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1 Introduction

When studying a quantum field theory or string theory, it is often convenient to study
a simpler ‘twisted’ theory first which, in nice cases, teaches us something about the full
theory. In the past, this strategy has been used to great effect and has led to interesting
connections with other topics in geometry and topology. For example, topological quantum
field theories [1] are simple models of quantum field theory in that they have no propagating
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degrees of freedom and they were famously related to topological invariants of the underlying
manifolds in a variety of situations [1–3]. The topological versions of string σ-models [3, 4]
also gave rise to topological string theories [5, 6], which are subsectors of the full string theory
where exact computations can be performed. In fact, these computations were shown to give
results that remain valid in the full theory [6, 7]. A further interesting class of simplified
QFTs are holomorphic field theories, as studied in [8–11], which are simpler than full smooth
QFTs but have considerably more structure than topological field theories.

Many of these theories arise from taking a supersymmetric theory and applying a twist [1].
This is a two-step process in which one first modifies the Lorentz symmetry of the theory, and
correspondingly the energy-momentum tensor, so that one of the spinor supercharges becomes
a scalar that can be defined globally regardless of the particular metric on the manifold. One
then adds this supercharge to the BRST operator of the theory, which significantly modifies the
spectrum of physical states in general. In the case that the energy-momentum tensor becomes
BRST exact, the correlation functions become metric independent and one has a topological
field theory of “Witten type”. For example, Donaldson-Witten theory can be constructed as a
twist of 4d N = 2 Yang-Mills theory, in which case the spectrum of the twisted BRST operator
becomes the SU(2) instantons. Other examples are the A- and B-models which are twists
of 2d N = (2, 2) σ-models. Subsequently, such twists have been studied extensively [12–19].

For metrics which admit a parallel spinor field, one can single out a global scalar
supercharge for the theory without the need to modify the Lorentz symmetry or energy-
momentum tensor [20, 21], though one still needs to add the scalar supercharge to the BRST
operator of the theory (for example, in order that the Yang-Mills action becomes a topological
term up to BRST exact pieces). The parallel spinor field is equivalent to a torsion-free
G-structure on the tangent bundle, with a structure group that preserves the spinor. In other
cases, one could have a G-structure which admits a line of singlet spinors which are charged
under some U(1) subgroup, and then one must perform a twist of the theory to obtain a scalar
supercharge. Either way, such G-structures play an important role in the study of twisted
theories. In gauge theories, the physical states which are kept in the twisted theories are
then the various types of instanton configurations defined with respect to these G-structures,
and the quantum path integrals localise onto these states. These instantons solve first-order
equations which imply the second order Yang-Mills field equations, as explored and classified
in [22, 23]. There have been many previous studies of the geometry of these instanton
configurations and their moduli spaces [15, 24, 25], their coupling to gravity in the context of
heterotic supergravity [26–28], and their relation to D-branes in type II strings [29, 30].

Recently, it was proposed how to twist supergravity theories [31] using this latter strategy,
enabling also the study of holographic duality to the twisted gauge theories [32] as a toy model
of the AdS/CFT correspondence [33]. In the supergravity context, the twist is performed by
working in the BV formalism and giving a vacuum expectation value to the bosonic ghost
field corresponding to one of the supersymmetries. For supergravity theories coupled to super
Yang-Mills multiplets, this procedure leads to the twist of the Yang-Mills sector in agreement
with the previous constructions. Much work has been done to construct twisted supergravity
theories [34–38], much of it using the pure-spinor superfield formalism (see e.g. [39] and
references therein) and recent developments of it [40, 41].
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Ubiquitous in these constructions is a differential complex, properties of which provide
information about the instanton states as well as 1-loop corrections. In this paper, we show how
one can construct these complexes associated to instantons and their gravitational analogues
via a seemingly universal algebraic procedure whose main ingredient is a (generalised) G-
structure on the manifold. We shall refer to these complexes as the BPS complex. One of
the cohomologies of the BPS complex computes the infinitesimal moduli of the instantonic
configuration. We go on to show how BPS complexes can be used in various ways to construct
Chern-Simons-type actions associated to instantonic states and explore how their relation
with spinors and supersymmetry provides additional relations between the various differential
operators acting on them.

A precursor of central importance for the present work is the complex defined by
Carrión [42]. It is associated to a G-structure (which must satisfy relevant constraints on
its intrinsic torsion) such that the first cohomology group gives the infinitesimal moduli
space of the relevant instanton configurations in gauge theories. In this article, we show how
to construct such complexes not just for gauge theory instantons, but for instanton states
associated to G-structures quite generally. The gravitational versions of such instantons are
the torsion-free G-structures themselves while in supergravity they are general supersymmetric
Minkowksi backgrounds (including fluxes). In the cases of heterotic geometries with flux,
our construction reproduces the complexes found in earlier systematic constructions of the
infinitesimal moduli [43, 44] after redefining fields (see also [45, 46]). Indeed, this shows
very concretely how the bundles denoted Q in those references, and which also underlie the
algebroids discussed in [45, 47, 48], arise naturally in generalised geometry.

Generalised geometry [49, 50] and the resulting formulation of supergravity [51] and
supersymmetric backgrounds [52–55] is a natural language in which to consider general
supersymmetric solutions, and it will be a central part of our construction here. In this
picture, the conditions for supersymmetry become equivalent to the existence of a torsion-
free generalised G-structure [54, 55] (or singlet torsion in the AdS case [56–58]) and this
formalism has been used, for example, to make general statements about the moduli spaces
of such backgrounds with no assumptions about the nature of the fluxes [59–62], as well as
many other developments. Here, this reformulation enables us to define the BPS complex
associated to a supersymmetric flux geometry as the direct analogue of the complex we define
for torsion-free G-structures in ordinary Riemannian geometry. In this work, for simplicity
we restrict attention to O(d, d)× R+ generalised geometry for the NS-NS sector of type II
theories as described in [51] and the O(d, d + n) × R+ generalised geometry for heterotic
supergravity [63, 64].1 In these geometries, the decomposition of the generalised tangent
bundle into positive and negative sub-bundles under the generalised metric enables one to
associate target space geometric features with the left- and right-moving sectors of the string
worldsheets. This in fact gives our complex the structure of a double complex and we will see
that it behaves analogously to the double complex of (p, q)-forms on a Kähler manifold. The
SU(3)×SU(3), G2×G2 and Spin(7)×Spin(7) cases were previously described in detail in [67].

1In this work we will take the connection on the tangent bundle which appears in the Riemann tensor
squared term in the Bianchi identity to be an additional spurious degree of freedom, as in e.g. [43, 60].
See [65, 66] for an interesting approach to resolving this issue.
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For particular G-structures, the BPS complex obtains extra structure, and we call these
spinor-type complexes. These appear already in examples of the gauge theory BPS complex
of Carrión. It can happen that the sum of terms appearing in the even and odd parts of
the BPS complex form the decomposition of spinor representations of the orthogonal group
under the structure group G. The BPS complex thus becomes isomorphic to pair of spinors,
which together form a representation of the Clifford algebra. The key point is that under
this isomorphism, the Dirac operator is related to a combination of the differential and its
adjoint. In these cases, one finds a general proof that the Laplacian for the BPS complex is
proportional to the de Rham Laplacian acting on the forms. This provides a general structure
to case-by-case computations which have appeared in other sources [67, 68].

The notion of spinor type complex also appears in O(d, d) generalised geometry, where
the weighted spinor bundle associated to the generalised tangent space is isomorphic to the
polyforms on the manifold [49–51], with the O(d, d) generalised Dirac operator becoming the
exterior derivative twisted by the three-form field strength H . Previous works [50, 69, 70] have
studied the decomposition of this complex which occurs when one has generalised G-structures
of various types and its Hodge theory. While in the generalised Kähler case we reproduce the
complex of [69], we emphasise that our construction is different to what is done in those works,
allowing for complexes which do not have a generalised spinor interpretation. Further, even
in the generalised Kähler case we use a different grading on the double complex according to
the exterior powers of the sub-bundles C+ and C− of the generalised tangent space in which
the terms occur. This is crucial for matching the elements of the complex against worldsheet
features of string theory. Rather than viewing the O(d, d) Dirac operator (d + H∧) as a
differential, in our construction we view it as a sum of left- and right-moving Dirac operators.
That its square is zero corresponds to the equality of the left- and right-moving Laplacians ∆+
and ∆−, which is related to level-matching on the string. Coupled with the Kähler identities
mentioned above, this equality also ensures that we have an analogue of the ∂∂̄-lemma.

Note that in the context of supersymmetric backgrounds, the isomorphisms of the BPS
complexes, which provide the deformation complexes of the generalised G-structure associated
to the NSNS fields, with polyforms that could be thought of as RR fields, is a manifestation
of the spectral flow on the worldsheet from a spacetime perspective. This identification of
NSNS and RR degrees of freedom is special to N = 2 backgrounds and explains why one
can naturally describe the supersymmetry of NSNS backgrounds in terms of generalised pure
spinors [52, 53, 71], which one would more naturally associate with RR degrees of freedom. In
this sense, the description of the BPS complex that we provide here, thought of as a quotient
of Λ•(E), puts the discussion firmly back into the sphere of NSNS objects, and also applies
to general structure groups, rather than restricting to the spinor type cases.

As well as providing the infinitesimal moduli spaces of solutions, a principle application of
our formalism lies in the systematic construction of field theories in which the classical states
are instantons. In many interesting cases, the BPS complexes we define have a symplectic
inner product, such that one can directly write down a quadratic BV action for a field theory
from them. For certain examples of Carrión’s gauge theory BPS complexes, this reproduces
the quadratic part of the actions for Chern-Simons theory and its various higher dimensional
generalisations [72–75] which have been of great interest to physicists and geometers alike. For
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the complexes arising from supergravity backgrounds, we are able to reconstruct the SU(3)
and G2 heterotic superpotential functionals to quadratic order. Indeed, via this construction,
there will be a heterotic analogue of each of the aforementioned gauge theories. It was also
shown in previous work [67] how the SU(3)×SU(3), G2×G2 and Spin(7)×Spin(7) complexes
for type II geometry gave target space descriptions of the worldsheet BRST complexes of
the corresponding (quasi-)topological string theories [3, 76]. This enables one to write target
space quadratic actions (where the relevant symplectic pairing exists) whose quantisation
gives the correct one-loop terms [67, 77].

This paper is structured as follows. In section 2, we review Carrión’s construction and
go on to introduce spinor type complexes, prove general results about their Hodge theory
and Laplacians, discuss the definition of instantons and the relation to BPS states and
comment on product manifolds. Section 3 contains a series of examples of quadratic BV
actions which result from the BPS complexes of section 2. We generalise the construction
to gravitational instantons (i.e. torsion-free G-structures) in section 4. Section 5 provides
the further generalisation to generalised G-structures, which in relevant cases correspond to
generic supersymmetric Minkowksi backgrounds of type II and heterotic supergravity with
NSNS and gauge field fluxes. We also derive the Kähler identities for G+ ×G− structures,
and introduce spinor type complexes in the type II cases, for which we prove the equality
of the Laplacians ∆±. Section 6 contains some examples of applications of the formalism:
infinitesimal moduli spaces of flux backgrounds, topological string theories and heterotic
superpotential functionals.

2 Carrión’s instanton complex

In this section, we review Carrión’s construction of a complex associated to gauge theory
instantons on a manifold with a torsion-free G-structure.2 These are the BPS complexes for
gauge theories in our terminology. We go on to define what we call “spinor-type” examples
of these complexes, for which we are able to provide a general proof that their Laplacians are
proportional to the usual de Rham Laplacians acting on forms. We also demonstrate that
on product manifolds with product metrics, the BPS complex becomes the tensor product
of the BPS complexes on the factors, such that the product of two spinor type examples
remains spinor type. Finally, in cases where the BPS complex has a symplectic inner product
of the right degree, one can see it as the BV complex of a field theory and we discuss several
examples of theories which arise in this way in section 3.

2.1 Colour-stripped BPS complex

Let us recall how Carrión [42] defines a complex (A•, ď) on a real manifold M of dimension d
with a G-structure, for G ⊂ SO(d). In fact, to begin with, let us examine a “colour-stripped”
version, in which one considers only differential forms, rather than the endomorphism valued
forms considered in [42] which we will address later in section 2.4. By a slight abuse of
notation, we will write g both for the Lie algebra of G and the induced subbundle of

2One can in fact relax the torsion-free requirement to allow for some intrinsic torsion in some cases, but for
simplicity we will restrict to considering the case of torsion-free structures here.
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Λ2T ∗ := Λ2T ∗M ∼= so(TM). At first we consider the case with trivial gauge bundle for
simplicity. One defines the bundle Ak to be the quotient of the bundle of k-forms

ΛkT ∗ (2.1)

by the subbundle

Bk := g ∧ Λk−2T ∗. (2.2)

The spaces of sections of Ak and Bk will be denoted Ak and Bk, respectively. The differential
on the BPS complex A• is then defined to be ď = P ◦ d where P is the projector onto A•.

For a general G-structure, one would not find that ď2 = 0. However, it is easy to see that a
sufficient condition for this to hold is that the image of d restricted to B2 = Γ(g) ⊂ Γ(Λ2T ∗) =
Ω2 lies inside B3. To see this, note that any element β ∈ B can be written as a sum of terms

β =
∑

i

βi ∧ λi (2.3)

with βi ∈ Γ(g), and so if d(B2) ⊂ B3 then

dβ =
∑

i

(dβi) ∧ λi +
∑

i

βi ∧ (dλi) (2.4)

also lies in B. This means that d preserves B, which is then a differential ideal. To see that
then ď2 = 0, note that given α ∈ Ak, one has

dα = ďα+ η (2.5)

with η ∈ B. Thus

0 = d2α = (ď2α+ η′) + dη (2.6)

where η′ and dη are in B. This implies that both ď2α = 0 and η′ + dη = 0 as ΛkT ∗ is the
direct sum of Ak and Bk. We have essentially just shown that (B,d) is a sub-complex and
taken the quotient of (Ω•,d) by it to construct (A, ď).

The condition that d sends B2 to B3 can be viewed as an intrinsic torsion condition as
follows. Let ∇̂ = ∇+Σ be a G-compatible connection, which is not necessarily torsion-free.
Here ∇ is the Levi-Civita connection and Σ ∈ Γ(T ∗ ⊗ (T ⊗ T ∗)) is a generic tensor. As ∇̂ is
G-compatible, it preserves g representations, and thus for any β ∈ B2 ⊂ Ω2 one has

∇̂β ∈ Γ(T ∗ ⊗ g) and so d∇̂β ∈ Γ(g ∧ T ∗) = B3. (2.7)

Therefore, we have

dβ = d∇β = d∇̂β − dΣβ (2.8)

Thus the condition that dβ ∈ B3 is equivalent to dΣβ ∈ B3. This is simply a condition on
which G-irreducible parts of Σ are allowed. However, any G-compatible part of Σ can be
absorbed into ∇̂ and dΣ depends only on the torsion of Σ (i.e. Σ[m

n
p]) so in fact this is a

constraint on the intrinsic torsion of the structure.
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2.2 Examples

We start with the two trivial examples. Firstly, one can consider the case G = SO(d),
in which case all two-forms are in the span of the Lie algebra at each point and are thus
projected out, leaving

0 → Ω0 d→ Ω1→0 (2.9)

The other trivial case is that of an identity structure G = {1}, in which case the quotient
does nothing and the BPS complex is simply the de Rham complex.

As we will elaborate on further in section 2.4, one of the initial motivations for the
construction was the observation that taking structure group SU(2)L ⊂ SU(2)L × SU(2)R ≃
Spin(4) in four dimensions, one finds the complex

0 → Ω0 d→ Ω1 P+d→ Ω2,+→ 0 (2.10)

where Ω2,+ is the self-dual two-forms and P+ is the projector Ω2 → Ω2,+. A one-form α

is thus ď-closed if dα is anti-self-dual.
Next, in any even dimension d = 2N one can consider u(N) ⊂ so(d). We have a

preserved complex structure J with respect to which Γ(u(N)) ≃ Ω1,1, so that the quotient
procedure gives

0 → Ω0,0 ∂+∂̄→ Ω1,0 ⊕ Ω0,1 ∂+∂̄→ Ω2,0 ⊕ Ω0,2 ∂+∂̄→ Ω3,0 ⊕ Ω0,3 → . . . (2.11)

One can also consider the subtly different complex which comes from taking su(N) ⊂ so(d),
which is the direct higher-dimensional analogue of (2.10). This is the same as (2.11) aside
from an extra piece in degree two, corresponding to forms proportional to the Kähler form ω:

0 → Ω0,0 ∂+∂̄→ Ω1,0 ⊕ Ω0,1 ∂+∂̄→ Ω2,0 ⊕ ⟨ω⟩ ⊕ Ω0,2 ∂+∂̄→ Ω3,0 ⊕ Ω0,3 → . . . (2.12)

In the definition of an instanton that we describe in section 2.4 below, this extra piece gives
an extra constraint on the curvature of our gauge connection which imposes the full hermitian
Yang-Mills equations rather than merely the condition that the gauge bundle is holomorphic.

Aside from the degree zero piece, (2.11) is clearly the induced real space of a sum of two
complexes of complex forms: the usual Dolbeault complexes (Ω•,0, ∂) and (Ω0,•, ∂̄). In what
follows, we will complexify the scalar and tend to focus on the anti-holomorphic half

0 → Ω0,0 ∂̄→ Ω0,1 ∂̄→ Ω0,2 ∂̄→ Ω0,3 → . . .
∂̄→ Ω0,N → 0 (2.13)

The complexification of the scalar is important as it is the generator of gauge transformations
in what follows, and in applications of this complex to moduli spaces, results in geometric
invariant theory suggest that the moduli space including the D-term supersymmetry conditions
should be the solutions of the F-terms modulo complexified gauge transformations (see
e.g. [15, 59] for discussions of this phenomenon). In the applications that we consider, the
U(N) complex (2.11) will be living on a Calabi-Yau manifold where there is in fact a further
reduction of the structure group to SU(N), and this SU(N) structure is also torsion-free.
The additional degree two piece of the complex that is present in (2.12) versus (2.11) would
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impose the hermitian Yang-Mills condition on our instanton field strength, which can be
thought of as a D-term condition. By working with the U(N) complex and complexifying the
scalar, we thus account for these additional conditions in a simple fashion when considering
moduli. Thus in the remainder of this article, we will take (2.13) (or very occasionally its
complex conjugate) when considering U(N) ⊂ SO(2N) structures.

For other cases, we use the notation that Ωk
r denotes k-forms which are sections of the

sub-bundle of ΛkT ∗M transforming in the representation r of the structure group G.
In seven dimensions, one can consider torsion-free G2 structures (i.e. metrics with

Riemannian holonomy G2), with g2 ⊂ so(7). This gives a BPS complex:

0 → Ω0 d→ Ω1 ď→ Ω2
7

ď→ Ω3
1 → 0 (2.14)

Similarly, for Spin(7) in eight dimensions the BPS complex is:

0 → Ω0 d→ Ω1 ď→ Ω2
7 → 0 (2.15)

2.3 Spinor type complexes and Hodge theory

In the construction above, we assumed that the structure group is a subgroup of SO(d)
and thus in particular induces a Riemannian metric on M , and consequently also an inner
product on ΛkT ∗. We can then identify A with the orthogonal complement of B, i.e. we
have an orthogonal decomposition

ΛkT ∗ = Ak ⊕Bk = Ak ⊕ (g ∧ Λk−2T ∗) . (2.16)

Using the induced positive inner product on A• one can define the adjoint ď† of the differential
ď. Armed with this, one can then define the Laplacian operator

∆̌ = {ď, ď†} (2.17)

and find a Hodge decomposition of each space Ak in the usual way3

Ak = Im ď⊕ Im ď† ⊕Hk
ď . (2.18)

In fact, it is often convenient to introduce conventional numerical factors into the
definitions of the inner product and the adjoint so that these operations remain compatible
with isomorphisms between the different spaces Ak in the complex. We do not wish to go
into details of this here, but refer the reader to [67] for explicit details in the cases of G2
in seven dimensions and Spin(7) in eight dimensions. There it is seen that the convention
choices result in, for example, Laplacian operators that depend only on the representation of
the structure group and not the degree of form in which the representation appears.

One can observe that, in some interesting cases, the vector bundle underlying the BPS
complex is isomorphic to a pair of spinor bundles A• ≃ S+ ⊕ S−. We will refer to these cases
as BPS complexes of “spinor type”. Here, in even dimensions the summands S± are the

3We ignore finer analytic details concerning the completeness of the inner product in making this statement
here.
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spinor bundles of positive and negative chirality, while in odd dimensions they are simply two
isomorphic copies of the spinor bundle. Overall, they form a representation of the Clifford
algebra, and thus there is an action of the Dirac operator on them, which is crucial for what
follows below. One can also see that they correspond to the odd and even degree forms in the
BPS complex respectively and thus transform oppositely under parity so that they form a
pinor overall. For spinor type complexes, the inner products used to define the adjoint operator
and Laplacian are naturally the relevant spinor inner products, written in terms of forms,
and it is the representation theory of spinors that leads to the seemingly strange numerical
factor choice arising in the treatment of e.g. [67]. Further, one has that a Dirac-type operator

D = aď + bď† (2.19)

corresponds to the usual spinor Dirac operator /∇ acting on the pair of spinors.4 The
coefficients a and b depend on the particular details of the case in question, but the square
of the operator is always proportional to ∆̌

D2 = ab{ď, ď†} = ab∆̌ (2.20)

For example, for the U(3) complex in six-dimensions, we have

0 → Ω1 → Ω3 → Ω3̄ → Ω1 → 0 (2.21)

where we have in fact decomposed into SU(3) representations as we assume that the metric
has a torsion-free SU(3) structure as discussed above. The even parts are thus 1 + 3̄ ≃ 4̄
and odd parts are 1 + 3 ≃ 4. This is the usual isomorphism between Ω0,(even/odd) and S±

on a Calabi-Yau manifold given by

ωā1...āk
↔ ωā1...āk

γā1...ākϵ (2.22)

where ϵ is the parallel singlet spinor. It is then a simple calculation to see that the Dirac
operator /∇ acts as ∂̄+2∂̄† on the corresponding (0, k)-forms. This then squares to 2∆∂̄ = ∆dR.

Another example of a spinor type complex comes from the G2 case in seven-dimensions
where we have the BPS complex representations

0 → Ω1 → Ω7 → Ω7 → Ω1 → 0 (2.23)

so that again the even and odd parts become spinors:

ψ(ω0, ω2) = ω0ϵ+
1
2ωmnγ

mnϵ

χ(ω1, ω3) = ωmγ
mϵ+ 1

3! ω̃3ϕmnpγ
mnpϵ

(2.24)

where ϵ is the parallel singlet spinor and the singlet 3-form is ωmnp = ω̃3ϕmnp for a scalar
ω3 and G2 three-form ϕ.

4This is also noted in [15].
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Following the conventions of [55], we first note that we can choose ϵ Majorana, and
that the γ-matrices are purely imaginary. Thus, it is natural to form a complex spinor with
real part ψ and imaginary part χ as

Ψ(ω) := ψ(ω0, ω2) + χ(ω1, ω3). (2.25)

We can then express the spinor Dirac inner product via form inner products, and find:

Ψ(ω)Ψ(λ) = ⟨ω0, λ0⟩+ ⟨ω1, λ1⟩+ 3 · ⟨ω2, λ2⟩+ 7 · ⟨ω3, λ3⟩
+ i (⟨ω0ϕ, λ3⟩ − ⟨ω3, λ0ϕ⟩+ ⟨ω1⌟ϕ, λ2⟩ − ⟨ω2, λ1⌟ϕ⟩)

(2.26)

where we used the standard metric induced inner product on forms ⟨ωp, λp⟩ =
1
p!ωm1...mpλ

m1...mp . We note that the factors in front of the two- and three-form inner
product arise naturally through γ-matrix contractions, matching the ones imposed in [55],
and thus providing an explanation for their appearance in the G2 complex. We thus take the,
positive definite, real part of the inner product eq. (2.26) to define the adjoint operators of ď.

Since the Dirac operator /∇ maps even to odd spinors and vice versa, we make the ansatz

/∇ψ(ω0, ω2) = χ((Dω)1, (Dω)3), (2.27)
/∇χ(ω1, ω3) = ψ((Dω)0, (Dω)2), (2.28)

for some differential operator D acting on the forms.
Using the inner product formula (2.26), we deduce the action of D on the even spinor to be

(Dω)m = ∇mω0 + 3∇pωpm, (2.29)
(Dω)mnp = (P3

1d∇ω2)mnp, (2.30)

for P3
1 the projector onto the singlet part of the three-form, while the action on odd spinors

is given by

(Dω)0 = ∇mωm, (2.31)

(Dω)mn = (P2
7d∇ω1)mn + 7

3∇
pωpmn , (2.32)

for P2
7 the projector onto the 7 part of the two-form. Note, that not only do we find the

ď ≡ P ◦ d∇ action naturally, but also the correct factors for the adjoint, as found in [55].
Thus we can identify

(Dω)1 = ďω0 − ď†ω2, (2.33)
(Dω)3 = ďω2, (2.34)
(Dω)0 = −ď†ω1, (2.35)
(Dω)2 = ďω1 − ď†ω3. (2.36)

Consequently, we have shown the G2 complex to be of spinor type and that the Dirac
operator corresponds to D = ď − ď† so that

/∇Ψ(ω) = Ψ
(
(ď− ď†)ω

)
(2.37)
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We note that where the complex becomes spinor type, there must be a singlet spinor
ϵ corresponding to the scalar Ω0 and (at least in the SU(N), G2 and Spin(7) cases) the
vector representation does not feature a singlet of the structure group, so that we must have
ϵ̄γmϵ = 0 and thus ϵ is a pure spinor. One might think that this suggests possible connections
to the pure spinor superfield formalism [78–83], which has been a topic of particular interest
recently [35, 40, 41]. However, there are two ways in which pure spinors appear in those
constructions: firstly in the definition of pure spinor superfields and secondly via the G-
structure with which one constructs twists. Our spinor is naturally the one corresponding to
the G-structure and not directly the one corresponding to the pure spinor superfield, though
there may be some more indirect connection.

Using the spinor presentation, one can see that the Laplacian ∆̌ will always be proportional
to the de Rham Laplacian acting on the corresponding form if the metric is Ricci flat as
follows. The Laplacian ∆̌ = (ď + ď†)2 is proportional to the square of the Dirac operator
in the spinor formulation which a standard calculation expands as

/∇2
ψ =

(
∇m∇m − 1

4R
)
ψ , (2.38)

where R is the Ricci scalar. For a spinor ψ = /ωϵ with ∇mϵ = 0, the operator on the r.h.s. acts
as a scalar operator and as ∇ϵ = 0 its expression transfers directly across to the resulting form

(∆̌ω)m1...mk
∝

(
∇m∇m − 1

4R
)
ωm1...mk

(2.39)

Next, we expand the de Rham Laplacian acting on a generic form ω as

(∆ω)m1...mk
= −∇2ωm1...mk

+ k[∇p,∇[m1 ]ω|p|m2...mk]

= −∇2ωm1...mk
+ kRp

[m1ω|p|m2...mk] − k(k − 1)Rp
[m1

q
m2ω|pq|m3...mk]

= −∇2ωm1...mk
+ kRp

[m1ω|p|m2...mk] −
1
2k(k − 1)R[m1m2

pqω|pq|m3...mk]

(2.40)

where we have used the algebraic Bianchi identity. However, as R ∈ Γ(g ⊗ g) and A was
defined to be orthogonal to B, we have

Rmn
pqωpqn1... = 0 (2.41)

for forms ω in A, so that for ω ∈ A the Riemann tensor term above vanishes. If the metric
is Ricci flat, which for some structure groups G is implied by the vanishing of the intrinsic
torsion, we have ∆̌ ∝ ∆ ∝ ∇2 for both operators acting on A.

This result implies that the harmonic forms, which are representatives of the cohomology,
match those for the usual de Rham Laplacian in the relevant representation of the structure
group. Note, however, that the Ricci flat condition is sufficient but not necessary here. For
example, it is well-known that on all Kähler manifolds the Dolbeault Laplacian ∆∂̄ is half
the de Rham Laplacian and the cohomology groups also decompose by (p, q) type.

2.4 Bundle valued forms and instanton moduli

One can extend the BPS complex as defined above to one based on

Ω•(End(V )) = Γ(Λ•T ∗ ⊗ End(V )) (2.42)

– 11 –



J
H
E
P
1
0
(
2
0
2
5
)
1
9
2

for V a vector bundle with gauge group K, so long as one has a connection A on it whose
curvature F ∈ Ω2(End(V )) is an instanton, by which we mean

F ∈ Γ(g⊗ End(V )) ⊂ Ω2(End(V )) (2.43)

The point is that this means quantities of the form

d2
Aω = (d + A∧)2ω = F ∧ ω ∈ Γ(g ∧ Λ•T ∗ ⊗ End(V )) (2.44)

are projected out when one takes the quotient by Γ(g ∧ Λ•T ∗ ⊗ End(V )). Defining ďA to
be the composition of dA and projection onto the quotient A•(EndV ), the above arguments
establishing that (A•(EndV ), ďA) is a complex go through exactly as before aside from the
small modification that now (2.6) becomes

F ∧ α = d2
Aα = (ď2

Aα+ η′) + dAη (2.45)

Due to (2.44), this still implies that ď2
Aα = 0.

The physical motivation for defining these BPS complexes is that their cohomologies
naturally capture the infinitesimal moduli spaces of generalised instanton configurations.
These are defined to be field configurations (i.e. connections on V up to global gauge
transformations given infinitesimally by δA = dAλ for λ ∈ Ω0(EndV )) where (2.43) holds.
Given such a field configuration, one can consider an infinitesimal deformation of it δA =
α ∈ Ω1(EndV ). The induced infinitesimal change in the curvature is then δF = dAα, so
the infinitesimal moduli space is [42]

MInstanton = {α : ďAα = 0}
{α = dAλ}

= ker(ď : A1 → A2)
Im(ď : A0 → A1)

= H1(A) (2.46)

One could also wonder why one defines a generalised instanton to be a configuration satisfy-
ing (2.43). Firstly, one notes for the four-dimensional case of (2.10) one recovers the usual
condition of (anti-)self-dual curvature. As is now well-known, studying the moduli spaces
of such objects led to the discovery of Donaldson invariants of four-manifolds [84]. More
generally, a natural place where such configurations appear is in supersymmetric solutions to
supersymmetric gauge theories on curved manifolds. Indeed, this setup exactly appears as the
gauge sector part of the equations defining supersymmetric solutions of heterotic supergravity.
In such theories, one can have a supersymmetry generated by a Killing spinor ϵ of the
underlying supergravity background. Part of the supersymmetry conditions then become

δχ ∼ γmnFmnϵ = 0 (2.47)

where the spinor field χ is the fermionic superpartner of the gauge field. The spinor ϵ defines
a G-structure on the manifold where G is the stabiliser of ϵ and in the simplest case ϵ is
parallel with respect to the Levi-Civita connection such that the G-structure is torsion-free.
Equation (2.47) then states that the two-form curvature F lies in the Lie algebra g at each
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point, which is exactly our condition (2.43) above.5 Note that, in the usual cases, such
configurations satisfy a BPS bound, see [85] for more details.

2.5 Product manifolds

Another complex one can construct using the above prescription, and one that will preempt
some of the double complexes we will produce in later sections, is if the manifold has a
product structure with a product metric. Suppose, for example, we have M = X × Y with
dimX = m, dim Y = n, and metric gM = gX + gY . In this case, the structure group reduces

SO(d) → SO(m)× SO(n) (2.48)

and the de Rham complex decomposes into a double complex

ΛkT ∗M ≃
⊕

k=p+q

ΛpT ∗X ⊗ ΛqT ∗Y , (2.49)

with
dM = dX + dY , d2

X = d2
Y = dXdY + dY dX = 0 . (2.50)

Suppose further that the manifolds X,Y have a reduced structure group GX ⊂ SO(m),
GY ⊂ SO(n). Then it is easy to show that the BPS complex associated to G is the tensor
product of the BPS complexes associated to GX and GY . In the notation of section 2.1,
we have

Ak
M = ΛkT ∗M

g ∧ Λk−2T ∗M

=
⊕

p+q=k

( ΛpT ∗X

gX ∧ Λp−2T ∗X

)
⊗

( ΛqT ∗Y

gY ∧ Λq−2T ∗Y

)
=

⊕
p+q=k

Ap
X ⊗Aq

Y

(2.51)

Furthermore, it easy to see that

ďM = ďX + ďY , ď2
X = ď2

Y = ďX ďY + ďY ďX = 0 , (2.52)

where ďX is the differential associated to the BPS complex AX on X, and similarly for ďY .
Hence, the BPS complex decomposes into a double complex in this case.

It also follows from the representation theory of spinors that if AX and AY are spinor
complexes, then the total complex AM is also a spinor complex. Indeed, the tensor prod-
uct of two pinor representations (over R) gives an object on which one can act with the
higher-dimensional Clifford algebra, which can be seen explicitly via similar gamma matrix
decompositions to those found in appendix A.

5Note again that for G = SU(N) ⊂ SO(2N) the supersymmetry condition (2.47) imposes both the
holomorphic bundle condition F 0,2 = 0 (F-term) and the hermitian Yang-Mills condition ω ⌟ F = 0 (D-term).
One expects that the infinitesimal moduli space of such configurations will be that of only the holomorphic
bundle condition (F-term) moduli complexified gauge transformations. This will correspond to the cohomology
of (2.13) (with values in End(V )), so we use this complex in these cases.
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3 BV Chern-Simons theories

In certain cases, the BPS complexes of section 2 occur with a natural graded symplectic
pairing ⟨·, ·⟩ (or can be completed to give a natural pairing, see section 6.3) which is compatible
with the differential structure. When this happens, the BPS complex can provide the BV
complex associated to some QFT. At the quadratic order, these are generally associated to
generalisations of Chern-Simons theories. The general construction runs as follows.

Suppose p is such that ⟨Ap,Ap+1⟩ is non-zero. In particular, this requires that the pairing
is of degree −(2p+ 1). Provided the pairing is compatible with the differential, there is a
gauge symmetry fp ∼ ďfp−1, and gauge for gauge fp−1 ∼ ďfp−2, etc. In the BV quantisation
we would need to introduce ghosts, and ghosts for ghosts fn ∈ An for n < p. For each fn, we
introduce an anti-field f2p+1−n ∈ A2p+1−n, and we can write the total BV action as

SBV = 1
2
〈
f, ďf

〉
, f ∈ A• . (3.1)

Above, we have written f = f0 + f1 + . . . for a generic element of the BPS complex.
Since this action is quadratic, it is straightforward to quantise it and find the 1-loop

partition function. A detailed discussion of how this is done in the de Rham case is given in
e.g. [77], and the procedure works similarly for any case. Due to the alternating statistics of the
ghosts and anti-ghosts, the modulus of the 1-loop partition function reduces to an alternating
product of determinants of Laplacians ∆̌n on An. The final result is, in general [86, 87]

|Z1-loop| =

 2p∏
n=0

(det ′∆̌n)(−1)n

 1
4 (−1)p+1

= Tor(A, ď)
1
2 (−1)p (3.2)

where, on the right hand side, we have introduced the definition of the analytic torsion
of a complex (A, ď).

We will see how this works for various cases below.

3.1 3d abelian Chern-Simons

The 3d abelian Chern-Simons theory is a quadratic theory with the following action.

S = 1
2

∫
M
A1 ∧ dA1 , A1 ∈ A1 = Ω1(M) (3.3)

This has a 0-form gauge symmetry and so we need to introduce a ghost field A0 ∈ Ω0,
and antifields An ∈ Ωn(M) where n = 2, 3. The Grassman statistics of the fields satisfy
ϵ(An) = (−1)n+1. The quadratic BV action for this theory is then given by

SBV = 1
2
〈
A, ďA

〉
= 1

2

∫
M
A ∧ dA , A ∈ A• = Ω•(M) (3.4)

where integration over the top-form component is implied. In this case, it is clear that the
BV complex is just the de Rham complex, and the symplectic pairing is ⟨A,A′⟩ =

∫
M A ∧A′.

This is the BPS complex associated with the trivial structure group G = 1.6 In this case,
the 1-loop partition function gives the Ray-Singer torsion of the 3-manifold M [1].

6Note that by Stiefel’s theorem, every orientable compact three-dimensional manifold is parallelisable [88].
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3.2 Holomorphic Chern-Simons

Holomorphic Chern-Simons on a Calabi-Yau 3-fold works analogously. The quadratic action
is given by

S = 1
2

∫
M
A0,1 ∧ ∂̄A0,1 ∧ Ω , A0,1 ∈ A1 = Ω0,1(M) (3.5)

We need to introduce ghosts and anti-fields A0,n ∈ Ω0,n(M) with statistics ϵ(A0,n) = (−1)n+1.
The quadratic BV action then becomes

SBV = 1
2
〈
A, ďA

〉
Ω
= 1

2

∫
M
A ∧ ∂̄A ∧ Ω , A ∈ A• = Ω0,•(M) (3.6)

In this case, the BV complex is the BPS complex associated to the Kähler structure of the
Calabi-Yau with G = U(3), as in (2.13) and the surrounding discussion. The symplectic
pairing is the wedge-product followed by integration against the holomorphic top-form. Note
that compatibility of the symplectic pairing with the differential ∂̄ requires that Ω is a
holomorphic section of Ω3,0(M), and hence we require a fully integrable SU(3) structure,
not just U(3) structure, to recover the holomorphic Chern-Simons theory. Here, the 1-loop
partition function gives the holomorphic Ray-Singer torsion of the Calabi-Yau 3-fold [72].

3.3 G2 Chern-Simons

There is a similar theory of G2 instantons [73, 74] (further discussion can be found in
e.g. [26, 89, 90]). The quadratic action is given by

S = 1
2

∫
M
A ∧ dA ∧ ∗φ , A ∈ A1 = Ω1(M) (3.7)

where φ ∈ Ω3(M) is the G2 three-form. We need to introduce ghosts and anti-fields An ∈ An

with statistics ϵ(An) = (−1)n+1. The quadratic BV action then becomes

SBV = 1
2
〈
A, ďA

〉
φ
= 1

2

∫
M
A ∧ ďA ∧ ∗φ , A ∈ A• (3.8)

Here, the BV complex is simply the BPS complex for a G2 manifold, and the symplectic
pairing is the wedge product followed by integration with ∗φ. In this action, one could in
fact use the usual exterior derivative instead of ď and the presence of ∗φ will project dA
onto the relevant representation in A.

3.4 4d Chern-Simons

In [75], a 4-dimensional version of Chern-Simons was put forward via a holomorphic twist of
a 4-dimensional theory. It is defined on a manifold of the form M = C ×Σ, where C = R2 or
S1 × R, and Σ is a Riemann surface. To define the action, we require a meromorphic 1-form
ω = ω(z)dz on Σ, where z is a holomorphic coordinate. The quadratic action is then given by

S = 1
2

∫
M
ω ∧A1 ∧ dA1 , A1 ∈ Ω1(M) (3.9)

Note that, because of the non-dynamical 1-form ω, the Azdz component of A1 drops out,
and we can view A ∈ Γ(Λ1

C(C) ⊕ Λ0,1(Σ)).
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To find the BV action, and relate this to the BPS complexes we have been discussing
previously, we note that the background C×Σ has a natural 1×U(1) ⊂ SO(2)×SO(2) ⊂ SO(4)
structure. The associated BPS complex consists of sections of the bundles

A0 = Λ0
C , A1 = Λ1

C(C)⊕ Λ0,1(Σ) ,
A2 = Λ2

C(C)⊕
(
Λ1

C(C)⊗ Λ0,1(Σ)
)
, A3 = Λ2

C(C)⊗ Λ0,1(Σ) ,
(3.10)

and the differential is

ď = dC + ∂̄Σ (3.11)

We can think of this as a double complex, as in section 2.5, with the left and right differentials
dC and ∂̄Σ respectively. To write down the BV action, we require a graded symplectic
pairing which is compatible with the differential. Such a pairing is not unique, but is instead
defined by an element ω ∈ Ω1,0(Σ), which must be dC + ∂̄Σ closed, up to possible δ-function
contributions at the poles of ω.7 The full BV action can then easily be written as

SBV = 1
2
〈
A, ďA

〉
ω
= 1

2

∫
M
ω ∧A ∧ ďA , A ∈ A• (3.12)

Restricted to degree 1, this reproduces the 4d Chern-Simons action (3.9), as required.

4 Gravitational BPS complex

To build the gravitational BPS complex associated to a torsion-free G structure, we start
from the graded vector space Ω•(TM). This does not carry a natural differential. One then
views gl(TM) ≃ Λ1(T ∗)⊗ T in the same way as one identified so(TM) ≃ Λ2T ∗ in section 2.
Given a G-structure, one can then view g ⊂ Λ1T ∗⊗T and form A as the quotient of Λ•T ∗⊗T
by g ∧ Λ•T ∗, and again set A := Γ(A). The first terms of this complex are then8

0 → Γ(TM) → Γ(gl(TM)/g) → Γ(T (int)) → . . . (4.1)

The third term here requires a little explanation. Consider a tensor Σ ∈ Ω1(gl(TM)) which
can be thought of as the difference of two connections on the tangent bundle. We define a
map τ : T ∗⊗(T ⊗T ∗) → T ⊗Λ2T ∗ to give the difference of the torsions of the two connections,
i.e. with respect to any frame {êa} for the tangent bundle

τ(Σ)a
bc = −2Σ[b

a
c] (4.2)

This map restricts to a map τ | on T ∗ ⊗ g. We then have an exact sequence of bundles

0 → ker(τ |) ι→ T ∗ ⊗ g
τ |→ T ⊗ Λ2T ∗ π→ T (int)(τ |) → 0 (4.3)

where we have defined the bundle

T (int) = coker(τ |) = (T ⊗ Λ2T ∗)/ Im(τ |) (4.4)
7If this is the case, then one must carefully define boundary conditions for the field A. See e.g. [91].
8A similar complex to this also appears in [92].
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Given a G-compatible connection, the projection of the torsion of this connection onto
T (int) does not change if one shifts to a different G-compatible connection by adding to it
a tensor Σ ∈ Ω1(g). Therefore, it is independent of the choice of G compatible connection
and represents a property of the G-structure itself. It is called the intrinsic torsion of the
structure, and can be thought of as a part of the torsion which is common to all connections
compatible with the G-structure.

Given a torsion-free G-compatible connection ∇̂, we can define on α ∈ Ωk(TM)

(d̂α)m
n1...nk+1 = (k + 1)∇̂[n1α

m
n2...nk+1] (4.5)

As the connection is compatible, and thus preserves G representations, this can then be
projected onto the quotient complex to define an operator ď on the quotient complex A as
in section 2. One can see that this is independent of the choice of torsion-free compatible
connection and thus ď is a natural operator on the complex. First, if one shifts the torsion-free
compatible connection by a torsion-free tensor Σ ∈ Ω1(g) then the shift of the operator d̂
acting on α ∈ Ωk(TM) representing an element of Ak is

δ(d̂α)m
n1...nk+1 = (k + 1)(Σ[n1 · α)

m
n2...nk+1]

= (k + 1)Σ[n1
m

|p|α
p

n2...nk+1] − k(k + 1)Σ[n1
p

n2α
m

|p|...nk+1]

= (k + 1)Σp
m

[n1α
p

n2...nk+1]

(4.6)

which lies in Γ(g ∧ ΛkT ∗) and is thus annihilated on projection to A.
Further one can check that ď2 = 0 via the same proof as in section 2. For α ∈ Ωk(TM)

representing a class in Ak, one has

(d̂2α)m
n1...nk+2 = (k + 1)(k + 2)∇̂[n1∇̂n2α

m
n3...nk+2]

= (k + 1)(k + 2)R[n1n2
m

|p|α
p

n3...nk+2]

− k(k + 1)(k + 2)R[n1n2
p

n3α
m

|p|n4...nk+2]

= −2(k + 1)(k + 2)Rp[n1
m

n2α
p

n3...nk+2]

(4.7)

where we have used the Bianchi identity R[mn
p

q] = 0. Since the Riemann tensor is a section
of Λ2T ∗ ⊗ g, we have ď2α ∈ Γ(g ∧ Λk+1T ∗). One can then write

d̂α = ďα+ η (4.8)

for η ∈ Γ(g ∧ ΛkT ∗) and then

d̂2α = ď2α+ η′ + d̂η (4.9)

for η′ ∈ Γ(g ∧ Λk+1T ∗). Projecting this equation onto the quotient Ak+2 one thus arrives
at ď2 = 0 on A.

One can interpret this BPS complex as follows. Consider a G-frame {êa} for the tangent
bundle, which is a local section of the principal sub-bundle of the frame bundle corresponding
to the G-structure. (In these frames, the components of all invariant tensors of G take a
specific set of constant values so that the matrix representation of the structure group G

is also the same at all points.)
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For simplicity of exposition9 we assume reducibility of gl(d,R) under the subalgebra
g so that

gl(d,R) = g⊕K (4.10)

for K some representation of g. An infinitesimal variation of the G-structure then corresponds
to defining a new frame {ê′a} for the deformed G-structure, which we can write as

ê′a = êa +Xb
aêb (4.11)

for components Xa
b in K at each point. The tensor X thus defines an element of A1.

Suppose we have a compatible connection ∇. For a vector field v = vcêc we then have

∇v êa = vc∇êc êa = vcωc
b
aêb =: ωv

b
aêb (4.12)

where the components of ωv lie in g. We then look at deforming the connection ∇ to
∇′ = ∇ + Σ for Σ ∈ Ω1(gl(TM)). Then

ω′
v

b
aê

′
b = ∇′

v ê
′
a = ∇v ê

′
a +Σv

b
aê

′
b (4.13)

and we have

∇v ê
′
a = ∇v(êa +Xb

aêb)
= ωv

b
aêb + (∂vX

b
a)êb +Xb

aωv
c
bêc

= ωv
b
a(ê′b −Xc

bê
′
c) + (∂vX

b
a + ωv

b
cX

c
a)ê′b +O(X2)

= (ωv
b
a +∇vX

b
a)ê′b +O(X2)

(4.14)

Note that in these equations, the components of ωv are naturally the components of the
connection ∇ with respect to the original frame êa, while the components of ω′

v of ∇′ and
the tensor Σ are taken with respect to the ê′a frame. We thus have that to first order in
X the variation of the connection is given by:

ω′
v

a
b − ωv

a
b = Σv

a
b + (∇vX)a

b (4.15)

We require that ωv and ω′
v lie in g and therefore so must Σv +∇vX. If we write

Σ = Σ(g) +Σ(K) (4.16)

then we have that

Σ(K)
v = −∇vX (4.17)

We then define the map τ as above and τ (int) = π ◦ τ and have

τ (int)(Σ) = τ (int)(Σ(g) +Σ(K)) = τ (int)(Σ(K)) = π(τ(Σ(K)))

= PA2

(1
2(2∇[bX

a
c]) êa ⊗ (eb ∧ ec)

)
= ďX

(4.18)

9This is not necessary: one can instead work via projections onto the quotient gl(d,R)/g.
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so that ďX is the intrinsic torsion of the new G-structure to first order in X.
Next, we consider what it means for X to be exact. If we act with an infinitesimal

diffeomorphism generated by a vector field v on our frame, we have

δêa = Lv êa = L∇
v êa = ∇v êa − (∇× v) · êa = (ωv

b
a −∇av

b)êb (4.19)

where here we used the notation ∇× v for ∇v viewed as an endomorphism of TM . Now,
as ωv lies in g an infinitesimal rotation of the frame by ωv merely results in a new frame
compatible with the original G-structure and thus does not change the G-structure itself.
Therefore, for our purposes here we can discard this part of the variation. The last term
in (4.19), however, does contain a part which appears to change the G-structure. This is
the part of ∇ × v with components in K, which is precisely ďv. Therefore, G-structures
which are related by an infinitesimal diffeomorphism have

X = ďv (4.20)

for some vector field v.
We thus see that the infinitesimal moduli space of torsion-free G-structures is given by

MG-str =
{X : ďX = 0}
{X = ďv}

= H1(A) (4.21)

exactly as for (2.46).
For example, one can consider the case of a GL(n,C) structure on a 2n-dimensional

manifold, corresponding to a complex structure. In this case one has that g ∼
[(
(T ∗)1,0 ⊗

T 1,0)⊕ (
(T ∗)0,1 ⊗ T 0,1)]

R
, so that projecting out g ∧ Λ•T ∗ we are left with the BPS complex

A• with

Ak =
[
Ω0,k(T 1,0)⊕ Ωk,0(T 0,1)

]
R
, (4.22)

with the differential given by the usual ∂̄ on Ω0,k(T 1,0) and ∂ on Ωk,0(T 0,1). As for the
discussion of the usual Dolbeault complexes of forms in section 2 above, we tend to use the
complex parameterisation of this complex and simply write it as

(A•, ď) = (Ω0,k(T 1,0), ∂̄) (4.23)

This BPS complex is of course well-known in the study of complex structures (see e.g. [93]).
Indeed, µ ∈ Ω0,1(T 1,0) provides a Beltrami differential, deforming the complex structure via

∂

∂z̄′ā
= ∂

∂z̄ā
+ µb

ā
∂

∂zb
(4.24)

and in the infinitesimal case, such a deformation is induced by an infinitesimal diffeomor-
phism if

µ = ∂̄ϵ ϵ ∈ Γ(T 1,0) (4.25)

The condition that [T 0,1, T 0,1] ⊂ T 0,1 then comes out to be

∂̄µ = 0 (4.26)
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so that indeed the infinitesimal moduli space of complex structures is given by the first
cohomology as above.

In the above example, the structure group GL(n,C) does not preserve a metric. In
general, given a torsion-free G-structure on TM , the Riemann tensor R ∈ Ω2(g). If G
preserves a metric, i.e. G ⊂ SO(d) as we assumed in section 2, then Rmnpq = Rpqmn and we
have R ∈ Γ(g⊗ g) ⊂ Ω2(g). Thus for metric G-structures, one has a close analogue of (2.43).

5 The BPS complex for Courant algebroids and supergravity

We now proceed to mimic the construction of section 4 in generalised geometry. We will see
that this produces a natural BPS complex associated to torsion-free generalised G-structures,
one of whose cohomology groups will later be seen to give the infinitesimal moduli space of
such structures in section 6.1. For particular types of structure which preserve a generalised
metric, we will see that the BPS complex becomes a double complex, which is a tensor product
of BPS complexes of the type considered in section 2. We show that these satisfy Kähler
type identities in general. There is also a notion of spinor-type complexes in generalised
geometry, which have the further interesting properties that the left and right Laplacian
operators are equal, and thus they satisfy ∂∂̄-type lemmas.

We start with the tensor hierarchy (excluding dilaton terms) for O(d, d) generalised
geometry. This is simply the graded vector space Γ(Λ•E) where E ≃ T ⊕T ∗ is the generalised
tangent bundle. In fact, one can also consider the case of O(d, d+ n) generalised geometry
for heterotic supergravity where E ≃ T ⊕ End(V )⊕ T ∗ for a gauge bundle End(V ), or more
generally any Courant algebroid. Similarly to the gravitational construction of section 4, the
graded vector space Γ(Λ•E) does not carry a natural differential. However, we will consider
the case where E has a torsion-free generalised G-structure [54] and take a quotient of Λ•E

by g ∧ Λ•E viewing g ⊂ Λ2E ∼ so(d, d + n). We will then find that the sections of this
quotient have a natural differential as in the previous section.

Demonstrating the existence of the differential and deriving its properties is slightly
harder than in the constructions of the previous sections, in large part due to the complications
of defining a Riemann tensor in generalised geometry. In this section, we explain how the
complex is constructed for any generalised G-structure in O(d, d+ n) generalised geometry,
and go on to show that for a large class of structure groups which preserve a generalised
metric one in fact obtains a double complex satisfying Kähler type identities. Further, as
SO(d, d+ n) is an orthogonal group, it has spin representations and there is an analogue of
the spinor type complexes of section 2. The generalised-metric-compatible cases of these turn
out to have the property that the two natural Laplacians on the double complex are equal,
which is the analogue of the statement that ∆∂ = ∆∂̄ in ordinary Kähler geometry.

A quick note on notation and conventions in this section. We shall use e to denote
vectors in a local frame of the Courant algebroid E. Since E ∼= E∗, we shall not distinguish
between their frames. Uppercase Roman indices eA will denote an arbitrary frame and
indices will be raised and lowered with the canonical inner product ⟨·, ·⟩. Lowercase Roman
indices ea, eā will denote frames of C± respectively, which are the positive and negative
eigenbundles of the generalised metric.
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5.1 Preliminaries

5.1.1 Courant algebroids

Let us start setting the stage by introducing Courant algebroids [94] and discussing some
of their basic properties.

A Courant algebroid is a vector bundle E → M equipped with

• a bracket [ · , · ] : Γ(E)× Γ(E) → Γ(E)

• a fiberwise non-degenerate symmetric bilinear form ⟨ · , · ⟩

• a vector bundle map ρ : E → TM

satisfying the following conditions for all u, v, w ∈ Γ(E) and f ∈ C∞(M):

[u, [v, w]] = [[u, v], w] + [v, [u,w]], [u, fv] = f [u, v] + (ρ(u)f)v, (5.1)
ρ(u)⟨v, w⟩ = ⟨[u, v], w⟩+ ⟨v, [u,w]⟩, [u, v] + [v, u] = ρ∗d⟨u, v⟩, (5.2)

where ρ∗ : T ∗M → E∗ is the transpose of ρ, and we used the identification E ∼= E∗ provided
by the pairing ⟨ · , · ⟩. Note that, in parallel with ordinary geometry we will also use the
notation Luv := [u, v] and call L the Dorfman derivative.

Various other properties can be derived from these axioms, such as

ρ([u, v]) = [ρ(u), ρ(v)] (5.3)

or ρ ◦ ρ∗ = 0. The latter property can be rephrased as the statement that

0 → T ∗M
ρ∗
−→ E

ρ−→ TM → 0 (5.4)

is a chain complex. When this is in fact an exact sequence, we say that the Courant algebroid
is exact. More generally, if the complex is exact in the last (or equivalently in the first) point,
i.e. when ρ is surjective, we say that the algebroid is transitive.

An example of an exact Courant algebroid is given by

E = TM ⊕ T ∗M, (5.5)

equipped with

⟨X + α, Y + β⟩ = α(Y ) + β(X), ρ(X + α) = X, (5.6)
[X + α, Y + β] = LXY + (LXβ − iY dα+H(X,Y, · ), (5.7)

where H is closed 3-form. In fact, one can show [95, 96] that every exact Courant algebroid
is of this form, for some H.

More generally, starting from an arbitrary principal G-bundle P → M with vanishing
first Pontryagin class w.r.t. an invariant pairing on g, one can construct a transitive Courant
algebroid structure on

E = TM ⊕ ad(P )⊕ T ∗M. (5.8)

Every transitive Courant algebroid is locally of this form [95, 96].
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Returning now to the general case, let eA be a local frame for which ⟨eA, eB⟩ are constant
functions. It is then easy to see that the structure coefficients

cABC := ⟨[eA, eB], eC⟩ (5.9)

are completely antisymmetric. The Jacobi identity can then be written as

ρ(e[A)cBC]E + cD[ABc
D

C] E − 1
3ρ(eE)cABC = 0. (5.10)

Note that in this section all the indices will always be raised/lowered with ⟨ · , · ⟩ and we
will freely assume the identification E ∼= E∗ provided by this pairing.

5.1.2 Generalised metrics, connections, and G-structures

The analogue of an ordinary metric is provided by a generalised metric G, which is a
symmetric endomorphism (vector bundle map) of E satisfying G2 = 1. We will denote the
±1-eigenbundles of G by C±. Note that

E = C+ ⊕ C− (5.11)

is an orthogonal decomposition. Conversely, any orthogonal decomposition (5.11) corresponds
to a generalised metric G. Generalised metric is thus equivalent to the choice of a subbundle
C+ ⊂ E for which ⟨ · , · ⟩|C+ is non-degenerate.

As an example, any choice of metric g and 2-form B on M defines a generalised metric
on the exact Courant algebroid (5.5) by

C+ := graph(g +B) = {X + (g(X, · ) +B(X, · )) | X ∈ TM}. (5.12)

Similarly, one can encode the data of g, B, and a connection A using a generalised metric
on a transitive Courant algebroid.

If the signature of the pairing ⟨ · , · ⟩ is (p, q), the Courant algebroid naturally has a
reduced structure group O(p, q) ⊂ GL(p + q,R). A choice of a generalised metric breaks
this group down further to the product of the orthogonal group corresponding to the
decomposition (5.11). In particular, if the induced pairing on C+ and C− is positive and
negative definite, respectively, then the group reduces as

O(p, q) → O(p)×O(q). (5.13)

For any subgroup G ⊂ O(p, q), a generalised G-structure is a reduction of the structure
group from O(p, q) to G. In particular, if G ⊂ O(p)×O(q) then a generalised G-structure
induces a generalised metric of the above type. Note that since any local G-frame is also
an O(p, q)-frame, the functions ⟨eA, eB⟩ are automatically constant.

Quite analogously to the standard case, we define (Courant algebroid) connections [97]
as operators D satisfying

Dfuv = fDuv, Du(fv) = fDuv + (ρ(u)f)v, ρ(u)⟨v, w⟩ = ⟨Duv, w⟩+ ⟨v,Duw⟩. (5.14)

Defining the action of D on functions by Duf := ρ(u)f and using the Leibniz rule, we can
act with D on an arbitrary section of the tensor products of E.
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A torsion of D is the tensor [97]

TD(u, v) = Duv −Dvu− [u, v] + ⟨Du, v⟩. (5.15)

It is easy to see that T ∈ Γ(Λ3E). A connection D is called Levi-Civita if it has vanishing
torsion and DG = 0.

Finally, a generalised G-structure is called torsion-free if it admits a torsion-free connection
preserving the generalised G-structure. For instance, any generalised metric is torsion-free [98].

5.1.3 Riemann tensor

For any torsion-free connection D we define the Riemann tensor [99]

R(w, z, x, y) := 1
2w

DyB(xA[DA, DB]zD + zA[DA, DD]xB − (DAxB)(DAzD)). (5.16)

It is not difficult to see that this indeed defines a tensor with the following symmetries:

RABCD = R[AB]CD = RAB[CD] = RCDAB . (5.17)

The algebraic Bianchi identity [100, 101]

R[ABC]D = 0. (5.18)

is more involved. Too see this, note that due to the other symmetries this statement is
equivalent to R[ABCD] = 0. First, picking a local frame with ⟨eA, eB⟩ constant, we calculate

DADB(eC)D = (DeADeBeC)D − (DDeA
eB
eC)D = (DeA(ΓB

E
CeE))D − ΓA

E
B(DeEeC)D

= ρ(eA)ΓBDC + ΓADEΓ E
B C − Γ E

A BΓEDC ,

Using the torsion-free condition 2Γ[AB]C + ΓCAB = −cABC twice in a row we get

R[DCAB] = 2(e[A|)EDED|B(eC)D] −
1
2(DE(e[A)B)(DE(eC)D])

= 2D[ADB(eC)D] −
1
2ΓE[BAΓE

DC]

= −2ρ(e[A)ΓBCD] − 2Γ E
[AB ΓCD]E + 2ΓE[ABΓ E

C D] −
1
2ΓE[ABΓE

CD]

= 2
3ρ(e[A)cBCD] + (ΓE

[ABΓCD]E + c E
[AB ΓCD]E)

+ 2ΓE[ABΓ E
C D] +

1
2(2Γ[AB|E|ΓE

CD] + c[AB|E|ΓE
CD])

= 2
3ρ(e[A)cBCD] + c E

[AB ΓCD]E + 1
2c[AB|E|ΓE

CD]

= 2
3ρ(e[A)cBCD] −

1
2c

E
[AB cCD]E ,

which vanishes by the Jacobi identity (5.10).
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5.1.4 Curvature operator

LetD be a Levi-Civita connection for a generalised metric G. Define the curvature operator [51]

R : Γ(C+)× Γ(C−) → Der(E), R(x+, y−) := xa
+y

ā
−[Da, Dā], (5.19)

where Der(E) stands for degree 0 derivations of the algebra Γ(Λ•E). We can also rewrite
this as follows:

R(x+, y−) = xa
+y

ā
−([Dea , Deā ]−DDea eā−Deā ea) = xa

+y
ā
−([Dea , Deā ]−D[ea,eā]), (5.20)

where we used xa
+y

ā
−⟨Dea, eā⟩ = 0. From this it follows that R(x+, y−) vanishes on C∞(M) ∼=

Γ(Λ0E) and hence is a purely algebraic operator,

R(x+, y−) ∈ Γ(End(E)). (5.21)

Explicitly, we have

[Da, Dā]AB = 2Raā
A

B. (5.22)

Suppose now that we have a torsion-free generalised G-structure, where G ⊂ O(p)×O(q).
Let D be a torsion-free compatible connection and eA a local G-frame. Then an easy
calculation shows that

[Da, Dā] = ρ(ea)Γā − ρ(eā)Γa + [Γa,Γā]− caā
AΓA, (ΓA)B

C := ΓA
B

C . (5.23)

Since in a G-frame we have ΓA ∈ g, we in particular obtain

R(x+, y−) ∈ Γ(g) ⊂ Γ(End(E)). (5.24)

5.2 The BPS complex for torsion-free generalised G-structures

Suppose now that we have a torsion-free generalised G-structure. Set F := Λ•E, F p := ΛpE,
and with the corresponding spaces of sections denoted F and Fp, respectively. Just as before,
we define A := F/(g ∧ F ) and A := Γ(A).

Let D be a torsion-free compatible generalised connection. This gives a derivation

D̂ : F → F , (D̂ω)AB...C := (p+ 1)D[AωB...C] for ω ∈ Fp. (5.25)

In particular we have D̂f = ρ∗(df). Taking eA any G-frame, the compatibility of D means
ΓABCe

B ⊗ eC ∈ g ⊂ F , while torsion-freeness corresponds to cABC = −3Γ[ABC]. Note that
the antisymmetry in the last two indices gives Γ[ABC] = 2

3Γ[AB]C + 1
3ΓCAB.

We claim that D̂ preserves g ∧ F so that D̂ descends to a well-defined operator Ď on
A. This follows exactly as for the ordinary case of section 2. The connection D preserves
G-representations, so that if α ∈ Γ(g) then DeAα ∈ Γ(g) and so D̂α = eA ∧DeAα ∈ Γ(E ∧ g).
The result then follows from the fact that D̂ is a derivation of the wedge product on F .

Denoting equality up to an element of Γ(g ∧ F ) by ≡, we have

D̂eA = Γ[CB]Ae
C ∧ eB =

(3
2Γ[CBA] −

1
2ΓACB

)
eC ∧ eB ≡ −1

2cCBAe
C ∧ eB, (5.26)
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which shows that the induced operator Ď is actually independent of the choice of D.
Finally, let us show that Ď is a differential,

Ď2 = 0. (5.27)

Since D̂2 = 1
2 [D̂, D̂] is a derivation, it suffices to check that D̂2f and D̂2eA both lie in

Γ(g ∧ F ). For the former we have

D̂2f = D̂(eAρ(eA)f) ≡ −1
2c

A
CB eC ∧ eBρ(eA)f − eA ∧ eBρ(eB)ρ(eA)f,

which vanishes due to [ρ(eB), ρ(eA)] = ρ([eB, eA]) = c C
BA ρ(eC). For the latter,

D̂2eA ≡ −1
2D̂(cCBAe

C ∧ eB) =
(
−1
2ρ(eD)cCBA + 1

2cEBAc
E

DC

)
eD ∧ eC ∧ eB

= −1
6ρ(eA)cDCBe

D ∧ eC ∧ eB ≡ 0,

where we have used the Jacobi identity (5.10).
Thus we have a natural complex (A, Ď) associated to our torsion-free generalised G-

structure, which is our BPS complex in this setting.

5.3 The G+ × G− double complex and Kähler identities

Suppose we have a Courant algebroid E of signature (n+, n−), and a torsion-free G-structure,
where G = G+ ×G−, with G± ⊂ O(n±). This induces a positive-definite generalised metric
G ∈ End(E) and the associated bundle decomposition E = C+ ⊕ C−. Let now D be a
torsion-free compatible generalised connection. Assume that the trace of D coincides with
the divergence w.r.t. some volume form Φ on M , i.e. for every u ∈ Γ(E) we have

DAu
A = Φ−1Lρ(u)Φ. (5.28)

Note that the pair consisting of a G-structure and a volume form Φ is equivalent to a
G-structure in the sense of O(p, q) × R+-geometry of [51]. The torsion-free connection D

automatically extends to a corresponding connection in the O(p, q)× R+-geometry by taking
Φ to be covariantly constant. The condition (5.28) is then equivalent to the statement that
this new connection is also torsion-free (in the O(p, q) × R+-sense). Since it is the latter
geometric description in which supersymmetry takes the natural form, in the physically
relevant examples studied below the condition (5.28) will be satisfied.

For any G and a Levi-Civita connection D one can define the (generalised) Ricci tensor [99]
by the following contraction of the Riemann tensor:10

Rab̄ := Rb̄a := 2RA
aAb̄, Rab := Rāb̄ := 0. (5.29)

It can be shown that this tensor in fact depends only on G and TrD [98]; hence in our case it
is a function of G and Φ. In fact, the condition (5.28) ensures that one can equally write

Rab̄ = 4Rc
acb̄ = 4Rc̄

ac̄b̄. (5.30)
10The factor of 2 is purely conventional.
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Assuming (5.28), we can now define a positive-definite inner product on each Fp by

(ω, τ)F := 1
p!

∫
M

ΦGAB. . .GCDωA...CτB...D, (5.31)

and we have

(D̂†ω)A...B = −GCDDCωDA...B.

Now extend G to a derivation Ĝ of F (with trivial action on F 0). Defining the bicomplex

Fp,q := Γ(F p,q), F p,q := ΛpC+ ⊗ ΛqC− (5.32)

we have Ĝω = (p− q)ω for any ω ∈ Fp,q. Since D is Levi-Civita, we have the decomposition

D̂ = D̂+ + D̂−, D̂+Fp,q ⊂ Fp+1,q, D̂−Fp,q ⊂ Fp,q+1. (5.33)

Since G induces a positive-definite inner product on the whole F , we can again de-
compose F into

F = A⊕B, B := g ∧ F, A := B⊥. (5.34)

Both A and B inherit the bigrading from F . Explicitly, we have

A = F 0 ⊕ F 1 ⊕ {ω ∈ F≥2 | xABωAB...C = 0, ∀x ∈ g}. (5.35)

We will use p : F → A and i : A→ F for the orthogonal projection and inclusion, respectively.
Define also F± := Λ•C± and A± := (g± ∧ F±)⊥ ⊂ F±, with p± : F± → A± denoting

the orthogonal projection. Crucially,

A = A+ ⊗A−, (5.36)

and so in particular p = p+ ⊗ p−. To see this, we directly calculate

A = (g ∧ F )⊥ = (g+ ∧ F+ ∧ F− + g− ∧ F+ ∧ F−)⊥

= (g+ ∧ F+ ∧ F−)⊥ ∩ (F+ ∧ g− ∧ F−)⊥
∼= ((g+ ∧ F+)⊗ F−)⊥ ∩ (F+ ⊗ (g− ∧ F−))⊥

= (A+ ⊗ F−) ∩ (F+ ⊗A−) = A+ ⊗A−.

Note that D̂ preserves B, since the adjoint action of g preserves g ⊂ F 2. Consequently,
D̂† preserves A. Using the orthogonal decomposition (5.34), we can write the differential
Ď on A now via

Ď := p ◦ D̂ ◦ i : A → A. (5.37)

We now define the Laplacian

∆̂ := D̂D̂† + D̂†D̂ : F → F . (5.38)
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A quick calculation reveals that for ω ∈ Fp we have

∆̂ωAB...C = −GDEDDDEωAB...C + pGDE [DD, D[A]ω|E|B...C]. (5.39)

Let us now show that if G is Ricci flat then the operator

p ◦ ∆̂ ◦ i : A → A (5.40)

preserves the bigrading. This is equivalent to showing that in the Ricci flat case

[Ĝ, ∆̂]A ⊂ B. (5.41)

We start by calculating

[Ĝ, ∆̂]ω = p

p! (G
DE [DD, DF ]GF

AωEB...C − GDE [DD, DA]ωF B...CGF
E )eA ∧ eB ∧ · · · ∧ eC

= p

p! (G
D

E [DE , DF ]GF
AωDB...C − [DD, DA]ωDB...C)eA ∧ eB ∧ · · · ∧ eC

= −2p
p!

[
([Dc, Dā]ωcB...C)eā ∧ eB ∧ · · · ∧ eC + ([Dc̄, Da]ωc̄B...C)ea ∧ eB ∧ · · · ∧ eC

]
= 4p(p− 1)

p! (Rc D
ā BωcD...Ce

ā ∧ eB ∧ · · · ∧ eC +Rc̄ D
a Bωc̄D...Ce

a ∧ eB ∧ · · · ∧ eC),

where in the last line we have used Rc D
ā c = 0 = Rc̄ D

a c̄ (note that Rab̄cd̄ automatically
vanishes). Continuing, and using RA[BC]D = −1

2RADBC by (5.18), we have

Rc D
ā BωcD...Ce

ā ∧ eB +Rc̄ D
a Bωc̄D...Ce

a ∧ eB

= Rc d
ā bωcd...Ce

ā ∧ eb +Rc d̄
ā b̄
ωcd̄...Ce

ā ∧ eb̄

+Rc̄ d
a bωc̄d...Ce

a ∧ eb +Rc̄ d̄
a b̄
ωc̄d̄...Ce

a ∧ eb̄

= −R [cd]
ā bωcd...Ce

ā ∧ eb −Rc d̄
[āb̄] ωcd̄...Ce

ā ∧ eb̄

−Rc̄ d
[ab] ωc̄d...Ce

a ∧ eb −R
[c̄d̄]

a b̄
ωc̄d̄...Ce

a ∧ eb̄

= 1
2(R

cd
āb ωcd...Ce

ā ∧ eb +Rcd̄
āb̄
ωcd̄...Ce

ā ∧ eb̄

+Rc̄d
abωc̄d...Ce

a ∧ eb +R c̄d̄
ab̄

ωc̄d̄...Ce
a ∧ eb̄)

= 1
2(R

AB
āb ωAB...Ce

ā ∧ eb +Rcd̄
ABωcd̄...Ce

A ∧ eB) = 1
2R

cd̄
ABωcd̄...Ce

A ∧ eB ≡ 0,

where we have used the fact that RaāABe
A ∧ eB ∼ (R(ea, eā)AB)eA ∧ eB ∈ Γ(g) due to (5.24).

This proves (5.40) and (5.41).
Let us also define another Laplacian

∆̌ := ĎĎ† + Ď†Ď : A → A. (5.42)

Using the previous calculation, it is not difficult to show that ∆̌ also preserves the bigrad-
ing of A:

We start by noting that

p◦∆̂◦i−∆̌ = p◦D̂◦(1−i◦p)◦D̂†◦i+p◦D̂†◦(1−i◦p)◦D̂◦i = p◦D̂†◦(1−i◦p)◦D̂◦i, (5.43)
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since D̂† preserves A. Thus it suffices to show that [Ĝ, pD̂†(1 − ip)D̂i] = 0. Since

D̂ = eA ∧DeA , D̂† = −GABieADeB , [Ĝ, D̂] = GABeA ∧DeB , [Ĝ, D̂†] = ieADeA , (5.44)

we can write for any ω ∈ A (dropping i’s)

[Ĝ, pD̂†(1− p)D̂]ω = p[Ĝ, D̂†](1− p)D̂ω + pD̂†(1− p)[Ĝ, D̂]ω
= pieA(1− p)DeA(eB ∧DeBω)
− pGABieA(1− p)GCDDeB (eC ∧DeDω)

= 2piea(1− p)Dea(eā ∧Deāω) + 2pieā(1− p)Deā(ea ∧Deaω).

This vanishes since for any u+ ∈ C+, v− ∈ C−, τ = τ+ ∧ τ− ∈ A = A+ ∧ A− we have

piu+(1− p)(v− ∧ τ) ∼ piu+(1− p+p−)(τ+ ∧ (v− ∧ τ−))
= piu+(τ+ ∧ (1− p−)(v− ∧ τ−))
= (p+iu+τ+) ∧ p−(1− p−)(v− ∧ τ−) = 0,

and similarly when we exchange + and −. Thus ∆̌ also preserves the bigrading.
As D preserves the generalised metric, we can write Ď = d+ + d− with

d+ : Ap,q −→ Ap+1,q d− : Ap,q −→ Ap,q+1 (5.45)

Similarly Ď† = d†+ + d†− with

d†+ : Ap,q −→ Ap−1,q d†− : Ap,q −→ Ap,q−1 (5.46)

and we have

∆̌ = {d+, d†+}+ {d−, d†−}+ {d+, d†−}+ {d−, d†+} (5.47)

The statement that ∆̌ preserves the bigrading of A corresponds precisely to the Kähler
identities

{d+, d†−} = {d−, d†+} = 0 (5.48)

5.4 Examples

5.4.1 G × G structures in type II

For U(3)× U(3), G2 ×G2 and Spin(7)× Spin(7) these double complexes appeared in [67] in
the context of the type II topological string. We shall review the structure of the complexes
here before reviewing the application to topological strings in section 6.

These generalised G-structures were originally used to describe supersymmetric back-
grounds of type II [53, 71]. Indeed, a background preserving N = 2 supersymmetry in an
NSNS background requires two internal O(d) spinors ϵ± which are parallel with respect to
the Bismut connections ∇± = ∇± 1

2H, respectively. These two spinors define two different
SU(3), G2, or Spin(7) structures in 6, 7, and 8 dimensions respectively. Lifting this to
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generalised geometry, the two spinors transform with respect to the left and right groups
in the generalised metric structure

O(d, d) → O(d)+ ×O(d)−. (5.49)

They define, respectively, SU(3) × SU(3), G2 × G2, or Spin(7) × Spin(7) structures, and
the Killing spinor equations guarantee that one can choose some generalised Levi-Civita
connection D such that Dϵ± = 0. That is, supersymmetry guarantees that the reduced
G-structure is integrable.

For these cases, the BPS complex is a doubled version of Carrión’s gauge theory BPS
complex from section 2. As discussed in section 2, for on a torsion-free SU(3) structure
it is natural to take the complex (2.13) which is half of that for U(3) with the scalar part
complexified. Correspondingly, for SU(3) × SU(3) structures in generalised geometry we
take the complex for U(3) × U(3), also with complexified scalar. For the G2 and Spin(7)
cases, it will be convenient to enhance the notation and explicitly write the representations
that appear. Namely, we write

Ap,q
r,s = Γ(Λp

rC+ ⊗ Λq
sC−) (5.50)

where r, s are the representations appearing in the gauge theory BPS complexes.
We can then write the G2 complex as

A0,0
1,1

A1,0
7,1 A0,1

1,7

A2,0
7,1 A1,1

7,7 A0,2
1,7

A3,0
1,1 A2,1

7,7 A1,2
7,7 A0,3

1,1

A3,1
1,7 A2,2

7,7 A1,3
7,1

A3,2
1,7 A2,3

7,1

A3,3
1,1

d+ d−

(5.51)

and the Spin(7) complex as

A0,0
1,1

A1,0
8,1 A0,1

1,8

A2,0
7,1 A1,1

8,8 A0,2
1,7

A2,1
7,8 A1,2

8,7

A2,2
7,7

d+ d−

(5.52)
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In the case of SU(3) structures, there is a subtlety. The gauge theory BPS complex (2.13)
in this case is isomorphic to the Dolbeault complex, and we may choose whether this is
(Ωp,0, ∂) or (Ω0,p, ∂̄). In section 2, we made an arbitrary choice to associate it with the
antiholomorphic complex. When one combines two copies of the complex, however, there are
two inequivalent choices which correspond to whether we take two antiholomorphic copies of
the Dolbeault complex, or one holomorphic and one antiholomorphic. We therefore have two
non-isomorphic BPS complexes for SU(3) × SU(3) structures given by

Ap,q
A = Γ(Λp,0C+ ⊗ Λ0,qC−) (5.53)

Ap,q
B = Γ(Λ0,pC+ ⊗ Λ0,qC−) (5.54)

In [67], they named these two choices the A- and B-complexes, and indeed they are relevant
for the topological A- and B-models respectively, as we will review later.

In [102], this structure was related to the generalised Kähler geometry associated to the
SU(3)× SU(3) structure. In that case, one has two generalised complex structures Ji which
commute and define a generalised metric G = −J1J2. Since they commute, they define a
decomposition of the complexification of E = T ⊕ T ∗ into simultaneous (±i,±i) eigenspaces.
Moreover, since they commute with the generalised metric, this decomposition respects the
generalised metric decomposition into C±. In particular, the simultaneous eigenspaces are
precisely the spaces C1,0

± , C0,1
± , and one can show that the +i eigenspaces L+

i of Ji satisfy

L+
1 = C1,0

+ ⊕ C1,0
− , L+

2 = C1,0
+ ⊕ C0,1

− . (5.55)

Therefore, the A- and B-complexes have the following total spaces

⊕
p,q

Ap,q
A =

⊕
n

Γ(ΛnL+
2 ) ,

⊕
p,q

Ap,q
B =

⊕
n

Γ(ΛnL+
1 ) (5.56)

and correspond to a refinement of the Dolbeault complex associated to the generalised complex
structure into a double complex [50, 103]. The two inequivalent choices correspond to the
two different generalised complex structures in a generalised Kähler structure.

5.4.2 G × SO(d + n) structures for heterotic

For heterotic structures, we have the groups G × SO(d + n) ⊂ SO(d, d + n), which are of
the type discussed in section 5.3, but are not spinor type. In these cases the generalised
Dolbeault complex takes the form of the tensor product of the gauge theory BPS complex
for the group G on the left (which is of spinor type in many interesting cases) with the
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trivial one (2.9) on the right:

Ω+,0

Ω+,1 Ω+,0(C−)

Ω+,2
r2 Ω+,1(C−)

Ω+,3
r3 Ω+,2

r2 (C−)

Ω+,3
r3 (C−)

d−

d+

(5.57)
where Ω+,• = Γ(Λ•C+) and the diagram continues to the lower left as far as needed. We
identify the bundles called Q in refs. [43, 44] with C− (or its complexification in the SU(N)
case). The lower row of (5.57) then forms the various differential complexes involving Q

written down in those references. Note that C− ≃ TM ⊕End(V ) and in the case G = SU(N)
we have (C−)C ≃ TMC ⊕ End(V )C ≃ T (1,0) ⊕ T ∗(1,0) ⊕ End(V )C, which is the bundle Q
discussed in [43]. The upper row forms part of the gauge structure needed to write BV
actions for such theories.

5.5 Spinor type complexes in O(d, d) × R+ generalised geometry

We now specialise to the case of O(d, d) generalised geometry relevant to the NS-NS fields
of type II theories as in [51], where the generalised tangent space is an exact Courant
algebroid. We will see that these geometries admit analogues of the spinor type complexes of
section 2.3, where the BPS complex becomes a sum of spinors of O(d, d) decomposed under
the structure group. In O(d, d) generalised geometry, one can have spinor type complexes
for structure groups which do not preserve a generalised metric. For example, the structure
groups U(N,N) ⊂ SO(2N, 2N) relevant to generalised complex structures have this property.
However, here we will focus on the case where the structure group has the form G+ ×G− as
in section 5.3 and the corresponding generalised metric is positive definite and generalised
Ricci flat. In these cases, the complexes can be viewed as tensor products of two gauge
theory spinor type complexes. Similarly to what was found in section 2.3, the spinor type
property leads to relations between the various Laplacians appearing in the construction. In
particular, we show that ∆+ = ∆− for these cases, which when combined with the Kähler
identities is sufficient to prove a ∂∂̄-type lemma. We also construct a different Laplacian
operator which is shown to agree with the H-twisted de Rham Laplacian on the polyform
representation of the spinors. We start by reviewing some features of spinors in O(d, d)× R+

generalised geometry, and how the additional R+ factor in the structure group enables one
to represent the spinors as polyforms.

First, let us recall some features of the spinor bundle S(E) in O(d, d)× R+ generalised
geometry (see [51] for full details) and the associated Clifford algebra Cliff(d, d;R). The spinor
bundle (with zero R+ weight) is isomorphic to the bundle (detT ∗)−1/2 ⊗Λ•T ∗ whose sections
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are weighted polyforms. As such, we will here assume that we have a section Φ ∈ Γ(detT ∗)
which gives us an isomorphism to weighted spinors S(E)1/2 which can be represented directly
as polyforms under the relevant GL(d,R) subgroup of O(d, d) × R+

S(E) Φ≃ S(E)1/2 ≃ Λ•T ∗M (5.58)

In applications to physics, we will take Φ = √
ge−2ϕ to be the natural string frame integration

measure. We will also assume that our O(d, d) × R+ connections are compatible with the
density Φ such that we need not distinguish carefully between weighted and un-weighted
spinors when acting with our differential operators built from these connections. Recall that
we also noted this as our assumption at the start of section 5.3.

We denote the generators of the Clifford algebra Cliff(d, d;R) by ΓA. In the cases we
examine, the generalised structure group will always be contained in the maximal compact
subgroup, so that it will define a generalised metric. We can thus consider the decomposition
of the spinors and Clifford algebra under Spin(d) × Spin(d). As such, we decompose the
index A → (a, ā), the vector indices for C± and let the matrices γa and γā be two sets of
generators for Cliff(d,R), again one for each of C±. There are then several possible cases
for the decomposition of the spinors and the matrices ΓA, depending on the dimension d,
as we review in appendix A. However, these differ only slightly in form. The decomposition
of the spinor always has the form

Ψ =
∑

ζ+ ⊗ ζ− ⊗ t (5.59)

where ζ± ∈ S(C±) and t = 1 for d even or a constant vector in a two dimensional auxiliary
space for d odd. There are similar tensor product decompositions of the matrices ΓA acting
on the decomposed spinor, as we describe in more detail in appendix A. For our purposes
here, the important point to extract is that in all of these cases we have the decompositions

ΓaΓb = ηab1 + Γab = (gab1 + γab)⊗ 1 ⊗ 1 = (γaγb)⊗ 1 ⊗ 1

ΓāΓb̄ = ηāb̄1 + Γāb̄ = 1 ⊗ (−gāb̄1 − γāb̄)⊗ 1 = −1 ⊗ (γāγ b̄)⊗ 1
(5.60)

This means that if we have two spinors ζ± ∈ S(C±) and we embed the tensor product ζ+ ⊗ ζ−
into S(E) by tensoring it with some constant auxiliary vector t as above, then acting with
ΓaΓb on it corresponds to acting on ζ+ ⊗ ζ− with (γaγb)⊗ 1 and similarly acting with ΓāΓb̄

on it corresponds to acting on ζ+ ⊗ ζ− with −1 ⊗ (γāγ b̄).
Finally, we recall from [51] that for a torsion-free generalised connection the O(d, d) Dirac

operator /D = ΓADA acts on the polyform presentation of a weighted spinor Ψ via the exterior
derivative. In fact, this is true in the “twisted picture” of generalised geometry in which a
section of S(E)1/2 is in fact a collection of local polyforms on patches of the space related by
gauge transformations. One can also work in the “untwisted picture” in which we use the
B-field specified by the generalised metric to define a global polyform corresponding to the
spinor. In this picture, the Dirac operator becomes dH = d + (H∧). In any presentation,
one sees that the Dirac operator squares to zero

/D
2 = (ΓADA)2 = 0 . (5.61)
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We now use these facts to derive properties of the Laplacians on spinor type complexes
as follows. First, we examine (5.61) in terms of Cliff(d, d,R) Γ-matrices with indices split
under O(d) × O(d) acting on a generalised spinor

(ΓADA)2 = (ΓaDa + ΓāDā)2 = (ΓaDa)2 + (ΓāDā)2 + ΓaΓā[Da, Dā] (5.62)

The last term here can be expressed as the Spin(d) × Spin(d) action of the generalised
curvature operator (5.19) on the generalised spinor Ψ which is given by

[Da, Dā]Ψ = 1
4RaābcΓbcΨ+ 1

4Raāb̄c̄Γ
b̄c̄Ψ (5.63)

since in terms of Cliff(d, d,R) Γ-matrices, Spin(d) × Spin(d) is generated by Γab and Γāb̄.
Thus contracting with the additional Γ-matrices in (5.62) we have

ΓaΓā[Da, Dā]Ψ = 1
4Γ

ā(RāabcΓaΓbc)Ψ + 1
4Γ

a(Raāb̄c̄Γ
āΓb̄c̄)Ψ

= 1
4Γ

ā(Rā[abc]Γabc + 2ηabRāabcΓc)Ψ

+ 1
4Γ

a(Ra[āb̄c̄]Γ
āb̄c̄ + 2ηāb̄Raāb̄c̄Γ

c̄)Ψ

= 0

(5.64)

where in the last step we have used the algebraic Bianchi identity (5.18) and that ηabRāabc ∼
Rāc = 0 and ηāb̄Raāb̄c̄ ∼ Rac̄ = 0 on a generalised Ricci flat manifold. So we have

(ΓaDa)2 + (ΓāDā)2 = 0 (5.65)

Next we show that the terms (ΓaDa)2Ψ and (ΓāDā)2Ψ become ∆+ and −∆− when seen
as actions on an element of the double complex.

From (5.60), on a spinor Ψ = ζ+ ⊗ ζ− ⊗ t, we have that

(ΓaDa)2Ψ =
[
(γaDa ⊗ 1)2(ζ+ ⊗ ζ−)

]
⊗ t (5.66)

The operator (γaDa) acting on the spinor ζ+, viewed as an element of the spinor type complex
A+, is the Dirac operator D+, the analogue of (2.19) for d+, on A+. When tensored with
the C− spinor ζ−, the action of the generalised connections on ζ− will be precisely such that
(γaDa ⊗ 1) acts on the tensor product as D+ on A. Thus

(ΓaDa)2Ψ = ∆+Ψ (5.67)

Similarly,
(ΓāDā)2Ψ = −

[
(1 ⊗ γāDā)2(ζ+ ⊗ ζ−)

]
⊗ t = −∆−Ψ (5.68)

so that (5.65) becomes

∆+ = ∆− (5.69)

for the double complex A.
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The equality (5.69) and the Kähler identities in particular imply the Hodge decomposition
on compact spaces for each of Ď, d+, d−. This can be stated as

Ap,q = d+d−Ap−1,q−1 ⊕ d†+d−Ap+1,q−1 ⊕ d+d†−Ap−1,q+1 ⊕ d†+d
†
−Ap+1,q+1 ⊕Hp,q (5.70)

From this it follows that we also have the ∂∂̄-lemma. For completeness, we repeat the proof
here as it appears in Kähler geometry.

Lemma 1 (∂∂̄-lemma). Let α ∈ Ap,q be Ď-closed, where Ď = d+ + d−. Then the following
are equivalent

(a) α is Ď-exact.

(b) α is d+-exact.

(c) α is d−-exact.

(d) α is d+d−-exact.

(e) α is orthogonal to the harmonic forms H(p,q).

Proof. Clearly (d) implies (a), (b) and (c). The usual Hodge decomposition also gives that
any of (a), (b) and (c) imply (e). To show that (e) implies (d), note that as α is Ď-closed
of pure type, α is also d+-closed and d−-closed. Assuming (e), and using the d+-Hodge
decomposition, it follows that α is d+-exact,

α = d+η , (5.71)

for η ∈ Ap−1,q. But η can be decomposed under the d−-Hodge decomposition as

η = d−γ + d†−γ′ + θ . (5.72)

Using the Kähler identities, we see that only the d−-exact part of η contributes to α:

0 = d−α = d−d+η = −d−d†−d+γ
′ ⇒ d†−d+γ

′ = 0 . (5.73)

We therefore have
α = d+d−γ , (5.74)

for γ ∈ Ap−1,q−1.

Next, consider the Pin-cover s of the generalised metric, viewed as an endomorphism.
This has

GA
B(sΓBs−1) = ΓA ⇒ sΓAs−1 = GA

BΓB (5.75)

and thus

sΓADAs
−1Ψ = GABΓADBΨ = (ΓaDa − ΓāDā)Ψ := /D

(G)Ψ (5.76)
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Viewing the O(d, d) spinor as a polyform, it is known [51] that

s =
{
Γ(+) = 1

d!ϵ
a1...adΓa1...ad

d odd
Γ(−) = 1

d!ϵ
ā1...ādΓā1...ād

d even (5.77)

and that on a form ψk of degree k

Γ(+)ψk = (−1)⌊n/2⌋ ∗ ψk Γ(−)ψk = (−1)d(−1)⌊(n+1)/2⌋ ∗ ψk (5.78)

Putting all these together, one finds that

(∆+ +∆−)Ψ = (ΓaDa)2Ψ− (ΓāDā)2Ψ = 1
2{

/D, /D
(G)}Ψ = 1

2(−1)d∆HΨ (5.79)

is essentially the H-twisted de Rham Laplacian ∆H = {dH ,d†H} (in the untwisted picture
where /D = dH).

6 Applications

In this section, we will look at a few applications of the BPS complex to supergravity and
string theory. To match conventions in the supergravity literature, we will follow [51] and
denote frames for the generalised tangent bundle {ÊA} and their dual frames {EA} for the dual
bundle (so that the natural inner product is ⟨EA, ÊB⟩ = δA

B). We also adopt the notational
convention of [51] for raising/lowering C− indices (on decomposed O(d, d + n) tensors) in
sections 6.3 and 6.4, which results in relative minus signs versus that used in section 5.

6.1 Moduli spaces of flux backgrounds

It is straightforward to see that the BPS complex A we have constructed calculates the
infinitesimal moduli of the underlying torsion-free generalised G-structure as its second
cohomology group, by employing the same argument as in section 4. Indeed we can interpret
the first few terms as (similar statements have appeared in [70, 104])

0 → Γ(Λ0E) → Γ(Λ1E) → Γ(o(d, d+ n)/g) → Γ(T (int)) → . . . (6.1)

Here, there is a reducible gauge symmetry generated by sections of Λ0E (i.e. scalars), which
in cases relevant to supergravity corresponds to the gauge-of-gauge transformations for the
B-field, so that the cohomology relevant to the moduli of the structure becomes the second
cohomology here. Again the last term T (int) written here corresponds to the bundle of which
the intrinsic torsion of the generalised G-structure is a section. This can be understood
as follows.

Consider a tensor Σ ∈ E∗⊗g which can be thought of as the difference of two compatible
generalised connections D : E → E∗ ⊗E. Recall that the torsion of a generalised connection
can be defined using the Dorfman derivative to give a tensor T (D) ∈ Γ(Λ3E). We define
a map τ : E∗ ⊗ Λ2E∗ → Λ3E to give the difference of the torsions of the two connections.
With respect to such the frame {ÊA}, the map τ takes the form

τ(Σ)ABC = 3Σ[ABC] (6.2)
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This map restricts to a map τ | on E∗ ⊗ g. We then have an exact sequence of bundles

0 → ker(τ |) ι→ E∗ ⊗ g
τ |→ Λ3E

π→ T (int) → 0 (6.3)

where we have defined the bundle of which the intrinsic torsion of a G-structure is a section by

T (int) = coker(τ |) = (Λ3E)/ Im(τ |) (6.4)

Given a G-compatible connection, the projection of the torsion of this connection onto
T (int) does not change if one shifts to a different G-compatible connection by adding to it a
tensor Σ ∈ E∗ ⊗ g. Therefore, it is independent of the choice of G-compatible connection
and represents a property of the G-structure itself. It is called the intrinsic torsion of the
structure, and can be thought of as a part of the torsion which is common to all connections
compatible with the G-structure.

As in section 4, we can interpret the maps Ď by considering a G-frame ÊA for E and
a G-compatible connection D with

DV ÊA = ΩV
B

AÊB (6.5)

where again we use the notation ΩV
B

A = V CΩC
B

A and ΩV is a section of g ⊂ E∗ ⊗ E.
As in section 4, for simplicity we assume reducibility so that we can decompose11

so(d, d+ n) = g⊕ k (6.6)

and write a frame for a nearby G-structure as

Ê′
A = ÊA +XB

AÊB (6.7)

where the generalised tensor X lies in k.
We can then compute the intrinsic torsion induced by the deformation X of the structure,

working to first order in X. We consider a deformed compatible connection D′ = D + Σ,
for Σ ∈ Γ(E∗ ⊗ g), so that

Ω′
V

B
AÊ

′
B = D′

V Ê
′
A = DV Ê

′
A +ΣV

B
AÊ

′
B (6.8)

and we have

DV Ê
′
A = DV (ÊA +XB

AÊB)
= ΩV

B
AÊB + (∂V X

B
A)ÊA +XB

AΩV
C

BÊC

= ΩV
B

A(Ê′
B −XC

BÊ
′
C) + (∂V X

B
A +ΩV

B
CX

C
A)Ê′

B +O(X2)
= (ΩV

B
A +DV X

B
A)Ê′

B +O(X2)

(6.9)

The shift in the components of the connection (each with respect to their corresponding
frames) is thus given by

Ω′
V

A
B − ΩV

A
B = ΣV

A
B +DV X

A
B (6.10)

11Again, this is not necessary: one can instead work via projections onto the quotient so(d, d+ n)/g.
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and the quantities on both sides must lie in g. Let us again split the tensor Σ via

Σ = Σ(g) +Σ(k) (6.11)

and the previous equation tells us that

Σ(k)
V = −DV X (6.12)

Using the map τ as above and defining τ (int) = π ◦ τ , we have

τ (int)(Σ) = τ (int)(Σ(g) +Σ(k)) = τ (int)(Σ(k)) = π(τ(Σ(k)))

= PA2

(
− 1

3!(3D[AXBC]) EA ∧ EB ∧ EC
)

= −PA2

(
D̂X

)
= −ĎX

(6.13)

so that for X ∈ A1 we have that ĎX is proportional to the intrinsic torsion of the new
G-structure to first order in X.

Next we examine which tensors X are induced by the action of an infinitesimal generalised
diffeomorphism generated by a generalised vector V ∈ Γ(E). The action on generalised
tensors is via the Dorfman derivative so we have

δÊA = LV ÊA = LD
V ÊA = (DV −D ×so(d,d) V ) · ÊA =

(
ΩV

B
A − 2ηBCD[AVC]

)
ÊB (6.14)

The parts of the last expression in parentheses which lies in g merely rotate ÊA to a new
G-frame for the original G-structure and thus gives no deformation of the structure itself.
We are thus interested only in the part which lies in k. As ΩV lies in g, this is given by

X = −Pk

(1
2(2D[AVB])EA ∧ EB

)
= −PA1(D̂V ) = −ĎV (6.15)

We thus see that the infinitesimal moduli space of torsion free generalised G-structures
is given by

MG-str =
{X : ĎX = 0}
{X = ĎV }

= H1(A) (6.16)

exactly as for (2.46) and (4.21).
Note that for the heterotic cases

G×O(d+ n) ⊂ O(d)×O(d+ n) ⊂ O(d, d+ n), (6.17)

the BPS complex takes the form (5.57), in which the lower row is the tensor product of
a gauge theory BPS complex for C+ tensored with C− and the differential d+ is defined
using a generalised connection. Denote this complex by A+(C−). Again, the bundle C− (or
its complexification) is the one denoted Q in [43, 44], and A+(C−) is the complex used to
compute the moduli in those references. The upper row is the gauge theory BPS complex,
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denoted here A+, again with the differential d+ defined using a generalised connection.
Denoting by AT the total complex, one has a short exact sequence of complexes:

0 → A+(C−)[1] → AT → A+ → 0 (6.18)

where the maps are inclusion and projection and [1] denotes a degree shift by one. If one
has Hk−1(A+) = Hk(A+) = 0 for some k, then the associated long exact sequence in
cohomology gives us

Hk(AT ) ≃ Hk(A+(C−)) (6.19)

For k = 2, this would give us the infinitesimal moduli space of the G×O(d+n) ⊂ O(d, d+n)
structure in terms of the cohomology of A+(C−), which was the moduli space appearing
in [43, 44].

Note that naively this is not quite the full moduli space of the supersymmetric background,
which would be the moduli space of a G×O(d+ n) ⊂ O(d, d+ n)× R+ structure, with the
additional R+ factor corresponding to the dilaton field. Thus in general, H2(AT ) will give
the moduli space of the supergravity background at fixed dilaton.

However, in the case of SU(3) structures, as considered in [43], it turns out very non-
trivially that it matches the physical moduli space. This follows from similar reasoning to
that used in the discussion of gauge theory instantons on torsion-free SU(N) structures in
section 2. In particular, we take the analogue of the complex (2.13) with the complexified
scalar, so that overall we have

Ω(0,0)
+

Ω(0,1)
+ Ω(0,0)

+ (C−)

Ω(0,2)
+ Ω(0,1)

+ (C−)

Ω(0,3)
+ Ω(0,2)

+ (C−)

Ω(0,3)
+ (C−)

d−

d+

(6.20)

Taking the tensor product with the (complex) forms in Ω0,•
+ effectively complexifies the

C− bundle. Consequently, taking the cohomology in d+ effectively is a quotient by the
complexification of the infinitesimal gauge transformations of the supergravity theory. Further,
as we actually construct the BPS complex using the Lie algebra u(3)⊗ so(6+n) we are really
computing the moduli of the structure as a U(3)× SO(6 + n) ⊂ SO(6, 6+ n) structure, which
corresponds to the J-structure of [60]. To get the physical moduli space, one needs to include
the ψ-structure, which includes an additional C∞(C∗) of degrees of freedom compared with
the J-structure, as we will discuss below in section 6.3. The physical moduli space (plus
an additional C∗ factor corresponding to constant rescaling of ψ) is the Kähler quotient of
the moduli space of ψ-structures with integrable J-structure by the gauge transformations.
But one expects that this can be computed as a regular quotient by the complexified gauge
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transformations, at least if one restricts to so-called polystable points. (For a more detailed
discussion of this construction, see [60].) As a C∗ family of integrable ψ-structures give the
same J-structure, the moduli space of J-structures should match the physical moduli space.
Thus, the second cohomology of (6.20) in fact should match the physical moduli space.

6.2 Target spaces for topological strings

As mentioned in section 5.4.1, the first appearance of the type II BPS complex is in the
study of topological strings of [67]. It was noted that the double complex precisely captures
the target space realisation of the worldsheet BRST complex of the topologically twisted
sigma model. Moreover, the 1-loop partition function of the theory calculates a quantity
associated to the complex called the analytic torsion.

To see this, note that in an N = (1, 1) 2-dimensional sigma model, the left- and right-
moving fermion fields ψ± can be seen as sections of S(Σ) ⊗ ϕ∗(C±) respectively, where
S(Σ) is the worldsheet spinor bundle and ϕ : Σ → M is the embedding function. When
the target space has a refined G-structure, the worldsheet theory has enhanced symmetry.
The most famous example is when the target space is Kähler and the worldsheet theory
has enhanced N = (2, 2) supersymmetry. For the G2 and Spin(7) strings, the enhanced
symmetries are particular W-algebras. Schematically, these algebras are generated by the
worldsheet operators T,G, which generate the left/right-moving N = 1 Virasoro algebra, as
well as operators X,M which take the approximate form12

X = Φa1...anψ
a1 . . . ψan + . . . , M = Φa1...anψ

a1 . . . ∂ϕan + . . . . (6.21)

Here Φa1...an are the components of differential forms in singlet representations with respect
to the G-structure.13

In each of the cases above, one can define a twist of the theory by an operator related
to the spectral flow operator of the SCFT. In particular, one looks for a bosonic operator ρ
through which one can define a twisted energy momentum tensor

Ttwist ∼ T + ∂2ρ (6.22)

which has vanishing central charge. In the SU(3) case, the operator eiρ defines spectral flow of
the worldsheet SCFT. In the G2 and Spin(7) cases, one can bosonise the theory and find that

X ∼ (∂ρ)2 + ∂2ρ (6.23)

In any case, the new twisted energy momentum tensor provides new Lorentz charges to all
the fields. One finds that the dimensionless operators can be identified with sections of Ap,q,
where Ap,q are the vector bundles in the double complex defined in section 5.4.1, i.e. the
vector bundles appearing in the BPS complex. Furthermore, one can find a nilpotent operator
Q acting on the Hilbert space which decomposes into left- and right-moving pieces and acts as

Q = QL +QR (6.24)
QL : Γ(Ap,q) → Γ(Ap+1,q) , QR : Γ(Ap,q) → Γ(Ap,q+1) (6.25)

12More details can be found in [67].
13For G2 structures and SU(3) structures, we get one set of tensors for each singlet differential form.
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The left- and right-moving pieces are the operators d± from the double complexes of sec-
tion 5.4.1

QL = d+ , QR = d− . (6.26)

From this, the authors in [67] were able to identify the 1-loop partition function by
using the formula for free energy at 1-loop

F1 = δ(HL −HR)
1
2 log

 ∏
FL,FR

(det ′(HL +HR))(−1)F FLFR

 . (6.27)

Here FL/R is the left/right fermion number and HL = {QL, Q
†
L} is the left-moving Hamil-

tonian, and similarly for HR. By the identification of QL/R with d±, and using the fact
that ∆+ = ∆− for these cases,14 we identify the term in the [. . .] as the analytic torsion
of the BPS complex.

In the case of topological strings on Kähler manifolds, and topological strings on G2
manifolds, where the BPS complex admits a pairing, we can also provide a Chern-Simons-like
description of the target space theory. In these cases, the pairing is given by

⟨f, f ′⟩ =
∫

M
Φf ∧ f ′ , f ∈ A• . (6.29)

where Φ = √
ge−2ϕ is the generalised density for the dilaton field ϕ and we assume that we

work with a generalised Levi-Civita connection which preserves this density.
One can then construct a diagonal complex D from the double complex via Dk = Ak,k,

corresponding to the level-matched worldsheet operators, with second order differential
dD = d+d−. The ghost number zero fields in the theory then form a general element f ∈ D•,
with Chern-Simons type action

S = ⟨f0, dDf⟩ =
∫

M
Φf ∧ d+d−f , f ∈ D• . (6.30)

However, unlike in our examples above, this is only the ghost number zero fields and to write
a BV action, one must introduce ghosts and anti-fields, which can also be described in terms
of elements of the BPS complex A, and the BRST operator which can be described in terms
of d+ and d−. The gauge symmetry for the field strength F = dDf = d+d−f is

δfk,k = d+λ
k−1,k + d−κk,k−1 (6.31)

14The Laplacians ∆± correspond to the worldsheet Hamiltonians for the left- and right-moving modes. The
condition (5.69) then becomes the level matching condition on the worldsheet. It is then natural that this is
related to the vanishing of the square of the Dirac operator on the generalised spinor, as in the coordinate
basis one has:

d2 = (ΓA∂A)2 = ∂A∂A + ΓAB∂[A∂B] = ∂A∂A (6.28)

and the “weak constraint” ∂A∂A = 0 is well-known to be related to the level matching condition in the
literature on double field theory [105]. The other natural Laplacian operator (5.79) has leading term
∆Φ ∼ 2GABDADB + . . . , and being harmonic with respect to this operator is analogous to the mass shell
condition.
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so that the cohomology of the BRST complex at ghost number zero is given by the Aeppli
cohomologies of the double complex A for the degree (k, k) elements. One could thus think
of this theory as a Chern-Simons-type theory for the Aeppli cohomology. One can represent
the full set of fields and anti-fields diagrammatically using a series of copies of the double
complex A, one for each element f appearing in (6.30), and selecting only a particular subset
of the elements in each, similarly to the complexes appearing in [106–108], see also [109].
Further details of this construction will be presented elsewhere. Note, however, that the
∂∂̄-lemma means that the Aeppli cohomologies are isomorphic to the d±-cohomologies for
these complexes, which are in turn isomorphic to the spaces of harmonic elements. Thus,
despite the apparently different form of the action, the classical states for these theories are
still related to on-shell deformations of the classical backgrounds.

The BV quantisations of the actions (6.30) were previously shown [67, 77] to reproduce
the analytic torsion appearing in the one-loop partition functions (6.27).

6.3 SU(3) heterotic superpotential

In this section, we will see that in six-dimensions the heterotic U(3)×SO(6+n) complex (on a
supersymmetric background with a torsion-free SU(3)×SO(6+n) ⊂ SO(6, 6+n)×R+ structure)
is closely related to the theory of [110, 111] based on the heterotic superpotential [112–114].
In fact, one has to perform a mild extension of this BPS complex to give it a BV symplectic
pairing. One can easily see that an enlargement of some kind must be necessary as the
superpotential depends on the dilaton, which does not appear in the degrees of freedom of
the U(3)× SO(6 + n) ⊂ SO(6, 6 + n) structure (one must enlarge the generalised structure
group to SO(6, 6+ n)×R+ to see this degree of freedom [51]). Correspondingly, the equation
of motion of the superpotential theory is more constraining than simply requiring that the
U(3)× SO(6 + n) structure is torsion-free [60]. There is an additional part of the generalised
intrinsic torsion of the enclosing SU(3)×SO(6+n) ⊂ SO(6, 6+n)×R+ structure transforming
in the (3̄,1) representation that is constrained to vanish by the vanishing of the superpotential
and its variation. However, these points are cured by using a simple extended version of the
U(3)×SO(6+n) complex described below, and we will see that the natural Chern-Simons-type
theory for this complex precisely reproduces the heterotic superpotential at quadratic order.

The superpotential is a functional of a generalised SU(3)×SO(6+n) ⊂ SO(6, 6+n)×R+

structure. It was shown in [60] how a generalised U(3)×SO(6+n) ⊂ SO(6, 6+n) structure (a
“J structure”) is defined by a generalised tensor J ∈ Γ(Λ2E). As U(3)×SO(6+n) ⊂ SO(6)×
SO(6+n), this defines a generalised metric on E, and J annihilates C− and squares to minus
one acting on C+. The (complexified) C+ bundle is thus split into the +i-eigenbundle C1,0

+
and the −i-eigenbundle C0,1

+ . If the line-bundle Λ3C0,1
+ is trivial, then a further reduction of

the structure group to SU(3)× SO(6 + n) is possible, and this has an associated invariant
tensor χ ∈ Γ(Λ3C0,1

+ ) ⊂ Γ(Λ3E). To define a SU(3)×SO(6+n) ⊂ SO(6, 6+n)×R+ structure,
one requires a generalised tensor ψ ∈ Γ(Λ3E ⊗ detT ∗M), which is the product of a tensor of
the same type as χ above with a density Φ = √

ge−2ϕ that trivialises the R+ factor of the
enlarged generalised structure group SO(6, 6 + n)× R+ which includes the dilaton. Such a
tensor defines the SU(3)× SO(6 + n) subgroup entirely and thus also defines a generalised
metric, a dilaton and an associated J structure.
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For a ψ-structure, with associated J-structure, the value of the heterotic superpotential is

W ∼
∫

tr(J ·D ×ad ψ) ∼
∫
ψABCDAJBC (6.32)

In [60], it was stated that D in this equation is a generalised Levi-Civita connection, but
in fact the equation holds for any torsion-free generalised connection.

Let us write ψABC = ΦχABC where Φ = √
ge−2ϕ is the generalised volume density. We

define an SU(3)× SO(6 + n) frame {ÊA} = {Ê+
a , Ê

+
ā , Ê

−
m̃} (nb. a, b = 1, 2, 3 are holomorphic

indices for C+ and m̃, ñ = 1, . . . , 6 + n are real indices for C−) to be one for which we have:

Ja
b = iδa

b J ā
b̄ = −iδā

b̄ χāb̄c̄ = ϵāb̄c̄ Φ = 1 (6.33)

where the last condition also fixes the R+ frame.
If we then vary the connection in (6.32) by an arbitrary tensor ΣA

B
C , we find

δ(ψABCDAJBC) = ϵāb̄c̄(Σā · J)b̄c̄

= ϵāb̄c̄(−2Σā
E

b̄JEc̄)

= ϵāb̄c̄(−2Σā
e
b̄Jec̄)

= 2iϵāb̄c̄(Σ[āc̄b̄])

(6.34)

which vanishes if Σ is torsion-free (so that Σ[ABC] = 0). This demonstrates the claim above
that the connection appearing in the definition of the superpotential (6.32) can be any
torsion-free generalised connection.

We can then parameterise an infinitesimal variation of the structure via a variation
of the frame and density:

δÊ+
a = iαÊ+

a + β̄a
b̄Ê+

b̄
+ Λa

m̃Ê−
m̃

δÊ+
ā = −iαÊ+

ā + βā
bÊ+

b + Λā
m̃Ê−

m̃

δÊ−
m̃ = Λa

m̃Ê
+
a + Λā

m̃Ê
+
ā

δΦ = ΛΦ

(6.35)

The parameters in this equation parameterise a (real) element of so(6, 6 + n)× R+/su(3)×
so(6 + n) at each point, so that Ê+

ā = (Ê+
a )∗, Λā

m̃ = (Λa
m̃)∗ and β̄a

b̄ = (βā
b)∗. Note

here we are using the convention of raising/lowering decomposed indices with the ordinary
metric gab̄ as in [51]. The “canonical” index positions in which they are matched with the
O(d, d + n) indices are

JA
B , ψABC , ΛA

B , ÊA , EA . (6.36)

To calculate the components of δψABC and δJA
B we write

ψ′ = Φ′χ′ = 1
3!Φ

′ϵāb̄c̄Ê′+
ā ∧ Ê′+

b̄
∧ Ê′+

c̄

J ′ = iδa
bÊ

′+
a ⊗ E′+b − iδā

b̄Ê
′+
ā ⊗ E′+b̄

(6.37)
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and then expand out the primed objects to first order in the deformation parameters
α, βāb̄,Λā

m̃ and Λ. This results in

δψāb̄c̄ = (Λ− 3iα)ϵāb̄c̄ δψāb̄c = ϵāb̄ēβē
c δψāb̄m̃ = ϵāb̄ēΛē

m̃

δJm̃
a = iΛa

m̃ δJa
m̃ = −iΛa

m̃

δJm̃
ā = −iΛā

m̃ δJ ā
m̃ = iΛā

m̃

δJb
ā = −2iβā

b δJ b̄
a = 2iβ̄a

b̄

(6.38)

Using that one can take D in (6.32) to be any fixed background torsion-free connection
(i.e. it does not depend on the structure), it is then very straightforward to calculate the
perturbative expansion of the superpotential. One has:

δW ∼
∫ [

δψABCDAJBC + ψABCDAδJBC

]
(6.39)

and
δ2W ∼

∫ [
δ2ψABCDAJBC + 2δψABCDAδJBC + ψABCDAδ

2JBC

]
(6.40)

However, if we are expanding around a supersymmetric background, we can make the
convenient choice that D is a torsion-free compatible connection for that background solution.
This means that in the background DJ = Dψ = 0, so on integration-by-parts δW = 0 (as
it should be around a supersymmetric solution) and

δ2W ∼
∫

2δψABCDAδJBC

=
∫

4iϵāb̄c̄
[
− Λā

m̃Db̄Λc̄m̃ + Λā
m̃Dm̃βb̄c̄ + φDāβb̄c̄ + βā

eDeβb̄c̄

] (6.41)

where we have defined the complex scalar φ = Λ − 3iα. This is the quadratic action (for
ghost number zero fields) which we seek to recover from our extended BPS complex below.
Note that it depends only on the variables (Λā

m̃, βāb̄, φ) and not their complex conjugates,
so that it is indeed holomorphic on the parameter space.

We now examine the heterotic complex (5.57) for the structure group U(3)× SO(6 + n)
in six-dimensions, which takes the form:

Ω(0,0)
+

Ω(0,1)
+ Ω(0,0)

+ (C−)

Ω(0,2)
+ Ω(0,1)

+ (C−)

Ω(0,3)
+ Ω(0,2)

+ (C−)

Ω(0,3)
+ (C−)

d−

d+

(6.42)

One might try to write a BV action associated to the total complex of (6.42), i.e. a free-field
theory whose equations of motion are the statement that the fields in Ω(0,2)

+ ⊕ Ω(0,1)
+ (C−)
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are closed in the total differential, with the gauge symmetry shifting them by exact pieces.
Unfortunately, (6.42) does not have a cyclic structure (in the language of the L∞-algebra
community) or graded symplectic pairing (in the BV language). The row with C− factors
is self-dual, but there are no partners for the fields and anti-fields in the first row. This
means that one cannot apply the standard procedure for constructing an action from the
complex (see e.g. [115]).

However, there is a simple procedure to construct a complex equipped with a cyclic
structure from one that does not. Consider a general complex (C,dC). If one simply adds
the dual complex shifted by one degree (C∗[−1],d∗C) to form

· · · → C−2 ⊕C∗
3 → C−1 ⊕C∗

2 → C0 ⊕C∗
1 → C1 ⊕C∗

0 → C2 ⊕C∗
−1 → C3 ⊕C∗

−2 → . . . (6.43)

then this has a natural pairing of the spaces opposite each other with respect to the middle
arrow. One could then write a BV action using this pairing.15

In our case, the Ω(0,•)
+ (C−) row of (6.42) is self-dual and would have a pairing of the

right type were it all we had. It is the other Ω(0,•)
+ row which lacks a pairing. We can thus

add a copy of the dual of this row and use that Ω0,p
+ ≃ (Ω0,3−p

+ )∗ via contraction with the
anti-holomorphic top-form Ω̄ for C+. Via this isomorphism we also have that d∗+ becomes
d+ again. Overall, we simply add a degree-shifted copy of the top row to get

Ω(0,0)
+

Ω(0,1)
+ Ω(0,0)

+ (C−)

Ω(0,2)
+ Ω(0,1)

+ (C−) Ω(0,0)
+

Ω(0,3)
+ Ω(0,2)

+ (C−) Ω(0,1)
+

Ω(0,3)
+ (C−) Ω(0,2)

+

Ω(0,3)
+

(6.44)

The horizontal levels in this diagram then have ghost numbers +2,+1, 0,−1,−2,−3 re-
spectively and one has a symplectic pairing of degree +1. We also see that there are
natural additional maps Ω(0,k)

+ (C−) → Ω(0,k)
+ , given by the duals of our existing maps

Ω(0,k)
+ → Ω(0,k)

+ (C−) (i.e. contractions Dm̃ωc̄1...c̄k
m̃ using the frame indices introduced above)

and maps Ω(0,k+1)
+ → Ω(0,k)

+ proportional to d†+, so we include these. The inclusion of these
last maps means that naively (6.44) will not have the structure of a double complex.

It is not obvious that the total differential dW on (6.44) squares to zero. Acting on the
middle and lower rows, one can deduce that this is so from the fact that the dual differential
on total complex AT from (6.42) squares to zero. However, acting on an element of the top

15Note that one could do this for any of the complexes which lack a BV symplectic pairing. For example, for
the Carrión complexes for structure groups SU(2) in four dimensions or Spin(7) or SU(4) in eight dimensions,
this recovers part of the action for the theories of instantons in [1, 15]. One could also do this for the heterotic
versions of these complexes.
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row, there are several terms. The first is proportional to the square of the differential on AT

which we know vanishes from the results of section 5. However, in our extended complex
there is also a term proportional to d†−d− = ∆− (for the top row) and another proportional
to {d+,d†+} = ∆+. It is not immediately clear that these terms cancel as we do not have
a direct analogue of the results of section 5.5 for the heterotic case. However, one can see
that these Laplacians are in fact equal by using that the complex Ω0,•

+ is spinor type and the
supersymmetry algebra. We have that Ω0,•

+ ≃ Γ(S(C+)) and in terms of the spinor variables,
the Dirac operator D+ (i.e. the analogue of (2.19) for this single complex) corresponds to
the Dirac operator appearing in the supersymmetry transformation of the dilatino field ρ,
i.e. for ω ∈ Ω0,•

+ corresponding to θ ∈ Γ(S(C+)) we have

D+ω ↔ γmDmθ = δθρ (6.45)

where m = (a, ā) is a real index for C+, so that the Laplacian ∆+ ∝ D2
+ comes from

D2
+ω ↔ (γmDm)2θ = γmDm(δθρ) (6.46)

We also have that the map d− is given by the corresponding variation of the combined
gravitino and gaugino fields ψm̃

Dm̃ωā1...āk
↔ Dm̃θ = δθψm̃ (6.47)

so that the corresponding Laplacian is proportional to

Dm̃Dm̃ωā1...āk
↔ Dm̃Dm̃θ = Dm̃(δθψm̃) (6.48)

The proportionality of the Laplacians ∆± then follows from the closure of the supersymmetry
algebra on the ρ equation of motion γmDmρ−Dm̃ψm̃ = 0 (or equivalently the construction
of the generalised Ricci scalar as in [51, 64]):

δθ(γmDmρ−Dm̃ψm̃) = (γmDm)2θ −Dm̃Dm̃θ = −1
4Rθ = 0 (6.49)

where R is the generalised Ricci scalar curvature which vanishes for a supersymmetric
Minkowski vacuum.16 This relation between the Laplacians leads to the result that the total
differential dW on (6.44) squares to zero.

Having established that (6.44) is a complex, which was constructed to have a BV
symplectic pairing, one can then write the corresponding Chern-Simons-type BV action, as
was done for gauge theories in section 3. It is easy to see that taking an element f0 of ghost
number zero, with components (Λā

m̃, βāb̄, φ), one can apply the differential dW and use the
natural integration against the ψ structure (which has components ϵāb̄c̄ in the SU(3)×SO(6+n)
frames as in (6.33)) to recover an expression of the type (6.41) for the inner product

S = ⟨f0, ďf0⟩ . (6.50)
16Note that the closure of the supersymmetry algebra on the gravitino (and gaugino) equation of motion

/Dψm̃ − Dm̃ρ = 0 also corresponds to properties of the complex: namely the double complex property
{d+, d−} = 0 and the Kähler identity {d†

+, d−} = 0.
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An element f−1 of ghost number one has (complex) components (Vā, V
m̃) which are some

of the components of a complex generalised vector V . Viewing f0 as the parameters of a
deformation of the generalised SU(3)× SO(6 + n) structure, taking f0 to be dW f−1 gives the
action of an infinitesimal complexified generalised diffeomorphism on the structure. This is
precisely the gauge symmetry of the superpotential theory and we see that (6.44) is indeed
the BRST complex of the superpotential theory, which has BV action

S = ⟨f, ďf⟩ , (6.51)

for f a generic element.
One could be troubled by the fact that (6.44) looks different to the complex for the

superpotential theory as described in [111]. In particular, it does not have the structure
of a double complex. This is due to the fact that we have expanded the superpotential
functional in a different basis of fields. We will show in future work that a field redefinition,
corresponding to a different parameterisation of the variation of the generalised structure,
provides an equivalence to the complex of [111].

6.4 G2 heterotic superpotential

We can perform the same analysis for the G2 heterotic superpotential. Such a background
corresponds to an G2 × SO(7 + n) structure. Such a structure is defined by a generalised
tensor ψ ∈ Γ(Λ3E ⊗ detT ∗M). In a frame {ÊA} = {Ê+

m, Ê
−
m̃} (with m,n, . . . = 1, 2, . . . , 7

indices for C+ and m̃, ñ, . . . = 1, 2, . . . , 7 + n indices for C−), we can write

ψ = Φχ , χ = φmnpÊ+
m ∧ Ê+

n ∧ Ê+
p , Φ = √

ge−2ϕ , (6.52)

where φmnp are the components of a stable 3-form in 7-dimensions (i.e. the components of
a G2 3-form). With this, the (real) superpotential takes the form

W ∼
∫

ΦχABEχCD
E D[AχBCD] , (6.53)

where D is any torsion free generalised connection (one can use the same proof as in the
previous section to show that W is independent of the choice of torsion free connection). The
superpotenial W should be compared with [116], where the superpotential was computed from
a reduction of the ten-dimensional theory, and shown to reproduce the right supersymmetry
conditions.

We would like to take the second variation of this around some on-shell background. This
means we are free to choose D to be torsion-free and compatible with the G2 × SO(7 + n)
structure, in which case the second variation takes the form

δ2W ∼
∫ (

δΦχABEχCD
E +ΦδχABEχCD

E +ΦχABEδχCD
E

)
D[AδχBCD] . (6.54)

We can take the following form for the variations

δχmnp = 3β[m
qφ

np]q ,

δχm̃np = 3Λm̃
qφ

npq ,

δΦ = ΛΦ ,
(6.55)
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where βmn ∈ Ω+,2
7 , Λm̃

n ∈ Ω+,1
7 (C−), and Λ ∈ Ω+,0

1 . With this parameterisation, the
action (6.54) takes the form

δ2W ∼
∫

6φmnp
(
2ΛDmβnp − 3βmnD

rβrp + 2Λr̃
mDr̃βnp + 6Λr̃mDnΛr̃

p

)
(6.56)

How does this relate to the BPS complexes we have defined? The BPS complex for
G2 × SO(7 + n) structures takes the form

Ω+,0
1

Ω+,1
7 Ω+,0

1 (C−)

Ω+,2
7 Ω+,1

7 (C−)

Ω+,3
1 Ω+,2

7 (C−)

Ω+,3
1 (C−)

d−

d+

(6.57)

As before, this does not have a cyclic structure but we can perform the same procedure as
for the SU(3) case to write down an extension which does. We find

Ω+,0
1

Ω+,1
7 Ω+,0

1 (C−)

Ω+,2
7 Ω+,1

7 (C−) Ω+,0
1

Ω+,3
1 Ω+,2

7 (C−) Ω+,1
7

Ω+,3
1 (C−) Ω+,2

7

Ω+,3
1

(6.58)

The maps Ω+,k(C−) → Ω+,k and Ω+,k+1 → Ω+,k are precisely the duals of the maps
appearing in (6.57) as before. The horizontal levels are defined to have ghost number
+2,+1, 0,−1,−2,−3, and the symplectic pairing is of degree +1.

We need to determine whether the total complex of (6.58) really defines a complex, i.e.
the total derivative squares to 0. The difficult part is the total derivative acting on the top
row which will return a term proportional to d2ω ∝ (∆+ −∆−)ω. Once again, we can use the
fact that this complex is a spinor complex and Ω+,ev ≃ Ω+,odd ≃ Γ(S(C+)). The conditions
coming from supersymmetry ensure that the left and right Laplacians are equal on the top
row, as in (6.49) and hence the total space of (6.58) is a complex.

A generic element f0 of degree 0 in this complex can be parameterised by (Λm̃
n, βmn,Λ).

One then finds that the action (6.54) takes the form

S =
〈
f0, ďf0

〉
(6.59)
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and that the associated BV action is given by a generic element f of the complex

SBV =
〈
f, ďf

〉
(6.60)

It remains an open and interesting question as to whether a field redefinition of the form
used in [111] will allow us to rewrite (6.58) as a double complex. If it is possible then
we can immediately write down the 1-loop partition function following the techniques in
that paper. Vis-à-vis these questions, see [117], where the second order deformation of the
superpotential of [116] is computed giving rise to a double complex, which is then utilised to
compute the one-loop partition function. It would be interesting to compare the generalised
analysis with this computation.

7 Discussion and outlook

In this work, we have shown that Carrión’s prescription to construct a complex associated to
Donaldson-Thomas-type instantons of a gauge theory on a manifold with a torsion-free G-
structure is actually part of a much more general picture. This includes gravitational instantons
(i.e. torsion-free G-structures themselves) and supergravity instantons (i.e. supersymmetric
backgrounds, or equivalently torsion-free generalised G-structures). We have shown how
to construct these more general complexes, which we have labelled BPS complexes, via
information from only the (generalised) G-structure. Further, we have shown that for
particular choices of the group G, these BPS complexes become equivalent to spinors and the
corresponding differentials and their adjoints are packaged together into the Dirac operator
acting on those spinors. This observation provided elegant general proofs of statements
relating the Laplacian on the BPS complex to the de Rham Laplacian, or its H-twisted
version in the generalised geometry case. Thus far, these relations had been noted in specific
cases and proved by direct calculations, whose shape appears to have little in common between
the cases [67, 68]. The spinorial description thus provides a pleasing general structure to
these results, as well as suggesting strong connections between these constructions and
supersymmetry. It remains an interesting problem in algebra to find an elegant classification
of the groups and subgroups for which the BPS complexes are spinor type in this sense, and
to extract possible connections to the theory of pure spinors.

We also explored how, in cases where the BPS complex has a BV symplectic pairing,
one can write a quadratic BV actions associated to it. The classical on-shell states of these
theories are those for which the gauge field is closed in the differential on the BPS complex,
and thus are instantons in the relevant sense. These actions reproduced the linearised versions
of many Chern-Simons gauge theories that have been of interest over the years. One could
thus view the construction as a way to construct interesting gauge theories of instantons
associated to G-structures, using only their algebraic data, as the construction of the BPS
complex is essentially a purely algebraic prescription. We also briefly noted that for cases
which do not have a BV symplectic pairing of this type, there are other constructions of
actions that one could perform. For example, for structure groups SU(2) in four dimensions
or Spin(7) or SU(4) in eight dimensions one could proceed as in (6.43) to produce a new
complex equipped with a symplectic pairing and then write an action.
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For the generalised G ⊂ O(d, d + n) structures appearing in heterotic and type II
supersymmetric backgrounds, we have also found that the BPS complex possess significant
additional structure. In particular, whenever the structure group has the form G+ × G−
such that one can associate G± with the left- and right-moving modes of the string, the BPS
complex becomes a double complex, which is the tensor product of the left- and right-moving
gauge theory BPS complexes. Further, we have seen that these satisfy Kähler identities.

In the cases of heterotic structures G× SO(d+ n), we were able to relate these double
complexes fairly directly to prior works on heterotic moduli [43, 44], and in spinor type
cases, key properties of the complex such as the equality of the Laplacian ∆+ and ∆− on
the first row of the BPS complex could be expressed as the closure of the supersymmetry
algebra on the fermion equations of motion. In the case of SU(3) × SO(6 + n) in six-
dimensions, ot three complex dimensions, we were able to construct a mild extension of
the BPS complex to describe the BRST-BV complex of the superpotential theory, and this
equality of Laplacians was crucial for consistency. Moreover, without prior knowledge of the
superpotential theory, the extended BPS complex could be motivated by wishing for the
existence of a BV symplectic pairing, such that one could write an associated BV action. In
this way, one could have reconstructed the superpotential theory at quadratic order starting
from the BPS complex. This provides, admittedly with considerable hindsight, another
example of the use of this formalism to construct interesting action functionals, also in
complex dimensions other than three.

Perhaps the most elegant of our examples, though, are the spinor type complexes in
O(d, d) geometries relevant to type II strings. These were shown to satisfy not only the Kähler
identities but also the equality of the left- and right-moving Laplacians, which further gives
rise to a ∂∂̄-lemma. In many ways, these BPS complexes thus behave much like the double
complex of (p, q)-forms on a Kähler manifold. The equality of the Laplacians ∆± and their
relation to the (H-twisted) de Rham Laplacian can further be interpreted as target space
artefacts of the level matching and mass-shell conditions on the worldsheet. Examples of these
spinor type complexes were shown in previous work [67] to describe the physical operators on
the worldsheets of (quasi-)topological strings. Our treatment here provides elegant general
proofs of the properties of these double complexes that were previously derived by direct
calculation in the specific cases considered. Further, we have provided a more general structure
to the target space actions associated to these theories as a kind of Aeppli-Chern-Simons
theory in which the diagonal complex of the double complex provides the ghost number
zero field content, with the second order differential d+d− providing the kinetic operators.
The ghost number zero physical states thus become the Aeppli cohomologies of the double
complex, while the gauge structure involves complexes of a similar nature to those appearing
in [106–109]. We aim to explore the further general properties of these theories in future work.

There are many other directions in which one could hope to extend and apply this
construction. For example, one could consider weakening the conditions on the torsion of
the underlying G-structure. Throughout this article we have taken our G-structures to be
torsion-free, which corresponds to supersymmetric Minkowski vacua (on the external space
part of a compactification) in the gravitational cases. However, it is known that in Carrión’s
original construction, only some of the intrinsic torsion classes are required to vanish for the
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complex to exist. For example, for U(N) structures in 2N dimensions, one only requires that
the manifold be complex (rather than Kähler) for the usual Dolbeault complex to exist. One
could explore if, in particular, one could allow a constant singlet torsion, with accompanying
non-zero scalar curvature, to define similar structures on supersymmetric AdS vacua. It may
also be possible to test for the existence of torsion-free structures by comparing Bott-Chern
or Aeppli type cohomologies against the full cohomology of the complex as one does in usual
Kähler geometry. It would also be interesting to see if one can connect the cohomology of
these complexes to sheaf cohomologies via Poincaré lemmas.

One could also consider corresponding statements in exceptional generalised geome-
tries [118–120] describing the internal sectors of eleven-dimensional supergravity and type
II theories including RR fluxes. Here, there is a clear picture of how to proceed. In the
O(d, d+ n) geometries, the graded vector space Λ•(E) which we start with has a physical
interpretation as the tensor hierarchy [121, 122] of the supergravity theory, which can be
seen as the analogue of the de Rham complex in generalised geometry [123, 124]. Notice
that in O(d, d) geometry, there is an alternative analogue, which is given by the weighted
spinors that can be represented as polyforms on the manifold. Our spinor type complexes
thus provide a concrete relation between these two objects in the case of N = 2 backgrounds.
The bundles corresponding to the tensor hierarchy are known for exceptional geometries [125].
While the algebraic product on this is more complicated, one can still use it to generate a
subspace from the Lie algebra of the structure group g ⊂ E ⊗ E∗. The resulting quotient
will then contain the full tower of ghosts for the generalised diffeomorphism symmetry, the
infinitesimal deformations of a G-frame and the intrinsic torsion space so that it will give
the infinitesimal moduli of the structure as in section 6.1 of the present article. An analogue
of the superpotential complex can also be constructed for the J structure in the E7(7) case,
as one would expect. We hope to provide details of this construction in future work. There
are substantial complications in applying the methods that we use here in the exceptional
context. In particular, the absence of a generalised Riemann tensor would seem to obstruct
proofs of the types we have employed in section 5 (though see [126] for some recent ideas).
The construction of these complexes in exceptional geometry may therefore shed light on
how to construct such Riemann tensors. It would also be curious to examine whether there
is an analogue of spinor type complexes in exceptional geometry, producing an analogue of
spinorial representations of the exceptional groups. Unlike in the cases we examine here,
these representations may be infinite-dimensional.

One can also view the double complexes appearing in the O(d, d) cases as double
copy constructions, where a gravitational theory can be seen as the product of two gauge
theories (see [127, 128] and references therein). In particular, these would be examples where
the background geometry is non-trivial. The BPS complex is the tensor product of two
gauge theory BPS complexes, one for each of the left- and right-moving string sectors, with
differentials constructed from the corresponding generalised connections. The double copy one
finds is perturbative around a supersymmetric supergravity background equipped with two
gauge theory instanton solutions. The cohomologies representing the on-shell deformations of
these instantons have harmonic representatives in the Laplacians ∆±. As these Laplacians
are equal, one can then simply take the tensor product of two such deformations to get a
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harmonic deformation of the supergravity background. This is precisely a classical double
copy relation. The double copy has been applied to topological gauge theories previously
in [129, 130] and to four-dimensional instantons in [131, 132]. Our construction provides a
linearised version for a wide class of theories of instantons.

While in this work we have considered only the linearised theories, corresponding to
the infinitesimal deformations of the underlying instanton solutions, one could also wish to
study the non-linear deformation theory, or correspondingly the interacting field theories.
For the Chern-Simons gauge theories and the superpotential theories [110], the interactions
are known. It would be curious to see whether there is an elegant systematic construction of
them extending our work here. As a first step in this direction, it would be interesting to
compute the index of the corresponding deformation complexes, counting the expected, or
“virtual”, dimension of the moduli space. This is of particular interest for N = 1 backgrounds,
where one might expect a vanishing index, and thus a zero-dimensional virtual moduli space.
It is tempting to speculate whether analogs of Donaldson-Thomas invariants [72, 73] can
be defined in these cases, and if the index has something to say about the true nature of
the physical moduli space, and indeed the string theory moduli problem, when all higher
order and non-perturbative corrections are included.

We also expect that the BPS complex will be useful in the study quantum aspects of
the corresponding (quasi-)topological theories. For example, anomalies are often phrased
in terms of curvature polynomials on a “universal geometry”,17 as for example with the
holomorphic anomaly of Kodaira-Spencer theory [6, 133]. The Universal geometry picture
was first considered by Atiyah-Singer in [134], and further developed in [135–138] in the
study of Donaldson theory and Donaldson invariants. A Universal geometry picture has also
been developed for six-dimensional heterotic geometries [139–141], where it was observed
that the universal geometry has many features mimicking that of the underlying geometric
structure. We hence expect that the technology presented here will be useful for in pursuing
these ideas in more generality, e.g. in defining analogs of Donaldson invariants, and we hope
to explore these ideas further in the future.
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A Gamma matrix decompositions

Here we provide some details of the decomposition of the Cliff(d, d;R) gamma matrices ΓA

in terms of two sets of generators γa and γā for Cliff(d,R), thought of as attached to the
bundles C±. As above, we have A,B = 1, . . . , 2d is an O(d, d) vector index and a, b = 1, . . . , d
and ā, b̄ = 1, . . . , d are vector indices for C±. We also write that γ(d) = γ1 . . . γd.

For d odd, we can decompose ΓA as:

Γa = γa ⊗ 1 ⊗ σ1 Γā = 1 ⊗ γā ⊗ iσ2 (A.1)

where σi are the Pauli matrices and we take the matrices γa and γā to generate irreducible
representations of Cliff(d,R) for odd d so that γ(d) is proportional to the identity. The
Spin(d, d) spinor thus decomposes as

S(E) = S(C+)⊗ S(C−)⊗ R2 Ψ =
∑

ζ+ ⊗ ζ− ⊗ t (A.2)

where ζ± ∈ S(C±) and t is an auxiliary vector in R2. This auxiliary vector is necessary to
account for the fact that the Clifford algebra representations are real spaces, and one is really
taking the tensor products over R, despite that they are often expressed in terms of complex
components. This means that, for example, one must think of C as a subalgebra of 2 × 2
real matrices. From (A.1) One can then easily see that

ΓaΓb = (γaγb)⊗ 1 ⊗ 1 ΓāΓb̄ = −1 ⊗ (γāγ b̄)⊗ 1 (A.3)

For d = 4n, we have (γ(d))2 = +1 so that we can decompose ΓA as:

Γa = γa ⊗ 1 Γā = γ(d) ⊗ γāγ(d) (A.4)

so that the Spin(d, d) spinor decomposes as

S(E) = S(C+)⊗ S(C−) Ψ =
∑

ζ+ ⊗ ζ− (A.5)

where ζ± ∈ S(C±). Again one has

ΓaΓb = (γaγb)⊗ 1 ΓāΓb̄ = −1 ⊗ (γāγ b̄) (A.6)

For d = 4n + 2, we have (γ(d))2 = −1 so that we can decompose ΓA as:

Γa = γa ⊗ 1 Γā = γ(d) ⊗ γā (A.7)

so that the Spin(d, d) spinor decomposes as

S(E) = S(C+)⊗ S(C−) Ψ =
∑

ζ+ ⊗ ζ− (A.8)

where ζ± ∈ S(C±) and again

ΓaΓb = (γaγb)⊗ 1 ΓāΓb̄ = −1 ⊗ (γāγ b̄) (A.9)

We have thus established equations (5.60) in all cases.
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