlier work

[38] which is necessary to set the background for the rest of the paper).

3.2 The Laplace transform

The Laplace transform is an integral transform de�ned as follows:

Let f(t) be de�ned for t ≥ 0, then the Laplace transform of f(t) is given by,

L{f(t)} =

∫ ∞
0

f(t)e−st dt (3.1)

Thus L{f(t)} is a function of s denoted as F (s). The Laplace transform can

be shown to exist for any function f(t), which can be integrated over any �nite

interval 0 < t < l for l > 0, and for which f(t) is of exponential order, i.e.

| f(t) |< Meat (3.2)

as t → ∞, where M > 0 is a �nite real number and a is a small real positive

number.

Analytically the inverse Laplace transform is usually obtained using the tech-

niques of complex contour integration with the resulting set of standard trans-

forms presented in tables [32].

However, using the Laplace transform can generate data in the Laplace domain

which is not easily invertible to the real domain by analytical means. Thus

numerical inversion techniques have to be used to convert the data from the
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s-space to the time domain [38].

3.3 The Inverse Laplace Transform, Perturbation

and Multi-precision

The recovery of the function f(t) is via the inverse Laplace transform which is

most commonly de�ned via the Bromwich contour integral,

L−1{F (s)} = f(t) =
1

2πi

∫ α+i∞

α−i∞
f(s) est ds (3.3)

such that α ∈ R. The inversion integral is widely known to be highly perturbed

[23],[45],[60]. This is due to the est term in the integral, which ampli�es small

changes in the input data. Hence all numerical schemes are vulnerable to this

perturbation, and this has to be taken into account when using the various al-

gorithms to invert the Laplace transform.

As Abate-Valko notes [1], �In the traditional development of the inversion meth-

ods, most of the e�ort was directed at controlling round-o� errors. This is

because the process is numerically unstable in a �xed-precision computing en-

vironment. The problem is that as the user tries to increase the accuracy, there

comes the point where the round o� error causes the error to increase dramati-

cally�.

In fact, Abate-Valko goes further and makes the claim that �for our purposes,

we add the proviso that values of the transform can be computed to any desired

precision as a function of the complex variable�.

This suggests that working in a multi-precision environment can act to reduce

errors and the resulting perturbations which exist in transforming the data from

the s-space into the time domain.
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3.4 The Algorithms

We examine �ve algorithms drawn from three of the four main classes of algo-

rithms for numerically inverting the Laplace Transform [1]. These three are the

Fourier series expansion, methods which use the Gaver functional and deforma-

tion of the Bromwich contour. Here we give a brief outline of �ve algorithms

drawn from these three classes. For a more extensive treatment of the derivation

of these algorithms, please see our earlier work [38].

3.4.1 The Fourier Series Method

In their wide-ranging survey of Numerical Inversion of the Laplace Transform,

Davies and Martin [36] cite the Fourier series approach without accelerated

convergence as giving �good accuracy on a fairly wide range of functions�. ( For

a full treatment of the derivation of this algorithm please see [38]).

By letting s = u + iv in (3.3) we can express the resulting cosine transfer pair

as,

f(t) =
2eut

π

∫ ∞
0

Re{F (u+ iv)} cos(vt) dv (3.4)

Simon et al. [94] then apply the trapezium rule to the expression in (3.4) and

derive the expression

f(t) ≈ 2eut

T

[
1

2
F (u) +

∞∑
k=1

Re

{
F
(
u+

kπi

T

)}
cos

(
kπt

T

)]
(3.5)

where f(t) is expanded in the interval 0 ≤ t < T . [39].

61



3.4.2 Gaver's Functional

Gaver [50] derived the function,

fn(t) =
ln 2

t

(2n)!

n!(n− 1)!

n∑
k=0

(
n

k

)
(−1)kF

(
(k + n)

ln 2

t

)
(3.6)

for numerically inverting the Laplace transform. The problem with (3.6) is its

slow convergence. However Gaver was also able to show that (3.6) has the

asymptotic expansion

fn(t) ≈ f
(

ln 2

a

)
+
α1

n
+
α2

n2
+
α3

n3
+ ... (3.7)

where the αj 's are constant coe�cients in the asymptotic series. Hence (3.7) in

the limit converges to

fn(t)
n→∞

= f

(
ln 2

a

)
This means that it is possible to accelerate the convergence rate of (3.6). Much

of the literature alludes to the fact that a Salzer [112] acceleration scheme is

used on the Gaver functional in (3.6), which results in the Stehfest algorithm.

In fact, Stehfest's approach was a little more subtle than a direct application of

the Salzer acceleration.

Using Salzer acceleration

The Salzer acceleration scheme makes use of the �Toeplitz limit theorem� [112],

�this concerns the convergence of a transformation of a sequence ζs where the

(n + 1)th member of the transformed sequence is a weighted mean of the �rst

(n+ 1) terms�

Sn =

n∑
k=0

µnk.Sk (3.8)
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Here Sn is the transformed sequence and Sk the original sequence and,

µnk = (−1)n+k
(1 + k)n

n!

(
n

k

)
(3.9)

For the sake of compatibility with (3.9) we make the change k → i and n → k

in (3.6). With this change of variables we also write

(2k)!

k!(k − 1)!
=
k(2k)!

(k!k!)

This allows the sum to be taken from k = 0 to n without (0 − 1)! in the

denominator of (3.6). So with Salzer acceleration we can express the Salzer-

Gaver algorithm as

fn(t) =
ln 2

t

n∑
k=0

(−1)n+k
(k + 1)n

k!(n− k)!

k(2k)!

k!k!

k∑
i=0

k!

i!(k − i)!
(−1)i F

{
(k + i) ln 2

t

}
(3.10)

Stehfest's acceleration scheme

For the purposes of following Stehfest's derivation it will be convenient to rewrite

(3.6) as

fn(t) = Fn =
(2n)!a

n!(n− 1)!

n∑
k=0

(
n

k

)
(−1)kF

(
(k + n)a

)
(3.11)

Stehfest [99] begins by supposing we have N values for F [(k + n)a] with F (a),

F (2a), F (3a), ....F (Na) for N even. Using (3.11) we can then determine N
2

values F1, F2, ..., FN/2. Now each of these N
2 values satisfy the asymptotic series

in (3.7) with the same coe�cients.

As Stehfest [99] points out, the αj 's in (3.7) are the same for each of the above

expansions and by using a suitable linear combination the �rst (N2 − 1) error

terms in (3.7) can be eliminated. That is
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f

(
ln 2

a

)
=

N
2∑

n=1

anF(n
2 +i−1) +O

(
1

N
N
2

)
(3.12)

which may be achieved by selecting the coe�cients to satisfy

N
2∑

n=1

an
1

(N2 + 1− n)k
= δk,0 k = 1, ..., N/2− 1 (3.13)

which produce the same coe�cients as the Salzer acceleration scheme used in

(3.8). In fact for any n, Stehfest generates the required coe�cients using what

is in e�ect a modi�ed Salzer acceleration scheme giving

an =
(−1)n−1

(N2 )!

(N
2

n

)
n

{(
N

2
+ 1− n

)N
2 −1}

(3.14)

Finally, Stehfest substitutes these results into (3.13) and gets the inversion for-

mula

f(t) ≈ ln 2

t

N∑
j=1

AjF

(
j ln 2

t

)
(3.15)

for N even and

Aj = (−1)
N
2 +j =

min(j,N2 )∑
k=b j+1

2 c

k
N
2 (2k)!

(N2 − k)!k!(k − 1)!(j − k)!(2k − j)!
(3.16)

However, a direct application of the modi�ed Salzer acceleration scheme in (3.14)

onto the Gaver functional in (3.11) does not produce the same results for the

expression in (3.16) so they are not exactly equal to each other.

To show this we consider the function sin(t) whose Laplace transform is

1

s2 + 1
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The eight weights produced by the Salzer acceleration for n = 8 are exactly the

same for n = 18 in Stehfest's modi�ed Salzer acceleration scheme in (3.14).

However, Table 4.1 shows that for sin(t) with these same weights, the Salzer-

Gaver scheme produces di�erent results when compared to Stehfest's scheme in

(3.16). This is due to Stehfest's simpli�cation of the Salzer-Gaver scheme to the

expression in (3.16).

This simpli�cation was necessary because, as we show in our results in Section

5, Stehfest's �nal expression in (3.16) is faster and works better in standard

double precision. As the algorithm was developed in 1970, this would be far

more e�cient when taking into consideration the computing power available

at the time. Again as we show in Section 5, a direct application of a Salzer

acceleration scheme onto the Gaver functional is only advantageous in a multi-

precision environment.
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t Stehfest Salzer-Gaver

5 0.89 1.02

10 0.08 0.18

15 0.002 0.03

20 0.03 0.02

25 0.001 0.004

30 0.001 0.004

Table 3.1: Salzer-Gaver Stehfest for sin(t)

3.4.3 Logan's Version Of The Talbot Algorithm

Logan begins with the transformation

s(z) =
az

1− e−z
(3.17)

(For the details of this transformation one can refer the study of Logan [66].)

(with z ∈ C) and constructs the integral

f(t) =
1

2πi

∫
M

Q(z) dz (3.18)
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where

Q(z) = F (s(z)) es(z)t s
′
(z) (3.19)

andM− [2πi, 2πi]. Then if we let w = −iz for the integral in (3.18) so the inter-

val of integration is now real and becomes [−2π, 2π]. Then using the trapezoid

rule with n we obtain

f(t) ∼=
1

n

{
(I(2πi) + T (−2πi) + 2

n−1∑
j=1

I(iwj)

}
(3.20)

where

wj = 2π(
2j

n
− 1) (3.21)

and we note that I(2πi) = I(−2πi) = 0 [66], [38].

Abate and Valko's Version of The Talbot Algorithm

Abate and Valko [1] deform the Bromwich contour using the Talbot path which

has the form,

s(h) = rh(cot(h) + i), −π < h < π (3.22)

So we have

s′(h) = ir(1 + ir(h)) (3.23)

where,

r(h) = h+ (h cot(h)− 1) cot(h) (3.24)

Then from (3.18) we �nd,

f(t) =
r

p

∫ p

0

Re[ets(h)F (s(h)(1 + ir(h)))]dh (3.25)

They then approximate the value of the integral in (3.18) by using the trape-
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zoidal rule with step size p
m and hk = kp

m to get,

f(t,M) =
r

m

[
1

2
F (r) exp(rt) +

M−1∑
k=1

Re[ets(hk)F (s(hk))(1 + ir(hk))]

]
(3.26)

Based on numerical experiments, Abate-Valko then �x the parameter r to the

value,

r =
2M

5t
(3.27)

[1]. We also use this value for a in Logan's transformation.

3.5 Results

We tested the �ve algorithms on the functions listed in Tables 4.2 and 4.3 on

pages 103 and 104. Functions 1-11 and 18 are taken from the 16 functions

tested by Davies and Martin [36]. The remaining functions are selected from

those tested by Abate-Valko [1].

The �rst set of tests was carried out using 16 digits double precision. These

results are shown in Table 4.4. The Fourier, Logan and Abate-Valko schemes

were run with weights M = 50, M = 100 and M = 200; however, for brevity,

we include only the result for M = 200.

For the Stehfest and the Salzer-Gaver algorithms, the best results were obtained

with weights of M = 16 and M = 8, respectively. This is in keeping with Ste-

hfest's observations on the instability of this method as M increases above an

optimal level [99].

In multi-precision, the number of precision digits for Abate-Valko was set equal

to N [1], and for the Slazer-Gaver and Stehfest schemes, best results were ob-
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tained when the number of precision digits was set equal to 2N . For our error

estimates, we use Du�y's measure, the L and Le de�ned as

L =

√√√√ 30∑
i=1

[f(ti) − f̃(ti)] 2

30
(3.28)

and

Le =

√ ∑30
i=1 [f(ti) − f̃(t1)] 2 e−ti∑30

i=1 e−ti
(3.29)

where f(t) is the analytical solution and f̃(t) is the numerical solution. Hence

L is the root-mean-square error and Le is the same as L but weighted by the

factor e−t [40].

All computations were performed using a 64-bit operating system with an In-

tel(R) Core(TM) i7-855ou CPU processor. The algorithms were implemented

in Maple 2018 using Maple's digits command to set the required precision.

Standard double precision

Tables 4.4 and 4.5 show that when compared with the other four algorithms,

the Fourier series method performs with the least accuracy on all the functions

tested. It also fails to reconstruct functions 8, 15, 17 and 18, with poor results

for functions 4, 5 and 12.

However, for the functions which it successfully reconstructs, it does so with

an RMS accuracy of between L = 3.6(−5) and 1.2(−2). We believe that this

scheme will improve greatly when an acceleration scheme is applied. This is an

issue we intend to investigate in future work.

With the exception of the function 7, J0(t), Logan's algorithm successfully in-

verts all the functions given in Tables 4.2 and 4.3 with very good accuracy. We
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found that in SDP best results are obtained by equating a = 1 in (3.17). Tables

3 and 4 show that for these functions the RMS error varies between 3.6(−8) to

8.4(−12).

Except for function 7 J0(t), the Abate-Valko scheme successfully inverts all the

functions in Tables 4.3 and 4.4. Moreover, it does so with greater accuracy

than the Logan scheme. The tables show that the RMS error varied between

6.5(−11) and 6.2(−12).

Tables 4.3 and 4.4 show that the Stehfest algorithm shows poor accuracy when

inverting functions 1, 7, 10 and 11. For these functions the RMS error varies

between 2.0(−2) to 9.2(−3). Its poor performance is due to the fact that the

Stehfest algorithm has di�culty inverting functions of a cyclic nature [99]. How-

ever, it inverts the remaining functions with good accuracy with an RMS error

of between 2.9(−5) to 0.0(0). Tables 4.3 and 4.4 shows that the Salzer-Gaver

algorithm shows poor accuracy for functions 1, 7, 10 and 11. These are the very

same functions that the Stehfest algorithm has problems inverting. Again this

is due to the di�culties it encounters when inverting cyclic functions. It inverts

the remaining functions with less accuracy than the Stehfest, with an RMS error

varying between 10(−15) to 10(−5).

Multi precision

With the exception of function 7, the Logan and Abate-Valko algorithms suc-

cessfully inverted the remaining functions to a high degree of accuracy. Du�y

[40] also remarks that when using the Talbot contour, he had di�culties accu-

rately inverting the Bessel function. This may be related to the combination of

the singularity on the imaginary axis and the branching nature of the square

root function.
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Abate-Valko[1] state that they were able to overcome this by increasing the

weights and hence the precision as a function of t. However, we were unable to

replicate their results for this function.

Overall, the Abate-Valko scheme showed far greater accuracy than Logan's

across all the functions tested. However, Logan's algorithm was still able to

produce highly accurate results with RMS errors varying between 10(−60) to

10(−63). Moreover, Table 4.8 shows that Logan's scheme was able to perform

the inversion of these functions with shorter elapsed times.

The Stehfset and Salzer-Gaver algorithms were able to invert all the functions

to a high degree of accuracy. The Salzer-Gaver scheme was, in general, about

twice as accurate as the Stehfest algorithm, which was less accurate than Abate-

Valko's scheme. Nevertheless, the Stehfest scheme inverted the functions well

within any generally desired accuracy, with the RMS error varying from 10(−41)

to 0.0(0). Moreover, as Table 4.8 shows in terms of the elapsed time, it was the

fastest of all the algorithms, for the most part twice as fast as the Abate-Valko

scheme, which in turn was at least twice as fast as the Salzer-Gaver scheme.
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Function No. f(s) f(t)

1 1
1+s2 sin(t)

2 1
(s+1)2 te−t

3 1
s2 t

4 1√
s

1√
(πt)

5 ln s
s −(ln t+ γ)

6 1
s 1

7 1√
s2+1

J0(t)

8 esK(1,s)
s

√
t(t+ 2)

9 1
s+0.5 e−

t
2

10 1
(s+0.2)2+1 e−0.2t sin(t)

11 arctan( 1
s ) sin(t)

t

Table 3.2: Test Functions
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Function No. f(s) f(t)

12 1√
s+
√
s+1

1−e−t

2
√
πt3

13 1√
s(1+

√
s)

eterfc(
√

(t))

14 e−2
√
s e−

1
t√

πt3

15 e−
1
4s

s
3
2

2 sin(
√
t)

π

16 log(1 + 1
s ) 1−e−t

t

17 arccos(s−1)√
s(s−2)

etK(0, t)

18 e−
1
s√
s

cos(2
√

(t))√
(πt)

19 1√
s+
√
s2+1

√
2 sin(t)

2t
3
2 π

Table 3.3: Test Functions Continued
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Fourier Logan Valko Stehfest Salzer-Gaver

Function L Le L Le L Le L Le L Le

1 1.5(-4) 2.8(-4) 3.7(-9) 1.2(-11) 3.0(-11) 9.4(-14) 1.4(-3) 2.6(-5) 2.0(-2) 9.1(-4)

2 6.1(-4) 1.4(-4) 1.8(-9) 2.7(-10) 1.0(-11) 3.9(-14) 8.9(-6) 8.9(-6) 2.8(-6) 3.2(-6)

3 1.2(-3) 1.2(-3) 7.5(-9) 2.3(-11) 4.4(-11) 1.4(-13) 7.0(-8) 7.1(-8) 1.1(-8) 1.1(-8)

4 7.3(-2) 8.4(1.0) 7.4(-9) 2.3(-11) 4.8(-11) 1.7(-13) 5.4(-8) 6.2(-7) 2.8(-6) 3.2(-6)

5 6.8(-2) 6.9(-2) 4.1(-11) 1.2(-11) 6.4(-12) 2.2(-14) 2.2(-8) 1.4(-7) 2.3(-5) 8.5(-5)

6 6.1(-4) 6.1(-4) 7.5(-9) 2.3(-11) 6.5(-11) 2.1(-13) 0.0(0) 0.0(-) 8.7(-15) 4.8(-14)

7 2.8(-4) 3.4(-4) Fail Fail Fail Fail 1.9(-2) 6.7(-3) 1.7(-2) 5.1(-3)

8 Fail Fail 1.2(-8) 3.8(-11) 8.1(-11) 2.7(-13) 9.2(-8) 1.2(-7) 6.3(-4) 6.3(-4)

9 5.7(-4) 4.7(-4) 4.6(-9) 1.6(-11) 3.3(-11) 1.2(-13) 1.2(-6) 4.7(-6) 1.9(-8) 2.8(-7)

10 6.1(-4) 1.9(-4) 3.1(-9) 9.5(-12) 3.0(-11) 9.7(-14) 9.2(-3) 4.8(-3) 5.2(-4) 2.9(-5)

11 2.8(-4) 3.8(-4) 5.9(-9) 1.8(-11) 3.4(-11) 1.2(-13) 7.4(-3) 2.7(-3) 6.5(-3) 1.9(-3)
.

Table 3.4: Standard Double Precision

Fourier Logan Valko Stehfest Salzer-Gaver

Function L Le L Le L Le L Le L Le

12 2.0(-1) 4.2(-1) 3.1(-9) 9.5(-12) 1.6(-11) 6.2(-14) 6.2(-8) 2.0(-8) 8.2(-8) 1.4(-6)

13 3.1(-3) 1.6(-3) 3.7(-9) 1.2(-11) 2.7(-11) 8.9(-14) 8.6(-7) 4.0(-7) 3.3(-7) 3.7(-7)

14 6.2(-5) 3.6(-5) 3.6(-8) 1.2(-7) 6.2(-12) 1.3(-13) 1.3(-6) 1.7(-5) 1.6(-6) 2.2(-5)

15 Fail Fail 3.3(-9) 1.0(-11) 3.9(-11) 1.2(-13) 5.7(-7) 1.0(-7) 7.9(-6) 1.9(-5)

16 5.8(-4) 4.3(-4) 5.2(-9) 1.6(-11) 2.5(-12) 9.1(-14) 2.2(-8) 1.4(-7) 4.9(-7) 8.8(-6)

17 Fail Fail 1.2(-8) 3.9(-11) 7.3(-11) 2.5(-13) 6.0(-8) 3.0(-6) 2.6(-6) 1.1(-5)

18 Fail Fail 2.7(-9) 8.4(-12) 1.7(-11) 6.3(-14) 2.9(-5) 1.6(-6) 5.9(-6) 3.4(-6)

Table 3.5: Standard Double Precision Continued.
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Logan Valko Stehfest Salzer-Gaver

Function L Le L Le L Le L Le

1 6.2(-63) 1.1(-63) 6.9(-110) 1.3(-110) 6.1(-41) 8.5(-43) 7.6(-124) 1.0(-125)

2 7.5(-63) 1.2(-63) 6.0(-110) 1.2(-110) 7.1(-77) 9.7(-79) 1.4(-184) 2.0(-184)

3 7.5(-63) 1.2(-63) 6.9(-110) 1.3(-110) 5.0(-92) 5.0(-92) 3.9(-184) 3.9(-184)

4 1.2(-60) 2.5(-60) 3.3(-107) 6.9(-107) 6.0(-94) 7.0(-93) 5.2(-132) 6.0(-132))

5 1.1(-60) 1.7(-60) 2.0(-118) 2.8(-118) 4.8(-93) 2.6(-92) 1.1(-293) 2.0(-292)

6 3.6(-61) 3.6(-61) 4.5(-108) 4.5(-108) 0.0(0) 0.0(0) 2.0(-293) 1.1(-292)

8 8.3(-62) 3.4(-62) 3.6(-119) 1.5(-119) 2.0(-72) 7.4(-74) 3.8(-133) 1.1(-132)

9 3.6(-61) 3.6(-61) 4.5(-108) 4.5(-108) 2.5(-94) 3.5(-93) 6.0(-182) 2.1(-184)

10 6.5(-63) 1.1(-63) 6.8(-110) 1.2(-110) 1.1(-45) 1.5(-47) 1.1(-128) 1.5(-130)

11 3.6(-61) 3.6(-61) 4.5(-108) 4.5(-108) 1.2(-42) 1.6(-44) 3.1(-126) 4.2(-128)

Table 3.6: Multi-Precision N = 200.

Logan Valko Stehfest Salzer-Gaver

Function L Le L Le L Le L Le

12 5.9(-61) 1.3(-60) 6.9(-110) 1.3(-110) 6.1(-41) 8.5(-43) 3.4(-132) 4.4(-131)

13 3.0(-61) 3.4(-61) 6.0(-110) 1.2(-110) 7.1(-77) 9.7(-79) 1.6(-133) 2.9(-133)

14 7.4(-63) 2.0(-64) 6.9(-110) 1.3(-110) 5.0(-92) 5.0(-92) 3.4(-102) 6.5(-101)

15 6.7(-62) 2.7(-62) 3.3(-107) 6.9(-107) 6.0(-94) 7.0(-93) 1.3(-133) 2.6(-133))

16 3.6(-61) 3.6(-61) 2.0(-118) 2.8(-118) 4.8(-93) 2.6(-92) 2.5(-131) 3.3(-130)

17 1.4(-60) 2.0(-60) 2.3(-107) 3.1(-107) 0.0(0) 0.0(0) 8.5(-131) 3.5(-132)

18 1.1(-60) 2.5(-60) 3.2(-107) 6.9(-107) 1.4(-41) 1.9(-43) 6.3(-132) 6.8(-131)

19 8.3(-62) 3.4(-62) 3.6(-119) 1.5(-119) 2.0(-72) 7.4(-74) 3.8(-133) 1.1(-132)

Table 3.7: Multi-Precision Continued N = 200.

75



Logan Valko Stehfest Salzer-Gaver

Function w τ w τ w τ w τ

2 255 0.89 77 1.44 202 0.43 100 2.37

8 17(-5) 0.55 9(-7) 0.88 12(-5) 0.41 10 3.06

11 175 0.94 167 3.87 320 1.74 160 2.56

13 29 0.72 12(-5) 0.94 20 0.41 12 0.99

18 35 0.56 16 1.05 46 0.52 20 1.27

Table 3.8: Elapsed time τ in seconds

3.6 Summary

In standard-double-precision, the Abate-Valko algorithm provides the best re-

sults for the numerical reconstructions for the functions tested in this paper. The

Fourier algorithm had the worst performance of the �ve algorithms tested. Both

the Stehfest and Salzer-Gaver algorithms had di�culty reconstructing functions

of a cyclic nature. None of the algorithms was able to invert the J0(t) function

accurately.

In multi-precision, The Stehfest and the Salzer-Gaver schemes inverted all the

functions with high accuracy. The Logan and Abate-Valko schemes were only

able to invert the J0(t) with limited accuracy. However, they were both able

to reconstruct all the other functions with a high degree of accuracy. The most

accurate algorithm in multi-precision was the Salzer-Gaver scheme. However, as

Table 4.8 shows, it also had the longest elapsed times. On the other hand, the

Stehfest algorithm had the shortest elapsed times for the selected functions in

Table 4.8. The algorithms that used the Abate-Valko were the most accurate,

but Logan could reconstruct the functions with shorter elapsed times. There-

fore we conclude that when working in standard precision, Valko's algorithm
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performed best. However, in multi-precision, the Stehfest algorithm is best as

it inverted all the functions with a high degree of accuracy and the shortest

elapsed times.

The next chapter uses regularisation information to solve the Fisher KPP (Kol-

mogorov, Petrovsky, Piskunov) reaction-di�usion equation. This problem has

inherent perturbation issues and will require an inversion algorithm best suited

to handle the additional noise introduced by the perturbation. The information

on noise and the best precision environments of the algorithms tested in this

and chapter 2 will be used in solving this equation.
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Chapter 4

A Laplace Transform Finite

Di�erence Scheme for the

Fisher-KPP Equation.

4.1 Introduction

In chapters 2 and 3, the behaviour of some of the main algorithms for numer-

ically inverting the Laplace transform were investigated for their handling of

noise and their performance in precision environments. In this chapter, the

knowledge gained in those investigations will be used for a speci�c application

of the LTFDM for solving an equation in which perturbations can adversely

a�ect the accurate reconstruction of the exact solution.

This chapter presents a numerical approach to the solution of the Fisher-KPP

(Kolmogorov, Petrovsky, Piskunov) reaction-di�usion equation in which the spa-

tial variable is developed using a purely �nite di�erence scheme and the time
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development is obtained using a hybrid Laplace Transform Finite Di�erence

Method (LTFDM). The travelling wave solutions usually associated with the

Fisher-KPP equation are, in general, not deemed suitable for treatment using

Fourier or Laplace transform numerical methods. However, we were able to ob-

tain accurate results when some degree of time discretisation is inbuilt into the

process. While this means that the advantage of using the Laplace transform

to obtain solutions for any time t is not fully exploited, the method does allow

for considerably larger time steps than is otherwise possible for �nite-di�erence

methods.

(This chapter was published as a research paper: First published March 28,

2021, Research Article https://doi.org/10.1177

4.2 Fisher's equation

Fisher [48] suggested the equation,

∂u

∂t
= D

∂2u

∂x2
+Ku(1− u) (4.1)

to describe the propagation of a favourable gene in an in�nitely long domain.

The equation models the di�usion of an advantageous gene in a 1D habitat. A

very informative discussion of the Fisher equation as it relates to propagation

is given by [8] [72]. The expression in equation (4.1) combines the logistic and

di�usion equations to simulate the respective processes of population growth

and random dispersal of the advantageous gene under consideration. Thus D

and K in (4.1) are the usual positive parameters associated with the di�usion

and logistic equations.

Since its original development, the Fisher-KPP equation has been used exten-
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sively to describe a wide variety of processes, including biology, chemical kinet-

ics, auto-catalytic chemical reactions, branching Brownian motion, �ame prop-

agation, neurophysiology, the evolution of a neutron population in a nuclear

reactor and chemical wave propagation [107].

The solution u(x, t) of (4.1) represents the proportion of the mutant gene at a

point x in its domain at some time t. Hence we must have that,

0 ≤ u(x, t) ≤ 1 (4.2)

Fisher showed that (4.1) together with the additional boundary conditions,

u(−∞, t) = 1 and u(+∞, t) = 0 (4.3)

exhibit travelling wave solutions of the form,

u(x, t) = u(x− ct) (4.4)

moving at constant speed c in the positive x direction provided

c ≥ Cmin (4.5)

when Cmin = 2
√
KD [77].

Thus the Fisher-KPP equation has an in�nite number of travelling wave so-

lutions, each moving with a wave speed c ≥ 2. The solutions of u(x, t) then

connects the steady-state solution at u = 1 and the steady-state solution at

u = 0. In keeping with the analysis of these steady-state conditions, u = 1 is

stable, while u = 0, unstable.

It is worth noting that analytical solutions of the Fisher-KPP equation exist for

only a small class of problems and hence the importance of developing e�cient
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numerical schemes to obtain solutions to (4.1) .

Although Fisher proposed his model for the wave advancement of an advanta-

geous gene in 1937, it was not until 1974 that numerical solutions to the equation

began to appear. The �rst of which was the seminal paper by Canosa [17] who

used the Accurate Space Derivative method (ASD), sometimes referred to as the

pseudo-spectral approach. Since then, many researchers have investigated nu-

merical solutions to equation (4.1) for which Anjal et al. give a comprehensive

summary of the main contributions [107]. However, these methods all incor-

porate some small time discretisation process, which requires iterations of the

algorithm at each time step. As we discuss in the next section, our proposed

solution to (4.1) allows us to obtain accurate results with considerably larger

discretisation in the time domain.

In developing a numerical approach to solve the Fisher-KPP equation, we needed

to keep two important points in mind. First, Canosa [17] showed that all waves

are stable against small local perturbations but linearly unstable against gen-

eral perturbations of in�nite extent. This sensitivity to perturbations of in�nite

extent is essential for us because, as we explain in `Numerical examples and

discussion', the LTFDM involves inversion procedures which can introduce per-

turbations into the solution.

The second point is that Canosa was able to demonstrate by a simple stability

analysis that computation is unstable against round-o� errors building up at

the leading tail of the waves [17]. We were able to overcome this di�culty by a

particular application of the inversion process for the LTFDM.
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4.3 The Laplace Transform Finite Di�erence Method

We consider an approach to the numerical solution of the Fisher-KPP equation

(4.1) in which the spatial variable is discretised using a purely �nite di�erence

approach, and the temporal variable is removed by using a hybrid LTFDM.

The signi�cant advantage of this method is that it eliminates the time depen-

dency parameter and the associated discretisations which are necessary to obtain

solutions at a particular time t.

When using �nite di�erence and other time discretisation methods to solve

di�erential equations, for implicit schemes, the size of the time step is limited by

the stability conditions required for convergence of the �nite di�erence scheme.

In linear cases, this usually involves hundreds and sometimes thousands of time

steps to arrive at the solution for some desired time. Iterations are then required

at each time step which involves using a variety of matrix methods to solve the

vast systems of linear equations generated by the scheme.

For non-linear cases, this is compounded by the fact that a further iterative

process is usually required at each time. Since each of these iterations introduces

a certain amount of round-o� and truncation error, careful consideration must

be given to their control and management when implementing these schemes.

The Laplace transform has the potential to do away with time discretisation,

and its associated error management by transforming the time domain into the

Laplace space, s, via the integral transform,

∫ ∞
0

f(t)e−st dt = F (s) (4.6)

Then computations done in the Laplace space, s, can be inverted back into

the time domain at any desired time t. Hence the LTFDM can lead to the
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required solution with virtually one-time step. By employing this method, we

can potentially obtain substantial increases in speed and accuracy over tradi-

tional �nite di�erence and time discretisation methods. With the additional

bene�t of reducing by one the dimensions of the governing equation, simplifying

the resulting �nite di�erence scheme needed to discretise the remaining spatial

variable.

4.3.1 Inverting the data

The recovery of the function f(t) is via the inverse Laplace transform which is

most commonly de�ned by the Bromwich integral formula

L−1{F (s)} = f(t) =
1

2πi

∫ u+i∞

u−i∞
F (s) est ds (4.7)

for some u, where u is a real number, [97]. The the choice of s in (4.6) and so in

(4.7) is not an arbitrary one. If we choose s so that it lies on the positive real

axis, we are treating the solution of (4.6) as a positive real integral equation.

The problem here is that the inverse problem is known to be ill-posed, meaning

that small changes in the values of F (s) can lead to large errors in the values

for f(t) [10].

Hence when Laplace transform methods are employed for �nding numerical

solutions to partial di�erential equations, we must take account of the fact that

the corresponding inversion methods can be highly sensitive to the inevitable

noisy data that arises in their computation. This is a consequence of both

truncation and round-o� error, a process which is exacerbated for non-linear

schemes. Our method attempts to mitigate these factors by employing the

Fixed Talbot inversion algorithm. In our earlier work [38], we have shown that

this inversion scheme reduces the e�ects that noisy data can have in adversely
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perturbing the �nite di�erence scheme. In this sense it can produce better

results than the widely used Stehfest inversion method.

4.4 Method

We �rst non-dimensionalise equation (4.1) by letting

u = Uu x = Lx and t = Tt (4.8)

Employing the chain rule,

∂

∂x
=

1

L

∂

∂x
and

∂

∂t
=

1

T

∂

∂t
(4.9)

By letting U = a, T = 1
Ka and L =

√
D
Ka , and dropping the overbars (4.1)

becomes,

∂u

∂t
=
∂2u

∂x2
+ u(1− u) (4.10)

with boundary conditions

u(−∞, t) = 1 and u(+∞, t) = 0 (4.11)

The Laplace transform of the time derivative in (4.10) is

L
{
∂u

∂t

}
= su(x, s) − u(x, 0) (4.12)

where

u(x, s) = L{u(x, t)} (4.13)

And the Laplace transform of the spatial derivative in (4.10) is
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L
{
∂2u

∂x2

}
=

d2

dx2
u(x, s) (4.14)

However, it is well known that the Laplace transform cannot be successfully

performed on non-linear governing equations, and so some linearisaton process

is necessary before the LTFDM can be implemented [119]. To overcome this,

we follow Zhu et al. [117] who successfully applied the Laplace Transform dual

reciprocity method to di�usion equations of the form,

∇2u =
∂u

∂t
− βf(u) (4.15)

where β is a given constant and f(u) is a non-linear function. Zhu �rst decom-

posed the function f(u) in equation (4.15) into f(ũ)u then in order to �nd the

solution of the unknown function at particular time t1 equation 4.15 is linearised

as

∇2u =
∂u

∂t
− βf(ũ)u (4.16)

in which ũ is the previously iterated solution at time t1. Thus for equation (4.1)

we would have,

∂u

∂t
=
∂2u

∂x2
+ u− uũ (4.17)

Then the Laplace transform of (4.17) is,

u(x, s) − u(x, 0) =
d2

dx2
u(x, s) + u(1− ũ) (4.18)

with transformed boundary conditions,

u(−∞, t) =
1

s
and u(+∞, t) = 0 (4.19)

Using a central-di�erence scheme on the spatial derivative, the �nite di�erence
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scheme for (4.18) is,

ui−1 − ui(2 + δx2sj + δx2 − δx2ũi) + ui+1 = −δx2u(0)i (4.20)

where δx is the size of the spatial step in the x-direction, sj is the jth Laplace

parameter and u(0)i = u(xi, 0). Then (4.20) can be expressed as the tridiagonal

system,



a1j 1 0

1 a2j
. . .

. . .
. . . 1

0 1 an−1j





u1

u2

. . .

. . .

un−1


= −



δx2u(x1, 0) + 1
sj

δx2u(x2, 0)

. . .

. . .

δx2u((xn−1, 0)<


(4.21)

where

aij = 2 + δx2sj + δx2 − δx2ũi (4.22)

in (4.21). After solving this tridiagonal system the data is then inverted to

transition from the Laplace space, s, back into the time domain.

The Stehfest algorithm for numerically inverting the Laplace Trans-

form

In their wide-ranging study of algorithms for inverting the Laplace transform,

Davies and Martin [36] cite the Stehfest algorithm [99] as providing accurate

results on a wide variety of test functions. Since then, this algorithm has be-

come widely used for inverting the Laplace Transform and is favoured due to

its reported accuracy and ease of implementation.

The algorithm takes the transformed data in the Laplace space F (s) and pro-
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duces f(t1) for a speci�c time value t = t1. Choosing

sj = j
ln 2

t1
, j = 1, 2, .....M, for M even. (4.23)

The numerical inversion is given by

f(t) ≈ ln 2

t

M∑
j=1

AjF (sj) (4.24)

with

Aj = (−1)
M
2 +j =

min(j,M2 )∑
k=b j+1

2 c

k
M
2 (2k)!

(M2 − k)!k!(k − 1)!(j − k)!(2k − j)!
(4.25)

Theoretically, f(t) becomes more accurate for larger M , but the reality is that

rounding errors worsen the results if M becomes too large. According to Ste-

hfest, �The optimum M is approximately proportional to the number of digits

the machine is working with� [99].

Also in our earlier work we found that the Stehfest algorithm does not handle

noisy data well [38]. As we show in Section 5, this can have the e�ect of

introducing perturbations into the travelling wave solutions of the Fisher-KPP

equation.

The Fixed Talbot algorithm for numerical inversion the Laplace Trans-

form

Here we use the function,

S(z) =
z

1− e−z
(4.26)
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which maps the closed interval M = [−2πi, 2πi] on the imaginary z−plane onto

the curve L in the s-plane giving the integral,

f(t) =
1

2πi

∫
L

F (s) est ds (4.27)

(See Logan [66] for the details of this transformation).

Next we follow the procedure as adopted by Logan for numerically integrat-

ing (4.27).

With s = S(z) this becomes

f(t) =
1

2πi

∫
M

[F (S(z)) eS(z)t S
′
(z) ] dz (4.28)

where

S′(z) =
1− (1 + z)e−z

(1− e−z)2
(4.29)

and M = [−2π, 2π]. For convenience we write,

f(t) =
1

2πi

∫
M

Q(z) dz (4.30)

where

Q(z) = [F (S(z)) eS(z)t S
′
(z) ] (4.31)

Then if we let w = −iz for the integral in (4.30) so the interval of integration

is now real and becomes [−2π, 2π]. Then using the trapezoid rule with n we

obtain

f(t) ≈ 1

n

{
(I(2πi) + I(−2πi) + 2

n−1∑
j=1

I(iwj)

}
(4.32)
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where

wj = 2π
{2j

n
− 1
}

(4.33)

and we note that I(2πi) = I(−2πi) = 0 [66].

4.5 Numerical examples and discussion

Example 1

For our �rst example we use (4.10)

∂u

∂t
=
∂2u

∂x2
+ u(1− u)

and its associated boundary conditions,

u(−∞, t) = 1 and u(+∞, t) = 0

Ablowitx and Zeppetella [2] give an exact solution for a particular wave speed

c = ± 5√
6
as

u(x, t) =
1[

1 + exp

(√
1
6x− ( 5

6 )t

)]2 (4.34)

which we use to compare our numerical results with.

When we �rst implemented the LTFDM it produced distortions in the upper

tail of the travelling wave for larger values of t. This is shown in Figure 3.1.
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Figure 4.1: Pro�le without time discretisation. t = 1.5

We eventually surmised that these distortions were due to the existence of per-

turbations of in�nite extent. In other words, the approximation of the initial

condition on a �nite domain. A stability analysis carried out by Gazdang et al.

[51] showed that super speed waves or waves with speed greater than Cmin could

be maintained if subject only to in�nitesimally small positive perturbations.

As is well known, the numerical inversion of the Laplace transform is a per-

turbed problem. Thus perturbations generated by the numerical scheme itself

can then introduce noise into the inversion algorithms, which cannot be com-

pletely �ltered out. However, we found that these perturbations can be reduced

if some time discretisation, together with a reinitialisation of the initial condi-

tion, is introduced into the numerical method. While the full bene�t of using

the Laplace transform, i.e., to solve for any time t is partially diminished, in-

troducing some measure of time discretisation meant we were able to use larger

time steps than would be the case for other �nite di�erence methods [93].

As we have shown in our previous work [38], the Fixed Talbot inversion method
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is more e�cient at �ltering out this noise than the more widely used Stehfest

algorithm. This is shown in Figures 3.2 and 3.3 where oscillations in the right-

hand tail are present when using the Stehfest inversion method at time t = 0.8

but are absent in the Talbot inversion method.
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Figure 4.2: Pro�le using Ste-
hfest. t = 0.8
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Figure 4.3: Pro�le using Talbot.
t = 0.8

Thus smaller time steps are required for comparable accuracy for the Stehfest

inversion than for the Talbot. Because of its inability to deal adequately with

noisy data, the Stehfest algorithm is also sensitive to the spatial step size δx as

smaller spatial discretisations can also introduce round-o� error into the com-

putations. Hence the choice of using the Talbot algorithm for carrying out the

LTFDM inversion procedure. Details of this method on the �eld of study can

be found in [38].

The Talbot algorithm is also very e�ective in dealing with the build-up of round-

o� error in the right tail of the waves. As Canosa points out, �This does not

seem due to the numerical method used but to the physical nature of the prob-

lem described by the equation, which gives rise to an exponential growth of the

solutions when this is exponentially small. This basic di�culty makes it di�cult

to do a rigorous simulation of the solutions of Fisher's equation�.
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Figure 4.4: Talbot: n = 55 for
t = 1 to 5.
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Figure 4.5: Talbot: n = 555 for
t = 1 to 5

This e�ect is shown in Figure 3.4. However, we overcome this problem by merely

increasing n (where n is the number of strips used in the trapezium method) in

(4.32) from n = 55 to 555, which completely removes the instability and restores

the travelling wave pro�le Figure 3.5. The restoration of the travelling pro�le is

due to the Talbot algorithm's ability to �lter out noise with increasing n [38].

While no exact solutions exist for (4.1) for wave speeds other than c = ± 5√
6
we

can use the approximate asymptotic solution,

U(z) = (1 + e
z
c )−1 +

1

c2
e

z
c (1 + e

z
c )−2 log

[
4e

z
c

(1 + e
z
c )2

]
+O

(
1

c4

)
(4.35)

With c ≥ Cmin = 2 and z = x− ct, to test our numerical scheme for a variety

of wave speeds. The accuracy of the asymptotic solution increases for large c

[76].

Example 2.

Cattani, Carlo et al. [19] give an exact solution for the Fisher type equation,

∂u

∂t
= v

∂2u

∂x2
− bu2 + au (4.36)
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where 0 < t ≤ ∞, −∞ < x <∞ with the boundary condition

u(−∞, t) = 0.5, u(∞, t) = 0 (4.37)

and initial condition,

u(x, 0) = −1

4

a

b

[
sech2

(
−
√

a

24c
x

)
− 2 tanh

(
−
√

a

24c
x

)
− 2

]
(4.38)

The exact solution is,

u(x, t) = −1

4

a

b

[
sech2

(
−
√

a

24c
x+

5a

12
t

)
−2 tanh

(
−
√

a

24c
x+

5a

12
t

)
−2

]
(4.39)

Since no exact solution exists for all wave speeds for (4.36) we derived a pertur-

bation solution to test the numerical scheme at a variety of wave speeds. The

perturbation solution for this case is given as,

U(z) =
1

2
(1 + e

z/2
c )−1 +

1

c2
e

z
c (1 + e

z/2
c )−2 log

[ √
2e

z/8
c

(1 + e
z/2
c )2

]
+O

(
1

c4

)
(4.40)
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4.6 Results

In our investigations, we found our algorithm performs with equal accuracy for

spatial steps 0 < δx ≤ 1 and with the Laplace transform used within the time

steps 4t = 0.1, 0.2 and 0.4. This shows that it is stable across a wide variety

of parameters. (For all computations n = 555).
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Figure 4.6: Pro�le ∆t = 0.2, t = 1 to 5 .

Figure 3.6 shows the travelling wave pro�le for Example 1, compared with the

exact solution [2]. The time discretisation used in the LTFDM is 4t = 0.2 with

a spatial step of δx = 0.1. The numerical results show good agreement with the

exact solution.

94



-30 -20 -10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

data1
data2

-30 -20 -10 0 10 20 30

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
u(

x,
t)

Numerical
Exact

Figure 4.7: Pro�le ∆t = 0.2, t = 1 to 5 .

Figure 3.7 shows the travelling wave pro�le for Example 2 with the exact solution

[19]. The time discretisation used in the LTFDM is 4t = 0.2 with a spatial step

of δx = 0.1. The numerical results show good agreement with the exact solution.
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Figure 4.8: Pro�le Example 1, ∆t = 0.2, t = 1, C = 4 : 4 : 20.

Figure 3.8 shows the travelling wave pro�le for example 1, compared with the

perturbation solution for wave speeds C = 4, 8, 12, 16, 20. The time discreti-

sation used in the LTFDM is 4t = 0.2 with a spatial step of δx = 0.1. The

numerical results show good agreement with the exact solution.

96



-150 -100 -50 0 50 100 150

x

-0.1

0

0.1

0.2

0.3

0.4

0.5
u(

x,
t)

Figure 4.9: Pro�le Examole 2, ∆t = 0.2, t = 1, C = 4 : 4 : 20.

Figure 3.9 shows the travelling wave pro�le for example 2 compared with per-

turbation solution (4.40) for wave speeds C = 4, 8, 12, 16, 20. The time des-

critisation used in the LTFDM is 4t = 0.2 with a spatial step of δx = 0.1.

The numerical results show good agreement with the exact solution. Figures

3.10-3.12 show the error pro�le for example 1 for the wave speed shown.

Tables 3.1-3.3 present the results for Example 1 for times t = 1, t = 2, and

t = 4. For all cases shown we set 4t = 0.1, n = 555, δx = 0.25, and L = 60.

For all the tables below the error is the absolute error.
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x Numerical Exact Error

-20 0.999742 0.999753 1.0 (−5)

-12 0.993285 0.995552 2.6 (−4)

-4 0.845643 0.849618 1.2 (−3)

2 0.252043 0.254227 8.6 (−3)

4 0.0956577 0.096161 5.2 (−3)

8 0.0.006466 0.006515 7.5 (−3)

12 0.000178 0.000284 3.7 (−4)

Table 4.1: Example 1, t = 1.

x Numerical Exact Error

-20 0.999884 0.999893 8.8 (−6)

-12 0.996963 997190 2.3 (−4)

-8 0.984656 0.995740 1.1 (−3)

0 0.698929 0.707501 1.2 (−2)

4 0.255059 0.490844 1.5 (−2)

8 0.027968 0.028250 2.0 (−2)

10 0.006447 0.006719 2.1 (−2)

Table 4.2: Example 1, t = 2.
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x Numerical Exact Error

-20 0.999976 9999808 3.4 (−6)

-12 0.999379 0.999468 8.9 (−5)

-6 0.992958 0.993864 9.2 (−4)

2 0.846588 0.856205 1.1 (−2)

4 0.88938265 0.90291741 1.5 (−2)

6 0.490436 0.500723 2.1 (−2)

10 0.100190 0.103045 2.8 (−2)

Table 4.3: Example 1, t = 4.

Tables 3.4-3.6 present the results for problem 2 for times t = 1, t = 2, and t = 4.

For all cases shown we set 4t = 0.4, n = 555, δx = 0.25, and L = 60.

x Numerical Exact Error

-20 0.497713 0.497780 1.3 (−4)

-12 0.477704 0.478304 1.3 (−3)

-8 0.434286 0.435769 3.4 (−3)

-1 0.220496 0.98636 8.5 (−3)

4 0.0512810 0.051519 4.5 (−3)

15 0.000163 0.000162 6.2 (−3)

20 9.33(-6) 9.34(-6) 4.5 (−4)

Table 4.4: Example 2. t = 1.
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x Numerical Exact Error

-20 0.498548 0.497780 2.2 (−4)

-8 0.456965 0.459476 5.8 (−3)

-8 0.434286 0.435769 3.4 (−3)

01 0.238570 0.242958 1.8 (−2)

4 0.087159 0.088343 1.3 (−2)

15 0.000432 0.000432 7.9 (−2)

20 2.53(-5) 2.52(-5) 1.1 (−4)

Table 4.5: Example 2. t = 2.

x Numerical Exact Error

-20 0.499320 0.499413 1.9 (−4)

-8 0.479300 0.481756 5.1 (−3)

-1 0.375701 0.383712 2.1 (−2)

01 0.238570 0.242958 1.8 (−2)

2 0.272176 0.279941 2.8 (−2)

15 0.002122 0.002123 2.3 (−2)

20 0.00013143 0.0001311 1.9 (−3)

Table 4.6: Example 2. t = 4.

For brevity we give a sample of the results in Tables 3.7-3.9 of the comparison

of our method with the approximate perturbation solution for example 2 with

t = 1. The length L is increased for higher wave speeds to ensure complete

propagation of the wave as it moves to the right with increasing speed. In all

cases n = 555, δx = 1, 4t = 0.1.
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x Numerical Exact Error

-124 0.499186. 0.499190 1.0 (−5)

-100 0.497323 0.497399 1.5 (−4)

-40 0.451696 0.451966 6.0 (−4)

-30 0.425057 0.425457 9.4 (−4)

10 0.214997 0.215853 4.0 (−3)

20 0.155856 0.156620 5.0 (−3)

50 0.009998 0.010083 8.5 (−3)

Table 4.7: Example 2 t = 1 C = 10.

x Numerical Exact Error

-140 0.496314. 0.496336 4.4 (−5)

-100 0.486330 0.486413 1.6 (−4)

-40 0.414178 0.414573 6.0 (−4)

-20 0.425057 0.425457 9.5 (−4)

0 0.279545 0.280139 2.1 (−3)

40 0.1242715 0.124647 3.0 (−3)

80 0.039467 0.039600 8.5 (−3)

Table 4.8: Example 2 t = 1 C = 15.
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x Numerical Exact Error

-182 0.495876. 0.495901 4.9 (−5)

-100 0.469727 0.469891 3.5 (−4)

-10 0.310285 0.310802 1.7 (−3)

-20 0.425057 0.425457 9.5 (−4)

50 0.133185 0.133472 2.2 (−3)

70 0.090021 0.090213 2.1 (−3)

176 0.007480 0.007496 8.5 (−3)

Table 4.9: Example 2, t = 1 C = 20.

Figures 3.16-3.18 show the error pro�le comparing our scheme with the ap-

proximate perturbation solution at t = 1, for various wave speeds. The error

pro�le and the corresponding range of errors remain unchanged for varying wave

speeds, for example, 1, but the error decreases with increasing wave speed, for

example 2.

The Figures 3.17-3.19 demonstrate the stability of the results for varying mesh

size δx. For brevity we show this for problem 2 at wave speed C = 20 and for

time t = 1 We were able to achive the same error pro�le with these mesh sizes

for all the problems investigated in this paper.
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Figure 4.10: Example 1 Error
Pro�le ∆t = 0.1, t = 1, C = 10.
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Figure 4.11: Example 1 Error
Pro�le ∆t = 0.1, t = 1, C = 15.
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Figure 4.12: Example 1 Error
Pro�le ∆t = 0.1, t = 1, C = 20.
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Figure 4.13: Example 2 Error
Pro�le ∆t = 0.1, t = 1, C = 10.
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Figure 4.14: Example 2 Error
Pro�le ∆t = 0.1, t = 1, C = 15.
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Figure 4.15: Example 2 Error
Pro�le ∆t = 0.1, t = 1, C = 20.
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Figure 4.16: Example 2 Error
Pro�le δx = 0.5.
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Figure 4.17: Example 2 Error
Pro�le δx = 0.25.
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Figure 4.18: Example 1 Error
Pro�le δx = 0.05.
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4.7 Summary

This chapter proposes a numerical approach to the solution of the Fisher-KPP

reaction-di�usion equation in which the spatial variable is discretised using a

purely �nite di�erence scheme, and the time development is obtained using a

hybrid Laplace Transform Finite Di�erence Method (LTFDM). This method,

to our knowledge, has not previously been applied to the Fisher-KPP equation,

and Laplace transform methods are generally not deemed suitable for equations

with travelling wave solutions.

However, by introducing some time discretisation into our LTFDM we were able

to obtain results with less than one per cent error over a range of times, space

and time discretisation, for various wave speeds. The time discretisation was

necessary to reduce perturbations of in�nite extent, which occur in numerical

schemes for the Fisher-KPP equation. These perturbations can have a detri-

mental e�ect on the LTFDM since all the numerical schemes for inverting the

Laplace transform are highly perturbed.

Thus crucial to the success of the method outlined in this paper is the choice

of the Fixed Talbot inversion algorithm, which, as we have shown in our earlier

work, is best at dealing with the inherent noise generated in �nite di�erence

schemes. This algorithm also had the e�ect of ironing out the build-up of

round-o� error in the right-hand tail of the travelling wave, a consequence of

the physical nature of the problem.

The successful application of the LTFDM to a reaction-di�usion equation with

travelling waves and inherent perturbation demonstrates the method's robust-

ness. Thus in the next chapter, we extend the LTFDM to solve a series of linear

and non-linear di�usion equations with a variety of initial and boundary con-

ditions and test its performance against two popular �nite di�erence methods

used for solving di�usion equations.
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Chapter 5

The Laplace Transform Finite

Di�erence Method for Solving

Linear and Non-Linear

Di�usion Equations.

5.1 Introduction

This chapter uses the Laplace Transform Finite-Di�erence Method (LTFDM)

to solve linear and nonlinear di�usion type problems with Dirichlet or �rst-type

boundary conditions. The previous chapter employed the method to yield so-

lutions to the �sher KPP reaction-di�usion equation. This chapter extends the

method to other types of di�usion problems.

The main advantage of the LTFDM is the removal of time stepping procedures,

which are usually associated with �nite-di�erence methods. The LTFDM can
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remove time step limits imposed on general �nite di�erence schemes needed to

control the accuracy and stability of the system. The solution at a particular

time is not dependent on the result at any other time, apart from initial condi-

tions, allowing a solution to be obtained in a one-time step.

This chapter uses the method to solve a series of one dimensional linear and

nonlinear di�usion problems with various initial and boundary conditions. For

each of the equations considered, the solution in the time domain is provided

via the numerical inversion Laplace transform using the algorithms proposed by

Talbot and Stehfest. The accuracy of these algorithms is then compared with

Forward Time Central Space and Crank Nicholson Finite Di�erence schemes.
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5.1.1 The Laplace transform

The Laplace transform is an integral transform de�ned as follows:

Let f(t) be de�ned for t ≥ 0, then the Laplace transform of f(t) is given by,

L{f(t)} =

∫ ∞
0

f(t)e−st dt (5.1)

Thus L{f(t)} is a function of s denoted as F (s). The Laplace transform can be

shown to exist for any function which can be integrated over any �nite interval

0 < t < l for l > 0, and for which f(t) is of exponential order, i.e.

| f(t) |< Meat (5.2)

as t → ∞, where M > 0 is a �nite real number and a is a small real positive

number.

Analytically the inverse Laplace transform is usually obtained using the tech-

niques of complex contour integration with the resulting set of standard trans-

forms presented in tables [79].

The recovery of the function f(t) is via the inverse Laplace transform, which is

most commonly de�ned via the Bromwich contour integral.

L−1{F (s)} = f(t) =
1

2πi

∫ α+i∞

α−i∞
f(s) est ds (5.3)

However, using the Laplace transform can generate data in the Laplace domain,

which is not easily invertible to the real domain by analytical means. Thus

numerical inversion techniques have to be used to convert the data from the s

domain to the time domain [7], [41].
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5.1.2 Laplace Transform Finite Di�erence Method

We consider an approach to the numerical solution for time-dependent di�usion-

heat equations in which the spatial variable is developed using a purely �nite

di�erence approach. The time development is obtained using a hybrid Laplace

Transform Finite Di�erence Method LTFDM. The signi�cant advantage of this

method is that it eliminates the time dependency parameter and the associated

discretisation, which is necessary to obtain solutions at a particular time.

When using �nite di�erence and other time discretisation methods to solve

di�erential equations, the time step size is limited by the stability conditions

required for convergence of the scheme [5], [102]. In linear cases, this usually

involves hundreds and sometimes thousands of time steps to solve for some de-

sired time. Iterations are then required at each time step which involves using

various matrix methods to solve the vast systems of linear equations generated

by the scheme.

For nonlinear cases, this is compounded by the fact that a further iterative pro-

cess is usually required at each time step [74]. Since each of these iterations

introduces a certain amount of round-o� and truncation error, careful consider-

ation must be given to their control and management when implementing these

schemes.

The Laplace transform has the potential to do away with time discretisation

and the associated error management by transforming the time domain into the

Laplace space, s, via the integral transform in (5.1). The computations done

in the Laplace space, s, can then be inverted back to the time domain for any

desired time. Hence the LTFDM can lead to the required solution with virtually

one-time-step. This means that stability and convergence problems caused by

time discretisation are avoided, and the amount of computation is decreased

without losing any essential characteristics of the problem [74]. Thus by em-
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ploying the LTFDM, we can obtain substantial increases in speed and accuracy

over traditional �nite di�erence and time discretisation methods.

The LTFDM was �rst proposed by Moridis et al. [74] for the simulation of

compressible liquid �ow, where the Stehfest [99] algorithm was used to invert

the data. Kang and Kwon [4] apply the LTFDM to the solution of the Black-

Scholes equation and inverted the data from the Laplace space into the time do-

main by using the Fourier series method with an accelerated convergence scheme

[28],[55], [42],[55]. Jacobs [57] used the LTFDM in the context of time-fractional

heat equations with both Dirichlet and Neumann boundary conditions coupled

with a compact fourth-order �nite-di�erence scheme. Jacob's inversion scheme

is one by [110], which is a particular application of the Bromwich contour in-

tegration method. However, this approach involves using three free parameters

instead of the version used in this paper, namely the Fixed Talbot Algorithm,

which uses a single parameter to invert the functions.

In 1994 Zhu et al. [119] combined the Laplace transform and the Dual Reci-

procity Method (DRM) into what they called The Laplace Transform Dual

Reciprocity Method (LTDRM) to solve linear time-dependent di�usion equa-

tions. In 1996 Zhu et al. [119] extended this method to solve a particular class

of nonlinear di�usion equations. In 2005 Crann et al. [27] successfully applied

this method to electromagnetic heating problems. In 2007 Davies and Crann

[33] used a hybrid Laplace transform �nite-di�erence boundary element method

for solving di�usion equations. Zhu, Davies and Crann used the Stehfest inver-

sion scheme to convert the data into the time domain.

Dimple Rani et al. used a numerical inverse Laplace transform for Solving a

class of fractional di�erential equations [90]. The inversion method used an al-

gorithm proposed by the authors based on Bernstein operational matrix [89].

Then in 2020, Dimple Rani et al. used the numerical inverse Laplace transform
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based on Bernoulli polynomials operational matrix for solving nonlinear ordi-

nary di�erential equations [88].

This paper applies the LTFDM to three linear and four nonlinear one-dimensional

di�usion problems. The linear problems are chosen due to the variety of initial

and boundary conditions. We then apply the LTFDM to solve four nonlinear

di�usion problems. These problems are chosen because they have very di�erent

nonlinear terms. In problem four, we apply the LTFDM to the problem tackled

by Zhu et al., who, as we stated before, used the LTDRM to solve this problem

and compare our results. This problem has a non-linearity of u3. In problem

�ve, the LTFDM is used to solve an equation whose nonlinear term is
√

1 + u2

and has hyperbolic boundary conditions. In problem six, the method is used on

a di�usion equation with a u2 nonlinear term. Finally, we apply the scheme to

an equation with an exponential e−u nonlinear term for problem seven. For all

the nonlinear terms, we adopt a simple direct or semi-direct iterative linearisa-

tion procedure.

The authors are not aware of comparative studies for the LTFDM or other

Laplace transform methods with �nite-di�erence methods for one-dimensional

di�usion equations in the literature. Two inversion schemes for both the linear

and nonlinear problems are employed, the Fixed Talbot Algorithm [104] and the

algorithm developed by Stehfest [99]. Using these two inversion schemes allows

us to test the robustness of these algorithms, and we believe it is good practice

for real-life applications of LTFDM where we do not have an exact solution to

test the accuracy of the scheme.

In problems 1-3, the LTDFM methods are compared with the Forward Time

Central Space (FTCS) �nite di�erence scheme. However, this method fails to

produce accurate results for the nonlinear problems 7 to 9 where we employ the

more stable Crank-Nicholson �nite-di�erence method [69], [114].
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5.2 The Inversion Algorithms

5.2.1 Stehfest

In their wide-ranging study of algorithms for inverting the Laplace transform,

Davies and Martin [36] cite the Stehfest algorithm [99] as providing accurate

results on a wide variety of test functions. Since then, this algorithm has be-

come widely used for inverting the Laplace Transform, being favoured due to

its reported accuracy and ease of implementation.

The algorithm takes the transformed data in the Laplace space F (s) and pro-

duces f(t1) for a speci�c time value t = t1. Choosing

sj = j
ln 2

t1
, j = 1, 2, .....M, for M even. (5.4)

The numerical inversion is given by

f(t) ≈ ln 2

t

M∑
j=1

AjF (sj) (5.5)

with

Aj = (−1)
M
2 +j =

min(j,M2 )∑
k=b j+1

2 c

k
M
2 (2k)!

(M2 − k)!k!(k − 1)!(j − k)!(2k − j)!
(5.6)

Theoretically, f(t) becomes more accurate for larger M , but the reality is that

rounding errors worsen the results if M becomes too large. According to Ste-

hfest, �The optimum M is approximately proportional to the number of digits

the machine is working with� [99].

The Fixed Talbot algorithm for numerically inverting the Laplace

Transform

Here we use the function,

113



S(z) =
z

1− e−z
(5.7)

which maps the closed interval M = [−2πi, 2πi] on the imaginary z−plane onto

the curve L in the s-plane giving the integral,

f(t) =
1

2πi

∫
L

F (s) est ds (5.8)

(See Logan [66] for the details of this transformation).

Next we follow the procedure as adopted by Logan for numerically integrat-

ing (5.8).

With s = S(z) this becomes

f(t) =
1

2πi

∫
M

[F (S(z)) eS(z)t S
′
(z) ] dz (5.9)

where

S′(z) =
1− (1 + z)e−z

(1− e−z)2
(5.10)

For convenience we write,

f(t) =
1

2πi

∫
M

Q(z) dz (5.11)

where

Q(z) = F (S(z)) eS(z)t S
′
(z) (5.12)

and M = [−2π, 2π]. Then if we let w = −iz for the integral in (5.11) so

the interval of integration is now real and becomes [−2π, 2π]. Then using the

trapezoid rule with n we obtain
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f(t) ≈ 1

n

{
(I(2πi) + I(−2πi) + 2

n−1∑
j=1

I(iwj)

}
(5.13)

where

wj = 2π
{2j

n
− 1
}

(5.14)

and we note that I(2πi) = I(−2πi) = 0 [66].

5.3 Di�usion Equations.

We seek solutions to the general di�usion equation [96]

∂u

∂t
= κ

∂2u

∂x2
+ F (u) (5.15)

where κ is the di�usivity constant and F (u) can be equal to zero, a linear or a

non-linear functions of u. For our �rst set of linear di�usion problems we have

that F (u) = 0. in (5.15) and constant boundary conditions, u(0, t) = c1 and

u(L, t) = c2. So we have,

∂u

∂t
= κ

∂2u

∂x2
(5.16)

This models for example the di�usion of heat along a one-dimensional bar of

length L with initial condition u(x, 0) = f(x) for 0 ≤ x ≤ L and constant

boundary conditions for t ≥ 0. The Laplace transform of the time derivative in

(5.16) is

L
{
∂u

∂t

}
= su(x, s) − u(x, 0) (5.17)

where

u(x, s) = L{u(x, t)} (5.18)
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And the Laplace transform of the spatial derivative in (5.16)

L
{
∂2u

∂x2

}
=

d2

dx2
u(x, s) (5.19)

With κ = 1, our �nite di�erence scheme for (5.16) in the Laplace s-space is

u(x, s) − u(x, 0) =
d2

dx2
u(x, s) (5.20)

with transformed boundary conditions,

u(0, t) =
c1
sj

and u(L, t) =
c2
sj

(5.21)

Where c1 and c2 are constants. Then using a central-di�erence scheme on the

spatial derivative, the �nite di�erence scheme for (5.20) is,

ui−1 − ui(2 + δx2sj) + ui+1 = −δx2u(0)i (5.22)

where δx is the step size in the x-direction, sj is the jth Laplace parameter and

u0i = u(xi, 0). To avoid the absolute error `blowing up' for values of u near zero

unless otherwise stated, we give the maximum relative error calculated along

the entire length of the bar. In problems 1 to 3, we compare the results for the

LTFDM with the Forward Time Central Space (FTCS) �nite di�erence method

[96]. Stability criteria requires that r = δt
δx2 < 1

2 . We found that a value of

r = 0.2 was more than adequate to generate accurate results.

As far as the authors are aware, comparisons of the LTFDM with the FTCS and

Crank-Nicholson �nite-di�erence, at least for one-dimensional di�usion equa-

tions, have not been done. These results, therefore, should indicate the viabil-

ity of using the LTFDM in these circumstances, as opposed to general �nite-

di�erence methods.
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For all the examples studied in this paper we used L = 1, δx = 0.1 and M = 12

weights for the Stehfest inversion and n = 555 for the Talbot inversion. For

brevity and ease of presentation in our tables, we use the notation 2.7(−3)

instead of 2.7 × 10−3. For all the examples, the error norm is the absolute

percentage error given by:

Emax = max

∣∣∣∣fnumerical(ti)− fexact(ti)fexact(ti)
× 100

∣∣∣∣, i = 1, ..40 (5.23)

(All computations were carried out using Intel(R) Core(TM) i7-8550U CPU @

1.80GHz 1.99 GHz)

5.3.1 Problem 1

This is equation (5.16) with κ = 1, initial condition u(x, 0) = 0 for 0 ≤ x ≤ L

and boundary conditions u(0, t) = u(L, t) = 1, for t ≥ 0. The exact solution is

u(x, t) = 1 + Σ∞n=1

2n

π
(−1)ne(−n

2π2t) sin(nπx) (5.24)

Table 5.1 shows that the FTCS method performs better for the times given than

both LTDFM schemes, with the Talbot giving better results than the Stehfest

inversion. This is also shown in Figure 1, which shows the temperature pro�le

at t = 1.

5.3.2 Problem 2

This is equation (5.16) with κ = 0.5, u(x, 0) = T0, u(0, t) = T1, u(x, t)→ T0

as x→∞. The exact solution is given by

T0 + (T1 − T0) erf

(
x

(2
√
κt

)
(5.25)

Here we use T0 = 2 and T1 = 4.
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t FTCS Stehfest Talbot
0.5 3.1(-5) 1.2(-4) 4.2(-5)
1 3.1(-7) 6.2(-5) 3.0(-6)
2 7.0(-11) 3.6(-5) 4.6(-10)
3 6.5(-15) 2.1(-5) 1.2(-13)
4 9.1(-18) 1.9(-5) 2.6(-13)
5 4.7(-22) 1.1(-5) 6.2(-13)

Table 5.1: Problem 1 Error

0 0.2 0.4 0.6 0.8 1

x

0.99986

0.99988

0.9999

0.99992

0.99994

0.99996

0.99998

1

u(
x,

t)

FTCS
Stehfest
Talbot
Exact

Figure 5.1: Temperature Pro�le Problem 1 for t = 1 .

t FTCS Stehfest Talbot
0.5 2.0(-3) 1.9(-2) 1.1(-3)
1 9.8(-4) 9.7(-3) 5.4(-4)
2 4.9(-4) 4.8(-3) 2.7(-4)
3 3.3(-4) 3.2(-3) 1.8(-4)
4 2.4(-4) 2.4(-3) 1.6(-4)
5 2.0(-4) 1.9(-3) 1.1(-4)

Table 5.2: Problem 2 Error
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Figure 5.2: Temperature Pro�le Problem 2 for t = 1.
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Table 5.2 shows that the LTFDM with Talbot inversion gives the most accurate

results for times considered performing slightly better than the FTCS and the

LTDFM Stehfest inversion schemes. For all the methods, the accuracy increases

at larger times. Figure 5.2 shows the temperature pro�le at t = 1, with the

Stehfest LTFDM increasing in error for x between 8 and 10.

5.3.3 Problem 3

This equation is the linear cyclic di�usion equation

∂u

∂t
= κ

∂2u

∂x2
− π

α
x cos(πt) (5.26)

with initial condition u(x, 0) = sin(πx), the left hand boundary at u(0, t) = 0,

and a cyclic boundary condition at u(1, t) = sin(πt) for t > 0. The exact

solution is given by

u(x, t) = exp(−απ2t) sin(πx) + x sin(πt) (5.27)

The �nite-di�erence scheme in the Laplace space is

ui−1 + ui

(
− 2− δx2

2
sj

)
+ ui+1 = δx2

(
u0i −

π

α
x

sj
s2j − π2

)
(5.28)

where δx is the size of the spatial step in the x-direction, sj is the jth Laplace

parameter and u0i = u(xi, 0).

It is well known that the Stehfest algorithm has di�culty reconstructing the

sine and cosine functions for any t ≥ π
2 ,[62], [65]. This is shown in Figure 5.3

and Figure 5.4.
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Figure 5.3: Stehfest reconstruction of sin(t).
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Figure 5.4: Stehfest reconstruction of cos(t).

This can be overcome by implementing the inversion scheme in a multi-precision

environment [18], [113] or by a piecewise reconstruction of the function [27].

However, as our emphasis in this paper is on simple comparative implementation

for solving di�usion type equations, we choose instead to evaluate the boundary

condition and the cosine function on the right-hand side of (5.26) at the desired
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time and then invert these numerical results as constants in the Laplace space.

sin(πt) =
at
sj

and cos(πxt) =
bt
sj

(5.29)

(For all the tables presented the �rst or t column indicates the interval used in

the evaluation. Thus 0, 2π means ∀ t ∈ [0, 2π]).

t FTCS τ Stehfest τ Talbot τ

0,2π 8.7(-5) 3.6(1) 9.6(-1) .4.0(-2) .3.1(-1) 1.7(-1)

1,3π 8.7(-5) 8.1(0) 1.4(-1) 5.1(-2) 3.5(-2) 2.3(-1)

2,4π 7.3(-5) 1.4(1) 1.6(-1) 5.3(-2) 6.1(-3) 2.4(-1)

3,5π 6.4(-5) 2.2(1) 3.1(-3) 5.5(-2) 6.8(-4) 2.6(-1)

4,6π 6.3(-5) 3.2(1) 3.1(-2) 5.7(-2) 1.2(-4)) 3.6(-1)

5,6π 6.3(-5) 4.1(1) 3.1(-2) 5.2(-1) 1.3(-5) 3.3(-1)

Table 5.3: Problem 3 Error α = 0.2

t FTCS Stehfest Talbot

0,2π 4.1(-5) 7.3(0) 2.0(0)

1,3π 4.1(-5) 8.4(-2) 1.0(-3)

2,4π 4.1(-5) 1.2(-3) 1.0(-5)

3,5π 4.1(-5) 1.2(-3) 5.0(-8)

4,6π 4.1(-5) 1.2(-3) 5.0(-8)

5,7π 4.1-5) 1.2(-3) 5.0(-8)

6,8π 1.4(-5) 1.2(-3) 4.7(-8)

Table 5.4: Problem 3 Error α = 0.5
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t FTCS Stehfest Talbot

0,2π 2.7(-5) 6.1(-2) 2.1(-1)

1,3π 2.3(-5) 6.6(-4) 1.0(-5)

2,4π 2.3(-5) 6.0(-4) 8.1(-10)

3,5π 2.3(-5) 6.0(-4) 8.1(-10)

4,6π 2.3(-5) 6.0(-4) 1.2(-8)

5,7π 2.3(-5) 6.0(-4) 1.2(-7)

Table 5.5: Problem 3 Error α = 1

Figures 5.5,5. 6, and 5.7 show the temperature pro�les for problem 3 with α = 1

and t ∈ [0, 4π],
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Figure 5.5: Temperature Pro�le Problem 3 using Talbot inversion
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Figure 5.6: Temperature Pro�le Problem 3. Stehfest inversion
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Figure 5.7: Temperature Pro�le Problem 3. FTCS

The results from Tables 5.3, 5.4, and 5.5 show the FTCS performing better

at earlier times. At these times, the Talbot inversion has di�culty dealing

with the jump discontinuity shown in Fig 5.7, but this is also the case for the

Stehfest algorithm for values of α other than 1. However, the Talbot scheme

steadily improves with time, doing slightly better than the FTCS in the interval

t ∈ [5π, 7π]. Tables 5.4 and 5.5 show that for the larger α values, the FTCS
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maintains the same relative error for all times while the Talbot steadily improves,

doing considerably better than the FTCS and the Stehfest for greater times.

Table 5.3 also shows that the FTCS scheme had elapsed times τ , of several orders

larger than the LTFDM. This veri�es the points made earlier in section 1.2

about the LTFDM ability to save computational time in arriving at the solution

o�ering a considerable advantage in using the LTFDM over time discretisation

schemes.

5.4 Non-Linear Di�usion Type problems

5.4.1 Problem 4

Our �rst non-linear problem is taken from Zhu et al. [119] who used the Laplace

Transform Dual Reciprocity method to solve

∂2u

∂x2
=
∂u

∂t
+ u(1− u)(u− γ) (5.30)

However, it is well known that the Laplace transform cannot be successfully

performed on non-linear governing equations, and so some linearisaton process

is necessary before the LTFDM can be implemented, [47]. We use the same

linerasiation procedure adopted by Zhu. In order to �nd the solution of the

unknown function at a particular time t1, Zhu linearised (5.30) as

∂2u

∂x2
=
∂u

∂t
+ u(γ − (γ + 1)ũ+ ũ2) (5.31)

where ũ is the previously iterated solution. The governing equation has the

nonlinear terms u2 and u3. Zhu linearises the u2 term as uũ and teh u3 term
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as uũ2. In the Laplace space the corresponding �nite di�erence scheme is

umi−1 − umi
(

2 + δx2sj + δx2 − δx2

2

)
+ umi+1 = −δx2

(
u0i +

1

sj

)
(5.32)

where δx is the size of the spatial step in the x-direction, sj is the jth Laplace

parameter and u0i = u(xi, 0). The initial condition is u = 0 and the boundary

conditions are chosen to satisfy the exact solution

u =
eη1 + γeη2

1 + η1 + γeη2
(5.33)

with

η1 =
1√
2

(
x−

[√
2γ − 1√

2

])
(5.34)

and

η2 =
γ√
2

(
x−

[√
2γ − γ√

2

])
(5.35)

Since no Laplace Transform exists for (5.33) at the boundaries we evaluate its

numeric value a say for speci�c t and express the transform at the boundaries

as a/sj for x = 0 and for x = L .

t FTCS Stehfest Talbot

0.1 1.1(-2) 2.0(0) 2.0(0)

0.5 2.0(-2) 3.4(0) 3.5(0)

1 4.0(-2) 1.3(0) 1.2(0)

3 5.0(-4) 5.1(-2) 9.8(-2)

4 1.2(-4) 1.2(-2) 1.1(-2)

5 2.7(-5) 2.7(-3) 1.4(-3)

Table 5.6: Problem 4 Zhu Percentage Error
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Figure 5.8: t = 0.1
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Figure 5.9: t = 0.5.
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Figure 5.10: t = 1.0.
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Figure 5.11: t = 3.0.
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Table 5.6 shows that the FTCS performs better than both LTFDM schemes for

all times shown. For this problem, we follow Zhu et al. and give the percentage

error. The Talbot and Stehfest both give a percentage error greater than 3%

at t = 0.5 compared with 0.0195% for the FTCS. All schemes then improve for

greater t. However, the LTDFM performs better than the LTDRM as outlined

by Zhu et al., who reports a maximum relative error at t = 0.1 of 3% and

t = 5 compared with 1.9% for both LTFDM schemes and just less than 0.1%

compared with 0.0014% for the Talbot inversion and 0.0027% for the Stehfest

inversion.

Figures 5.8 to 5.11 show the temperature pro�le for problem 4 at the indicated

times. All the graphs show the Talbot and the FTCS performing better than

the Stehfest LTFDM.

5.4.2 Problem 5

Our next non-linear equation has the form

∂2u

∂x2
=
∂u

∂t
+ u−

√
1 + u2 (5.36)

With initial and boundary conditions chosen to satisfy the exact solution u(x, t) =

sinh (x+ t).
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Figure 5.12: Temperature Pro�le Problem 5.

Figure 5.12 shows that the FTCS scheme fails to reconstruct the solution accu-

rately. We therefore use the Crank-Nicolson method noted as a �unconditionally

stable" �nite-di�erence method [100], [96]. In this case, we use direct iteration

to linearise
√

1 + u2 term. This means that the previously iterated solution is

used for the u2 term in equation(5.36). In the Laplace space, the corresponding

�nite di�erence scheme is

umi−1 − umi
(

2 + δx2sj + δx2
)

+ umi+1 = −δx2
(
u(0)i +

√
(1 + (um−1i )2

)
(5.37)

The Crank Nicholson scheme is

ruji−1 + uji (2− 2r − dt) + ruji+1 +

√
1 + (uj,m−1i )2 + 2δt
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The subscripts i and the subscript j denote the number of x and t intervals,

respectively, andm andm−1 represent the current and previous iteration steps.

t CN Stehfest Talbot

0.5 1.0(-2) 1.5(-1) 1.2(-2)

1 1.1(-2) 2.8(-4) 1.3(-4)

2 2.6(-2) 4.8(-4) 5.8(-4)

3 8.6(-2) 2.0(-2) 1.6(-3)

4 2.5(-1) 5.1(-3) 4.3(-3)

5 7.0(-1) 1.3(-2) 1.2(-3)

Table 5.7: Problem 5 Error

t CN τ Stehfest τ Talbot τ

0.5 1.0(-4) 1.8(0) 1.5(-2) 2.8(-2) 1.2(-2) 1.5(1)

1 2.8(-4) 7.0(0) 5.1(-4) 2.8(-2) 7.5(-5) 1.4(-1)

2 2.7(-4) 7.0(0) 8.5(-5) 2.9(-2) 5.9(-6) 1.5(-1)

3 9.1(-4) 1.0(1) 4.4(-4) 2.79-2) 1.6(-5) 1.5(-1)

4 2.6(-3) 1.4(1) 7.7(-4) 3.1(-2) 4.4(-5) 1.5(-1)

5 7.3(-3) 1.7(1) 1.1(-3) 2.8(-2) 1.2(-4) 1.7(-1)

Table 5.8: Problem 5 Error δx = 0.01
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Figure 5.13: t = 0.5
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Figure 5.14: t = 1.0.
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Figure 5.15: t = 3.0.
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Figure 5.16: t = 5.0. Problem 5.
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Table 5.7 shows that Crank-Nicholson is not as accurate as the other schemes.

Also, except for t = 0.5, the Talbot and the Stehfest LTFDM perform better

than the Crank-Nicholson �nite di�erence method. In Table 5.8, with a reduc-

tion in the spatial step from δx = 0.1 to δx = 0.01, we see an improvement

in accuracy for all the schemes. However, there is a signi�cant increase in the

elapsed time τ for the Crank-Nicholson scheme. This substantiates the points

we made in Section 1.2 about the advantages gained in speed and accuracy when

employing LTFDM over traditional �nite-di�erence methods. Figures 5.13 to

5.16 shows the error pro�les for all three schemes with spacial step δx = 0.05 at

times shown.

5.4.3 Problem 6

This problem has a nonlinearity of u2 and is given by

∂2u

∂x2
=
∂u

∂t
+ u2 + a(x, t) (5.38)

with

a(x, t) = (2 + x2)e−t − x4e−2t (5.39)

The boundary conditions are de�ned as follows:

u(0, t) = 0

u(1, t) = e−t

with initial condition

u(x, 0) = x2
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For this case, we linearise the u2 as umum−1 where m and m− 1 represent the

current and previous iteration steps, respectively. Our LTFDM scheme in the

Laplace space is

umi−1−umi (2+δx2sj+δx
2um−1i )+umi+1 = δx2

(
−u(0)i +

2 + x2

sj + 1
− x4

sj + 2

)
(5.40)

and our Crank Nicholson �nite di�erence scheme is

−ruj+1,m
i−1 +uj+1,m

i (2+2r+δt uj+1,m−1
1 )−ruj+1,m

i+1 = ruji−1+uji (2−2r−δt uj,m−1i )+ruji+1−2δt a(x, t)

(5.41)

t FTCS CN Stehfest Talbot

0.5 1.6(-2) 5.2(-3) 1.7(-2) 1.2(-2)

1 1.1(-2) 2.0(-3) 1.0(-2) 3.0(-3)

2 4.4(-2) 1.1(-3) 3.9(-3) 4.1(-4)

3 1.6(-3) 4.3(-4) 1.5(-3) 5.6(-5)

4 6.1(-4) 1.5(-4) 5.2(-4) 7.1(-6)

5 2.3(-4) 5.8(-5) 1.5(-4) 1.0(-6)

Table 5.9: Problem 6 Error

t CN τ Stehfest τ Talbot τ

0.5 1.6(-4) 3.7(0) 1.8(-3) 4.9(-2) 8.5(-3) 2.5(-1)

1 3.6(-4) 7.5(0) 1.3(-3) 4.0(-2) 3.2(-3) 2.3(-1)

2 5.1(-5) 1.2(1) 3.0(-4) 4.4(-2) 4.3(-4) 2.3(-1)

3 5.8(-6) 2.2(1) 1.0(-4) 3.6(-2) 5.5(-5) 2.3(-1)

4 1.8(-6) 3.0(1) 6.2(-5) 3.6(-2) 7.8(-6) 1.2(-1)

5 6.6(-7) 3.8(1) 1.5(-4) 3.6(-2) 1.0(-6) 1.3(-1)

Table 5.10: Problem 6 Error dx = 0.01
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Figure 5.17: t = 0.5 δx = 0.05
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Figure 5.18: t = 1.0 δx = 0.05.
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Figure 5.19: t = 4.0 δx = 0.05.
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Figure 5.20: t = 5.0 δx = 0.05.
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Problem 6. Table 5.9 shows that for t = 0.5, the Crank-Nicholson scheme

performs better than the two LTFDM schemes. At t = 1, the Crank-Nicholson

and Talbot have the same order of error, with the Crank-Nicholson performing

marginally better and both doing better than the Stehfest inversion. However,

for t > 2, the Talbot performs better than both the Crank-Nicholson and the

Stehfest inversion methods. Table 5.10 shows all the schemes improving in

accuracy for the smaller spatial step δx = 0.01, but the Crank-Nicholson method

does so at the expense of a substantial increase in elapsed times. Figures 5.15 to

5.18 shows the error pro�le for δx = 0.05. Here we see that except for t = 0.5,

the Talbot inversion LTFDM perform better than the other two methods.

5.4.4 Problem 7

The next of this class has the non-linear term e−u. The boundary condition

and analytic solution are as in Problem 6.

∂2u

∂x2
=
∂u

∂t
+ e−u + a(x, t) (5.42)

with

a(x, t) = (2 + x2)e−t − exp(−x2e−t) (5.43)

For this case we express the non-linear term e−u
m

in terms of its previously

iterated solution, e−u
m−1

giving

∂2u

∂x2
=
∂u

∂t
+ e−um−1 + (2 + x2) e−t − exp(−x2e−t) (5.44)

However the Laplace transform cannot be performed on the exp(−x2e−t) term

in (5.44) but we can transform this term into the s-space through its Maclaurin
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expansion as follows:

exp(−x2e−t) ≈ 1− x2e−t +
x4e−2t

2!
− x6e−3t

3!
+
x8e−4t

4!
(5.45)

Now taking the Laplace transform of (5.42) stopping the exponential expansion

after the �fth term we have:

∂2u

∂x2
= usj−u(0)+

e−um−1

s
+

(2 + x2)

1 + s
−
(

1

s
− x2

1 + s
+

x4

2!(2 + s)
− x6

3!(3 + s)
+

x8

4!(4 + s)

)
(5.46)

This gives the �nite di�erence scheme

umi−1 − umi (2 + δx2) = umi+1 = −δx2ui(0) + δx2
e−um−1

sj
− δx2a(x, sj) (5.47)

Where a(x, sj) is the expression in brackets on the right hand side of (5.46).
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Figure 5.21: FTCS Temperature Pro�le Problem 7 at t = 1.

Figure 5.21 shows that the FTCS method fails to accurately reconstruct the

solution for problem 9. so we compare our results with the Crank-Nicholson

�nite-di�erence scheme.The Crank Nicholson scheme is

ruj+1
i−1+ruj+1

i (2+2r)−ruj+1
i+1+dt e−u

j+1,m
i = ruji−1+ruji (2−2r)+ruji+1−2a(x, t)−dt e−u

j,m
i

(5.48)
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t CN Stehfest Talbot

0.5 6.0(-3) 1.7(-2) 1.9(-3)

1 3.7(-3) 1.1(-2) 1.8(-4)

2 1.4(-3) 3.9(-3) 3.6(-4)

3 5.3(-4) 1.5(-3) 5.8(-5)

4 2.0(-4) 4.9(-4) 5.6(-5)

5 7.2(-5) 1.5(-4) 1.8(-6)

Table 5.11: Problem 7 Error

t CN τ Stehfest τ Talbot τ

0.5 2.2(-3) 3.0(0) 9.2(-4) 3.1(-2) 1.9(-2) 2.2(-1)

1 1.5(-4) 6.2(0) 2.9(-4) 2.9(-2) 1.8(-4) 1.6(-1)

2 3.7(-4) 1.7(1) 3.0(-4) 3.0(-2) 3.6(-4) 2.2(-1)

3 5.3(-5) 2.7(1) 1.7(-4) 3.0(-1) 5.5(-5) 2.1(-1)

4 2.1(-4) 3.7(1) 6.1(-5) 3.1(-1) 5.7(-5) 2.8(-1)

5 2.9(-5) 8.1(1) 1.5(-4) 3.1(-2) 2.2(-6) 3.4(-1)

Table 5.12: Problem 7 Error δx = 0.01

The following graphs are with δx = 0.05
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Figure 5.22: t = 0.5 δx = 0.05
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Figure 5.23: t = 1.0 δx = 0.05
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Figure 5.24: t = 4.0 δx = 0.05
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Figure 5.25: t = 5.0 δx = 0.05 Problem 7.
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For this problem, Table 5.11 and Figures 5.19 to 5.22 show that the Talbot

LTFDM performs better than the Crank-Nicholson and the Stehfest LTFDM

at all times. A decreased spatial step of δx = 0.01 for both LTDFM schemes

provides better results than the Crank-Nicholson method. Again we see that

the elapsed times Crank-Nicholson increases signi�cantly as t increases.

5.5 Summary

In this chapter, our tests show that the LTFDM is a viable method for solving

linear and nonlinear one-dimensional di�usion equations. The LTFDM, which

employed the Talbot inversion scheme, gave better results than the Stehfest

inversion scheme for the three linear cases considered in this paper. Moreover,

except for early times, the Talbot inversion also performed better than the FTCS

in problem two and problem three with considerably shorter elapsed times for

both LTFDM schemes in problem 3..

For the nonlinear cases except for problem 4, the LTFDM with Talbot inversion

performed better overall than the Stehfest LTFDM and the Crank Nicholson

methods. Here except for shorter times, this method produces more accurate

results. For example 6, the inability to provide an exact inversion formula for

the Laplace Transform at the boundaries may account for the better perfor-

mance of the FTCS over the LTFDM.

Moreover, while increasing the spatial step δx can lead to improvements in ac-

curacy for all schemes, the Crank-Nicholson method does so with substantial

increases in elapsed times when compared with the LTFDM.

We conclude that the LTFDM is a viable alternative to traditional �nite-di�erence

schemes for solving one-dimensional di�usion type problems with a particular

advantage in accuracy and speed of computation for nonlinear cases. Therefore,

these advantages will likely be extended and improved upon for di�usion prob-
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lems in higher dimensions.
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Chapter 6

Conclusions and Future Work

This thesis examined the use of Laplace Transform Finite Di�erence method

(LTFDM) for solving di�usion type problems. The main drawback in using this

method is the problems caused by the perturbation of the numerical inverse

transform. We examined the noise handling properties of algorithms from three

of the four main classes of Laplace numerical inversion methods. I found that

the Talbot inversion algorithm performs with greater accuracy for' noisy data'

than the Fourier Series and Stehfest numerical inversion schemes, as outlined in

Chapter 2. This scheme's use of complex arithmetic was the principal reason

for its better handling of noisy data. This means that for applications in which

such noisy data are likely, I expect the Talbot inversion scheme to perform bet-

ter and recommend its use.

In Chapter 3, I developed a modi�ed form of the LTFDM to solve the Fisher-

KPP reaction-di�usion equation. This equation models the behaviour of a mu-

tant gene in an in�nitely long spatial domain. Analysis has shown that the

numerical solution su�ers from perturbations of an in�nite extent. A direct
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application of the LTFDM failed to produce accurate results. I concluded that

this perturbation was not su�ciently taken into account. Especially so as I was

already dealing with a perturbed inversion problem, I concluded that this prob-

lem could be overcome by introducing some time discretisation into the process,

initialising the initial conditions, and choosing the Talbot algorithm, which is

best able to smooth out these perturbations. I compared our results at various

wave speeds with a solution generated by perturbation methods. Thus, I could

attain results with a maximum percentage error of one per cent. While this

means that the advantage of using the Laplace transform to obtain solutions for

any time is not fully exploited, the method does allow for considerably larger

time steps than is otherwise possible for �nite-di�erence methods.

In Chapter 4, I investigated the performance of �ve inversion schemes in a

multi-precision environment. In standard-double-precision, the Abate-Valko al-

gorithm provides the most accurate results for the numerical reconstructions

for the functions tested in this paper. The Fourier algorithm had the worst

performance of the �ve algorithms tested. Both the Stehfest and Salzer-Gaver

algorithms had di�culty reconstructing functions of a cyclic nature. None of

the algorithms was able to invert the J0(t) function accurately.

In multi-precision, the Stehfest and the Salzer-Gaver schemes inverted all the

functions with high accuracy. The Logan and Abate-Valko schemes could only

invert the J0(t) with limited accuracy. However, they could reconstruct all the

other functions with a high degree of accuracy. The most accurate algorithm

in multi-precision was the Salzer-Gaver scheme. I also found that the Stehfest

algorithm is not merely a Salzer acceleration onto a Gaver functional. However,

as Table 4.8 shows, the Salzer-Gaver also had the most extended elapsed times.

On the other hand, the Stehfest algorithm had the shortest elapsed times for
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the selected functions in Table 4.8. The algorithms that used the Abate-Valko

method were the most accurate, but Logan could reconstruct the functions

with shorter elapsed times. Therefore I conclude that when working in stan-

dard precision, Valko's algorithm performed best. However, in multi-precision,

the Stehfest algorithm is best as it inverted all the functions with a high degree

(although not the highest) of accuracy and the shortest elapsed times.

In chapter 5, LTFDM and two numerical inversion schemes, Talbot's and Ste-

hfest, were used to successfully solve various linear and nonlinear time-dependent

di�usion equations with Dirichlet conditions. The iterative procedures main-

tained the advantages of solving in the Laplace space. Both inversion schemes

provided accurate numerical results for all the equations under consideration.

The LTFDM, which employed the Talbot scheme, gave better results than the

Stehfest inversion scheme for the linear cases. Moreover, except for early times,

the Talbot inversion also performed better than the FTCS in problem two

and problem three, with considerably shorter elapsed times for both LTFDM

schemes in problem 3.

For the nonlinear cases except for problem 4, the LTFDM with Talbot inversion

performed better overall than the Stehfest LTFDM and the Crank Nicholson

methods. Here except for shorter times, this method produces more accurate

results. Moreover, while increasing the spatial step δx can improve accuracy for

all schemes, the Crank-Nicholson method does so with substantial increases in

elapsed times.

I conclude that the LTFDM is a viable alternative to traditional �nite-di�erence

schemes for solving one-dimensional di�usion type problems with a particular

advantage in accuracy and speed of computation for nonlinear cases. Therefore,

these advantages will likely be extended and improved upon for di�usion prob-

lems in higher dimensions.
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As we have stated in this thesis, the numerical inversion of the Laplace trans-

form is an ill posed problem and hence is a perturbed problem. This means

that the solution does not depend continuously on the data, [92]. Therefore,

the data for the inverse transform is only known approximately, and conver-

gence from the Laplace s-space back to the time domain is not guaranteed.

Hence, some care must be taken when implementing any inversion algorithm,

including those outlined in this thesis. One approach uses perturbed data to

solve regularised problems to arrive at an accurate solution. The most common

is the Tikinov regularisation scheme,[106], but this requires prior information

about the magnitude of the perturbation. In implementing these schemes, one

also must consider the trade-o�s between accuracy and time constraints, [52].

Therefore, it is recommended that one uses more than one algorithm to invert

the Laplace transform numerically. The choice of these algorithms will depend

on the problem being solved. This may involve estimations of how much noise

is in the data, if the solution has in�nite poles on the imaginary axis, if only

real data is available, how continuous the data is and so on. I have demon-

strated that the Talbot and Stehfest algorithms are both relatively robust for

the applications used in the thesis.

6.0.1 Future Work

During the PhD, areas for future investigations arose which could form a basis

for future work.

1. I began looking at the possibility of deriving analytical error bounds for the

Stehfest algorithm. As Abate and Valko point, [1] out, it is not possible to have

such bounds independent of the function, I think it is possible to do so for a

particular function. If this is the case, perhaps I could extend this to estimating

the errors involved when using the LTFDM with Stehfest inversion for solving

146



di�usion problems.

2. I derived a new acceleration scheme for the Gaver functional. This produced

accurate results for the sine function without the need for multi-precision. How-

ever, thus far, I could only invert the exponential and sine functions. This may

be more of a coding problem than an issue with the algorithm. Further in-

vestigation is needed to determine if this could become a viable method for

numerically inverting the Laplace Transform .

3. I have had some success with the LTFDM providing accurate results for

the travelling wave solutions of the Fisher-KPP equation. I want to investigate

whether this method can be successfully applied to other PDE's which exhibit

travelling wave solutions. Also, it might be worth investigating the performance

of Laplace Transform methods in solving the wave equation.

4. I would like to systematically investigate the various methods of linearising

nonlinear di�usion equations in the context of the LTFDM or, more generally,

for methods that use Laplace transform inversion to solve the di�usion equation.

5. I would like to investigate further using the accelerated Fourier series method.

While this is not a one-parameter class, as is the case for both the Stehfest and

Talbot schemes, it would be interesting to see if there are conditions to make it

so. Then this would allow us to perform systematic testing of the algorithm in

this form for applications to the LTFDM.
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