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Abstract

The thesis carries out a series of investigations to improve the understanding
and efficiency of the Laplace Transform Finite Difference Method (LTFDM).
In chapter two, I begin by investigating the noise handling properties of the
Fourier series and the Stehfest and Talbot algorithms for inverting the Laplace
transform. Here noise is added to various test functions, and the results are
compared to the exact solutions. I find that the Talbot algorithm successfully
reconstructs the function while both the Stehfest and the Fourier series methods
fail to invert these functions accurately.

Chapter three extends the investigation by examining the performance of five
of the main algorithms for inverting the Laplace transform in standard 16 digits
precision and multi-precision. The results show that Talbot generally outper-
forms the other algorithms in standard precision while the Stehfest is the best
in multi-precision.

The LTFDM is then used to solve the Fisher KPP (Kolmogorov, Petrovsky
and Piskunov) equation. This equation has a travelling wave solution, and
Fourier and Laplace transform numerical methods have difficulty reconstruct-
ing travelling waves. Using the knowledge gained in chapters two and three
and understanding the nature of the perturbations in this equation, accurate
representations of several solutions to this equation were produced.

The LTDFM is then successfully applied to a series of linear and non-linear
diffusion equations. Comparisons are then made with the Froward Time Cen-
tral Difference and the Crank Nicholson methods, with the LTDFM showing

advantages over these schemes in both time and accuracy.
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Chapter 1

Introduction

The diffusion process is a widely occurring natural phenomenon, and the math-
ematical expression of this process has been enormously successful in modelling
diffusive behaviour. Thus, the diffusion equation is one of the most important
partial differential equations in all mathematics and the applied sciences. As is
the case with most partial differential equations, analytic solutions exist for only
a small class of these problems [63] ,[12], [44], [85], [80] and numerical methods
are continuously being developed to solve diffusion type problems [6], [71], [86],
[115].

The most commonly used methods for numerically solving the diffusion equa-
tion usually employ a time stepping process that can impose stringent stability
restrictions on the time step size. As an alternative, the Laplace transform can
be used so that the solution at a particular time is not dependent on the solution
at any other time, apart from the initial conditions. This gives the potential to
attain the required solution in just one time step.

This research aims to improve the Stehfest and Talbot algorithms’ understand-

ing when using the Laplace transform to find numerical solutions to diffusion



type problems, emphasising the Laplace Transform Finite Difference method
(LTFDM). This was done by testing the algorithm’s response to noisy data,
applying the algorithms within the context of the LTFDM and testing their
performance with extended precision.

However, the drawback of using this method is that the Laplace transform’s
numerical inversion is known to be an ill-posed problem meaning that changes
in the solution’s behaviour are not continuous with the initial conditions so that
small errors in the initial data can result in much larger errors in the solution
[23],[26],[45], [64], [45],[61].

So the thesis also examines how the ill-posed nature of the numerical inversion
of the Laplace transform might be mitigated to more successfully apply the
LTFDM to solve diffusion type problems. To achieve these aims, I:

1. Tested the performance of three widely used algorithms used to invert the
Laplace transform numerically; The Fourier Series method [28], The Stehfest al-
gorithm [99] and the method developed by Talbot [104] for their noise handling
properties, to discern which of these algorithms are best suited for handling
errors in the input data. The study was new work as no systematic analysis of
these algorithms’ ability to cope with noise had been done before.

2. Extended the LTFDM to solve the reaction-diffusion Fisher-KPP equation.
This equation typically results in a travelling wave profile for which Laplace
transform methods are not usually employed. Accurate solutions to this prob-
lem were attained with some adjustments to the LTFDM and using our previous
knowledge of the inversion schemes. Laplace transform methods had not been
previously employed to solve this equation.

3. Investigated the performance of various forms of these algorithms in a multi-
precision environment on different test functions to see what effect this had on

reducing the ill-posed nature of the numerical inversion. This investigation al-



lowed us to determine which algorithm works best in standard 16-digit double
precision and performed best in extended precision. This investigation extended
and deepened a previous study [1] on the effects of multi-precision on numer-
ically inverting the Laplace transform to include previously untested versions
of the algorithms. Multi-precision computing allows the user to stipulate the
number of significant digits needed for a particular calculation.

4. Employed the LTFDM to solve a wide variety of linear and non-linear dif-
fusion type equations. The method was successfully tested on equations with
various initial and boundary conditions and varying degrees of non-linearity.
This demonstrated the successful application of the LTFDM to a wide variety
of previously untested linear and non-linear parabolic partial differential equa-

tions with Dirichlet conditions.

1.0.1 Brief Background

Many advanced numerical methods are available for solving the diffusion equa-
tion. For the most part, they require the use of the Finite Difference Method
(FDM), Finite Element Method (FEM), Boundary Element Method (BEM)
and Finite Volume Method (FVM). These methods involve the discretisation
of both the time and spatial variables. This combined discretisation introduces
stringent stability criteria that limit the time step size used in these meth-
ods. While methods such as the Crank-Nicholson scheme introduce conditions
that can improve the solution’s stability for more extensive time steps, stabil-
ity criteria involving incremental time stepping still need to be applied. The
finite-difference solution at each time step can involve hundreds and sometimes
thousands of matrix inversions to arrive at a solution. For non-linear cases, the

problem is further compounded as another iterative step is usually required.



The Laplace transform can transform a function (or numerical data) from the
time domain into the Laplace s domain. This transform allows for removing
time marching procedures in the finite-difference schemes used to solve time-
dependent parabolic partial differential equations. This gives us the potential
to attain a solution at any desired time.

However, using the Laplace transform can generate data in the Laplace domain,
which is not easily invertible to the real domain by analytical means, [61], [37].
Thus numerical inversion techniques have to be used to convert the Laplace do-
main to the time domain. However, the Laplace transform’s numerical inversion
is known to be ill-posed, so the output of the inversion depends discontinuously
upon the initial conditions. This means that numerically inverting the Laplace
transform is a perturbed problem, so errors introduced into the input data can
cause oscillations in the output data making numerical solutions potentially un-
stable. While this perturbation cannot be removed entirely, it can be curtailed
through the choice of the inversion method and by working in unlimited preci-

sion.

1.0.2 Layout

The thesis is set out as follows;

Chapter one

In chapter one, I contextualise the thesis by introducing some preliminary ma-
terial on the heat equation, finite-difference schemes, the Laplace transform and
a literature review.

Chapter two. This chapter investigated the noise handling properties of three
of the most widely used algorithms for numerically inverting the Laplace trans-

form. Here I examine the algorithms’ genesis, and their error handling properties



are evaluated through a series of standard test functions in which noise is added
to the inverse transform. Comparisons are then made with the exact data.
Chapter three

In this section, I apply a modified version of the LTFDM to solve the Fisher-KPP
equation [48]. The travelling wave solutions usually associated with the Fisher-
KPP equation are generally not deemed suitable for treatment using Fourier or
Laplace transform numerical methods [8]. However, I was able to obtain accu-
rate results when some degree of time discretisation and a reinitialising of the
initial conditions were inbuilt into the process.

Chapter four

In this chapter, I examine the performance of five algorithms for numerically
inverting the Laplace transform in standard, 16-digit and multi-precision envi-
ronments to determine the effect of this might have on reducing the perturba-
tions of the inverse transform. The algorithms are taken from three of the four
main classes of numerical methods used to invert the Laplace transform [1].
Because the numerical inversion of the Laplace transform is a perturbed problem
[23], [45], and [61], rounding errors that are generated in numerical approxima-
tions can adversely affect the accurate reconstruction of the inverse transform.
This chapter demonstrates that working in a multi-precision environment can
substantially reduce these errors and the resulting perturbations that exist in
transforming the data from the s-space into the time domain, thus overcoming
the main drawback of numerically inverting the Laplace transform.

Chapter five

In this chapter, the Laplace Transform Finite-Difference Method LTFDM is
used to solve several linear and non-linear diffusion type problems with Dirich-
let (or first-type) boundary conditions. This chapter uses the method to solve

one dimensional linear and non-linear diffusion problems with various initial
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and boundary conditions. For each of the equations considered, the time do-
main solution is provided via the numerical inversion Laplace transform using
the algorithms proposed by Stehfest and Talbot. [99], [104]. The accuracy of

the algorithms is then compared.
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1.0.3 The Diffusion Equation

Fourier, one of the first people to study this phenomenon, showed through ex-
perimentation that an empirical relationship exists between the conduction rate
in a material and the temperature gradient in the direction of energy flow. He
concluded that “the heat flux resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to its sign”, [16].

The differential form expressing this relationship can be stated as,
qg=—aAT (1.1)

where with SI units
q is the local heat flux density, Wm 2
« is the thermal conductivity, W 'K~ 'm~!
and AT is the temperature gradient, Km~*
For unidirectional conduction in the x direction then the equation can be ex-
pressed as
oT

Consider a long thin bar of constant cross section which conducts heat uniformly
throughout its length. Let the bar be perfectly insulated so that heat flows only
laterally along the bar and the temperature distribution T'(x,t) depends only
on its distance = along the bar at a time ¢. In this situation Fourier’s law gives
the rate of heat flow q as

q= —OZA% (1.3)

where A is the cross-selectional area of the bar. Next consider an infinitesimally
small section of the bar of length dr which has a rate of heat flow across its

ends and ¢o with temperature distributions 7" at x and T + g—zdx at ¢ + dx
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respectively. So the net heat flow across that section in an element of time dt is

. o (z+dz,t)  0T(z,t)
= aA[ o D dt (1.4)
L 0 oT B OT (x,t)
o*T
= ozA—ax2 dxdt (1.6)

The conductor’s specific heat under consideration is the total amount of heat
required per unit mass per unit temperature. Hence the heat gained by the
element in time dt is proportional to the mass mdx and the temperature increase
in time dt.

oT
the heat gained in time dt = cppAdedt (1.7)

Where ¢, and p is the specific heat capacity and density of the medium respec-

tively. Equating (1.6) and (1.7) we get the heat equation

oT 0T

el el 1.8

ot~ "oz (18)
where kK = p% is the thermal diffusivity. In the literature the notation for

temperature distribution u(x,t) is usually used instead of T'(z,t). I follow this

practice in this thesis. So in this form (1.8) becomes

Ou 0%u

1.1 Finite Difference Method

With the Laplace transform, I will incorporate finite-difference schemes to solve

the diffusion equation. Most partial differential equations cannot be solved in

13



terms of explicit analytical formulas [12] [44] [85] [80] and so numerical methods
have to be used for finding solutions to these equations. Besides the Finite Dif-
ference Method the most widely used numerical methods are the Finite Element
Method (FEM), [9] the Finite Volume Method (FVM) [46], [108], and Boundary
Element Method (BEM), [22], [22]. These methods all involve using domains
modelled by mesh systems to discretise the region of integration. Many mesh-
free numerical methods are used to solve certain types of partial differential
equations,[53], [21]. This section looks at how the partial derivatives particu-
larly, the spatial partial derivatives, are approximated. These finite-difference
approximations are derived using Taylor series expansions. The basic idea can
be seen in how the differential Z—z can be written in terms of an approximate

finite-difference. If y = f(x) then,

dy . flzt+h) = [f(z)
e h (1.10)
So if h is sufficiently small then
dy ~ flz+h) - fz) (1.11)

This is called the forward difference approximation and so the backward differ-
ence approximation is given by

dy _ flz) = flx—h)

2 1.12
dx h ( )

A Taylor series expansion can provide expressions for various orders of partial
derivatives accompanied by error bounds for these approximations. The Taylor

series for the function u(z,y) expanded about the point (z,y) in the x variable

14



is

Oula,y) | W OPuley) B Pulay) |

u(z +h,y) =u(z,y) +h o 2 922 31 0x3

(1.13)

where the spatial step h is sufficiently small to ensure that the series converges.

Similarly

du(z,y)  h*Pu(z,y)  h*Pu(z,y)
Oz 20 Ox2 31 9z3

u(x — hyy) = u(z,y) — h +... (1.14)

These two expansions allows us to get the expressions for the partial derivatives,

from (1.13) which can be truncated and so approximated by

8u(xa y) _ u(x + ha y) B ’LL(:E, y)
oY : +Oo(h) (1.15)

and from (1.14) by

Qu(z,y) _ uw(z,y) —u(z—h,y)
oz 5 + O(h)

(1.16)

where O(h) is the leading term of the truncation error given by

h Pu(z,y)
21 Ox2

Also 1.13 and 1.14 can be rearranged to get the central difference scheme

ox 2h 3! 023

(1.17)

written as

S 57 + O(h?) (1.18)
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If (1.13) and (1.14) are added and rearranged, the central difference for the

second order derivative is obtained.

O*u  ulw+hyy) = 2u(@,y) +ule—hy) o,
5z = 5 +O(h?) (1.19)

These difference approximations can now be expressed using mesh (or grid no-
tation) where x = ih and y = jk where h and k are the respective step sizes, to

get

821,61‘ 7 Uit1,5 — QUZ' 7 + Ui—1,5
J = : : L 4+ O(h? 1.20
o > +0(h?) (1.20)

It is then possible to develop several finite-difference approximations as forward,
backward and central differences for higher order derivatives. Moreover it is

possible to find expressions for them with higher order accuracy for example

82ui j —Ui42 7 + 16U7'+1 i 30ul yi + 16’&1‘_1]' — U;—2 7 4
e — : : L +O0(h 1.21
0x? 12h2 +O(R) ( )

[105], [82]. However, as there are more nodes to calculate, this can lead to un-
necessarily long computation times, and the values of some of the nodal points,
particularly on the boundary, may not be available to us. Thus most finite
difference schemes which model the diffusion make extensive use of (1.20) for

8%u

approximating the spatial derivative 5.

For general finite difference methods, both time and spatial dimensions exist.
As such, convergence and stability issues arise as important factors for obtaining
the correct solution of the governing partial differential equation. Convergence
involves controlling the discretisation error (the difference between the exact
solution and the finite difference approximation). The magnitude of this error
at each mesh point depends on the size and relationship between the spatial
mesh length dz and 6t. In an explicit scheme such as the Forward Time Central

Space (FTCS) we must have that r = 2% <

52 For more stable implicit schemes

1
5-
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such as the Crank Nicholson method, which is valid for all finite values of r a
large value will lead to an inaccurate solution, [96].

Then there are stability conditions to consider. This concerns the unbounded
growth of truncation error which accompanies the time row advances from the
initial line denoting the initial conditions to the final line denoting the desired
time.

The critical point here is that because the Laplace transform can get rid of the
time derivative, we can have more confidence in the convergence and stability

of our method as we have no restrictions on the time step.

1.2 The Laplace Transform

The project involves the use of the Laplace transform so that the time devel-
opment is obtained using a hybrid Laplace Transform Finite Difference Method
LTFDM. The Laplace transform is an integral transform defined as follows:

Let f(t) be defined for ¢ > 0, then the Laplace transform of f(¢) is given by,

C{f(0) = / " f(t)e dr (1.22)

Thus L{f(t)} is a function of s denoted as F(s). The Laplace transform can be
shown to exist for any function which can be integrated over any finite interval

0 <t <lforl>0,and for which f(t) is of exponential order, i.e.
| f(t) |< Me™ (1.23)

as t — oo, where M > 0 is a finite real number and a is a small real positive
number.

The recovery of the function f(¢) is via the inverse Laplace transform which is

17



most commonly defined via the Bromwich contour integral. [98]

a+i00
LYF(s)} = () = — / £(s) et ds (1.24)

2mi a—100

However, using the Laplace transform can generate data in the Laplace domain,
which is not easily invertible to the real domain by analytical means. Thus
numerical inversion techniques have to be used to convert the data from the s
domain to the time domain. The main problem with the numerical inversion
of the Laplace transform is that it is known to be an ill posed or perturbed
problem (thus, small changes in the input function can lead to large oscillations
in the solution) [23],[45],[60]. to illustrate this, consider Bellman and Roth’s
analysis [10] of the Laplace transform and its inversion.

They begin by examining the choice of s in (1.22). If s is allowed to be any
arbitrary complex parameter, then by (1.22), the function f(s) will also be
complex. This situation leads to solving two integral equations, which involve
singularities and oscillations for s < 1. To demonstrate this consider again the

Laplace transform,

LU =76 = [ st at (1.25)

and s to be any complex number. As s is complex then F'(s) must be a function
of a complex number. From a numerical standpoint the limits of integration of
the Laplace Transform can create difficulties in evaluating the integral. Thus

they apply the transformation r = e~* and the integral becomes,

1 s 1 o
_/O f(=1Inr) Tdt :/O g(r) r*=trdt (1.26)

18



where g(r) = f(—Int)

As s e ¢ then

s—1 _ pu—1l-iv _ ju—1 ivlnr. (127)

Now F(s) = a(uv)+ib(uv) thus

a(uv) = /0 L cos(v Inr)g(r)dr (1.28)

b(uv) = /0 r*~Lsin(v Inr)g(r)dr (1.29)

There are two integral equations to solve. More importantly, if u < 1, there will
be a singularity at » = 0, making numerical computation difficult if not impos-
sible. Also, if v # 0 aside from the rapid oscillations at the origin, the integral
is unbounded [10]. In (1.22) and (1.24), Bellman and Roth choose s so that
the singularities of F'(s) lie to the left of the Re(s) = « in the complex s-plane.
Bellman and Roth conclude, “To avoid these problems s is chosen to lie on the
positive real axis greater than unity”. The problem with this approach is that
any numerical quadrature of the integral in (1.26) leads to an ill-conditioned
matrix equation and hence instabilities in numerical inversion. As I show in
this thesis adopting procedures that treat s in (1.22) and (1.24) as complex can
reduce the effects of perturbation on the inverse transform.

Also, a cursory look at (1.22) shows the effect the e~*! term can have on smooth-
ing out the values of f(t) for large ¢ making the recovery of this ‘lost information
from the inverse transform difficult. A similar examination of (1.24) shows that
the et term in the integral can amplify small changes in the input data, clearly
fulfilling the requirement of being ill-posed. However, because of Bellman and
Roth’s points, using complex arithmetic cannot completely overcome the prob-
lem’s ill-posed nature.

There have been other attempts to explain the ill-posed nature of the numerical

19



inversion of the Laplace Transform. Craig and Thompson [26] explain this as
being inherent to forward and backward problems, noting that the instability of
the Laplace inversion is the price that has to be paid for favourable smoothening
properties of the forward transform in (1.24). They also point out that “The
trade-off between frequency resolution and stability in the numerical solution is
a recurring feature of classical approaches to ill-posed problems”.

Epstein and Schotland [45] use harmonic analysis relevant to forward and back-
wards transforms and demonstrate the inherently perturbed nature of the prob-
lems in handling noisy data. McWhirter and Pike [70] examine the ill-posed
nature of numerically inverting the Laplace transform from the standpoint of
Fredholm integral equations of the first kind. This class of equations includes
the Laplace transform. Again they show how successful inversion depends on
the noise level in the calculation and “on the eigenvalue structure of the kernel”.
Despite these drawbacks, the Laplace transform’s power is apparent from its
numerous applications spanning all areas of applied sciences. Thus, the above
authors’ considerations were to deepen the understanding of its implementation
to further its use in solving differential equations. Its ability to construct fre-
quency domain representation converting (the description of the system from
the time domain to the frequency domain) the differential equations to alge-
braic equations, which are much easier to solve. As I show in this thesis, when
numerical Laplace transform methods are employed to solve these equations,
accurate representation of the solution is possible, posing a viable alternative to
spatial discretisation methods used for solving time-dependent parabolic partial

differential equations.
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1.3 Literature Review

In this section, I review important contributions in the literature which helped
inform the thesis. This covers using Laplace transform methods to solve diffu-
sion type equations and the principal methods used to invert the data numeri-

cally.

1.3.1 The Laplace Transform Boundary Element Method
(LTBEM)

Moridis and Reddel [74] introduced the Laplace Transform Boundary Element,
LTBEM, to simulate two and three-dimensional heat conduction and ground-
water flow. Significantly, the authors produced results more accurately than the
conventional BEM treatment.

Moridis [73] later developed an alternative formulation of the LTBEM in which
two time-marching schemes were compared with the LTBEM. [29], [15]. The
inversion from the Laplace space was done using the algorithms proposed by
Stehfest [99], and Dehoog [37]. Moridis concluded that the DeHoog algorithm
was less computationally efficient than the Stehfest inversion but allowed solu-
tions at a range of times. He concluded that for this application, “The Stehfest
LTBEM seems to have a clear advantage, except in cases involving very steep

functions of time”.

Stradhar et al. [101] used the LTBEM to investigate three-dimensional problems
involving transient heat conduction in homogeneous and non-homogeneous ma-
terials. The numerical simulation is done using a Galerkin approximation [14],
and the time dependence is restored via the Stehfest algorithm. The authors

report that the results were in excellent agreement with the analytical solutions
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on the test problems tried using this method.

Zhu et al. published three papers exploring the combined Laplace transform
and dual reciprocity method (LTDRM) for solving linear and non-linear diffu-
sion equitations [117], [119], [118]. Their work showed the combined scheme’s
ability to produce efficient, accurate numerical solutions for linear and non-
linear diffusion type problems at any desired observation time.

Singh et al. [95] employed a mesh-free numerical method based on the partic-
ular solution for the modified Helmholtz operator and then used the Laplace
transform to eliminate the time parameter. Describing the approach as a ‘time
free’ ‘mesh-free’ method, the authors report better performance than the LT-
DRM for the problems examined in the paper. The Stehfest inversion scheme
was used for this method.

For some years, members of the mathematics department at The University of
Hertfordshire have investigated some of the various solution methods for solving
the diffusion equation [31], [34], [56]. In continuing this research, the Laplace
transform was used as a viable strategy for solving these equations by removing
the time dimension and its associated time stepping procedures.

Crann’s 2005 PhD thesis [27] investigated the use of the Laplace Transform com-
bined with the Boundary Element (LTBEM) method for solving diffusion type
problems. Radford’s 2008 thesis, [87] looked at aspects of the Laplace Transform
Isotherm Migration Method, and Fitzharris’s thesis, [49] used Laplace transform
methods to solve the diffusion type Black Scholes equation [13] .

In 2007 Kane et al. [58] investigated using a Hybrid Laplace Transform /Finite
Difference Boundary Element Method for Diffusion Problems. All the above
research at Hertfordshire used a time-domain decomposition suitable for imple-
mentation in a parallel computing environment. The main focus was on the

issues associated with parallel computing when using Laplace transform meth-
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ods. In all cases, the Stehfest inversion scheme was used to invert the data.

1.3.2 LTFDM

Opaunga et al. used the LTDFM on one-dimensional boundary value diffusion
problems. Their results were compared to finite-difference methods, but their
method involved using closed-form solutions and did not use numerical inversion
algorithms [81]. Tagliani et al. used the technique of mixing the Laplace Trans-
form and the finite-difference method to solve the Black-Scholes PDE [103], [13]
in which the Post-Widder formula was used to invert the data [23],[83].

This method for solving the Black-Scholes equation was also used by Ann et al.
[4] who used an algorithm developed by the authors but based on the Fourier
series inversion method [3].

Chen et al. applied the LTFDM to a two-dimensional non-linear heat conduc-
tion problem using the Honig and Hirdes version of the Fourier series method
for inverting the Laplace Transform. [55], [20].

Jingtang Ma et al. used the LTDFM in the context of “Pricing American op-
tions under complex models” [67] and employed the Stehfest inversion method.
Zahra et al. used an LTFDM for obtaining “solutions fractional-order electrical
circuits ”[116]. As in [81] closed from solutions of the Laplace transform were
used with no numerical inversion schemes employed.

Habte et al. [54] successfully applied the LTFDM for the specific applica-
tion of “simulating the pressure-transient behaviour of oil/water flow associ-
ated with water injection/falloff tests”. The method is “coupled with the well
known Buckley-Leverett frontal-advance formula [30] to solve the radial diffu-
sivity equation”.

Mahajerin [68] combined an extension of the Fundamental Collocation Method
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“to handle two-dimensional transient heat conduction problems in solids”. The
method is applied in the Laplace space, and an inversion technique [91] is used
to retrieve the solution in time. The authors noted that there were “inherent
advantages over the domain-oriented techniques like the finite element and, fi-
nite difference methods, the Laplace transform-based FCM approach presented
here may be regarded as a simpler method for solving a wide variety of time-

dependent problems in heat conduction and related fields”.

1.3.3 Numerically Inverting the Laplace Transform

Davies and Martin [36] give a detailed account of their tests on 14 methods for
numerically inverting the Laplace transform. They do so through a variety of
test functions. “The methods are presented briefly and classified theoretically
into methods that compute a sample, methods which expand f(t) in exponential
functions, methods based on Gaussian quadrature, methods based on a bilin-
ear transformation, and methods based on Fourier series”. The conclusions are
wide-ranging but note that the Stehfest and the Fourier series methods gave
good results for most of the functions tested. The survey did not, however,
evaluate the performance of the Talbot algorithm [104].

Other surveys include; Narayanan and Beskos, [78] who examined eight existing
methods for numerically inverting the Laplace Transform. They confirm that
using the Laplace transform for time-dependent diffusion equations offers a sim-
ple, straightforward and uniform method of solution by reducing the complexity
of the problem through the reduction by one of the numbers of their indepen-
dent variables. At the same time, “easily handling time-dependent boundary
conditions”. They say the choice of method can depend on a compromise be-

tween methods with low accuracy but short computation times and those that
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offer high accuracy but greater computation times.

Kuhlman [60], used a two dimensional BEM to compare five methods for invert-
ing the Laplace Transform. He found that for this particular application, the
“Fourier-series-based inversion algorithms work for common time behaviours,
are the most robust with respect to free parameters, and allow for straightfor-
ward image function evaluation re-use across at least a log cycle. Of time.”
Cohen [23] provides a very useful summary of the derivation of the most widely
used algorithms for numerically inverting the Laplace Transform, illuminating
further the advantages and disadvantages of using an algorithm in a variety of
applications.

Duffy [40], compares three methods; the method of Weeks [111], the Talbot
method [104], and the Laguerre polynomial scheme [40] on a series of functions
found in engineering and physics. Duffy concludes “that all the methods give
good results, and the exact choice will depend on the problem”. He also noted
that the Talbot algorithm is very fast.

Abate and Valko investigated the performance of the Gaver-Wynn-Rho (GWR)
and the Talbot algorithm in a multi-precision environment [1]. They found that
both had a greatly improved performance as the extra precision could curtail
the inherent perturbation of the numerical inversion of the Laplace transform.
Wang and Zhan [109] ran tests on seven different inversion methods. Four of
these were versions of the Fourier series method; the other three were Weeks,
Talbot and Stehfest. They were used on solute transport problems. They con-
cluded that Talbot, de Hoog and Simon worked very well for radial dispersion
methods “regardless of the dispersion-dominated or advection-dominated prob-
lems”.

Krougly et al. [59] further examined the performance of the Stehfest algorithm

in a multi-precision environment. After noting the improved performance of the
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algorithm in this environment, the authors concluded: “We demonstrated that
the level of precision chosen must match algorithms properly. In the Gaver-
Stehfest algorithm, the balance is between the truncation error" (a consequence

" and roundoff error”.

of truncating the series representation of the algorithm)
I expect more work to be done in this area since multi-precision is so effective

in increasing the accuracy of the inversion methods.
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Chapter 2

The Noise Handling
Properties of the Talbot
Algorithm for Numerically
Inverting the Laplace

Transform

2.0.1 Introduction

This chapter examines the noise handling properties of three of the most widely
used algorithms for numerically inverting the Laplace Transform. After exam-
ining the genesis of the algorithms, the regularization properties are evaluated
through a series of standard test functions in which noise is added to the in-

verse transform. Comparisons are then made with the exact data. Our main
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finding is that the Talbot inversion algorithm performs with greater accuracy
when compared to the Fourier Series and Stehfest numerical inversion schemes,
as they are outlined in this chapter.

(This chapter was published as a research paper: First published September 13,
2018, Research Article https://doi.org/10.1177/1748301818797069)

2.1 The Laplace Transform

The Laplace Transform is an integral transform defined as follows:

Let f(t) be defined for ¢t > 0, then the Laplace transform of f(¢) is given by:

Mfw}zlff@kﬂtﬁ (2.1)

with £{f(¢t)} denoted as F(s). The Laplace transform can be shown to exist
for any function which can be integrated over any finite interval 0 < t < [ for

[ > 0, and for which f(t) is of exponential order, i.e.
| £(t) |< Meot (2.2)

as t — oo, where M and a are small real positive numbers.

Analytically the inverse Laplace transform is usually obtained using the tech-
niques of complex contour integration with the resulting set of standard trans-
forms presented in tables [97].

However, using the Laplace Transform to obtain solutions of differential equa-
tions can lead to solutions in the Laplace domain which are not easily invertible
to the real domain by analytical means. Thus numerical inversion techniques

are used to convert the solution from the Laplace to the real domain.
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2.2 The Inverse Laplace Transform Perturbation
and Precision

The recovery of the function f(¢) is via the inverse Laplace transform which is

most commonly defined by the Bromwich integral formula

u+1i00
LHF(s)} = f(t) = ! / F(s) e ds (2.3)

27TZ —ico

for some u € R. [97]

The choice of s in (2.1) and so in (2.3) is not an arbitrary one. If s is chosen
so that it lies on the positive real axis, the solution of (2.3) is being treated as
a positive real integral equation. The problem here is that the inverse problem
is known to be ill-posed, meaning that small changes in the values of F(s) can
lead to large errors in the values for f(t) [10].

Hence when Laplace Transform methods are used in finding numerical solutions
to partial differential equations, the corresponding inversion methods can be
highly sensitive to the inevitable noisy data that arises in their computation
via truncation and round off error, a process which is exacerbated in non-linear
schemes. Abate and Valko [1] have shown that, to some extent, these errors
can be curtailed by working in a multi-precision environment; as I show in
the “Tests” section later, a small amount of noise in the data can significantly
perturb the solution. When this is the case, it becomes difficult for unlimited

precision to aid in the convergence of the algorithm to the correct solution.

29



2.3 The Algorithms

There are over 100 algorithms available for inverting the Laplace Transform
with numerous comparative studies. Examples include Duffy [40], Narayanan
and Beskos [78], Cohen [23], and perhaps the most comprehensive by Davies and
Martin [36], However for the purposes of this investigation, we apply our tests
using “Those algorithms that have passed the test of time” [1], this is because
these algorithms are reported to give the most accurate results on the widest

variety of functions. [36],[40]. These fall into four groups,

1) Fourier series expansion.
2) Combination of Gaver Functionals.
3) Laguerre function expansion.

4) Deformation of the Bromwich contour.

(1)
(2)
(3)
(4)
Derivations of particular versions of these algorithms are given in the next sec-
tion. In the upcoming sections, we examine the Stehfest algorithm, which is a
widely used version of the Gaver functionals and Talbot Algorithm that uses a
particular deformation of the Bromwich contour.

However, for now, we do not run our tests using the Laguerre function expan-
sion. While we do intend to investigate this method later on in our work, our
choices in this work have been made based on the ease of implementation of
the inversion method, an issue connected to parameter choice and control. The
Laguerre method requires more than two parameters to effectively compute the
desired transform, while the other three methods can perform reasonably well

when defined using just the one parameter.
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2.3.1 The Fourier Series Method

In their survey of algorithms for inverting the Laplace Transform, Davies and
Martin [36] note that the Fourier series method without accelerated convergence
gives good accuracy on a wide variety of functions. Since the Laplace Transform
is closely related to the Fourier transform it is not surprising that inversion
methods based on a Fourier series expansion would yield accurate results. In
fact, the two sided Laplace transform can be derived from the Fourier transform

in the following way. We can define the Fourier transform as

Py = [ T A e ar (2.4)

providing f(t) is an absolutely integrable function, i.e.

/OO FO)] dt < o (2.5)

— 00

Then letting v = 27v we have

Py = [ T p) e dr (2.6)

As many functions do not satisfy the condition in (2.5), f(¢) is multiplied by

the exponential dampening factor e=“¢ thus
F{ft)e "} = /_Z f(t) e"™temut gt (2.7)
and letting s = u + v we obtain the two sided Laplace transform of f(t) as
FUO) = (0} = [ est) a 29
LePage [14] noted that the integral in (2.8) can be written in two parts as
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follows:

/OO e F(t) dt—/o e F(t) dt+/oo e St f(t) dt (2.9)

—o0 —o00 0

The second term in the above expression is referred to as the one-sided Laplace
transform or simply the Laplace transform. Thus s is defined as a complex

variable in the definition of the Laplace Transform.

As before the inverse Laplace transform is given as:

u+1i00
f(t) L/ e F(s) ds (2.10)

T2 i
With s = w + v in (2.10) this leads to the result

ft) = 2?: /OOO[Re{F(u +iv)}cos (vt) —Im {F(u+iv)}sin (vt)] dv (2.11)

As Crump [7] points out equations (2.1) and (2.3) can be replaced by the cosine

transform pair

Re{F(u+iv)} = /000 e " f(t)cos (vt) dt (2.12)
f() = 25: /000 Re{F(u+iv)} cos(vt) dv (2.13)

or by the sine transform pair

Re{F(u+iv)} =— /0C>Q e " f(t)sin (vt) dt (2.14)
F(t) = —2jru /0 " I {F(u+ i)} sin(ot) do (2.15)

Dunbar and Abate [11] applied a trapezoid rule to (2.13) resulting in the Fourier
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series approximation,

£(t) ~ QGTM B Flu) + éRe{F(u + %) } cos (’“T”ﬂ (2.16)

where f(t) is expanded in the interval 0 < ¢ < T'. For faster computation Simon

and Stroot [20] proposed the following version of equation (2.16)
i~ L Fw -3 Re Pt ) Lt (2.17)
- 2 ! t '

This series can be summed much faster than (2.16) as there are no cosines to
compute [25]. This algorithm is relatively easy to implement, with u being the
only real varying parameter.

However as pointed out by Crump [28] for the the expression in (2.17) the
transform F'(s) must now be computed for a different set of s— values for each
distinct ¢. Since this type of application often occurs in practice in which the
numerical computations of F'(s) is itself quite time consuming this may not be
an economical inversion algorithm to use. These drawbacks to some extent, can
be overcome by using the fast Fourier transform techniques [24], [25].

Crump [28] also extends this method to one of faster convergence by making use
of the already computed imaginary parts. There are several other acceleration
schemes, for example, those outlined by Cohen [23]; however, these acceleration
methods, in general, require the introduction of new parameters, which for the

purpose of this investigation, we wish to avoid.

2.3.2 The Stehfest Algorithm

Davies and Martin [36] cite the Stehfest [99] algorithm as providing accurate
results on a variety of test functions. Since that time, this algorithm has be-

come widely used for inverting the Laplace Transform, being favoured due to
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its reported accuracy and ease of implementation.

Here we give a brief overview of the evolution of the algorithm from a probabil-
ity distribution function to the Gaver functional, whose asymptotic expansion
leads to an acceleration scheme which yields the algorithm in its most widely
used form.

Gaver [50] investigated a method for obtaining numerical information on the
time dependent behaviour of stochastic processes, which often arise in queu-
ing theory. The investigation involved examining the properties of the three
parameter class of density functions, namely

(n+m)!

. — _ ,—at\n__—mat
Pnm(a;t) = nl(m — 1)!(1 e “ae (2.18)

with n,m € N. After the binomial expansion of the term (1 — e~ %*)", Gaver
went on to find the expectation E[f(T), )] where T, ,,, is the random variable
with density (2.18). From this Gaver was able to express the inverse Laplace

transform in terms of the functional

onlt) = B2 LSS (e (wemB2) 2ao)

Jj=0

with certain conditions on n and m, Gaver makes n = m and expresses equation

(2.19) as

fn(t)_h"fn, sn_m < ) ((k+ )hf) (2.20)

While the expression in (2.20) can be used to successfully invert the Laplace
transform for a large class of functions its rate of convergence is slow [35], [40].

However Gaver [13] has shown that (2.20), with @ = 22 has the asymptotic
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expansion

In2 a1 a3
fn(t)zf<> +7+ﬁ+ﬁ+”' (2.21)

a n

where the «;’s are constant coefficients in the asymptotic series. Hence (2.21)

p0 =1 (%)

as n — oo. For the conditions on m and n and justification for the substitution

converges to the limit

for a referred to above, see Gaver [50]. This asymptotic expansion provides scope
for applying various acceleration techniques enabling a more viable application
of the basic algorithm.

Stehfest’s acceleration scheme.

For the purposes of following Stehfest’s derivation it is convenient to rewrite

(2.20) as
(2n)la " /n &
fo(t) = F, = ol i > L JCDRE( (R +n)a (2.22)
! b=
with a = 22, Stehfest [21] begins by supposing we have N values for F[(k+n)a]

with F(a), F(2a), F(3a), ....F(Na) for N even. Using equation(2.22) we can
then determine % values Fi, Iy, ..., Fiy/o. Now each of these N/2 values satisfy
the asymptotic series in (2.21) with the same «; coefficients.

As pointed out by Stehfest, the a;’s are the same for each of the above ex-
pressions and by using a suitable linear combination we can eliminate the first

(4 — 1) error terms in equation (2.21) can be eliminated. That is

-

M w2

1
anF(z yi-1) +O<N§> (2.23)

n=1
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which may be achieved by selecting the coefficients to satisfy

i anm = 5]@_’[) k= ]., ,N/2 -1 (224)
n=1 2 n
—1)nt N N N_q

Finally, Stehfest substitutes (5.28) into (2.23) and obtains the inversion formula

In2 N jIn2
JO) = ==Y A F (12 (2.26)
Jj=1
where
for N even.
mzn(],%) N
N k= (2k)!
j k_%;u (X — k)l (k — 1)I(j — k)!(2k — j)!
[99].

2.3.3 The Talbot Algorithm.

Equations (2.4) to (2.8) showed that the Laplace transform can be seen as a

Fourier transform of the function

e "f(t) t>0 (2.28)

i.e.

Fle ™ f(t)} = L{f ()} = F(s) (2.29)

36



Hence the Fourier transform inversion formula can be applied to recover the

function thus

1 [ X
F U AF(s)} = e “f(t)= o F(s) €™ dv (2.30)
as s = u + iv we have that ds = idv and so
1 OOF()std (2.31)
omi | s)e s .
as s = u+iv we have that ds = idv and so
1 u+1i00
fit)y = i) F(s) e ds (2.32)

This result provides a direct means of obtaining the inverse Laplace transform.

In practice the integral in (2.32) is evaluated using contour integration

1 st
€ /B et F(s) ds (2.33)

211

with B denoting the Bromwich contour [98]. The contour is chosen so that it en-
closes all the possible singularities of F'(s). The idea of the contour is introduced
so that the residue theorem can be used to evaluate the integral. However, when
f(t) is to be calculated using numerical quadrature, it may be more appropriate
to devise a new contour. To ensure the convergence of (2.33) we may wish to
control the growth of the magnitude of the integrand e by moving the contour
to the left so, giving the real part of s a large negative component [1], [75].

However, the deformed contour must not be allowed to pass through any sin-
gularities of F'(s). This is to ensure that the transform is analytic in the region

to the right of B.
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Derivation of the Fixed Talbot Contour.

In the derivation that follows [1] and [75], are used as the primary basis for ex-
tending the explanation of the derivation of the Talbot algorithm for inverting
the Laplace Transform.

Abate and Valko [1] begin with the Bromwich inversion integral along the

Bromwich contour B with the substitution

1
F(s) = s @ >0 (2.34)
So f(t) can be expressed as
£t) = — / ets—aloges) g (2.35)

with @ = ¢ in (2.34) and (2.35). As pointed out by Abate and Valko [1]
numerically evaluating the integral in (2.35) is difficult due to the oscillatory
nature of the integrand.

However this evaluation can be achieved by deforming the contour B into a path
of constant phase, thus eliminating the oscillations in the imaginary component.
These paths of constant phase are also paths of steepest decent for the real part
of the integrand [1],[11],[75].

There are in general a number of contours for which the imaginary component
remains constant so we choose one on which the real part attains a maximum

on the interior (a saddle point) and this occurs at ¢ (s) = 0 at some point on

the contour. At these saddle points the Im{g(s)} = 0 [75]. Here

g(s) = s —alns (2.36)
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in (2.35). Thus we have

gls)=1-1 (2.37)
So the stationary point occurs when s = a.
With s = u + iv we have
Im{u+ iv — aln(u +iv)} =0 (2.38)
Expressing u + iv as Re'® we have
Im{(u—alnR) +i(v—ab)} =0 (2.39)
then
v =al (2.40)
and as
tan(d) = <”) (2.41)
U
then
u = af cot(h) (2.42)
[1].
With v = af then s can be parametrized to Talbots contour:
s(0) = ab(cot() +i) —mw<O<+m (2.43)

[104].

Conformal mapping of the Talbot contour.

While the above parametrization can be used as a basis for inverting the Laplace

Transform we proceed with the algorithm’s development via a convenient con-
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formal mapping as follows.

i(eie + e’ie)

Then
. 2:6
with z = 2i6 then (2.45)
z
= 2.46
1—e* ( )
The function
z
S(z) = 2.47
() = —— (2.47)
maps the closed interval M = [—27i, 27i] on the imaginary z—plane onto the
curve L in the s plane giving the integral,
1 st
fty==— [ F(s) €* ds (2.48)
271 L

For the details of this transformation, one can refer to the study of Logan [66].
Next we follow the procedure as adopted by Logan [66] for numerically integrat-

ing equation (2.48). With the change of variable (2.48) becomes

ft) = gim /M F(S(2)) 55 (2) dz (2.49)
where
N e O )
S'(2) et (2.50)

For convenience we write,

ft) = i/M Q(z) dz (2.51)
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where

Q(2) = F(s(2)) e s'(2) (2.52)

and M = [-2m,27]. Then if we let w = —iz for the integral in (2.51) so
the interval of integration is now real and becomes [—2,27]. Then using the

trapezoid rule with n we obtain

n

1 n—1
fl) == { (I(27i) + T(—2mi) 4 2 Z I(z’wj)} (2.53)

Jj=1

where

w; =2n(—= —1) (2.54)

and we note that I(2mi) = I(—2mi) = 0. [66].

The regularization properties of the Talbot algorithm

Despite the intricacies of deriving the Talbot algorithm, we have found it to be
a relatively easy algorithm to implement. Also, the tests which we have carried
out so far show that the algorithm performs with a high degree of accuracy.
Moreover, the algorithm converges much faster than the Fourier series method
without requiring the use of any acceleration schemes. Additionally, in the form

in which we have used it there is only one parameter to control.

Perhaps its greatest strength is the fact that we have found that it is able to
handle noisy data (of magnitude outlined below) with little growth in the corre-
sponding error. As we will show, this is not the case for either the Fourier series
or the Stehfest inversion algorithms presented above. Moreover, this “regular-
ization property" does not exist for many of the numerical inversion schemes, as
indicated by Egonmwan [43]. For most algorithms, this is generally overcome

by constructing some regularization scheme which then needs to be attached
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on to the inversion algorithm(s) of choice. This, of course, increases the com-
plexity of the inversion process involving new parameters, thus requiring even
greater knowledge of the desired solution. This is even more so if the scheme
also involves some additional accelerated convergence process. For the Talbot
scheme, one needs only to directly apply the algorithm, which has the ability
to mitigate this level of noise. On the other hand, for the Stehfest method, a
regularization scheme such as the Tikhonov regularisation scheme implemented
by Egonmwan may need to be constructed for this purpose, and so some esti-
mate of the noise will be required. In its simplest form, this process involves
adding positive elements to the diagonals of the ill-conditioned matrix in order
to decrease its condition number. This is unnecessary for the Talbot scheme as
these ill-conditioned matrices do not exist. In a sense, then, the Talbot scheme

has an implicit regularisation scheme when compared to the Stehfest algorithm.

As we pointed out earlier, the perturbation in the numerical schemes are a con-
sequence of the inversion being carried out in the complex plane. The inclusion
of complex arithmetic in the Talbot scheme enormously diminishes this pertur-
bation as it does not create ill conditioned matrices associated with inversion
schemes which are note done in the complex plane, [10]. Of great importance

"

here too is that the “reqularization properties " of the Talbot algorithm means
that very good performance can be obtained on many of the test functions with-
out the necessity for multi-precision.

Egonmwan [43] examines regularised and collocation methods for the numeri-
cal inversion of the Laplace transform, which involve a Tikhonov regularisation
scheme [106] based methods. This is then applied to the Stehfest [99] and

Piessens |84] methods on various standard test functions for both exact F\(s)

and noisy F(s + €) data, where e denotes the level of noise added.
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For the Stehfest [99], Piessens [84] and the regularized method Egonwan [43]
added noise of a magnitude 1073 x U(1,0) to the inverse transforms in table 2.1,
where U(1,0) is a random number between 1 and 0,(Uniform distribution) to
the Laplace transform values. Commenting on his results, Egonwan notes “the
Gaver Stehfest method gave very nice approximate solutions for a wide range
of functions. However, it completely failed in the presence of noisy data. In the
case of exact data, the method produced better numerical approximations when
compared to the Piessins and the regularized collocation methods. However, the
Piessins method gave better results than the regularized collocation method in
the case of exact data."

In other words, methods which performed well for exact data did not do well for
noisy data, and the regularized collocation method failed (as outlined by Egon-
mwan [43]) for exact data. Thus to use such regularized methods requires some
a priori knowledge of the magnitude of the noise involved and, by implication,

a better estimation of the solution than might be otherwise possible.

2.3.4 Tests

Table 2.1 lists the functions together with a variety of properties for the pur-
pose of testing the noise handling capability of the three inversion algorithms

employed.
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Function type

No. F(s) f@)
1 CEEsyE 0.5¢ sin(t)
2 ﬁ te™?
3 % bt
4 % L
5 erf{%} L sin(4v/)
6 o sinh(0.5t)
7 m cos(0.5t) cosh(0.5¢t)
lns —(Int+7)

Oscillating increasing

Exponentially decreasing

Increasing

With singularities

Oscillating with singularities

Hyperbolic

Combination of oscillating and hyperbolic

Natural log

Table 2.1: Test Functions

These functions are the same used by Egonmwan [43]. This sample of test

functions has a variety of properties which we think form a basis for testing the

robustness of the inversion schemes. We use three error measures, the Ly norm

defined as

40

By= Y

i=1
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.fnumervlcal(ti) - feacact(ti) , 1= 1..40 (255)




the L., norm as

Eo = max fnumerical(ti) - fezact(ti) 5 1 =1..40 (256)
and the percentage error as
numerica tz — Jezac ti .
Ermag = max|L () ~ esact(ts) 100{, i=1,..40 (2.57)
feazact(ti)

To give a good estimation of the errors involved we have sampled ¢ over 40
points for ¢ = 0.1 to 4. The L, norm is chosen as a measure which averages
out the error over the sample points, while the L> norm and the % error as
defined above choose the maximum error obtained for these measures. In all
cases, the magnitude of noise added is 1073 x U(1,0), where U is the uniform
distribution.

The precision used for implementing the three algorithms is 1.8 M, where M
is the number of weights for the Stehfest algorithm and 2M where M is the
number of terms in the summation for the Talbot and the Fourier methods.
The choice of these levels of precision is based on trial and error for the best
performance of these methods.

They are perhaps larger than they need to be, but as our interest in this inves-
tigation is not on their efficiency but on their ability to handle noisy data, we
wanted to ensure that the precision played as little part as possible in assessing
their performance. Thus in cases where the extended precision decreases the
accuracy of the noisy data, we used the usual double precision for these inver-
sions.

For functions which have sine, cosine and hyperbolic properties, we increase the
weights for the Stehfest. This is because these functions require more weights

and a corresponding increase in precision for the Stehfest method to produce

45



accurate results. For the Fourier Series method we choose the parameter value
of @ = 4. Once again this choice is based on trial and error. We have found that

this choice for a gives the best results for inverting the widest class of functions.

2.3.5 Results

No Noise Noise

Method | M Lo Lo Y%error L2 Lo %error

Stehfest | 30 | 9.4(-4) | 5.0(-4) | 3.8(-2) | 4.6(16) | 3.6(16) | 1.2(18)

Talbot | 55 | 2.0(-6) | 5.4(-7) | 2.3(-4) | 6.2(-4) | 2.7(-4) | 3.7(-2)

Fourier | 55 | 4.2(-2) | 1,8(-3) | 3.1(-1) | 8.9(1) | 2.9(0) | 1.1(3)

Table 2.2: f(t) = 0.5tsin(t) = L™ {zi5z}

No Noise Noise

Method | M Lo Lo Y%error Lo Lo %error

Stehfest | 16 | 1.1(-4) | 4.0(-5) | 5.4(-1) | 3.0(7) | 2.4(7) | 2.6(10)

Talbot | 55 | 7.3(-6) | 6.4(-6) | 2.1(-3) | 7.8(-4) | 2.3(-4) | 3.1(-1)
Fourier | 55 | 3.6(-3) | 1.0(-2) | 4.9(-0) | 1.1(0) | 9.0(-1) | 9.7(2)
Table 2.3: f(t) =te™" =L {7}

No Noise Noise
Method | M Lo Lo Y%error L2 Lo Y%error

Stehfest | 16 | 6.7(-6) | 3.0(-54) | 2.8(-3) | 3.8(3) | 2.4(3) | 1.1(12)

Talbot | 55 | 3.8(-10) | 3.4(-10) | 5.1(-4) | 2.3(-3) | 8.8(-4) | 1.5(-1)

Fourier | 55 | 6.2(-1) | 2.9(-1) | 2.7(0) | 7.6(0) | 16.3(1) | 2.5(3)

Table 2.4: f(t) = iﬁl _ L—l{(;)S}
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No Noise Noise
Method | M Lo L Y%error Lo Lo %error
Stehfest | 16 | 2.7(-8) | 1.3(-8) | 7.2(-7) | 1.5(7) | 1.2(7) | 6.5(8)
Talbot | 55 | 9.2(-2) | 9.2(-3) | 5.2(-2) | 9.2(-2) | 9.2(-3) | 5.2(-2)
Fourier | 55 | 6.2(-1) | 2.9(¢-1) | 2.7(0) | 1.4(1) | 6.3(0) | 7.1(6)

. _ _1 —_g7—-1ly_1

No Noise Noise
Method | M Lo Lo Y%error Lo Lo %error
Stehfest | 16 | 2.6(-4) | 1.6(-4) | 6.6(-1) | 1.2(7) | 9.6(6) | 7.2(9)
Talbot | 55 | 2.2(-2) | 22(-2) | 7.1(-1) | 2.2(-1) | 2.2(-2) | 7.1(-1)
Fourier | 55 | 1.8(1) | 1.1(1) | 4.3(3) | 3.9(3) | 2.2(3) | 4.1(6)

Table 2.6: f(t) = L sin(4vt) = L_l{erf(%)}

No Noise Noise
Method | M Lo Lo Y%error Ly Lo %error
Stehfest | 36 | 9.8(-3) | 9.2(-3) | 2.1(-5) | 2.6(7) | 2.0(7) | 7.0(6)
Talbot | 55 | 7.2(-6) | 7.2(-6) | 4.6(-6) | 4.5(-4) | 3.1(-4) | 7.6(-3)
Fourier | 55 | 1.4(-1) | 1.4(-1) | 1.9(0) | 1.7(1) | 5.8(0) | 3.4(2)

sinh(0.5t)

Table 2.7: f(t) =
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No Noise Noise
Method M L, L %error L? L %error
Stehfest | 36/16 | 3.7(-4) | 3.0(-4) | 3.0(-4) | 3.1(6) | 2.4(6) | 1.0(8)
Talbot | 55 | 5.8(-4) | 5.8(-4) | 5.8(-1) | 7.0(-4) | 6.0(-4) | 6.0(-2)
Fourier | 55 | 9.4(-2) | 6.0(2) | 3.5(-1) | 9.0(1) | 2.81) | 5.2(4)

Table 2.8: f(t) = cosh(0.5¢) cos(0.5t) = Ll{ s*

s440.52

|

No Noise Noise
Method | M Lo L Y%error L? L %error
Stehfest | 16 | 1.9(-8) | 1.2(:7) | 2.8(:5) | 1.4(7) | 1.8(7) | 2.4(9)
Talbot | 55 | 6.9(-3) | 6.9(-3) | 4.0(-1) | 7.1(-3) | 7.1(-3) | 4.1(-1)
Fourier | 55 | 8.6(-1) | 8.3(-2) | 4.0(3) | 1.2(2) | 3.8(2) | 6.3(3)

Table 2.9: f(t) = —(In(t) +v) = Ll{ S
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Noise and the Stehfest method, m=4
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Tables 2.2-2.9 and Figures 2.1 to 2.4 show very good performance of the Tal-
bot algorithm in handling noisy data. (For brevity, we have included only four
graphical results for the eight functions using different weights as the perfor-
mance of these functions with a higher number of weights is well illustrated in
the tables).

With the exception of the function f(f) = 2 in Table 2.5 (for which the Ly
norm and L., norm maintain their very small size) the error for the Talbot
inversion diminishes considerably as a function of M. However, for both the
Fourier series and the Stehfest inversion methods, both measures of error in-
crease as M increases.

In Table 2.6, we also observe that the erf (%) performs badly for the Fourier
series method in both the noisy and noise free environment. Table 2.8 includes
two sets of weights for the Stehfest inversion algorithm. For the accurate inver-
sion of sinusoidal functions, this algorithm requires more weights for increasing
values of ¢; here, for example, we use 36 weights. However, when noise is added,
the accuracy decreases with the number of weights used; thus, in this case, for
better performance, we have used 16 weights.

Table 2.9 again shows minimal error involved for the Talbot inversion when
noise is added. Figure 2.5 and Figure 2.6 demonstrate that the Stehfest algo-
rithm handles noisy data more accurately by decreasing the number of weights
used. This is because the error generated in reconstructing the function from
noisy data increases as the number of weights used rises. However the accu-
racy achieved by decreasing the number of weight is not sufficient to justify
such an approach for handling noisy data. Moreover as we have stated a larger
number of weights and the corresponding increase in precision is necessary for
handling trigonometric and hyperbolic functions. We again note that no such

considerations are necessary when employing the Talbot algorithm.
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2.4 Summary.

This chapter investigated the noise handling properties of three of the most
widely used algorithms for numerically inverting the Laplace transform. This
aids in understanding the perturbed nature of these algorithms and helps deter-
mine which is affected least by perturbation. This is important since, in applying
these inversion schemes to solving diffusion problems, understanding how they
perform when inevitable errors are introduced by truncation and round off error
can be critical.

The results show that the Talbot algorithm handles the noisy data extremely
well, having very little impact on the final outcome. Both the Stehfest and the
Fourier series methods fail to handle the noise. This is because rounding errors
worsen as the number of weights used increases. This is due to the fact that a
significant part of the perturbation in these numerical schemes is a consequence
of the inversion being carried out on the real axis in the complex plane. The
inclusion of complex arithmetic in the Talbot scheme enormously diminishes
this perturbation. This has implications for implementing the LTFDM when
solving nonlinear diffusion or time dependent parabolic partial differential equa-
tions, which can generate noisy data through a combination of measurement,
truncation and round off error. Using the Talbot algorithm in these circum-
stances avoids additional complications such as having to devise regularized
collocation methods to attain accurate solutions to these problems.

Having examined the noise handling properties of the algorithms, in the next
chapter, the performance of five algorithms for numerically inverting the Laplace
transform are investigated in standard double precision and multi-precision.
This investigation will explain how these algorithms handle their perturbations
in these precision environments. The knowledge gained can help make an in-

formed choice of the best algorithm to use in double and multi-precision.

96



Chapter 3

The Numerical Inversion of
the Laplace Transform in a

Multi—Precision .

a7



3.1 Introduction

This paper examines the performance of five algorithms for numerically inverting
the Laplace transform in standard 16-digit and multi-precision environments.
The algorithms, whose derivations are outlined in Section 4, are taken from
three of the four main classes of numerical methods used to invert the Laplace
transform [1].

The Abate-Valko [1] and Logan schemes [66] belong to the class of inversion
algorithms which deform the Bromwich contour [98]. They are closely related
versions of this approach as they both use Talbot’s method for deformation
of the contour [104]. Logan, however, chooses an exponential transform while
Abate-Valko extends the original Talbot formulation expressing the contour in
trigonometric form.

The Stehfest and Salzer-Gaver algorithms [99], are again two closely related
schemes based on the acceleration of the Gaver functional [50]. Stehfest applied
a modified Salzer acceleration scheme [112] onto the Gaver functional simplify-
ing this result to yield one of the most widely used algorithms for inverting the
Laplace transform. We find, however, that when we implement a direct applica-
tion of the Salzer acceleration scheme onto the Gaver functional (Salzer-Gaver)
with Stehfest’s modifications, we do not obtain the same results as those pro-
duced by the Stehfest scheme. We conclude that Stehfest’s simplification process
is at least in part responsible for the differences in performance of these two ver-
sions.

Finally, we examine the Fourier series method [28], which expresses the inver-
sion integral as a Fourier series and then uses the trapezium rule to evaluate
the integral numerically. The Fourier series method differs from the other four
algorithms as no acceleration scheme is used to force convergence. This means

that the series is not truncated, and therefore precision environments do not

98



affect the accuracy of the inversion process. The algorithm is only used in a

standard 16 digit precision environment and is compared with the four other

schemes using standard precision.

(This chapter was first published as a paper on May 23 2022https://doi.org/10.4236 /am.2022.135027)
(Section 2 and the first paragraph of Section 3 are taken from our earlier work

[38] which is necessary to set the background for the rest of the paper).

3.2 The Laplace transform

The Laplace transform is an integral transform defined as follows:

Let f(t) be defined for ¢t > 0, then the Laplace transform of f(¢) is given by,

C{f(0)) = / " f(t)e dr (3.1)

Thus £{f(¢)} is a function of s denoted as F(s). The Laplace transform can
be shown to exist for any function f(t), which can be integrated over any finite

interval 0 < ¢ < [ for [ > 0, and for which f(t) is of exponential order, i.e.
| £(t) |< Me™ (3.2)

as t — oo, where M > 0 is a finite real number and a is a small real positive
number.

Analytically the inverse Laplace transform is usually obtained using the tech-
niques of complex contour integration with the resulting set of standard trans-
forms presented in tables [32].

However, using the Laplace transform can generate data in the Laplace domain
which is not easily invertible to the real domain by analytical means. Thus

numerical inversion techniques have to be used to convert the data from the
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s-space to the time domain [38].

3.3 The Inverse Laplace Transform, Perturbation
and Multi-precision

The recovery of the function f(¢) is via the inverse Laplace transform which is

most commonly defined via the Bromwich contour integral,

a+io0o
LM@Y =) =5 [ () e ds (3.3)

27 a—100

such that & € R. The inversion integral is widely known to be highly perturbed
[23],[45],60]. This is due to the e term in the integral, which amplifies small
changes in the input data. Hence all numerical schemes are vulnerable to this
perturbation, and this has to be taken into account when using the various al-
gorithms to invert the Laplace transform.

As Abate-Valko notes [1], “In the traditional development of the inversion meth-
ods, most of the effort was directed at controlling round-off errors. This is
because the process is numerically unstable in a fixed-precision computing en-
vironment. The problem is that as the user tries to increase the accuracy, there
comes the point where the round off error causes the error to increase dramati-
cally”.

In fact, Abate-Valko goes further and makes the claim that “for our purposes,
we add the proviso that values of the transform can be computed to any desired
precision as a function of the complex variable”.

This suggests that working in a multi-precision environment can act to reduce
errors and the resulting perturbations which exist in transforming the data from

the s-space into the time domain.
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3.4 The Algorithms

We examine five algorithms drawn from three of the four main classes of algo-
rithms for numerically inverting the Laplace Transform [1]. These three are the
Fourier series expansion, methods which use the Gaver functional and deforma-
tion of the Bromwich contour. Here we give a brief outline of five algorithms
drawn from these three classes. For a more extensive treatment of the derivation

of these algorithms, please see our earlier work [38].

3.4.1 The Fourier Series Method

In their wide-ranging survey of Numerical Inversion of the Laplace Transform,
Davies and Martin [36] cite the Fourier series approach without accelerated
convergence as giving “good accuracy on a fairly wide range of functions”. ( For
a full treatment of the derivation of this algorithm please see [38]).

By letting s = w + v in (3.3) we can express the resulting cosine transfer pair
as,

2eut

f(t) = /000 Re{F(u+ iv)} cos(vt) dv (3.4)

™

Simon et al. [94] then apply the trapezium rule to the expression in (3.4) and

derive the expression

where f(¢) is expanded in the interval 0 <t < T. [39].
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3.4.2 Gaver’s Functional

Gaver [50] derived the function,

b= 52 S (e (wewsE) oo

for numerically inverting the Laplace transform. The problem with (3.6) is its
slow convergence. However Gaver was also able to show that (3.6) has the

asymptotic expansion

where the a;’s are constant coefficients in the asymptotic series. Hence (3.7) in

20 =1 (%)

This means that it is possible to accelerate the convergence rate of (3.6). Much

the limit converges to

of the literature alludes to the fact that a Salzer [112] acceleration scheme is
used on the Gaver functional in (3.6), which results in the Stehfest algorithm.
In fact, Stehfest’s approach was a little more subtle than a direct application of

the Salzer acceleration.

Using Salzer acceleration

The Salzer acceleration scheme makes use of the “Toeplitz limit theorem” [112],
“this concerns the convergence of a transformation of a sequence (s where the
(n 4+ 1)th member of the transformed sequence is a weighted mean of the first

(n+1) terms”

= fink-Sk (3.8)
k=0



Here S, is the transformed sequence and Sy, the original sequence and,

po = (-1t LEES (Z) (3.9)

For the sake of compatibility with (3.9) we make the change k — i and n — k

n (3.6). With this change of variables we also write

@K k(2k)!

Kk —1)! (k&)

This allows the sum to be taken from k = 0 to n without (0 — 1)! in the
denominator of (3.6). So with Salzer acceleration we can express the Salzer-

Gaver algorithm as

In2 & e (BT EQE) S K . ((k+i)In2
f"(t):T;(_” BT ETY iz:;i!(k—i)!(_l) F{ ; }
(3.10)

Stehfest’s acceleration scheme

For the purposes of following Stehfest’s derivation it will be convenient to rewrite
(3.6) as
(2n)la " /n &
fat) =F, = —"——= Y "( J(-D)*F( (k+n)a (3.11)
)i \k

nl(n —1

Stehfest |99] begins by supposing we have N values for F[(k + n)a] with F(a),
F(2a), F(3a), ...F(Na) for N even. Using (3.11) we can then determine %

N

5 values satisfy the asymptotic series

values I, Fy, ..., Fy/5. Now each of these
in (3.7) with the same coefficients.
As Stehfest [99] points out, the a;’s in (3.7) are the same for each of the above

expansions and by using a suitable linear combination the first (% — 1) error

terms in (3.7) can be eliminated. That is
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M w2

-

which may be achieved by selecting the coefficients to satisfy

1
anF(%+171) +O<NN> (312)

2

n=1

1
=4 k=1,.,N/2—1 3.13
n(%—l—l—n)k k,0 / ( )

M vz

3
Il
-

which produce the same coefficients as the Salzer acceleration scheme used in
(3.8). In fact for any n, Stehfest generates the required coefficients using what

is in effect a modified Salzer acceleration scheme giving

(,

(ﬁ@), (Z) n{(gﬂ_n)} (3.14)

Finally, Stehfest substitutes these results into (3.13) and gets the inversion for-

Ap =

mula
N
In2 jln2
f(t)%tZAjF( - ) (3.15)
j=1
for N even and
min(j,%) N
- 2k)!
A=)t = ) k7 (2F) (3.16)

(T =Rk — 1)1 — k)!(2k — j)!

k=552

However, a direct application of the modified Salzer acceleration scheme in (3.14)
onto the Gaver functional in (3.11) does not produce the same results for the

expression in (3.16) so they are not exactly equal to each other.

To show this we consider the function sin(¢) whose Laplace transform is
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The eight weights produced by the Salzer acceleration for n = 8 are exactly the
same for n = 18 in Stehfest’s modified Salzer acceleration scheme in (3.14).
However, Table 4.1 shows that for sin(t) with these same weights, the Salzer-
Gaver scheme produces different results when compared to Stehfest’s scheme in
(3.16). This is due to Stehfest’s simplification of the Salzer-Gaver scheme to the
expression in (3.16).

This simplification was necessary because, as we show in our results in Section
5, Stehfest’s final expression in (3.16) is faster and works better in standard
double precision. As the algorithm was developed in 1970, this would be far
more efficient when taking into consideration the computing power available
at the time. Again as we show in Section 5, a direct application of a Salzer
acceleration scheme onto the Gaver functional is only advantageous in a multi-

precision environment.
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t  Stehfest Salzer-Gaver

5 0.89 1.02
10 0.08 0.18
15 0.002 0.03
20 0.03 0.02
25 0.001 0.004
30 0.001 0.004

Table 3.1: Salzer-Gaver Stehfest for sin(t)

3.4.3 Logan’s Version Of The Talbot Algorithm

Logan begins with the transformation

az
1—e*

s(z) (3.17)

(For the details of this transformation one can refer the study of Logan [66].)

(with z € C) and constructs the integral

ft) = - /M Q2) dz (3.18)
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where

Q(2) = F(s(2)) e s'(2) (3.19)

and M — [27i, 2i]. Then if we let w = —iz for the integral in (3.18) so the inter-
val of integration is now real and becomes [—27,27]. Then using the trapezoid

rule with n we obtain

1 n—1
OE { (I(27i) + T(—2mi) 4 2 Z I(iwj)} (3.20)
where
2j
w; = 271'(; -1) (3.21)

and we note that I(2mi) = I(—2mi) = 0 [66], [38].

Abate and Valko’s Version of The Talbot Algorithm

Abate and Valko [1] deform the Bromwich contour using the Talbot path which

has the form,

s(h) = rh(cot(h) +i), —m<h<m (3.22)
So we have
s'(h) = ir(1 +ir(h)) (3.23)
where,
r(h) = h+ (hcot(h) — 1) cot(h) (3.24)

Then from (3.18) we find,
ft)=- /O ’ Re[e?* M F(s(h)(1 + ir(R)))]dh (3.25)

They then approximate the value of the integral in (3.18) by using the trape-
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zoidal rule with step size Z and hy, = % to get,

M-—1
fle M) == %F exp(rt) + 3 Relet™ ™) F(s(hy))(1+ir(hi))] | (3.26)
k=1

Based on numerical experiments, Abate-Valko then fix the parameter r to the
value,
2M

= — 2
r 2 (3.27)

[1]. We also use this value for a in Logan’s transformation.

3.5 Results

We tested the five algorithms on the functions listed in Tables 4.2 and 4.3 on
pages 103 and 104. Functions 1-11 and 18 are taken from the 16 functions
tested by Davies and Martin [36]. The remaining functions are selected from
those tested by Abate-Valko [1].

The first set of tests was carried out using 16 digits double precision. These
results are shown in Table 4.4. The Fourier, Logan and Abate-Valko schemes
were run with weights M = 50, M = 100 and M = 200; however, for brevity,
we include only the result for M = 200.

For the Stehfest and the Salzer-Gaver algorithms, the best results were obtained
with weights of M = 16 and M = 8, respectively. This is in keeping with Ste-
hfest’s observations on the instability of this method as M increases above an
optimal level [99].

In multi-precision, the number of precision digits for Abate-Valko was set equal

to N [1], and for the Slazer-Gaver and Stehfest schemes, best results were ob-
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tained when the number of precision digits was set equal to 2IN. For our error

estimates, we use Duffy’s measure, the L and L. defined as

30

and

L \/ S [fggo —{(}ﬂ%*“ (3.29)
i=1 ¢

where f(t) is the analytical solution and f(¢) is the numerical solution. Hence
L is the root-mean-square error and L. is the same as L but weighted by the
factor e~ [40].

All computations were performed using a 64-bit operating system with an In-
tel(R) Core(TM) i7-8550u CPU processor. The algorithms were implemented

in Maple 2018 using Maple’s digits command to set the required precision.
Standard double precision

Tables 4.4 and 4.5 show that when compared with the other four algorithms,
the Fourier series method performs with the least accuracy on all the functions
tested. It also fails to reconstruct functions 8, 15, 17 and 18, with poor results
for functions 4, 5 and 12.

However, for the functions which it successfully reconstructs, it does so with
an RMS accuracy of between L = 3.6(—5) and 1.2(—2). We believe that this
scheme will improve greatly when an acceleration scheme is applied. This is an
issue we intend to investigate in future work.

With the exception of the function 7, Jy(t), Logan’s algorithm successfully in-

verts all the functions given in Tables 4.2 and 4.3 with very good accuracy. We
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found that in SDP best results are obtained by equating @ = 1 in (3.17). Tables
3 and 4 show that for these functions the RMS error varies between 3.6(—8) to
8.4(—12).

Except for function 7 Jy(t), the Abate-Valko scheme successfully inverts all the
functions in Tables 4.3 and 4.4. Moreover, it does so with greater accuracy
than the Logan scheme. The tables show that the RMS error varied between
6.5(—11) and 6.2(—12).

Tables 4.3 and 4.4 show that the Stehfest algorithm shows poor accuracy when
inverting functions 1,7,10 and 11. For these functions the RMS error varies
between 2.0(—2) to 9.2(—3). Its poor performance is due to the fact that the
Stehfest algorithm has difficulty inverting functions of a cyclic nature [99]. How-
ever, it inverts the remaining functions with good accuracy with an RMS error
of between 2.9(—5) to 0.0(0). Tables 4.3 and 4.4 shows that the Salzer-Gaver
algorithm shows poor accuracy for functions 1,7,10 and 11. These are the very
same functions that the Stehfest algorithm has problems inverting. Again this
is due to the difficulties it encounters when inverting cyclic functions. It inverts
the remaining functions with less accuracy than the Stehfest, with an RMS error

varying between 10(—15) to 10(—5).

Multi precision

With the exception of function 7, the Logan and Abate-Valko algorithms suc-
cessfully inverted the remaining functions to a high degree of accuracy. Duffy
[40] also remarks that when using the Talbot contour, he had difficulties accu-
rately inverting the Bessel function. This may be related to the combination of
the singularity on the imaginary axis and the branching nature of the square

root function.
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Abate-Valko[1] state that they were able to overcome this by increasing the
weights and hence the precision as a function of t. However, we were unable to
replicate their results for this function.

Overall, the Abate-Valko scheme showed far greater accuracy than Logan’s
across all the functions tested. However, Logan’s algorithm was still able to
produce highly accurate results with RMS errors varying between 10(—60) to
10(—63). Moreover, Table 4.8 shows that Logan’s scheme was able to perform
the inversion of these functions with shorter elapsed times.

The Stehfset and Salzer-Gaver algorithms were able to invert all the functions
to a high degree of accuracy. The Salzer-Gaver scheme was, in general, about
twice as accurate as the Stehfest algorithm, which was less accurate than Abate-
Valko’s scheme. Nevertheless, the Stehfest scheme inverted the functions well
within any generally desired accuracy, with the RMS error varying from 10(—41)
to 0.0(0). Moreover, as Table 4.8 shows in terms of the elapsed time, it was the
fastest of all the algorithms, for the most part twice as fast as the Abate-Valko

scheme, which in turn was at least twice as fast as the Salzer-Gaver scheme.
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Function No. f(s) £t

1 Tlsz sin(t)
2 ﬁ te—t
3 Siz ¢
4 L 1
ve V(xt)
g ue —(Int +7)
6 % 1
‘ Vs Jo(t)
8 CELD i+ 2)
9 ﬁ ot
10 GropERr € Csin()
11 arctan(?) %

Table 3.2: Test Functions
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Function No. f(s) f@)
12 1 1—et
Vs+Vs+1 2V wt3
13 ﬁ eterfc(\/(t))
205 -4
14 e Vs 6?‘3
15 e 15 2sin(V/1)
16 log(1+ 1) 1_57t
17 el CK(0)
18 67% COS(2\ﬂt))
Vs \ﬂﬂ't)
19 1 \/§sin(t)
\/s+\/sz+1 Qt%ﬂ'
Table 3.3: Test Functions Continued
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Logan Valko Stehfest Salzer-Gaver
Function w T w T w T w T
2 255 0.89 77 144 202 043 | 100 2.37
8 17(-5) 0.55 | 9(-7) 0.88 | 12(-5) 0.41 | 10 3.06
11 175 0.94 167 3.87 320 1.74 | 160  2.56
13 29 0.72 | 12(-5) 0.94 20 041 12 0.99
18 35 0.56 16 1.05 46 0.52 | 20 1.27

Table 3.8: Elapsed time 7 in seconds

3.6 Summary

In standard-double-precision, the Abate-Valko algorithm provides the best re-
sults for the numerical reconstructions for the functions tested in this paper. The
Fourier algorithm had the worst performance of the five algorithms tested. Both
the Stehfest and Salzer-Gaver algorithms had difficulty reconstructing functions
of a cyclic nature. None of the algorithms was able to invert the Jy(¢) function
accurately.

In multi-precision, The Stehfest and the Salzer-Gaver schemes inverted all the
functions with high accuracy. The Logan and Abate-Valko schemes were only
able to invert the Jy(t) with limited accuracy. However, they were both able
to reconstruct all the other functions with a high degree of accuracy. The most
accurate algorithm in multi-precision was the Salzer-Gaver scheme. However, as
Table 4.8 shows, it also had the longest elapsed times. On the other hand, the
Stehfest algorithm had the shortest elapsed times for the selected functions in
Table 4.8. The algorithms that used the Abate-Valko were the most accurate,
but Logan could reconstruct the functions with shorter elapsed times. There-

fore we conclude that when working in standard precision, Valko’s algorithm
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performed best. However, in multi-precision, the Stehfest algorithm is best as
it inverted all the functions with a high degree of accuracy and the shortest
elapsed times.

The next chapter uses regularisation information to solve the Fisher KPP (Kol-
mogorov, Petrovsky, Piskunov) reaction-diffusion equation. This problem has
inherent perturbation issues and will require an inversion algorithm best suited
to handle the additional noise introduced by the perturbation. The information
on noise and the best precision environments of the algorithms tested in this

and chapter 2 will be used in solving this equation.
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Chapter 4

A Laplace Transform Finite

Difference Scheme for the

Fisher-KPP Equation.

4.1 Introduction

In chapters 2 and 3, the behaviour of some of the main algorithms for numer-
ically inverting the Laplace transform were investigated for their handling of
noise and their performance in precision environments. In this chapter, the
knowledge gained in those investigations will be used for a specific application
of the LTFDM for solving an equation in which perturbations can adversely
affect the accurate reconstruction of the exact solution.

This chapter presents a numerical approach to the solution of the Fisher-KPP
(Kolmogorov, Petrovsky, Piskunov) reaction-diffusion equation in which the spa-

tial variable is developed using a purely finite difference scheme and the time
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development is obtained using a hybrid Laplace Transform Finite Difference
Method (LTFDM). The travelling wave solutions usually associated with the
Fisher-KPP equation are, in general, not deemed suitable for treatment using
Fourier or Laplace transform numerical methods. However, we were able to ob-
tain accurate results when some degree of time discretisation is inbuilt into the
process. While this means that the advantage of using the Laplace transform
to obtain solutions for any time ¢ is not fully exploited, the method does allow
for considerably larger time steps than is otherwise possible for finite-difference

methods.

(This chapter was published as a research paper: First published March 28,
2021, Research Article https://doi.org/10.1177

4.2 Fisher’s equation
Fisher [48] suggested the equation,

ou 0%u

to describe the propagation of a favourable gene in an infinitely long domain.
The equation models the diffusion of an advantageous gene in a 1D habitat. A
very informative discussion of the Fisher equation as it relates to propagation
is given by [8] [72]. The expression in equation (4.1) combines the logistic and
diffusion equations to simulate the respective processes of population growth
and random dispersal of the advantageous gene under consideration. Thus D
and K in (4.1) are the usual positive parameters associated with the diffusion
and logistic equations.

Since its original development, the Fisher-KPP equation has been used exten-
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sively to describe a wide variety of processes, including biology, chemical kinet-
ics, auto-catalytic chemical reactions, branching Brownian motion, flame prop-
agation, neurophysiology, the evolution of a neutron population in a nuclear
reactor and chemical wave propagation [107].

The solution wu(x,t) of (4.1) represents the proportion of the mutant gene at a

point z in its domain at some time t. Hence we must have that,

0 <u(z,t)<1 (4.2)

Fisher showed that (4.1) together with the additional boundary conditions,

u(—o0,t) =1 and u(4o00,t) =0 (4.3)

exhibit travelling wave solutions of the form,

u(z,t) = u(x — ct) (4.4)

moving at constant speed c in the positive x direction provided

when Cyin = 2VKD [77).

Thus the Fisher-KPP equation has an infinite number of travelling wave so-
lutions, each moving with a wave speed ¢ > 2. The solutions of u(z,t) then
connects the steady-state solution at u = 1 and the steady-state solution at
u = 0. In keeping with the analysis of these steady-state conditions, u = 1 is
stable, while u = 0, unstable.

It is worth noting that analytical solutions of the Fisher-KPP equation exist for

only a small class of problems and hence the importance of developing efficient
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numerical schemes to obtain solutions to (4.1) .

Although Fisher proposed his model for the wave advancement of an advanta-
geous gene in 1937, it was not until 1974 that numerical solutions to the equation
began to appear. The first of which was the seminal paper by Canosa [17] who
used the Accurate Space Derivative method (ASD), sometimes referred to as the
pseudo-spectral approach. Since then, many researchers have investigated nu-
merical solutions to equation (4.1) for which Anjal et al. give a comprehensive
summary of the main contributions [107]. However, these methods all incor-
porate some small time discretisation process, which requires iterations of the
algorithm at each time step. As we discuss in the next section, our proposed
solution to (4.1) allows us to obtain accurate results with considerably larger
discretisation in the time domain.

In developing a numerical approach to solve the Fisher-KPP equation, we needed
to keep two important points in mind. First, Canosa [17] showed that all waves
are stable against small local perturbations but linearly unstable against gen-
eral perturbations of infinite extent. This sensitivity to perturbations of infinite
extent is essential for us because, as we explain in ‘Numerical examples and
discussion’, the LTFDM involves inversion procedures which can introduce per-
turbations into the solution.

The second point is that Canosa was able to demonstrate by a simple stability
analysis that computation is unstable against round-off errors building up at
the leading tail of the waves [17]. We were able to overcome this difficulty by a

particular application of the inversion process for the LTFDM.
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4.3 The Laplace Transform Finite Difference Method

We consider an approach to the numerical solution of the Fisher-KPP equation
(4.1) in which the spatial variable is discretised using a purely finite difference
approach, and the temporal variable is removed by using a hybrid LTFDM.

The significant advantage of this method is that it eliminates the time depen-
dency parameter and the associated discretisations which are necessary to obtain

solutions at a particular time t.

When using finite difference and other time discretisation methods to solve
differential equations, for implicit schemes, the size of the time step is limited by
the stability conditions required for convergence of the finite difference scheme.
In linear cases, this usually involves hundreds and sometimes thousands of time
steps to arrive at the solution for some desired time. Iterations are then required
at each time step which involves using a variety of matrix methods to solve the
vast systems of linear equations generated by the scheme.

For non-linear cases, this is compounded by the fact that a further iterative
process is usually required at each time. Since each of these iterations introduces
a certain amount of round-off and truncation error, careful consideration must
be given to their control and management when implementing these schemes.
The Laplace transform has the potential to do away with time discretisation,
and its associated error management by transforming the time domain into the

Laplace space, s, via the integral transform,

/0 T et di = F(s) (4.6)

Then computations done in the Laplace space, s, can be inverted back into

the time domain at any desired time t. Hence the LTFDM can lead to the
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required solution with virtually one-time step. By employing this method, we
can potentially obtain substantial increases in speed and accuracy over tradi-
tional finite difference and time discretisation methods. With the additional
benefit of reducing by one the dimensions of the governing equation, simplifying
the resulting finite difference scheme needed to discretise the remaining spatial

variable.

4.3.1 Inverting the data

The recovery of the function f(¢) is via the inverse Laplace transform which is
most commonly defined by the Bromwich integral formula

u+100
LTHEF(s)} = f(t) = L/ F(s) et ds (4.7)

271 Jy—ioo

for some u, where u is a real number, [97]. The the choice of s in (4.6) and so in
(4.7) is not an arbitrary one. If we choose s so that it lies on the positive real
axis, we are treating the solution of (4.6) as a positive real integral equation.
The problem here is that the inverse problem is known to be ill-posed, meaning
that small changes in the values of F(s) can lead to large errors in the values

for £(t) [10].

Hence when Laplace transform methods are employed for finding numerical
solutions to partial differential equations, we must take account of the fact that
the corresponding inversion methods can be highly sensitive to the inevitable
noisy data that arises in their computation. This is a consequence of both
truncation and round-off error, a process which is exacerbated for non-linear
schemes. Our method attempts to mitigate these factors by employing the
Fixed Talbot inversion algorithm. In our earlier work [38], we have shown that

this inversion scheme reduces the effects that noisy data can have in adversely
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perturbing the finite difference scheme. In this sense it can produce better

results than the widely used Stehfest inversion method.

4.4 Method

We first non-dimensionalise equation (4.1) by letting

wu=Uu x=LT and t=Tt (4.8)

Employing the chain rule,

0 0 10
— == d —=== 4.
or Loz 0 ot Tot (4.9)
By letting U = a, T = ﬁ and L = %, and dropping the overbars (4.1)
becomes,
ou  0%u

with boundary conditions
u(—o00,t) =1 and u(4o00,t) =0 (4.11)
The Laplace transform of the time derivative in (4.10) is

z{?:} = su(z,s) —u(z,0) (4.12)

where

u(zx,s) = L{u(x,t)} (4.13)

And the Laplace transform of the spatial derivative in (4.10) is
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0u d* _

However, it is well known that the Laplace transform cannot be successfully
performed on non-linear governing equations, and so some linearisaton process
is necessary before the LTFDM can be implemented [119]. To overcome this,
we follow Zhu et al. [117] who successfully applied the Laplace Transform dual

reciprocity method to diffusion equations of the form,
Viu=— — Bf(u) (4.15)

where (3 is a given constant and f(u) is a non-linear function. Zhu first decom-
posed the function f(u) in equation (4.15) into f(@)w then in order to find the
solution of the unknown function at particular time ¢; equation 4.15 is linearised

as

)
V2 = 8%‘ — Bf(i)u (4.16)

in which 4 is the previously iterated solution at time ¢;. Thus for equation (4.1)

we would have,
ou  0*u

Ezw—&-u—ud (417)

Then the Laplace transform of (4.17) is,

_ d? _ _ -
u(z,s) —u(z,0) = el u(xz,s) +u(l —a) (4.18)
with transformed boundary conditions,
_ 1 _
u(—o00,t) = — and u(+oo,t) =0 (4.19)
S

Using a central-difference scheme on the spatial derivative, the finite difference
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scheme for (4.18) is,

Uj—1 — ﬂZ(Z + 5$2Sj + 5‘%2 - 5%2’&1) + ﬂﬁ,l = —51’211(0)1 (420)

where 0z is the size of the spatial step in the x-direction, s; is the jth Laplace

parameter and u(0); = u(x;,0). Then (4.20) can be expressed as the tridiagonal

system,
Uy sz*u(zy,0) + -
a1j 1 0 J
Ug Sx%u(z2,0)
1 a
2 _— (4.21)
1
0 1 An—1j
| U1 | _5:E2u((xn,1, 0)R]
where
aij =2+ 0z%s; + dx? — 5x2a (4.22)

in (4.21). After solving this tridiagonal system the data is then inverted to

transition from the Laplace space, s, back into the time domain.

The Stehfest algorithm for numerically inverting the Laplace Trans-

form

In their wide-ranging study of algorithms for inverting the Laplace transform,
Davies and Martin [36] cite the Stehfest algorithm [99] as providing accurate
results on a wide variety of test functions. Since then, this algorithm has be-
come widely used for inverting the Laplace Transform and is favoured due to
its reported accuracy and ease of implementation.

The algorithm takes the transformed data in the Laplace space F(s) and pro-
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duces f(t1) for a specific time value ¢ = ¢;. Choosing

s;j=7j—, j=1,2,...M, for M even. (4.23)

The numerical inversion is given by

In2 M
f(t) = — Z A;F(s5) (4.24)
j=1
with
min(j M M |
M .- k=2 (2k)!
Aj= (-7 = 3" (2k) (4.25)

(M — k)l (k — DI — k)!(2k — j)!

k=15

Theoretically, f(t) becomes more accurate for larger M, but the reality is that
rounding errors worsen the results if M becomes too large. According to Ste-
hfest, “The optimum M is approximately proportional to the number of digits
the machine is working with” [99].

Also in our earlier work we found that the Stehfest algorithm does not handle
noisy data well [38]. As we show in Section 5, this can have the effect of
introducing perturbations into the travelling wave solutions of the Fisher-KPP

equation.

The Fixed Talbot algorithm for numerical inversion the Laplace Trans-

form

Here we use the function,

S(z) = (4.26)




which maps the closed interval M = [—2i, 27i] on the imaginary z—plane onto

the curve L in the s-plane giving the integral,

ft) = i/LF(s) et ds (4.27)

Comi

(See Logan [66] for the details of this transformation).

Next we follow the procedure as adopted by Logan for numerically integrat-

ing (4.27).

With s = S(z) this becomes

1 /
£ = 5z [ [F(8:) 50" () ds (4.29
2mi Jar
where
y 1—(142z2)e*
= "/ 4.2
5(2) = oo (429)
and M = [-27,2x]. For convenience we write,
0= 5 [ Q) (430)
where
Q(2) = [F(S(2)) ¥ S'(2)] (4.31)
Then if we let w = —iz for the integral in (4.30) so the interval of integration

is now real and becomes [—27,27]. Then using the trapezoid rule with n we

obtain

n

(1) ~ 1{(](271’1') IS I(z'wj)} (4.32)

j=1
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where

w; = 2w{% —1} (4.33)

and we note that I(2mi) = I(—2mi) = 0 [66].

4.5 Numerical examples and discussion

Example 1

For our first example we use (4.10)

ou 9%u

o gz Ul

and its associated boundary conditions,
u(—o0,t) =1 and u(4o00,t) =0
Ablowitx and Zeppetella [2] give an exact solution for a particular wave speed

— 4.5
c—i\/aas )

[1 + exp (\/ga: — (2):&)]2

which we use to compare our numerical results with.

u(z,t) =

(4.34)

When we first implemented the LTFDM it produced distortions in the upper

tail of the travelling wave for larger values of ¢. This is shown in Figure 3.1.
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Figure 4.1: Profile without time discretisation. ¢ = 1.5

We eventually surmised that these distortions were due to the existence of per-
turbations of infinite extent. In other words, the approximation of the initial
condition on a finite domain. A stability analysis carried out by Gazdang et al.
[51] showed that super speed waves or waves with speed greater than C,,;,, could
be maintained if subject only to infinitesimally small positive perturbations.
As is well known, the numerical inversion of the Laplace transform is a per-
turbed problem. Thus perturbations generated by the numerical scheme itself
can then introduce noise into the inversion algorithms, which cannot be com-
pletely filtered out. However, we found that these perturbations can be reduced
if some time discretisation, together with a reinitialisation of the initial condi-
tion, is introduced into the numerical method. While the full benefit of using
the Laplace transform, i.e., to solve for any time t is partially diminished, in-
troducing some measure of time discretisation meant we were able to use larger
time steps than would be the case for other finite difference methods [93].

As we have shown in our previous work [38], the Fixed Talbot inversion method
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is more efficient at filtering out this noise than the more widely used Stehfest
algorithm. This is shown in Figures 3.2 and 3.3 where oscillations in the right-
hand tail are present when using the Stehfest inversion method at time ¢t = 0.8

but are absent in the Talbot inversion method.

. \ . \
\
Lo o
02 02 \\
Figure 4.2: Profile using Ste- Figure 4.3: Profile using Talbot.
hfest. t =0.8 t=0.8

Thus smaller time steps are required for comparable accuracy for the Stehfest
inversion than for the Talbot. Because of its inability to deal adequately with
noisy data, the Stehfest algorithm is also sensitive to the spatial step size dx as
smaller spatial discretisations can also introduce round-off error into the com-
putations. Hence the choice of using the Talbot algorithm for carrying out the
LTFDM inversion procedure. Details of this method on the field of study can
be found in [38].

The Talbot algorithm is also very effective in dealing with the build-up of round-
off error in the right tail of the waves. As Canosa points out, “This does not
seem due to the numerical method used but to the physical nature of the prob-
lem described by the equation, which gives rise to an exponential growth of the
solutions when this is exponentially small. This basic difficulty makes it difficult

to do a rigorous simulation of the solutions of Fisher’s equation”.
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Figure 4.4: Talbot: n = 55 for Figure 4.5: Talbot: n = 555 for
t=1to 5. t=1tob

This effect is shown in Figure 3.4. However, we overcome this problem by merely
increasing n (where n is the number of strips used in the trapezium method) in
(4.32) from n = 55 to 555, which completely removes the instability and restores
the travelling wave profile Figure 3.5. The restoration of the travelling profile is
due to the Talbot algorithm’s ability to filter out noise with increasing n [38].

While no exact solutions exist for (4.1) for wave speeds other than ¢ = j:% we

can use the approximate asymptotic solution,

U(z) = (1+¢F) ™ 4 ef (14 eF)2log [Gf@)Q] + 0(614> (4.35)

With ¢ > Chin = 2 and z = x — ct, to test our numerical scheme for a variety

of wave speeds. The accuracy of the asymptotic solution increases for large ¢

[76].
Example 2.

Cattani, Carlo et al. [19] give an exact solution for the Fisher type equation,

ou 0%u 9
il bu® + au (4.36)

92



where 0 <t <00, —o0 < x < oo with the boundary condition

u(—o00,t) = 0.5, u(oco,t) =0 (4.37)

and initial condition,

u(z,0) = —i% [sech2( - @m) — 2tanh ( - \/Xac) - 2] (4.38)

The exact solution is,

la | a 5a [ a 5a
r,t)=——— h2( —,/— +—t )= — ) — —t = .
u( , ) i3 {sec < 24Cx 12t> 2 tanh < 24cx+ 12t> 2} (4 39)

Since no exact solution exists for all wave speeds for (4.36) we derived a pertur-
bation solution to test the numerical scheme at a variety of wave speeds. The

perturbation solution for this case is given as,
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4.6 Results

In our investigations, we found our algorithm performs with equal accuracy for
spatial steps 0 < dx < 1 and with the Laplace transform used within the time
steps At = 0.1, 0.2 and 0.4. This shows that it is stable across a wide variety

of parameters. (For all computations n = 555).

Numericval
*  Exact

0.8

u(x,t)
o
D

0.2

-30 -20 -10 0 10 20 30
X

Figure 4.6: Profile At =02, t=1to 5.

Figure 3.6 shows the travelling wave profile for Example 1, compared with the
exact solution [2]. The time discretisation used in the LTFDM is At = 0.2 with
a spatial step of dx = 0.1. The numerical results show good agreement with the

exact solution.
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Figure 4.7: Profile At =0.2,t=1t0 5 .

Figure 3.7 shows the travelling wave profile for Example 2 with the exact solution
[19]. The time discretisation used in the LTFDM is At = 0.2 with a spatial step

of x = 0.1. The numerical results show good agreement with the exact solution.
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Numericval
¥ *  Exact

0.2

-100 -50 0 50 100

Figure 4.8: Profile Example 1, At =0.2,t=1,C =4:4:20.

Figure 3.8 shows the travelling wave profile for example 1, compared with the

perturbation solution for wave speeds C' = 4,8,12,16,20. The time discreti-

sation used in the LTFDM is At = 0.2 with a spatial step of dx = 0.1. The

numerical results show good agreement with the exact solution.
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Figure 4.9: Profile Examole 2, At =0.2,t=1,C =4:4:20.

Figure 3.9 shows the travelling wave profile for example 2 compared with per-
turbation solution (4.40) for wave speeds C' = 4,8,12,16,20. The time des-
critisation used in the LTFDM is At = 0.2 with a spatial step of dz = 0.1.
The numerical results show good agreement with the exact solution. Figures

3.10-3.12 show the error profile for example 1 for the wave speed shown.

Tables 3.1-3.3 present the results for Example 1 for times ¢t = 1, t = 2, and
t = 4. For all cases shown we set At = 0.1, n = 555, dx = 0.25, and L = 60.

For all the tables below the error is the absolute error.
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x| Numerical Exact Error
-20 | 0.999742 | 0.999753 | 1.0 (—5)
-12 | 0.993285 | 0.995552 | 2.6 (—4)
-4 | 0.845643 | 0.849618 | 1.2 (—3)
2 0.252043 | 0.254227 | 8.6 (—3)
4 | 0.0956577 | 0.096161 | 5.2 (—3)
8 | 0.0.006466 | 0.006515 | 7.5 (—3)
12 | 0.000178 | 0.000284 | 3.7 (—4)
Table 4.1: Example 1, ¢t = 1.
x | Numerical | Exact Error

-20 | 0.999884 | 0.999893 | 8.
-12 | 0.996963 997190 | 2.
-8 0.984656 | 0.995740 | 1.1

4 0.255059 | 0.490844 | 1.5
8 0.027968 | 0.028250 | 2.0
10 | 0.006447 | 0.006719 | 2.1

(=6)
(—4)
(=3)
0 | 0.698929 | 0.707501 | 1.2 (—2)
(=2)
(=2)
(-2)

Table 4.2: Example 1, t = 2.
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x | Numerical Exact Error
-20 | 0.999976 9999808 3.4 (—6)
-12 | 0.999379 0.999468 | 8.9 (—5)
-6 0.992958 0.993864 | 9.2 (—4)
2 0.846588 0.856205 | 1.1 (-2)
4 | 0.88938265 | 0.90291741 | 1.5 (—2)
6 0.490436 0.500723 | 2.1 (-2)
10 0.100190 0.103045 | 2.8 (—2)

Tables 3.4-3.6 present the results for problem 2 for times ¢t = 1, ¢t = 2, and t = 4.

For all cases shown we set At = 0.4, n = 555, dx = 0.25, and L = 60.

Table 4.3: Example 1, t = 4.

x | Numerical | Exact Error
-20 | 0.497713 | 0.497780 | 1.3 (—4)
-12 | 0.477704 | 0.478304 | 1.3 (—3)
-8 | 0.434286 | 0.435769 | 3.4 (—3)
-1 | 0.220496 | 0.98636 | 8.5 (—3)
4 | 0.0512810 | 0.051519 | 4.5 (—3)
15 | 0.000163 | 0.000162 | 6.2 (—3)
20 9.33(-6) 9.34(-6) | 4.5 (—4)

Table 4.4: Example 2. t = 1.

99




T Numerical Exact Error

-20 | 0.498548 | 0.497780 | 2.2
-8 0.456965 | 0.459476 | 5.8
-8 0.434286 | 0.435769 | 3.4

4 0.087159 | 0.088343 | 1.3

(—4)
(=3)
(=3)
01 | 0.238570 | 0.242958 | 1.8 (—2)
(—2)
15 | 0.000432 | 0.000432 | 7.9 (-2)

(—4)

20 | 2.53(-5) | 2.52(-5) | 1.1

Table 4.5: Example 2. t = 2.

T Numerical Exact Error

-20 | 0.499320 0.499413 | 1.9
-8 0.479300 0.481756 | 5.1
-1 0.375701 0.383712 | 2.1

2 0.272176 0.279941 | 2.8

(—4)
(=3)
(=2)
01 | 0.238570 | 0.242958 | 1.8 (~2)
(=2)
15 | 0.002122 | 0.002123 | 2.3 (~2)

(=3)

20 | 0.00013143 | 0.0001311 | 1.9

Table 4.6: Example 2. t = 4.

For brevity we give a sample of the results in Tables 3.7-3.9 of the comparison
of our method with the approximate perturbation solution for example 2 with
t = 1. The length L is increased for higher wave speeds to ensure complete
propagation of the wave as it moves to the right with increasing speed. In all

cases n = 555, dx =1, At =0.1.
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x Numerical Exact Error
-124 | 0.499186. | 0.499190 | 1.0 (—5)
-100 | 0.497323 | 0.497399 | 1.5 (—4)
-40 | 0.451696 | 0.451966 | 6.0 (—4)
-30 | 0.425057 | 0.425457 | 9.4 (—4)
10 0.214997 | 0.215853 | 4.0 (—3)
20 0.155856 | 0.156620 | 5.0 (—3)
50 0.009998 | 0.010083 | 8.5 (—3)

Table 4.7: Example 2 ¢t =1 C = 10.

x Numerical | Exact Error
-140 | 0.496314. | 0.496336 | 4.4 (—5)
-100 | 0.486330 | 0.486413 | 1.6 (—4)
-40 | 0.414178 | 0.414573 | 6.0 (—4)
-20 | 0.425057 | 0.425457 | 9.5 (—4)

0 0.279545 | 0.280139 | 2.1 (-3)
40 | 0.1242715 | 0.124647 | 3.0 (—3)
80 0.039467 | 0.039600 | 8.5 (—3)

Table 4.8: Example 2t =1 C = 15.
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x Numerical Exact Error
-182 | 0.495876. | 0.495901 | 4.9 (—5)
-100 | 0.469727 | 0.469891 | 3.5 (—4)
-10 | 0.310285 | 0.310802 | 1.7 (—3)
-20 | 0.425057 | 0.425457 | 9.5 (—4)
50 0.133185 | 0.133472 | 2.2 (—3)
70 0.090021 | 0.090213 | 2.1 (—3)
176 | 0.007480 | 0.007496 | 8.5 (—3)

Table 4.9: Example 2, t =1 C' = 20.

Figures 3.16-3.18 show the error profile comparing our scheme with the ap-
proximate perturbation solution at ¢ = 1, for various wave speeds. The error
profile and the corresponding range of errors remain unchanged for varying wave

speeds, for example, 1, but the error decreases with increasing wave speed, for

example 2.

The Figures 3.17-3.19 demonstrate the stability of the results for varying mesh
size dx. For brevity we show this for problem 2 at wave speed C' = 20 and for

time t = 1 We were able to achive the same error profile with these mesh sizes

for all the problems investigated in this paper.

ercent Error

Figure 4.10: Example 1 Error
Profile At =0.1,t =1, C' = 10.

Figure 4.11: Example 1 Error
Profile At =0.1,t =1, C = 15.
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Figure 4.12: Example 1 Error
Profile At =0.1,t =1, C' = 20.

Figure 4.13: Example 2 Error
Profile At =0.1,t =1, C' = 10.
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Figure 4.14: Example 2 Error
Profile At =0.1,t =1, C = 15.
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Figure 4.15: Example 2 Error
Profile At =0.1,t =1, C = 20.
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Figure 4.16: Example 2 Error

Profile dz = 0.5.
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Figure 4.17: Example 2 Error

Profile dx = 0.25.



Figure 4.18: Example 1 Error
Profile éx = 0.05.
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4.7 Summary

This chapter proposes a numerical approach to the solution of the Fisher-KPP
reaction-diffusion equation in which the spatial variable is discretised using a
purely finite difference scheme, and the time development is obtained using a
hybrid Laplace Transform Finite Difference Method (LTFDM). This method,
to our knowledge, has not previously been applied to the Fisher-KPP equation,
and Laplace transform methods are generally not deemed suitable for equations
with travelling wave solutions.

However, by introducing some time discretisation into our LTFDM we were able
to obtain results with less than one per cent error over a range of times, space
and time discretisation, for various wave speeds. The time discretisation was
necessary to reduce perturbations of infinite extent, which occur in numerical
schemes for the Fisher-KPP equation. These perturbations can have a detri-
mental effect on the LTFDM since all the numerical schemes for inverting the
Laplace transform are highly perturbed.

Thus crucial to the success of the method outlined in this paper is the choice
of the Fixed Talbot inversion algorithm, which, as we have shown in our earlier
work, is best at dealing with the inherent noise generated in finite difference
schemes. This algorithm also had the effect of ironing out the build-up of
round-off error in the right-hand tail of the travelling wave, a consequence of
the physical nature of the problem.

The successful application of the LTFDM to a reaction-diffusion equation with
travelling waves and inherent perturbation demonstrates the method’s robust-
ness. Thus in the next chapter, we extend the LTFDM to solve a series of linear
and non-linear diffusion equations with a variety of initial and boundary con-
ditions and test its performance against two popular finite difference methods

used for solving diffusion equations.
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Chapter 5

The Laplace Transform Finite
Difference Method for Solving
Linear and Non-Linear

Diffusion Equations.

5.1 Introduction

This chapter uses the Laplace Transform Finite-Difference Method (LTFDM)
to solve linear and nonlinear diffusion type problems with Dirichlet or first-type
boundary conditions. The previous chapter employed the method to yield so-
lutions to the fisher KPP reaction-diffusion equation. This chapter extends the
method to other types of diffusion problems.

The main advantage of the LTFDM is the removal of time stepping procedures,

which are usually associated with finite-difference methods. The LTFDM can
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remove time step limits imposed on general finite difference schemes needed to
control the accuracy and stability of the system. The solution at a particular
time is not dependent on the result at any other time, apart from initial condi-
tions, allowing a solution to be obtained in a one-time step.

This chapter uses the method to solve a series of one dimensional linear and
nonlinear diffusion problems with various initial and boundary conditions. For
each of the equations considered, the solution in the time domain is provided
via the numerical inversion Laplace transform using the algorithms proposed by
Talbot and Stehfest. The accuracy of these algorithms is then compared with

Forward Time Central Space and Crank Nicholson Finite Difference schemes.
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5.1.1 The Laplace transform

The Laplace transform is an integral transform defined as follows:

Let f(t) be defined for ¢t > 0, then the Laplace transform of f(¢) is given by,

i) = / " ptyet dt (5.1)

Thus £{f(t)} is a function of s denoted as F'(s). The Laplace transform can be
shown to exist for any function which can be integrated over any finite interval

0 <t <lforl>0,and for which f(t) is of exponential order, i.e.
| £t |< Meot (5.2)

as t — oo, where M > 0 is a finite real number and a is a small real positive
number.

Analytically the inverse Laplace transform is usually obtained using the tech-
niques of complex contour integration with the resulting set of standard trans-
forms presented in tables [79].

The recovery of the function f(t) is via the inverse Laplace transform, which is

most commonly defined via the Bromwich contour integral.

a+i00
L@ =) =5 [ () e ds (5.3)

2mi a—100

However, using the Laplace transform can generate data in the Laplace domain,
which is not easily invertible to the real domain by analytical means. Thus
numerical inversion techniques have to be used to convert the data from the s

domain to the time domain [7], [41].
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5.1.2 Laplace Transform Finite Difference Method

We consider an approach to the numerical solution for time-dependent diffusion-
heat equations in which the spatial variable is developed using a purely finite
difference approach. The time development is obtained using a hybrid Laplace
Transform Finite Difference Method LTFDM. The significant advantage of this
method is that it eliminates the time dependency parameter and the associated
discretisation, which is necessary to obtain solutions at a particular time.
When using finite difference and other time discretisation methods to solve
differential equations, the time step size is limited by the stability conditions
required for convergence of the scheme [5], [102]. In linear cases, this usually
involves hundreds and sometimes thousands of time steps to solve for some de-
sired time. Iterations are then required at each time step which involves using
various matrix methods to solve the vast systems of linear equations generated
by the scheme.

For nonlinear cases, this is compounded by the fact that a further iterative pro-
cess is usually required at each time step [74]. Since each of these iterations
introduces a certain amount of round-off and truncation error, careful consider-
ation must be given to their control and management when implementing these
schemes.

The Laplace transform has the potential to do away with time discretisation
and the associated error management by transforming the time domain into the
Laplace space, s, via the integral transform in (5.1). The computations done
in the Laplace space, s, can then be inverted back to the time domain for any
desired time. Hence the LTFDM can lead to the required solution with virtually
one-time-step. This means that stability and convergence problems caused by
time discretisation are avoided, and the amount of computation is decreased

without losing any essential characteristics of the problem [74]. Thus by em-
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ploying the LTFDM, we can obtain substantial increases in speed and accuracy
over traditional finite difference and time discretisation methods.

The LTFDM was first proposed by Moridis et al. [74] for the simulation of
compressible liquid flow, where the Stehfest [99] algorithm was used to invert
the data. Kang and Kwon [4] apply the LTFDM to the solution of the Black-
Scholes equation and inverted the data from the Laplace space into the time do-
main by using the Fourier series method with an accelerated convergence scheme
[28],[55], [42],[55]. Jacobs [57] used the LTFDM in the context of time-fractional
heat equations with both Dirichlet and Neumann boundary conditions coupled
with a compact fourth-order finite-difference scheme. Jacob’s inversion scheme
is one by [110], which is a particular application of the Bromwich contour in-
tegration method. However, this approach involves using three free parameters
instead of the version used in this paper, namely the Fixed Talbot Algorithm,
which uses a single parameter to invert the functions.

In 1994 Zhu et al. [119] combined the Laplace transform and the Dual Reci-
procity Method (DRM) into what they called The Laplace Transform Dual
Reciprocity Method (LTDRM) to solve linear time-dependent diffusion equa-
tions. In 1996 Zhu et al. [119] extended this method to solve a particular class
of nonlinear diffusion equations. In 2005 Crann et al. [27] successfully applied
this method to electromagnetic heating problems. In 2007 Davies and Crann
[33] used a hybrid Laplace transform finite-difference boundary element method
for solving diffusion equations. Zhu, Davies and Crann used the Stehfest inver-
sion scheme to convert the data into the time domain.

Dimple Rani et al. used a numerical inverse Laplace transform for Solving a
class of fractional differential equations [90]. The inversion method used an al-
gorithm proposed by the authors based on Bernstein operational matrix [89].

Then in 2020, Dimple Rani et al. used the numerical inverse Laplace transform
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based on Bernoulli polynomials operational matrix for solving nonlinear ordi-
nary differential equations [88§].

This paper applies the LTFDM to three linear and four nonlinear one-dimensional
diffusion problems. The linear problems are chosen due to the variety of initial
and boundary conditions. We then apply the LTFDM to solve four nonlinear
diffusion problems. These problems are chosen because they have very different
nonlinear terms. In problem four, we apply the LTFDM to the problem tackled
by Zhu et al., who, as we stated before, used the LTDRM to solve this problem
and compare our results. This problem has a non-linearity of 3. In problem
five, the LTFDM is used to solve an equation whose nonlinear term is v/1 + u2
and has hyperbolic boundary conditions. In problem six, the method is used on
a diffusion equation with a u? nonlinear term. Finally, we apply the scheme to
an equation with an exponential e~* nonlinear term for problem seven. For all
the nonlinear terms, we adopt a simple direct or semi-direct iterative linearisa-
tion procedure.

The authors are not aware of comparative studies for the LTFDM or other
Laplace transform methods with finite-difference methods for one-dimensional
diffusion equations in the literature. Two inversion schemes for both the linear
and nonlinear problems are employed, the Fixed Talbot Algorithm [104] and the
algorithm developed by Stehfest [99]. Using these two inversion schemes allows
us to test the robustness of these algorithms, and we believe it is good practice
for real-life applications of LTFDM where we do not have an exact solution to
test the accuracy of the scheme.

In problems 1-3, the LTDFM methods are compared with the Forward Time
Central Space (FTCS) finite difference scheme. However, this method fails to
produce accurate results for the nonlinear problems 7 to 9 where we employ the

more stable Crank-Nicholson finite-difference method [69], [114].
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5.2 The Inversion Algorithms
5.2.1 Stehfest

In their wide-ranging study of algorithms for inverting the Laplace transform,
Davies and Martin [36] cite the Stehfest algorithm [99] as providing accurate
results on a wide variety of test functions. Since then, this algorithm has be-
come widely used for inverting the Laplace Transform, being favoured due to
its reported accuracy and ease of implementation.

The algorithm takes the transformed data in the Laplace space F(s) and pro-

duces f(t1) for a specific time value ¢ = ¢;. Choosing

. In2

8§ =J 5 j=1,2,...M, for M even. (5.4)
1

The numerical inversion is given by

In2 M
f(t) =~ = > AF(s)) (5.5)
j=1
with
mln(']’%) M
M | 2 !
A= ()= = ¥ k2 @k (5.6)

k=54 (% = )k — )G — F)Y(2k — j)!

Theoretically, f(t) becomes more accurate for larger M, but the reality is that
rounding errors worsen the results if M becomes too large. According to Ste-
hfest, “The optimum M is approximately proportional to the number of digits

the machine is working with” [99].

The Fixed Talbot algorithm for numerically inverting the Laplace

Transform

Here we use the function,
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S(z) = —= (5.7)

1—e*

which maps the closed interval M = [—2mi, 27i] on the imaginary z—plane onto

the curve L in the s-plane giving the integral,

£t = /L F(s) et ds (5.8)

T 2mi

(See Logan [66] for the details of this transformation).

Next we follow the procedure as adopted by Logan for numerically integrat-

ing (5.8).

With s = S(z) this becomes

1 /7
£ = 5z [ [F(S(:) e () s (59)
27 M
where
, 1—(14+2z)e "
= 1
5'9) = T (5.10)
For convenience we write,
1
fi) = T/ Q(z)dz (5.11)
™ Jm
where
Q(2) = F(S(2)) ¥ S (2) (5.12)
and M = [-2m,27]. Then if we let w = —iz for the integral in (5.11) so

the interval of integration is now real and becomes [—2m,27]. Then using the

trapezoid rule with n we obtain
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1 n—1
£(t) ~ n{(f(zm) +I(=2mi) 42 I(iwj)} (5.13)

j=1
where

w; = zw{% -1} (5.14)

and we note that I(2mi) = I(—2mi) = 0 [66].

5.3 Diffusion Equations.

We seek solutions to the general diffusion equation [96]

ou 0%u

where & is the diffusivity constant and F'(u) can be equal to zero, a linear or a
non-linear functions of uw. For our first set of linear diffusion problems we have
that F(u) = 0. in (5.15) and constant boundary conditions, «(0,t) = ¢; and

u(L,t) = c2. So we have,
ou 0%u
— =k 5.16
ot~ "ox2 (5.16)
This models for example the diffusion of heat along a one-dimensional bar of
length L with initial condition u(x,0) = f(z) for 0 < z < L and constant
boundary conditions for ¢ > 0. The Laplace transform of the time derivative in

(5.16) is
E{a;;} = su(x,s) —u(z,0) (5.17)

where

u(x, s) = L{u(z,t)} (5.18)

115



And the Laplace transform of the spatial derivative in (5.16)
9%y dz

With x = 1, our finite difference scheme for (5.16) in the Laplace s-space is

d2

u(z,s) —u(x,0) = el u(x, s) (5.20)
with transformed boundary conditions,
a(0,t) = 2L and  w(L,t) = 2 (5.21)
Sj Sj

Where ¢; and ¢y are constants. Then using a central-difference scheme on the

spatial derivative, the finite difference scheme for (5.20) is,

Uj—1 — ﬂi(Q + (51‘28]‘) + Uiy = —5x2u(0)i (5.22)

where dz is the step size in the z-direction, s; is the jth Laplace parameter and
up, = u(x;,0). To avoid the absolute error ‘blowing up’ for values of u near zero
unless otherwise stated, we give the maximum relative error calculated along
the entire length of the bar. In problems 1 to 3, we compare the results for the
LTFDM with the Forward Time Central Space (FTCS) finite difference method
[96]. Stability criteria requires that r = 25 < 1. We found that a value of
r = 0.2 was more than adequate to generate accurate results.

As far as the authors are aware, comparisons of the LTFDM with the FTCS and
Crank-Nicholson finite-difference, at least for one-dimensional diffusion equa-
tions, have not been done. These results, therefore, should indicate the viabil-

ity of using the LTFDM in these circumstances, as opposed to general finite-

difference methods.

116



For all the examples studied in this paper we used L = 1, dz = 0.1 and M = 12
weights for the Stehfest inversion and n = 555 for the Talbot inversion. For
brevity and ease of presentation in our tables, we use the notation 2.7(—3)
instead of 2.7 x 1073, For all the examples, the error norm is the absolute

percentage error given by:

fnumerical (tl) - fezact (tz)
fewact (tz )

x 100{, i=1,..40 (5.23)

FE,,.: = max

(All computations were carried out using Intel(R) Core(TM) i7-8550U CPU @
1.80GHz 1.99 GHz)

5.3.1 Problem 1
This is equation (5.16) with x = 1, initial condition u(z,0) =0 for 0 <z < L

and boundary conditions u(0,t) = u(L,t) = 1, for t > 0. The exact solution is

2
u(z,t) =1+ 22, 22 (—1)"e""""0) gin(nra) (5.24)
m

Table 5.1 shows that the FTCS method performs better for the times given than
both LTDFM schemes, with the Talbot giving better results than the Stehfest
inversion. This is also shown in Figure 1, which shows the temperature profile

at t = 1.
5.3.2 Problem 2
This is equation (5.16) with k = 0.5, u(z,0) = Ty, u(0,t) =T, u(z,t) = To

as ¢ — oo. The exact solution is given by

TO + (Tl — To) erf< (525)

x >
(2 VKt
Here we use jb =2 and T1 =4.
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u(x,t)

0.99998

0.99996

0.99994

0.99992

0.9999

0.99988

0.99986

t FTCS | Stehfest | Talbot
05| 31(-5) | 1.2(-4) | 4.2(-5)
1 3.1(-7) 6.2(-5) 3.0(-6)
2 | 7.0(-11) | 3.6(-5) | 4.6(-10)
3 | 6.5(-15) | 2.1(-5) | 1.2(-13)
4 [ 91(18) | 1.9(-5) | 2.6(-13)
5 | 4.7(-22) | 1.1(-5) | 6.2(-13)

T T T T
% *  FTCS
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Figure 5.1: Temperature Profile Problem 1 for t =1 .

t FTCS | Stehfest | Talbot
0.5 | 2.0(-3) | 1.9(-2) | 1.1(-3)
1 [9.8(4) | 9.7(-3) | 5.4(-4)
2 | 4.9(-4) | 4.8(-3) | 2.7(-4)
3 | 33(-4) | 3.2(-3) | 1.8(-4)
4 | 2.4(-4) | 2.4(-3) | 1.6(-4)
5 | 2.0(-4) | 1.9(-3) | 1.1(-4)

Table 5.2: Problem 2 Error
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Figure 5.2: Temperature Profile Problem 2 for ¢t = 1.
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Table 5.2 shows that the LTFDM with Talbot inversion gives the most accurate
results for times considered performing slightly better than the FTCS and the
LTDFM Stehfest inversion schemes. For all the methods, the accuracy increases
at larger times. Figure 5.2 shows the temperature profile at ¢ = 1, with the

Stehfest LTFDM increasing in error for « between 8 and 10.

5.3.3 Problem 3

This equation is the linear cyclic diffusion equation

ou Pu w
5 = f52 o % cos(mt) (5.26)

with initial condition u(x,0) = sin(wz), the left hand boundary at u(0,t) = 0,
and a cyclic boundary condition at w(1,t) = sin(nt) for ¢ > 0. The exact

solution is given by
u(z,t) = exp(—an?t) sin(rx) + z sin(nt) (5.27)

The finite-difference scheme in the Laplace space is

512 :
Timy + s ( - f”sj> Ty = 60 (uoi - gx 1 ) (5.28)
J

where 0z is the size of the spatial step in the x-direction, s; is the jth Laplace
parameter and ug, = u(x;,0).

It is well known that the Stehfest algorithm has difficulty reconstructing the
sine and cosine functions for any ¢t > 7 ,[62], [65]. This is shown in Figure 5.3

and Figure 5.4.
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Figure 5.3: Stehfest reconstruction of sin(t).
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Figure 5.4: Stehfest reconstruction of cos(t).

This can be overcome by implementing the inversion scheme in a multi-precision
environment [18], [113] or by a piecewise reconstruction of the function [27].
However, as our emphasis in this paper is on simple comparative implementation
for solving diffusion type equations, we choose instead to evaluate the boundary

condition and the cosine function on the right-hand side of (5.26) at the desired

121



time and then invert these numerical results as constants in the Laplace space.

b
sin(nt) = 2 and cos(rat) = — (5.29)

Sj S5

(For all the tables presented the first or ¢ column indicates the interval used in

the evaluation. Thus 0,27 means V ¢ € [0, 27]).

t | FICS | 7 | Stehfest T Talbot T
0,27 | 87(-5) | 3.6(1) | 9.6(-1) | .4.0(-2) | .3.1(-1) | 1.7(-1)
137 | 8.7(-5) | 8.1(0) | 1.4(-1) | 5.1(-2) | 3.5(-2) | 2.3(-1)
24 | 7.3(-5) | 1.4(1) | 1.6(-1) | 5.3(-2) | 6.1(-3) | 2.4(-1)
357 | 6.4(-5) | 2.2(1) | 3.1(-3) | 5.5(-2) | 6.8(-4) | 2.6(-1)
467 | 6.3(-5) | 3.2(1) | 3.1(-2) | 5.7(-2) | 1.2(-4)) | 3.6(-1)
56m | 6.3(-5) | 4.1(1) | 3.1(-2) | 5.2(-1) | 1.3(-5) | 3.3(-1)

Table 5.3: Problem 3 Error v = 0.2

t | FTCS | Stehfest | Talbot
0,27 | 4.1(-5) | 7.3(0) | 2.0(0)
1,37 | 4.1(-5) | 8.4(-2) | 1.0(-3)
247 | 4.1(-5) | 1.2(-3) | 1.0(-5)
35m | 4.1(-5) | 1.2(-3) | 5.0(-8)
467 | 4.1(-5) | 1.2(-3) | 5.0(-8)
577 | 4.1-5) | 1.2(-3) | 5.0(-8)
6,87 | 1.4(-5) | 1.2(-3) | 4.7(-8)

Table 5.4: Problem 3 Error o« = 0.5
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t FTCS | Stehfest | Talbot

0,2r | 2.7 2.1(-1)

1,37 | 2.3 1.0(-5)

24 | 2.3 8.1(-10)

4,67 | 2.3 1.2(-8)

(-5) (-2)
(-5) (-4)
(-5) (-4)
3,5m | 2.3(-5) | 6.0(-4) | 8.1(-10)
(-5) (-4)
(-5) (-4)

5,7 | 2.3 1.2(-7)

Table 5.5: Problem 3 Error aa =1

Figures 5.5,5. 6, and 5.7 show the temperature profiles for problem 3 with o = 1

and ¢ € [0, 4],

A D

u(x,t)

0 2 4 6 8 10 12 14

Figure 5.5: Temperature Profile Problem 3 using Talbot inversion
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at earlier times.
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Figure 5.6: Temperature Profile Problem 3. Stehfest inversion
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Figure 5.7: Temperature Profile Problem 3. FTCS

The results from Tables 5.3, 5.4, and 5.5 show the FTCS performing better

with the jump discontinuity shown in Fig 5.7, but this is also the case for the
Stehfest algorithm for values of a other than 1. However, the Talbot scheme
steadily improves with time, doing slightly better than the FTCS in the interval
t € [5m, 7n]. Tables 5.4 and 5.5 show that for the larger a values, the FTCS
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maintains the same relative error for all times while the Talbot steadily improves,
doing considerably better than the FTCS and the Stehfest for greater times.
Table 5.3 also shows that the FTCS scheme had elapsed times 7, of several orders
larger than the LTFDM. This verifies the points made earlier in section 1.2
about the LTFDM ability to save computational time in arriving at the solution
offering a considerable advantage in using the LTFDM over time discretisation

schemes.

5.4 Non-Linear Diffusion Type problems

5.4.1 Problem 4

Our first non-linear problem is taken from Zhu et al. [119] who used the Laplace

Transform Dual Reciprocity method to solve

0%u  Ou
However, it is well known that the Laplace transform cannot be successfully
performed on non-linear governing equations, and so some linearisaton process
is necessary before the LTFDM can be implemented, [47]. We use the same
linerasiation procedure adopted by Zhu. In order to find the solution of the
unknown function at a particular time ¢1, Zhu linearised (5.30) as
0%u  Ou

o’u _ ou B = -2
922 = o1 +uly—(y+1a+a) (5.31)

where @ is the previously iterated solution. The governing equation has the

2

nonlinear terms u? and »3. Zhu linearises the u? term as u@ and teh u® term
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as ui%. In the Laplace space the corresponding finite difference scheme is
—m —m 2 2 5$2 —m 2 1
Uty — 0y | 24 0x7s; + ox e +auyy, = —dx u0i+; (5.32)
J

where 0z is the size of the spatial step in the x-direction, s; is the jth Laplace
parameter and ug, = u(x;,0). The initial condition is v = 0 and the boundary

conditions are chosen to satisfy the exact solution

m 72
S e it Ll (5.33)
L+m + e
with
_1(33_-\/5 _1-> (5.34)
771 \/5 I ’y \/5_ N
and
(o vay 2] 5.35
=5 (x v \/§> (5.35)

Since no Laplace Transform exists for (5.33) at the boundaries we evaluate its
numeric value a say for specific ¢ and express the transform at the boundaries

as a/sj for x =0and for x =L .

t | FTCS | Stehfest | Talbot
0.1 | 1.1(-2) | 2.0(0) | 2.0(0)
0.5 | 2.0(2) | 3.4(0) | 3.5(0)

1 | 4.0(-2) | 1.300) | 1.2(0)

3 | 5.004) | 51(-2) | 9.8(-2)

4 | 1.2(4) | 1.2(-2) | 1.1(-2)

5 | 2.7(-5) | 2.7(-3) | 1.4(-3)

Table 5.6: Problem 4 Zhu Percentage Error
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Figure 5.9: t = 0.5.
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Figure 5.10: ¢t = 1.0.
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Figure 5.11: t = 3.0.
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Table 5.6 shows that the FTCS performs better than both LTFDM schemes for
all times shown. For this problem, we follow Zhu et al. and give the percentage
error. The Talbot and Stehfest both give a percentage error greater than 3%
at t = 0.5 compared with 0.0195% for the FTCS. All schemes then improve for
greater t. However, the LTDFM performs better than the LTDRM as outlined
by Zhu et al., who reports a maximum relative error at ¢ = 0.1 of 3% and
t = 5 compared with 1.9% for both LTFDM schemes and just less than 0.1%
compared with 0.0014% for the Talbot inversion and 0.0027% for the Stehfest
inversion.

Figures 5.8 to 5.11 show the temperature profile for problem 4 at the indicated
times. All the graphs show the Talbot and the FTCS performing better than
the Stehfest LTFDM.

5.4.2 Problem 5

Our next non-linear equation has the form

u 9
a—ﬁ=8—?+u—\/1+u2 (5.36)

With initial and boundary conditions chosen to satisfy the exact solution u(zx,t) =

sinh (z + t).
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Figure 5.12: Temperature Profile Problem 5.

Figure 5.12 shows that the FTCS scheme fails to reconstruct the solution accu-
rately. We therefore use the Crank-Nicolson method noted as a “unconditionally
stable" finite-difference method [100], [96]. In this case, we use direct iteration
to linearise v/1 4+ u2 term. This means that the previously iterated solution is
used for the u? term in equation(5.36). In the Laplace space, the corresponding

finite difference scheme is
a, —al (2 + 02?5, + 5w2> +u, = —6z? (u(O)i +4/(1+ (uiml)2> (5.37)

The Crank Nicholson scheme is

rul | 4wl (2 - 2r —dt) + 7"uzJr1 /14 (ul™ 2 26t
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The subscripts 7 and the subscript j denote the number of x and ¢ intervals,

respectively, and m and m—1 represent the current and previous iteration steps.
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Table 5.8: Problem 5 Error dz = 0.01
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Table 5.7 shows that Crank-Nicholson is not as accurate as the other schemes.
Also, except for t = 0.5, the Talbot and the Stehfest LTFDM perform better
than the Crank-Nicholson finite difference method. In Table 5.8, with a reduc-
tion in the spatial step from dxz = 0.1 to dz = 0.01, we see an improvement
in accuracy for all the schemes. However, there is a significant increase in the
elapsed time 7 for the Crank-Nicholson scheme. This substantiates the points
we made in Section 1.2 about the advantages gained in speed and accuracy when
employing LTFDM over traditional finite-difference methods. Figures 5.13 to
5.16 shows the error profiles for all three schemes with spacial step dx = 0.05 at

times shown.

5.4.3 Problem 6

This problem has a nonlinearity of u? and is given by

Pu Ou
2 ot +u” +a(z, t) (5.38)
with
a(z,t) = (2+2%)e "t —ate™? (5.39)

The boundary conditions are defined as follows:

u(0,t) =0

u(l,t) =e*

with initial condition

u(z,0) = 22
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For this case, we linearise the u? as u™u™ ! where m and m — 1 represent the
current and previous iteration steps, respectively. Our LTFDM scheme in the
Laplace space is

2+ 22 xt
Sj—‘rl Sj—|—2

a —ut (2462 s +oxtu ) +art, = oa® (u(())i +

> (5.40)

and our Crank Nicholson finite difference scheme is

—rul T T (2420461 u{+1’7rb_1)—rugill’7'L = rul_ | 4ul (2—2r—5t ug’m_l)—l—ruzﬂ—%t a(x,t)

(5.41)
t | FTCS | CN | Stehfest | Talbot
0.5 | 1.6(-2) | 5.2(-3) | 1.7(-2) | 1.2(-2)
1 | 1.1(-2) | 2.0(-3) | 1.0(-2) | 3.0(-3)
2 | 4.4(-2) | 1.1(-3) | 3.9(-3) | 4.1(-4)
3 | 1.6(-3) | 4.3(-4) | 1.5(-3) | 5.6(-5)
4 | 6.1(-4) | 1.5(-4) | 5.2(-4) | 7.1(-6)
5 | 2.3(-4) | 5.8(-5) | 1.5(-4) | 1.0(-6)

Table 5.9: Problem 6 Error

t | CN 7 | Stehfest | 7 | Talbot | T
0.5 | 1.6(-4) | 3.7(0) | 1.8(-3) | 4.9(-2) | 8.5(-3) | 2.5(-1)
1 | 3.6(-4) | 7.5(0) | 1.3(-3) | 4.0(-2) | 3.2(-3) | 2.3(-1)
2 | 51(-5) | 1.2(1) | 3.0(-4) | 4.4(-2) | 4.3(-4) | 2.3(-1)
3 | 5.8(-6) | 2.2(1) | 1.0(-4) | 3.6(-2) | 5.5(-5) | 2.3(-1)
4 | 1.8(-6) | 3.0(1) | 6.2(-5) | 3.6(-2) | 7.8(-6) | 1.2(-1)
5 | 6.6(-7) | 3.8(1) | 1.5(-4) | 3.6(-2) | 1.0(-6) | 1.3(-1)

Table 5.10: Problem 6 Error dz = 0.01
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Problem 6. Table 5.9 shows that for ¢ = 0.5, the Crank-Nicholson scheme
performs better than the two LTFDM schemes. At ¢t = 1, the Crank-Nicholson
and Talbot have the same order of error, with the Crank-Nicholson performing
marginally better and both doing better than the Stehfest inversion. However,
for t > 2, the Talbot performs better than both the Crank-Nicholson and the
Stehfest inversion methods. Table 5.10 shows all the schemes improving in
accuracy for the smaller spatial step dx = 0.01, but the Crank-Nicholson method
does so at the expense of a substantial increase in elapsed times. Figures 5.15 to
5.18 shows the error profile for = = 0.05. Here we see that except for ¢ = 0.5,

the Talbot inversion LTFDM perform better than the other two methods.

5.4.4 Problem 7

The next of this class has the non-linear term e~*. The boundary condition

and analytic solution are as in Problem 6.

Pu Ou
922 ot +e “+a(x,t) (5.42)
with
a(x,t) = (2+2%)e ! — exp(—z?e™") (5.43)

. . —am . - .
For this case we express the non-linear term e™* in terms of its previously

iterated solution, v giving
0? 0
87331; = 871; +e uml 4 (24 %) et — exp(—z?e ) (5.44)

However the Laplace transform cannot be performed on the exp(—z2?e~") term

in (5.44) but we can transform this term into the s-space through its Maclaurin
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expansion as follows:

4,-2t  6,-3t 8,4t
_ _, e 2% z8e
exp(—z%e ) ~ 1 -zt + TR TR T (5.45)

Now taking the Laplace transform of (5.42) stopping the exponential expansion

after the fifth term we have:

*u —ﬂs-—u(0)+e_um_1+(2+x2)— 1 a? n at  af N 28
ox2 s 1+s s 1+s 21(2+s) 3l(3+s) 4l(4+9)
(5.46)

This gives the finite difference scheme

—Um-—1
m

= a2+ 6x%) = ult, = —6x?u;(0) + 5a

— 0x%a(x,s;)  (5.47)
Sj

Where @(z, s;) is the expression in brackets on the right hand side of (5.46).
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Figure 5.21: FTCS Temperature Profile Problem 7 at ¢ = 1.

Figure 5.21 shows that the FTCS method fails to accurately reconstruct the
solution for problem 9. so we compare our results with the Crank-Nicholson

finite-difference scheme.The Crank Nicholson scheme is

ruffll—l-rugﬂ(2—|—2r)—7‘uzi'11+dt e = Tu§71+ruf(2—2r)+ruz+1—2a(m, H)—dt e~
(5.48)
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The following graphs are with dz = 0.05
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For this problem, Table 5.11 and Figures 5.19 to 5.22 show that the Talbot
LTFDM performs better than the Crank-Nicholson and the Stehfest LTFDM
at all times. A decreased spatial step of dx = 0.01 for both LTDFM schemes
provides better results than the Crank-Nicholson method. Again we see that

the elapsed times Crank-Nicholson increases significantly as ¢ increases.

5.5 Summary

In this chapter, our tests show that the LTFDM is a viable method for solving
linear and nonlinear one-dimensional diffusion equations. The LTFDM, which
employed the Talbot inversion scheme, gave better results than the Stehfest
inversion scheme for the three linear cases considered in this paper. Moreover,
except for early times, the Talbot inversion also performed better than the FTCS
in problem two and problem three with considerably shorter elapsed times for
both LTFDM schemes in problem 3..

For the nonlinear cases except for problem 4, the LTFDM with Talbot inversion
performed better overall than the Stehfest LTFDM and the Crank Nicholson
methods. Here except for shorter times, this method produces more accurate
results. For example 6, the inability to provide an exact inversion formula for
the Laplace Transform at the boundaries may account for the better perfor-
mance of the FTCS over the LTFDM.

Moreover, while increasing the spatial step dx can lead to improvements in ac-
curacy for all schemes, the Crank-Nicholson method does so with substantial
increases in elapsed times when compared with the LTFDM.

We conclude that the LTFDM is a viable alternative to traditional finite-difference
schemes for solving one-dimensional diffusion type problems with a particular
advantage in accuracy and speed of computation for nonlinear cases. Therefore,

these advantages will likely be extended and improved upon for diffusion prob-
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lems in higher dimensions.
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Chapter 6

Conclusions and Future Work

This thesis examined the use of Laplace Transform Finite Difference method
(LTFDM) for solving diffusion type problems. The main drawback in using this
method is the problems caused by the perturbation of the numerical inverse
transform. We examined the noise handling properties of algorithms from three
of the four main classes of Laplace numerical inversion methods. I found that
the Talbot inversion algorithm performs with greater accuracy for’ noisy data’
than the Fourier Series and Stehfest numerical inversion schemes, as outlined in
Chapter 2. This scheme’s use of complex arithmetic was the principal reason
for its better handling of noisy data. This means that for applications in which
such noisy data are likely, I expect the Talbot inversion scheme to perform bet-

ter and recommend its use.

In Chapter 3, I developed a modified form of the LTFDM to solve the Fisher-
KPP reaction-diffusion equation. This equation models the behaviour of a mu-
tant gene in an infinitely long spatial domain. Analysis has shown that the

numerical solution suffers from perturbations of an infinite extent. A direct
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application of the LTFDM failed to produce accurate results. I concluded that
this perturbation was not sufficiently taken into account. Especially so as I was
already dealing with a perturbed inversion problem, I concluded that this prob-
lem could be overcome by introducing some time discretisation into the process,
initialising the initial conditions, and choosing the Talbot algorithm, which is
best, able to smooth out these perturbations. I compared our results at various
wave speeds with a solution generated by perturbation methods. Thus, I could
attain results with a maximum percentage error of one per cent. While this
means that the advantage of using the Laplace transform to obtain solutions for
any time is not fully exploited, the method does allow for considerably larger

time steps than is otherwise possible for finite-difference methods.

In Chapter 4, I investigated the performance of five inversion schemes in a
multi-precision environment. In standard-double-precision, the Abate-Valko al-
gorithm provides the most accurate results for the numerical reconstructions
for the functions tested in this paper. The Fourier algorithm had the worst
performance of the five algorithms tested. Both the Stehfest and Salzer-Gaver
algorithms had difficulty reconstructing functions of a cyclic nature. None of
the algorithms was able to invert the Jo(¢) function accurately.

In multi-precision, the Stehfest and the Salzer-Gaver schemes inverted all the
functions with high accuracy. The Logan and Abate-Valko schemes could only
invert the Jy(¢) with limited accuracy. However, they could reconstruct all the
other functions with a high degree of accuracy. The most accurate algorithm
in multi-precision was the Salzer-Gaver scheme. I also found that the Stehfest
algorithm is not merely a Salzer acceleration onto a Gaver functional. However,
as Table 4.8 shows, the Salzer-Gaver also had the most extended elapsed times.

On the other hand, the Stehfest algorithm had the shortest elapsed times for
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the selected functions in Table 4.8. The algorithms that used the Abate-Valko
method were the most accurate, but Logan could reconstruct the functions
with shorter elapsed times. Therefore I conclude that when working in stan-
dard precision, Valko’s algorithm performed best. However, in multi-precision,
the Stehfest algorithm is best as it inverted all the functions with a high degree
(although not the highest) of accuracy and the shortest elapsed times.

In chapter 5, LTFDM and two numerical inversion schemes, Talbot’s and Ste-
hfest, were used to successfully solve various linear and nonlinear time-dependent
diffusion equations with Dirichlet conditions. The iterative procedures main-
tained the advantages of solving in the Laplace space. Both inversion schemes
provided accurate numerical results for all the equations under consideration.
The LTFDM, which employed the Talbot scheme, gave better results than the
Stehfest inversion scheme for the linear cases. Moreover, except, for early times,
the Talbot inversion also performed better than the FTCS in problem two
and problem three, with considerably shorter elapsed times for both LTFDM
schemes in problem 3.

For the nonlinear cases except for problem 4, the LTFDM with Talbot inversion
performed better overall than the Stehfest LTFDM and the Crank Nicholson
methods. Here except for shorter times, this method produces more accurate
results. Moreover, while increasing the spatial step dx can improve accuracy for
all schemes, the Crank-Nicholson method does so with substantial increases in
elapsed times.

I conclude that the LTFDM is a viable alternative to traditional finite-difference
schemes for solving one-dimensional diffusion type problems with a particular
advantage in accuracy and speed of computation for nonlinear cases. Therefore,
these advantages will likely be extended and improved upon for diffusion prob-

lems in higher dimensions.
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As we have stated in this thesis, the numerical inversion of the Laplace trans-
form is an ill posed problem and hence is a perturbed problem. This means
that the solution does not depend continuously on the data, [92]. Therefore,
the data for the inverse transform is only known approximately, and conver-
gence from the Laplace s-space back to the time domain is not guaranteed.
Hence, some care must be taken when implementing any inversion algorithm,
including those outlined in this thesis. One approach uses perturbed data to
solve regularised problems to arrive at an accurate solution. The most common
is the Tikinov regularisation scheme,[106], but this requires prior information
about the magnitude of the perturbation. In implementing these schemes, one
also must consider the trade-offs between accuracy and time constraints, [52].
Therefore, it is recommended that one uses more than one algorithm to invert
the Laplace transform numerically. The choice of these algorithms will depend
on the problem being solved. This may involve estimations of how much noise
is in the data, if the solution has infinite poles on the imaginary axis, if only
real data is available, how continuous the data is and so on. I have demon-
strated that the Talbot and Stehfest algorithms are both relatively robust for

the applications used in the thesis.

6.0.1 Future Work

During the PhD, areas for future investigations arose which could form a basis
for future work.

1. T began looking at the possibility of deriving analytical error bounds for the
Stehfest algorithm. As Abate and Valko point, [1] out, it is not possible to have
such bounds independent of the function, I think it is possible to do so for a
particular function. If this is the case, perhaps I could extend this to estimating

the errors involved when using the LTFDM with Stehfest inversion for solving
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diffusion problems.

2. I derived a new acceleration scheme for the Gaver functional. This produced
accurate results for the sine function without the need for multi-precision. How-
ever, thus far, I could only invert the exponential and sine functions. This may
be more of a coding problem than an issue with the algorithm. Further in-
vestigation is needed to determine if this could become a viable method for
numerically inverting the Laplace Transform .

3. I have had some success with the LTFDM providing accurate results for
the travelling wave solutions of the Fisher-KPP equation. I want to investigate
whether this method can be successfully applied to other PDE’s which exhibit
travelling wave solutions. Also, it might be worth investigating the performance
of Laplace Transform methods in solving the wave equation.

4. T would like to systematically investigate the various methods of linearising
nonlinear diffusion equations in the context of the LTFDM or, more generally,
for methods that use Laplace transform inversion to solve the diffusion equation.
5. I would like to investigate further using the accelerated Fourier series method.
While this is not a one-parameter class, as is the case for both the Stehfest and
Talbot schemes, it would be interesting to see if there are conditions to make it
so. Then this would allow us to perform systematic testing of the algorithm in

this form for applications to the LTFDM.
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