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Real-time flood warning systems play a crucial role in mitigating impacts of flooding. However, their perfor-
mance is highly dependent on input data, which can often contain missing values. While data imputation
techniques have been widely applied in pre-processing stages, their integration into real-time operations remains
underexplored. This study presents a real-time automated decision support system that integrates a soft-voting
stacked data mining ensemble model comprising decision tree, K-nearest neighbour, Naive Bayes, Neural
Network, Support Vector Machine, Discriminant Analysis, and Gaussian Regression. The system also incorporates
hydrological-hydraulic event identification, external benchmarking, and a multi-data fuzzy weighted spatial
imputation framework. The effectiveness of the proposed method was evaluated through a real-world case study
involving a flood early warning system in an urban drainage network in London, UK. Comparative analyses were
conducted against well-established artificial intelligence model, and a sensitivity analysis was performed for
further assessment. Results showed that all types of missing data were correctly identified with a precision
exceeding 90 % and were accurately imputed - particularly in situations where other models failed to recognise
current rainfall values during the onset, peak, and falling limb of events (with no reduction in accuracy compared
to the best-performing benchmark models). For the 3-h-ahead flood forecasting, the proposed method reduced
the normalised root mean square error by up to 30 % compared to alternative approaches. To ensure the gen-
eralisability of the approach, additional locations across the UK were used for validation, which demonstrates the
stability and robustness of the system, with only minor error variations.

1. Introduction

Urban areas worldwide increasingly face the challenge of managing
excess rainfall and mitigating flood risks (Girotto et al., 2024). Efficient
urban drainage systems (UDS) are critical for preventing water accu-
mulation that can cause property damage, traffic disruptions, and
threats to public safety (Piadeh et al., 2023a). As the impacts of climate
change intensify and urban development expands, these systems become
more vulnerable to inundation during extreme rainfall events (Piadeh
et al., 2023b). In this context, early warning systems (EWS), particularly
those focused on real-time urban flood forecasting (RTUFF), play a vital
role in strengthening the resilience of UDS and mitigating the adverse
effects of flooding (Li and Burian, 2023). RTUFF models offer a dynamic,
data-driven solution by continuously integrating and analysing infor-
mation from weather stations, river gauges, and other monitoring
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sources (Piadeh et al., 2022). These systems deliver real-time assess-
ments of changing rainfall patterns and water levels which equips urban
planners, emergency responders, and residents with timely, actionable
insights to support informed decision-making during potential flood
events (Bakhtiari et al., 2024).

The performance of EWS heavily relies on data availability, as
missing or incomplete data can significantly impact their accuracy (Fang
etal., 2020). RTUFF typically depend on hydrometeorological variables,
particularly rainfall data, collected from weather and gauging stations
(Duarte et al., 2022). In contemporary applications, these stations are
increasingly adopting Internet of Things (IoT)-based devices to enhance
spatial coverage, data frequency, and accessibility. While this transition
offers substantial benefits, it also introduces several operational chal-
lenges (Bakhtiari et al., 2025). Data transmission from IoT sensors and
open-access APIs can be affected by latency, temporary outages, or
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incomplete uploads caused by network interruptions or maintenance
issues (Brunner et al., 2021). Additionally, temporal mismatches be-
tween rainfall and water-level records may occur during real-time
acquisition, necessitating post-processing to ensure synchronisation
and continuity (Kamwaga et al., 2018). These constraints highlight the
importance of implementing robust data quality control, redundancy
protocols, and automated error-handling mechanisms within the
real-time framework to maintain the reliability and predictive perfor-
mance of the EWS (Anbarasan et al., 2020). Furthermore, real-time data
infilling is especially important in areas that are prone to urban flash
flooding, where flood events can occur suddenly with little time lead for
warning. In these situations, accurate forecasts can be the difference
between life and death (Bakhtiari et al., 2023). Therefore, research and
development of effective real-time data infilling techniques is critical to
improve the performance of RTUFF systems and reducing the impact of
flood events on communities and the environment (Umar and Gray,
2023).

Addressing these challenges highlights the role of automated missing
data imputation methods and their vital contributions in maintaining
the reliability and effectiveness of real-time EWS as well as delivering
accurate warnings to mitigate potential hazards (Ben Aissia et al., 2017).
While there is no clear consensus on the best approach to infill missing
data of rainfall for flood EWS systems, several imputation methods have
been tested. The initial solutions primarily involved relatively simple
techniques, including linear regressions, inverse distance weighting,
moving-median substitution, and nonlinear interpolation methods such
as Kriging (Bardossy and Pegram, 2014; Wangwongchai et al., 2023).
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Although These methods can perform well for short-term or isolated
data gaps of flood EWS systems, their accuracy diminishes for long-term
imputation or dynamically evolving rainfall conditions (Bardossy and
Pegram, 2014; Ding et al., 2020; Lv et al., 2020). Consequently, as
shown in Table 1, data-driven models have emerged as promising al-
ternatives. Simpler models such as support vector machine (SVM),
self-organising map, decision tree (DT), Gaussian process regression
(GPR), K-Nearest Neighbourhood (KNN), multi-linear regression, and
principal component analysis have been employed effectively for
multistep data infilling, especially in historical datasets (Sattari et al.,
2020; Boulin et al., 2022; Tavares et al., 2025). However, most of these
techniques have been validated only on retrospective or post-event
datasets, limiting their real-time applicability.

Recent works have expanded this field using advanced data-driven
frameworks. More robust and adaptive techniques, such as feed-
forward neural networks, convolutional neural networks, adaptive
neuro-fuzzy inference systems, ensemble learning, and hybrid deep
learning frameworks, have proven superior for extended imputation
scenarios involving temporal anomalies and rainfall fluctuations
(Papailiou et al., 2022; Lupi et al., 2023; Kumar and Dwarakish, 2025).
For example, Sriwahyuni et al. (2025) integrated spatiotemporal
attention networks with radar rainfall products to improve urban flood
forecasting accuracy under missing-data conditions. Similarly, Li et al.
(2024) developed a hybrid CNN-LSTM architecture for dynamic rainfall
infilling, showing significant accuracy improvements but at high
computational costs. Golkhatmi and Farzandi (2024) proposed an
adaptive ensemble approach combining random forest and Bayesian

Table 1
Recent advances on rainfall data imputation methods in the context of flood EWS*.
Application** Applied method*** Benchmark methods*** Case study Reference
HDP ANFIS ARX South Africa Nawaz et al. (2016)
RTO PCA SOM, LR, KNN Malaysia Mir6 et al. (2017)
HDP MLR LR Bangladesh Jahan et al. (2019)
RTO KNN + Hot deck + LR - Nigeria Aieb et al. (2019)
HDP PCA-based FFNN - Colombia Canchala-Nastar et al. (2019)
HDP Ensemble DT Data augmentation China Chen et al. (2019)
HDP PCA + EMA LR, PCA Malaysia Chuan et al. (2019)
HDP Bayesian PCA KNN Malaysia Lai et al. (2019a)
HDP KNN - Malaysia Lai and Kuok (2019b)
RTO Ensemble DT + LR KNN, RF, SVM, FFNN UK Chivers et al. (2020)
HDP Vector sampling IDW, Kriging, KNN Denmark, Australia, Oriani et al. (2020)
Swiss, Switzerland
HDP PCA-based FFNN - Colombia Ocampo-Marulanda et al. (2021)
HDP SVM GPR, RF Turkey Sattari et al. (2020)
HDP GPR - Canada Boulin et al. (2022)
HDP ANN + MLR - Greece Papailiou et al. (2022)
HDP FFNN FFNNs India Kumawat et al. (2023)
HDP LSTM + CNN - Italy Lupi et al. (2023)
HDP MLR MLRs South Korea Narimani et al. (2023)
HDP LR, OK, SCK LR Portugal Fagandini et al. (2024)
HDP Bayesian LR Non-Bayesian LR. MICE, PMM, UMI, RS Iran Golkhatmi and Farzandi (2024)
HDP KNN, EMA HI, LR Turkey Hirca and Eryilmaz Tiirkkan (2024)
HDP EMA PCA, RF, MICE India Kannegowda et al. (2024)
HDP GP MLR, RF, SVR, MLP Thailand Pinthong et al. (2024)
HDP ANFIS LR, MLR, OK, SVM ANN Iran Dariane and Borhan (2025)
HDP CART KNN, PMM, RF, LLR, Bayesian LR India Kumar and Dwarakish (2025)
HDP CNN MLR, SVM Indonesia Sriwahyuni et al. (2025)
HDP SMA SMA, NRM, IDW, BE Brazil Tavares et al. (2025)
HDP MTGP UMI, MICE, KNN Burkina Faso Zio et al. (2025)

» » »

*:The search in the Scopus database covering the last decade (2015-2025) was based on keywords “imputation”, “infilling”, “missing data”, “rainfall”, “rain”, “storm”,
“Harkins”, “thunder”, and “flood early warning system” “flooding”. Research works that applied conventional data imputation methods as a pre-processing step of
flood forecasting are excluded. Papers were reviewed then to select appropriated journal papers focusing on Al-based data infilling methods.

**:HDP: Historical Data Preparation, RTO: Real-Time Operation, ANN: Artificial Neural Network, ANFIS: Adaptive neuro fuzzy inference system, ARX: Autoregressive
with eXtra Input, ***:, BE: Best Estimator, CART: Classification And Regression Trees, CNN: Convolutional Neural Network, DT: Decision Tree, EMA: Expectation
Maximisation algorithm, FFNN: Feed Foreword Neural Network, GP: Genetic Programming, GPR: Gaussian Process Regression, HI: Hot-deck Imputation, IDW: Inverse
distance weighting, LLR: Lasso Linear Regression, LR: Linear Regression, KNN: K-Nearest Neibourhood, MICE: Multiple Imputation by Chained Equations, MLR: Multi
Linear Regression, MTGP: Multi-Task Gaussian Process, NRM: Normal Ratio Method, OK: Ordinary Kriging, PCA: Principal Component Analysis, PMM: Predictive
Mean Matching, RF: Random Forest, RS: Random Sampling, SCK: Simple Cokriging, SMA: Simple Arithmetic Mean, SOM: Self Organising Map, SVM: Support Vector

Machine, UMI: Unconditional Mean Imputation.
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updating to handle streaming IoT sensor data with latency issues. More
recently, Murakami (2024) demonstrated that transformer-based hybrid
models can enhance anomaly detection and real-time imputation but
require high data redundancy and cloud-based computation. Despite
these advances, few studies have explicitly addressed the operational
trade-off between accuracy, computational efforts, and scalability under
real-time conditions - highlighting the need for more practical frame-
works that integrate automated anomaly detection with
benchmark-driven imputation strategies.

However, a significant research gap persists most of these methods in
the context of data imputation of flood EWS focus on historical data
infilling, where both past and future data are available to estimate
missing values (Chuan et al., 2019; Oriani et al., 2020). In contrast,
real-time operation imputation, which requires decisions based solely on
past and current data, remains under-explored (Aieb et al., 2019;
Chivers et al., 2020). This limitation is particularly critical during the
early stages of rainfall events, where delayed or incorrect imputation (e.
g., treating actual rainfall as dry weather) can drastically impair flood
forecasting performance (Mir6 et al., 2017; Aieb et al., 2019). Therefore,
developing accurate, context-sensitive, and responsive real-time data
imputation strategies is vital for flood EWS, especially in urban areas
prone to flash floods.

Moreover, recent studies emphasise the importance of detecting and
handling diverse types of data issues, not just NaN gaps. Outliers
(Dunkerle, 2023), anomalies (Lupi et al., 2023), incorrect zero values
(Sa’adi et al., 2023), and false wet/dry classifications are among the
critical challenges impacting EWS accuracy. For example, a scenario
where dry weather and no rainfall are erroneously identified as wet
conditions due to the absence of explicit data can lead to false alarms
(Sa’adi et al., 2023; Balcha et al., 2023). Conversely, failing to recognise
actual wet conditions can result in underestimating flood risk, creating a
mismatch between the recorded values and the true state of the envi-
ronment (Golkhatmi and Farzandi, 2024). These issues - often caused by
sensor lag, hardware faults, or data transmission errors - can severely
compromise flood forecasting performance. Golkhatmi and Farzandi
(2024) further demonstrated that zero rainfall values recorded during
ongoing rainfall events can mislead the model into assuming dry con-
ditions, leading to significant underestimations. To address these com-
plexities, recent advances have introduced hybrid imputation models
that combine external benchmarks with regression techniques,
including ordinary kriging, simple cokriging, and Bayesian linear
regression. These hybrid approaches have demonstrated significant
improvements in real-time data accuracy (Fagandini et al., 2024;
Dariane and Borhan, 2025). It should be mentioned that when referring
to an external benchmark, its definition can vary depending on the scope
of the study. However, there is a general agreement that it involves using
rainfall data obtained from a broader range of collection sources. For
instance, the external benchmark may include data from neighbouring
rain gauges or radar systems for a single specific rain gauge with missing
data, that record rainfall over adjacent or overlapping catchment areas
(Dariane and Borhan, 2025; Sriwahyuni et al. 2025).

Additionally, computational efficiency has become a growing
concern, especially in large-scale monitoring networks. Tavares et al.
(2025) and Zio et al. (2025) highlighted the importance of adaptive,
scalable imputation techniques such as multiple imputation by chained
equations and multi-task Gaussian process, which offer robust perfor-
mance under increasing data loss and system complexity. Together,
these advancements underscore the critical need for real-time, anom-
aly-aware, and computationally sustainable imputation frameworks
tailored for flood EWSs.

Finally, while some research has explored distinct states of rainfall,
such as dry and wet weather or considering nature of rainfall such as
monsoon and non-monsoon, there remains a gap in addressing differ-
ences between dry and wet weather conditions when applying imputa-
tion methods. This oversight has significant implications for both
computational efforts and predictive accuracy (Aieb et al., 2019;
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Narimani et al., 2023). In smaller-scale studies with limited rainfall
monitoring points, the impact of computational efforts may be negli-
gible. However, when dealing with a larger geographical area, the
continuous operation of models in response to zero rainfall values
(indicating dry weather conditions) can lead to excessive computational
efforts. In such scenarios, more straightforward methods could be
initially employed to provide the necessary level of intervention and
prediction, optimising computational resources and ensuring efficiency.

Hence, the present study aims to develop a comprehensive decision-
making framework that integrates a multi-choice infilling method with
the advantages of external benchmark data sources. To address the
challenge of missing data in real-time flood EWS, the proposed approach
incorporates external benchmark resources to enhance infilling accu-
racy by leveraging additional knowledge beyond the local dataset.
Furthermore, two automated Decision Support Systems (DSS) were
developed: one designed to identify all types of missing data—not
limited to NaN values—thereby enabling a more robust and compre-
hensive data quality assessment; and another designed to apply fuzzy
weighted spatial interpolation for imputing the missing data. In addi-
tion, a data mining-based method is introduced to accurately distinguish
between dry and wet weather conditions, a capability that is particularly
critical during the early stages of rainfall events when timely and ac-
curate detection can significantly improve forecasting outcomes.
Finally, unlike previous models focused solely on accuracy or algo-
rithmic sophistication, this framework prioritises real-time applica-
bility, anomaly awareness, and computational efficiency, advancing the
operational reliability of flood EWS for urban resilience and risk
management.

2. Methodology

This methodology is exemplified through IoT-based rainfall moni-
toring systems and application programming interface (API), which are
now widely applicable globally. The scope of this approach, initially
designed for rainfall data, can be expanded to encompass other real-time
stations such as gauge monitoring in weather stations and radar systems.
While originally tailored for rainfall data, the concept of handling
missing data can also be extended to include other input sources such as
temperature, wind speed and direction, or soil moisture. This method
specifically addresses numerical/temporal data and does not cover
spatial-based image data, such as those obtained from satellite produc-
tion. The exclusion of spatial-based image data is justified by the fact
that, despite the increasing popularity and global application of such
images, the primary source for rainfall data collection worldwide re-
mains temporal-based data collection. Therefore, this paper aims to
introduce a concept applicable to general scenarios, focusing on the
predominant method of rainfall data collection globally.

This study proposes a real-time hybrid imputation method integrated
into a real-time platform linked with an EWS. This platform seamlessly
incorporates decision support systems, data mining techniques, statis-
tical analysis, and leverages IoT-based and API-based external bench-
mark rainfall stations as additional resources. Ideally, the benchmark
rainfall stations should form a geographical network surrounding the
main rainfall station i.e. at least three stations. This enhances the sys-
tem’s understanding by incorporating physical-based information from
various locations, contributing to a more comprehensive understanding
of the meteorological conditions. Illustrated in Fig. 1, the methodology
comprises three key steps: (1) The DSS continuously monitors incoming
data streams from IoT-based rain gauge networks and applies multi-
criteria anomaly detection rules. These include range checks, temporal
consistency analysis, and dynamic quantile-based thresholds derived
from local climatological statistics, (2) Ensemble data mining platform
classifies rainfall events into dry or wet conditions to guide the impu-
tation strategy. It employs a soft-voting stacked ensemble model inte-
grating several base models. Each base learner contributes probabilistic
outputs, which are aggregated to improve classification robustness
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Fig. 1. Real-time data imputation platform for infilling rainfall missing data used for real-time flood early warning systems.

under diverse meteorological scenarios. This classification step is critical
for selecting context-appropriate imputation techniques and maintain-
ing forecast accuracy, and (3) a multi-strategy-based framework for data
imputation that adapts dynamically to event type and data availability.
For dry conditions, linear regression and temporal smoothing are
prioritized, while wet conditions invoke advanced probabilistic tech-
niques such as t-Copula and move-median strategies. A key innovation is
the Fuzzy Weighted Spatial Interpolation, which integrates fuzzy logic
with spatial weighting to handle uncertainty and heterogeneity in
rainfall patterns. This assigns membership degrees to candidate stations
based on geographic proximity, wind drift, and historical correlation,
and then computes adaptive weights to interpolate missing values. This
mechanism ensures that spatial variability and physical plausibility are
preserved, outperforming traditional deterministic interpolation
methods in complex hydrometeorological settings.

This platform initiates by assessing the availability and reliability of
the main monitoring rainfall data for each real-time interval, depending
on the specifications of the data collection device. This evaluation is
conducted through a proposed DSS that uses data obtained from
benchmark external rainfall data resources as well as a range of data
mining techniques. If missing data is identified, an alarm, including
error detection and error type, is sent to the operator for immediate
resolution.

Meanwhile, platform will provide missing data required for input of
EWS prediction system. To achieve this, the level of required accuracy
for imputation is first determined based on predicting the event state, i.
e., whether the weather conditions are dry or wet. To accomplish this, a
proposed binary ensemble data mining framework, already trained on
historical data from both main and external benchmark stations, spec-
ifies this state by considering the correlation of each benchmark station
with the main station. Ultimately, based on the recognised states, the
hybrid method combines several efficient infilling techniques to provide
a range of available data. This data is then interpolated using the novel
developed kriging with external drafts. Finally, the infilled data is sent to
the EWS to be used as part of the input data required for RTUFF.

2.1. Step 1: Real-time decision support system for missing data detection

The proposed DSS framework addresses strategies applied for
missing data detection as illustrated in Fig. 2a. The concept of missing
data is inspired by Thudumu et al. (2020), encompassing four types of
data deficiencies: (1) lack of data or NaN data (Type 1 in Fig. 2b), (2)

zero reported for a non-zero value (indicating dry weather for wet
weather -Types 2.1, 2.2, and 2.4 in Fig. 2b), (3) non-zero reported for a
zero value (indicating wet weather for dry weather - Type 3.1 Fig. 2b),
and (4) abnormal large values for wet weather situations i.e. anomaly
(Type 3.4 in Fig. 2b). For each real-time data point (i.e., Rpaint in
Fig. 2a), the framework defines an appropriate procedure to handle
cases where data is not reported or transmitted from the device source.

These processes are shown in detailed in the Algorithm 1, but
generally, when the main rainfall station reports a zero value, the pro-
posed DSS verifies its validity by examining both temporal and spatial
rainfall patterns. The previous rainfall observation (Rmaint.1) is first
assessed to determine whether the zero represents a genuine dry period
or a potential recording error. If the previous value is zero, the system
calculates the rainfall network value (RNV) using data from surrounding
benchmark stations. A zero value is considered faulty if all benchmarks
report rainfall (Type 2.1), while partial rainfall across benchmarks
triggers a KNN-based spatial path recognition (inspired by Teegavarapu,
2014; Chiu et al., 2019) to check whether rainfall could have passed over
the main station - identifying missing data if a viable path exists (Type
2.2) or confirming correct data otherwise (Type 2.3). When the previous
observation is nonzero, the system applies a normalised Continuous
Wavelet Transform (CWT) to detect continuity in the rainfall pattern,
classifying decreasing wavelet energy as rainfall cessation (Type 2.4)
and increasing energy as a false zero during ongoing rainfall (Type 2.5).
For positive rainfall readings, the same RNV metric is used to confirm
whether wet conditions are consistent across the network. If all bench-
mark stations indicate dry weather, the value is flagged as missing (Type
3.1). Otherwise, the reported value is validated using historical bench-
mark correlations (Type 3.2), Isolation Forest analysis (inspired by Gao
et al., 2025; Zhang et al.,, 2024) for joint data plausibility, and
Angle-Based Outlier Detection (inspired by De Luca et al., 2024; Liu and
Wang, 2024) for novelty evaluation. These models distinguish between
overestimated or anomalous rainfall (Type 3.3) and new but credible
rainfall conditions (Type 3.4).

To enhance robustness during extreme rainfall conditions, the
anomaly detection module incorporates dynamic quantile-based adap-
tive limits derived from local climatological statistics. Instead of relying
on fixed upper thresholds, each observation is compared against a time-
varying percentile envelope (typically the 95-99 % percentile),
computed from long-term rainfall records using a moving historical
window. These adaptive limits allow the system to distinguish physi-
cally plausible extreme events from sensor faults, thereby reducing false
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Fig. 2. DSS framework for automated detection of missing data in flood early warning system: (a) workflow of proposed framework, (b) Schematic illustration of
various missing and corrected data detection scenarios based on total four external benchmark stations.
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positives during high-intensity rainfall and improving the reliability of
real-time flood early warning.

Algorithm 1
Pseudocode of DSS framework for automated detection of missing data in flood
early warning system

% Inputs:

Initiate R_main_t % main station at t (may be NaN)
Initiate R_main_t-1 % main station at t-1 (may be NaN)
Initiate {R_i_t} i = 1.n %benchmark stations at t

% Pretrained/derived (referenced, not implemented here):
Compute RNV({R_i_t}) = % RNV is network rainfall value, Ri t is the
Zfl— if (Ri(#0) value of rainfall intensity for ith external
=t % benchmark station at timestep t.
Count (Ri_t > 0)

Compute CWT_index:
Z:zz (Rmain i — Rmain i-1 )2

Rumain

% CTWt is continuous wavelet transform for
range of data finished by timestep t, Rmain i is
the rainfall intensity of main station at
timestep i, and Ry is the average intensity of
rainfall event.

Path viable: Compute KNN({R_i_t}) % 0/1 feasibility for rain cloud over main

In common rainfall range: Compute Linear regression (R_main_t, {R_i_t})

Isolation forest: Compute inlier ([R_main_t, {R_i_t}])

Angle based outlier: Compute inlier (R_main_t)

% Outputs:

Status € {Correct data, Missing data}

Type € {1, 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3, 3.4}
(optional) Correction — send to imputation step if missing

% Begin
if isNaN(R_main_t):
Status = Missing data; Type = 1; Goto Imputation
else if R_main_t = = 0:
Compute RNV({R_i_t}) % Two parallel checks: previous step and CWT
on current event
if R_main_t-1 = = 0:
if RNV ==n:
Status = Missing data; Type = 2.1; Goto Imputation
else if 0 < RNV < n:
If Path viable = true:
Status = Missing data; Type = 2.2; Goto Imputation
else
Status = Correct data; Type = 2.3; End
else: %RNV = =0
Status = Correct data; Type = 2.3; End
else if R_main_t-1 > 0:
Compute CWT_t % branch B: CWT change (current event consistency)
Compute CWT_t-1
if (CWT_t - CWT_t-1) < 0:
Status = Correct data; Type = 2.4; End %Rain ended

else
Status = Missing data; Type = 2.5; Goto Imputation % Erroneous zero mid-
event
Else % unknown R_main_t-1 — fall back to RNV + path
if RNV = =n:

Status = Missing data; Type = 2.1; Goto Imputation
else if 0 < RNV < n:

if path viable = = true:

Status = Missing data; Type = 2.2; Goto Imputation
else

Status = Correct data; Type = 2.3; End
else

Status = Correct data; Type = 2.3; End
else if R_main_t = /0: %treat as suspect wet reading; validate against network and
models
Compute RNV({R_i_t})
if RNV == 0:
Status = Missing data; Type = 3.1; DQBL = True
Else % validate magnitude
Isolation forest: Compute inlier ([R_main_t, {R_i_t}])

if in_common _rainfall range = = true:
Status = Correct data; Type = 3.2; End
else

Angle based outlier: Compute inlier (R_main_t)

(continued on next column)
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Algorithm 1 (continued)

% Inputs:
if angle_based_outlier_is_inlier(R_main_t) = = false:
Status = Missing data; Type = 3.3; DQBL = True
else

Status = Correct data; Type = 3.4; End
If DQBL = = True
Hist window « select H.i = { r_i(1) |t € [t-K, t-1] and season(t) ~ season(t) }
if size(Hist_window) < Min_samples_required
% Fallback to global or longer-term historical distribution if window is too
small
Hist_ window < extend_to_longer_history(Hist_main_i)
Q_i_a_t « compute_quantile(Hist_window, «) % e.g., 95th-99th percentile
if R_main_t < Q_i_o_t then
Status_extreme = Climatologically_plausible
Flag_anomaly = False
Return
else
Status_extreme = Potential_extreme_or fault

2.2. Ensemble data-mining event determination

The objective of this step is to identify potential states leading to
missing data. For instance, missing data may occur during dry weather
conditions, allowing for straightforward infilling using simple methods
such as linear or non-linear regression. On the other hand, it might occur
during rainfall, necessitating more advanced techniques. To address
this, a data mining model is developed inspired by Piadeh et al. (2023).
For each set of data containing main station and one benchmark station,
one stacked ensemble data mining model was developed, helping
determine the prevailing weather conditions based on these correla-
tions. To do this, seven weak learner data mining models (detailed
provided in Table 2) were selected for their demonstrated potential and
widespread use in previous hydrological classification studies (Piadeh
et al., 2023b): DT, KNN, Naive Bayes (NB), Neural Network Pattern
Recognition (NPR), SVM with Error-Correcting Output, Discriminant
Analysis (DA), and GPR. All models were developed and optimised in
MATLAB 2025a. Model parameters were tuned using automated
hyperparameter optimisation, minimising the 5-fold cross-validation
loss over 30 iterations (demonstrated for the one station as an
example in Fig. Al in the Appendix). To ensure equal representation, all
identified events were randomly distributed across the training, vali-
dation, and testing databases.

A distinct dataset needs to be initially prepared using historical data
and transformed into the required features. The set of required data,
specifically the necessary timesteps for rainfall intensity, is not uniform
across all models. This variability arises because the correlation of each
station may demand a specific set of data. To address this, lag time
analysis was implemented to ascertain the effective data sets between
each external station and the main station that can significantly impact
predictions. Here, cross-correlation analysis, as one of mutual
information-based methods used here (through the XCORR function in
MATLAB, 2025b), is considered an effective method for mutual analysis
especially because it accommodates non-linear dependencies and pat-
terns of rainfall occurrence. It is also well-suited for time series analysis,
capturing both spatial and temporal dependencies (Wei et al., 2020;
Wang et al., 2023). To achieve this, the specific lag time corresponding
to the highest coefficient was identified for each external benchmark
and the main rainfall station, and this lag time was selected as the
optimal data window for the subsequent step.

This step involves extracting distinct rainfall events from the his-
torical records of the main rainfall station, following the methodology
proposed by Piadeh et al. (2023b).Subsequently, each rainfall event is
further decomposed into extended rainfalls and for every extended
rainfall event, a range of required data, equivalent to the best-found lag
time, is extracted from the historical data of the benchmark station. All
the extracted data will then be systematically organised and stored in
the data cube. Similarly, the rainfall events of each benchmark station



F. Piadeh et al.

will undergo extraction and be stored into the same data cube.

The entirety of the extracted data is then transformed into the fea-
tures outlined in Table 3. These features encapsulate various charac-
teristics of the benchmark stations’ rainfall, such as intensity, duration,
normalised absolute energy, normalised continuous wavelet transform,
total entropy, antecedent conditions, season occurrence, and weather
class. These features serve as the foundation for constructing the
necessary data mining framework. The primary output of these models is
the predicted weather class. Finally, a voting-based stacked ensemble
model was employed to blend the output of each developed base model,
thereby enhancing the overall accuracy of the model. All trained models
are stored in the model library for use in real-time missing data infilling.

2.3. Multi-data imputation framework

When missing rainfall data are detected, the proposed DSS first de-
termines whether the condition represents a dry or wet state as shown in
Algorithm 2. For dry states, the missing values are imputed directly
using linear regression based on historical data from the main station,
without requiring benchmark inputs. For wet states, the process be-
comes adaptive, and data driven. The system computes the cross-
covariance between each benchmark and the main station to evaluate
their dependency using identified lag times. If strong dependency is
detected (zero-matrix condition), the missing value is reconstructed
using a t-copula approach, which flexibly models correlated rainfall
behaviour without strict assumptions on data distribution and is robust
to outliers and heavy tails. When dependency is weak, an external-based
move-median method is used, which estimates the missing value from
benchmark data within a lag-based sliding window. All preliminary
imputed values are stored in a data repository for further spatial
refinement.

To enhance the spatial and temporal accuracy of rainfall recon-
struction, the proposed framework incorporates a fuzzy weighted spatial
interpolation model that explicitly integrates topographical, hydrome-
teorological, and dynamic environmental factors to enhance spatial and
temporal accuracy. This approach extends conventional spatial inter-
polation by embedding external drifts into a fuzzy inference system,
enabling more adaptive weighting in regions with sparse monitoring
and reducing estimation bias (Bi et al., 2023; Henriksen et al., 2024).
Three drift components are calculated for each benchmark station: (1) a
geographical drift Dy; that quantifies spatial separation using the station
coordinates (Equation (1)), (2) a wind drift Dy, that captures the
directional alignment and relative influence of local wind fields (Equa-
tion (2)), and (3) a CWT-based drift representing the similarity in
rainfall signal structure. These three inputs form the basis of a
Mamdani-type fuzzy inference system (Komsiyah et al., 2023) with

Table 2
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Gaussian membership functions defined for low, medium, and high
levels of each drift component. The fuzzy architecture uses a complete
rule base of 27 rules (3 x 3 x 3), through which stations that are
eographically close, wind-aligned, and spectrally similar receive higher
linguistic weights (high or very high), while stations with weak align-
ment in any dimension receive proportionally lower weights. The
aggregated fuzzy outputs are defuzzied using the centroid method to
generate the adaptive station weight 2; for each benchmark. These
weights are subsequently combined with the drift terms in the spatial
interpolation formulation, where the final imputed rainfall value RT at
the main station is computed as a normalised drift-weighted sum of
benchmark values (Equation (3)). The adaptive weight A;, shown in
Equation (4), ensures that stations with stronger physical, meteorolog-
ical, and spectral relevance contribute more heavily to the infilled value.
By integrating fuzzy reasoning with externally derived drifts, this
method enhances replicability and provides a transparent mathematical
structure for the spatial decision-making process in real-time
imputation.

Du =/ (¢ )" + (37 - 3)°

Equation (1)

where Dy; is geography drift for external ith benchmark station, x; and y;
are the latitude and longitude of ith benchmark station respectively, and
x; and y; are the latitude and longitude of the main rainfall station with
missing data respectively.

0; — Ori

Dwi:Wi XW

Equation (2)
where Dy,; is wind drift for external ith benchmark station, Wj is the wind
speed, ©; is the wind direction relative to north, O; relative difference
in angle between the main station and ith external benchmark station.
Finally, the missing data are estimated using Equation (9) and integrated
into the database supporting the EWS, which is employed for real-time
flood forecasting.
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Where Ry is the infilled missing data and ); is the adaptive weight
computed as Equation (4).

Selected weak learner data mining models to develop Ensemble data-mining event determination.

Selected methods Description

Optimised hyperparameters

Discriminant Analysis
Decision Tree

separated into an exclusive mutual subset.
Gaussian Process Regression
unsampled locations
K-Nearest Neighbourhood
similarity

Naive Bayes

Neural network Pattern
Recognition

Supervised Vector Machine
with Error-Correcting
Output

and weights

risk minimisation principle

Multiple linear regression expressing one dependent variable as a
combination of other features or measurements

The regression tree utilised a top-down recursive tree of an inner node. The
decision tree model is divided into smaller subgroups until ultimately

The kriging method providing the best linear unbiased prediction at

Non-parametric method finding the closest neighbourhoods based on

Supervised learning method applying the theory of Bayes with strong
independence assumptions between the different features

Finding data regularities and similarities translated by different nodes, biases

Linear classification by splitting the data into subsets, e.g. pattern recognition
and data classification based on the statistical learning theory and structural

" Delta: Linear coefficient threshold

~ Gamma: Amount of regularisation

" Minimum leaf size: Minimum number of leaf node
observations

“ Sigma: Initial value for the noise standard deviation

" Distance: Neighbour search method

“Neighbours number: Number of nearest neighbours in
observant data to find for classifying each point when
predicting

“Kernel distribution: Approach of data distribution and
data smoothing

“Width: Regulating width of Kernel smoothing window
" Nodes: Number of small individual units

" Layer: Number of hidden nodes group

" Kernel scale: Approach of data distribution and data
smoothing

" Box constraint: controller of the maximum penalty
aiding to prevent overfitting




Algorithm 2
Pseudocode of DSS framework for automated infilling of missing data by external benchmark data sources

%Inputs:

R_main_t is missing

Hist_main % past main-station series for ith rain gauge

{R__t} for i = 1.n % benchmark readings at t (maybe missing or zero)
{L_i} for i = 1.n % lag times

{x, y_i} % benchmark coordinates

(x_R, y_R) % main-station coordinates

{W.i, 0_i} % wind speed and direction at time t

%Pretrained/derived (referenced, not implemented here):
ZLz (Rmain i — Rmain i—l)2

Rmain
Copute linear_regression_impute (Hist_main) % leveraging the preceding data from the ith station calculated by “fitlm” code in MATALB

Compute CWT_i =

Compute_cross_covariance(Cr) = % C is the cross-correlation at dth lag time, Rmain j is rainfall intensity of main station at timestep j, R; ; is rainfall intensity of jth benchmark station at timestep of j by XCOV code in MATALB

E;;% [Rmainj — Rmain] % [ [Rij-a —Rj]]
512 2
\/Z? [Rimainj — Rinain) \/2‘1‘ [Rij-a—Rj]
is_high_dependency(CV_matrix) € {true, false} %per your criterion (text: “zero-matrix” = high)
Compute t_copula_impute(R_i window, R_main_window) % kernel CDF — copula scale — MLE fit — infill
Compute move_median_impute (R_i_series, window_len) % sliding window median based on lag L i

Compute_geography_drift (Dy;) = % x; and y; are the latitude and longitude of ith benchmark station respectively, and x, and y, are the latitude and longitude of the main rainfall station with missing data respectively
(2 —x3)" + 07 ~¥3)°
Compute_wind_drift (Dyi) = Wj x % W; is the wind speed, ©; is the wind direction relative to north, ©g; relative difference in angle between the main station and ith external benchmark station
0i — Ogi
180
e DVi x o DW  o~CWT}

Compute_lambda_i (3;) = Z-E’DV? T
i

R x e DVi x @ DW « @ CWT} o 5.
Compute fuzzy_weighted_spatial_interpolation (R_i_pt) = LiRi x XE . X XM
iM

% Outputs:

Determine_state (value) € {Dry, Wet}

R_i_pt_repo % data resource to store intermediate infills (R_i_pt)
Store_repo(repo, station_id, t, value)

Begin
determine global state E_t for the missing main reading E_t < determine_state(context around t) % Dry or Wet based on classifier
for i in 1.n: %i is the ith external benchmark
E_t_i = Determine state(R_i_t) %dry or wet
IfEti==Dry
R_T_i = Linear regression_impute (Hist_ main)
Store_repo(R_i_pt_repo, i, t, R_i_pt)
Update database; Stop; i = i+1
Else %E_t_i = = Wet % for each benchmark, decide correlated vs not, and create candidate infills R_i_pt
Initialize set S_candidates = @
R_i_window « R_i(t-L_i-1: t-1)
R_main_shifted « R_main(t-L_i-1: t-1) shifted by L_i
CV_i « compute_cross_covariance(R_i_ window, R_main_shifted, L_i)
dep_flag < is_high_dependency(CV_i)
if dep_flag = = true then %correlated — t-copula infill
R._pt « t_copula_impute(R_i_window, R_main_shifted)
Else % weaker dependency — external-based move-median
window _len « f(L_i)
R_i_pt « move_median_impute(R_i_window, window_len)

Store_repo(R_i_pt_repo, i, t, R_i_pt)

(continued on next page)
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Algorithm 2 (continued)

%Inputs:

Update database; Stop; i = i+1

Add (i, R_i_pt) to S_candidates
for each (i, R_i_pt) in S_candidates:

DV_i < comy

pute_geography_drift(x_i, y_i, X R, y_R)

Dw_i « com

e_wind

put

drift(W_i, 6_i, 6_Ri)

Al < comy

a_i(DV_i, Dw_i, CWT.i)
y_weighted_spatial_interpolation({R_i_pt}, {A_i})

pute_lambd

R.T « fuzz

write R_T to the EWS database and return R_T
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2.4. Performance assessment and comparison

To illustrate the application of the proposed model, a selection of
benchmark models from the literature is used for comparison. These
include: (B1) An external-based LR model tested by Duarte et al. (2022),
representing a well-established statistical approach using external data;
(B2) FFNN coupled with MLR proposed by Papailiou et al. (2022),
considered a robust Al-based method; (B3) A vector sampling method
developed by Oriani et al. (2020), which effectively applies statistical
modelling to similar datasets; (B4) An event identification approach
based on XGBoost followed by LR, introduced by Chivers et al. (2020),
representing a leading data mining technique; and (B5) A hybrid
external benchmark-based model incorporating hot deck imputation,
KNN, MLP, and LR, as demonstrated by Aieb et al. (2019).

The performance of the proposed model and benchmark models are
evaluated under a range of scenarios designed to reflect realistic oper-
ational conditions. These scenarios include: (1) weather conditions —
categorised into dry and wet periods, (2) missing data types —
comprising univariate gaps and four-timestep multivariate gaps - the
average time required to repair station errors, (3) rainfall characteristics
— including intensity and duration, and (4) temporal placement of
missing data within a rainfall event — including occurrence at the start,
rising limb, steady stage before peak, peak time, steady stage after peak,
at the end of the event, and immediately after rainfall.

To evaluate the impact of imputation model accuracy on the per-
formance of the flood EWS and to compare real-time flood forecasting
results with and without the proposed framework, an event-based
nonlinear autoregressive model with exogenous input (E-NARX) devel-
oped by Piadeh et al. (2023b) was employed. Several missing data sce-
narios, including both unimodal and multimodal gaps, were considered
to evaluate the system’s robustness under different conditions. The
imputation preprocessing for this model was conducted five times—four
times using the benchmark models and once using the proposed
framework. The results were then compared across different prediction
time steps for water level forecasting to examine how the proposed
framework enhances model performance.

3. Result & discussion

The proposed methodology is validated through its application to
real-time flood forecasting in a real-world UDS pilot study in the UK. A
comprehensive evaluation of the results is presented focusing on three
key aspects: (1) the standalone accuracy of the rainfall data imputation
model, (2) the influence of the imputation quality on the overall per-
formance of the EWS, and (3) generalising the outcomes, using this
model is pretrained and run for the same period of time in different
location of the UK.

3.1. Study area and time-series data acquisition

Fig. 3a presents the spatial layout of the study area, including the
urban catchment, the Ruislip gauging station, and the RAF Northolt rain
gauge, which support the RTUFF of the EWS deployed at Ruislip. The
open-channel UDS in Ruislip, situated in the Borough of Hillingdon in
northwest London, conveys surface runoff from a 9.3 km? catchment via
the River Pinn to a tributary of the River Thames. Rainfall events in this
area occur regularly throughout the year, with the majority of storms
characterised by durations under 600 min (10 h) and rainfall depths
typically less than 10 mm (Piadeh et al., 2023a). These events have
triggered several fluvial floods across Ruislip’s urban neighbourhoods,
resulting in traffic disruptions, extensive surface water pooling, and
significant damage to infrastructure and private property.

The Ruislip gauging station is equipped with an ultrasonic IoT-based
depth sensor that records water levels within the UDS at 15-min in-
tervals. The RAF Northolt rain gauge was selected as the primary
meteorological input based on prevailing south-westerly wind patterns
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Table 3
Introduced rainfall features extracted for developing data mining models®.
Extracted rainfall Code Description/Equation Transformation Unit/Class
feature key
Intensity RI The ratio of total rainfall depth to the duration Numerical mm per
timestep
interval
Duration RD Number of timesteps between the start and end of the rainfall Numerical Timestep
interval
Normalised absolute RA o ) ) . . . SR Numerical mm
energy Total kinetic energy, here intensity, associated with rainfall calculated as T]
where R; ; is intensity of station j at timestep i, and R is the average intensity
. ¢ 5 .
Nizmnfilslie:us Re Time-frequency intensity of rainfall signals calculated as Loz mmai}';i _ Rimain i-1) Numerical mm
wavelet transforms e
Total entropy RH Uncertainty or disorder in a rainfall distribution calculated as » _ P(R;) x log,R; ; Numerical -
where P is probability of ith intensity
Antecedent RP Detecting impact of evapotranspiration. The range of data is equalled to time of Binary class 0: No
conditions concentration of catchment for which EWS applied. 1: Yes
Season occurrence RS A different class of humid temperate climate based on recommendation of Peel et al. Multi class 1: Dry
(2007). 2: Mild
3: Rainy
Weather class wC Transforming rainfall value of main station to predicted state of current data i.e. dry Binary class 0: Dry
(predictor) or wet weather condition 1: Wet

# The search in the Scopus database covering the last decade (2015-2025) was based on keywords “rainfall”, “prediction”, “forecasting”, “data driven”, “data

5

mining”,

artificial intelligence”, and “machine learning”. Research works were reviewed to select introduced parameters made by rainfall intensity. All parameters

were analysed for the case study through sequential sensitivity analysis and particle component analysis recommended by Mir¢ et al. (2017) and Ocampo-Marulanda
et al. (2021), and ineffective parameters were excluded from the data mining framework. Remained selected parameters, reported here, are mainly inspired by, Fan
et al. (2023) Liu et al. (2023), Piadeh et al. (2023), Piadeh et al. (2023b), and Zhang et al. (2023).

(See Windrose in Fig. 3a) and cross-correlation analysis between avail-
able rainfall stations and water level data (Fig. 3b). It captures rainfall
using a high-resolution IoT-enabled tipping bucket system and is sup-
ported by five nearby rain gauge stations, which serve as external
benchmarks for model validation.

All hydrometeorological data - both rainfall and water levels - are
retrieved via open-access application programming interfaces provided
by the UK Environment Agency. Fig. 3c depicts the data availability and
continuity for both the Ruislip and RAF Northolt stations (DEFRA,
2025). Although data availability varied across stations, all records were
standardised to a consistent 12-year monitoring period from 2013 to
2025. The final dataset comprises 365,233 time-stamped entries, of
which 70 % were used for training and validating the data mining
platform (2013-2022), while the remaining 30 % were reserved for
performance evaluation of the model (2022-2025).

3.2. Performance of the proposed methodology

3.2.1. Missing data component performance

Fig. 4 provides an overview of the standalone performance of the
pre-data imputation components. This focus on the (1) precision of the
DSS in detecting different types of missing and correct rainfall data, (2)
the effectiveness of the ensemble data mining framework in weather
state recognition, and (3) the contribution of each rainfall feature to
model performance. Results show that DSS achieved consistently high
detection accuracy across most data types (See Fig. 4a), with precision
values generally exceeding 0.90. The system performed particularly well
for Type 1 (NaN value detection) and Type 2 series (incorrect zero values
during wet weather), reflecting the relative simplicity of these scenarios
where the absence of a value or inconsistencies in zero reporting are
more readily identified through RNV checks and geographical path
validation.

However, performance declined in certain challenging categories.
Specifically, for missing data, the lowest scores occurred in Type 3.1 and
Type 3.4. According to the scenarios defined in Fig. 2, these correspond
to cases where non-zero rainfall is reported during dry conditions (Type
3.1) or where reported rainfall values are anomalously high (Type 3.4).
In both situations, the data physically exists, and the system must detect

10

whether the value is an outlier using isolation forest and angle-based
anomaly detection methods. This inherently increases complexity, as
the distinction relies on subtle deviations from historical patterns rather
than on absolute absence or binary inconsistencies.

For correct data detection, the DSS generally maintained high ac-
curacy, but Type 3.3 showed a comparatively lower precision (still more
than 95 % for Type 3.1 and 3.3). This type involves identifying outlier-
like values that are, in fact, valid observations. As with Types 3.1 and
3.4, the difficulty raises from distinguishing true extreme rainfall events
- potentially intensified by climate variability - from erroneous anoma-
lies. Such cases require a balance between avoiding false alarms and
ensuring that the permissible limit values in the dataset are maintained,
which explains the slightly lower performance in this category.

Fig. 4 b and c evaluate the role of individual rainfall features in the
performance of the ensemble data mining framework, which is
responsible for determining the dry or wet state of each event before
data imputation. In the baseline configuration (original model), the
system was tested against an equal number of events - 2400 dry and
2400 wet - and, according to Table A1, correctly classified 97 % of wet
events (true positives) and 98 % of dry events (true negatives), with only
3 % false positives and 2 % false negatives. The sensitivity analysis in
Fig. 4b systematically removes each rainfall feature to assess its impact
on classification performance. Across all cases, feature removal caused a
marked decline in accuracy, with reductions exceeding 20 % in most
instances. This is consistent with the changes in the confusion matrix
values in Table A1, where removal of any feature led to increases in both
false positives and false negatives, highlighting that all features
contribute meaningfully to the discrimination between dry and wet
states.

Fig. 4c complements this by applying PCA and partial least squares
(PLS) to quantify the explanatory power of each feature. The explained
variance plots and cumulative variance curves reveal that all seven
features contribute non-negligibly to the total variance, reinforcing that
none of them can be considered redundant in the classification process.
Both PCA and PLS indicate that the information contained in these
features is well distributed and removing anyone would impair the
model’s ability to capture the underlying rainfall dynamics needed for
accurate weather state detection.
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As illustrated in Fig. 4d, the uncertainty analysis on the size of data
feed follows a clear three-regime pattern. First, trimming the dataset
from 100 % down to roughly ~75 % leads to only marginal change
(resistance region) - performance stays close to the full-data baseline
(retaining >~90 % of baseline skill, with RMSE nearly flat). However,
afterward until to ~35 %, the relationship is approximately linear in
which each incremental reduction produces a roughly proportional
deterioration in accuracy (steady RMSE increase). Finally, once the
training fraction falls below ~35 %, performance drops sharply which
results in error escalates rapidly.

3.2.2. Framework performance

3.2.2.1. Error performance. Fig. 5 presents a comprehensive compari-
son of the proposed method with five benchmark data imputation
techniques under varying operational scenarios, using RMSE and R? as
the performance metric. The results are grouped by rainfall intensity,
rainfall duration, and the type of missing data - either univariate
(Fig. 5a-f) or multivariate (Fig. 5g-1). In this study, univariate gaps
represent single-timestep missing data, while multivariate gaps involve
four consecutive timesteps, simulating the average time needed for an
operator to restore faulty measurements. This distinction is critical
because multivariate scenarios are inherently more challenging: the loss
of multiple successive observations removes valuable temporal
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continuity, making it more difficult for any imputation model to
reconstruct the true signal without distortion.

The first clear observation is that dry-weather cases (Table A2)
consistently yielded RMSE values below 0.1 mm for both univariate and
multivariate gaps, regardless of method. This is expected because in the
absence of rainfall, imputing missing values is trivial - most methods can
correctly fill zeros without introducing error. Under wet-weather con-
ditions, however, performance varied considerably with rainfall char-
acteristics and missing data type. For univariate cases with low-
intensity, short-duration rainfall (Fig. 5a), all models, including the
benchmarks, achieved relatively low RMSE values, with the proposed
method performing slightly better due to its accurate detection of event
onset and reliance on simple but reliable interpolation when variability
is low (0.19 mm for the proposed method versus 0.24-0.41 mm for
benchmarks). In low-intensity, long-duration events (Fig. 5b), the gap
length remained short, but sustained low rainfall created a more uniform
signal, leading to consistently low RMSE across all models (~0.23-0.31
mm, with the proposed method at 0.23 mm). The difficulty increased
sharply with medium- and high-intensity rainfall (Fig. 5c¢-f).

For univariate medium-intensity, short-duration events (Fig. 5c),
RMSE rose across all methods because the short bursts of moderate
rainfall offer limited temporal context for imputation, and small errors
in peak estimation can significantly affect RMSE (0.46 mm for the pro-
posed method versus 0.77-1.04 mm for benchmarks). In medium-
intensity, long-duration events (Fig. 5d), the proposed method
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No) (mm) intensity (min)
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Raf 29/09/1991 6125 1.82 8.4 140
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Heathrow 01/07/2003 2870 1.76 8.1 135
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Fig. 3. Geographical map and hydrological data of the pilot study: (a) location of stations, (b) Cross-correlation between selected rainfall and water level data, (c)
characteristics of rainfall and water level data, (d) characteristics of the rainfall data source.
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Data provided based on 1,000 constructed events i.e. scenarios, in which missing data occurred, that were tested in real-time temporal conditions
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Fig. 4. Performance of pre-data imputation components: (a) precision of DSS framework in detecting missing and correct data, (b) accuracy of data mining
framework for weather recognition and impact of removing features, (c) PCA and PLS analysis of feature selection used for data mining, (d) uncertainty analysis of

model performance based on size of training data.

retained a marked advantage over benchmarks by using extended tem-
poral correlation patterns from benchmark stations, though RMSE
remained higher than in low-intensity cases (0.43 mm versus 0.71-0.94
mm). The greatest challenges arose in high-intensity events (Fig. 5e and
f), especially short-duration storms, where rapid changes in intensity
and narrow peaks left little margin for interpolation error. Here, the
proposed method’s hybrid approach helped, but all methods saw sub-
stantial error increases.

For multivariate scenarios (Fig. 5g-1), RMSE values were consistently
higher than their univariate counterparts under similar rainfall condi-
tions, reflecting the added difficulty of reconstructing longer missing
intervals. Low-intensity rainfall (Fig. 5g and h) still produced relatively
low RMSE values, and in these categories the proposed model out-
performed all benchmark methods by a clear margin, benefiting from its

12

integration of external benchmark data and applied imputation strate-
gies (0.24-0.34 mm for the proposed method versus 0.57-0.94 mm for
benchmarks). In medium- and high-intensity events (Fig. 5i-1), recon-
struction errors were amplified due to the loss of fine-scale temporal
variability and peak structure across multiple timesteps; nonetheless,
this model maintained the lowest RMSE in each case, showing greater
resilience to data gaps compared to other techniques (e.g., 0.45-0.65
mm for the proposed method versus 1.10-2.70 mm for benchmarks).
The highest RMSE values occurred in high-intensity, long-duration
multivariate cases (Fig. 51), where the combination of sustained heavy
rainfall and extended data gaps severely limited the accuracy of all ap-
proaches; even in this most challenging scenario, the proposed method
still achieved the best performance (0.68 mm versus 1.92-2.89 mm),
reducing error more effectively than all benchmarks.
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In the multivariate cases in Figs. 5g-1, the R? pattern is clear and
strongly supports the proposed method. It remains close to the ceiling in
easy conditions and decreases pleasantly as events become more severe.
In low-intensity rain, R? remains very high despite four-step gaps - 98
(short) and 94 (long) - while the best benchmark (B5) trails at 96/70 and
the others sit much lower (44-80 short; 40-65 long). Moving to medium
intensity, the explanatory power decreases but the advantage remains:
the proposed method holds 90 (short) and 88 (long), compared with 69/
69 for B5 and roughly 24-44 (short) and 14-21 (long) for the others.
This shows that longer gaps and stronger dynamics degrade the
benchmarks’ fit much more than they do the proposed approach. The
most demanding setting is high-intensity rain, where rapid peaks plus
four-step gaps suppress R2 the most. Even so, the proposed method re-
mains strong at 86 (short) and 83 (long), versus 63/61 for B5 and only
12-20 (short) and 4-9 (long) for the other benchmarks. Overall, R? falls
steadily as conditions toughen - from low to medium and medium to
high intensity, and from short to long duration. The proposed method
still explains the most variance (98-83). The best competitor drops from
96 to 61, and the others often stay below 50. This widening gap high-
lights where robust imputation matters most.

3.2.2.2. Bias performance. Fig. 6 and Table A4 indicate a comparison of
the proposed method with five benchmark imputation methods under
different rainfall characteristics, using bias as the performance metric.
For univariate cases (Fig. 6a-f), comparing the proposed method
(Fig. 6a) with the strongest benchmark (Fig. 6f), directional biases are
consistently smaller for Fig. 6a across intensities. In low-intensity rain,
Fig. 6a’s over/under are 0.163/0.146 (total —0.014) versus Fig. 6f’s
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0.194/0.161 (total —0.025) - Fig. 6a reduces directional error by 0.031
(over) and 0.015 (under). At medium intensity, Fig. 6a holds 0.360/
0.363 (total +0.004) against Fig. 6f’s 0.567/0.556 (total 0.000), trim-
ming directional error by ~0.20-0.21. Under high intensity, the gap
widens: Fig. 6a’s 0.326/0.386 (total +0.043) versus Fig. 6f’s 0.939/
0.980 (total —0.007), a reduction of ~0.61 (over) and ~0.59 (under).
Overall, in the univariate case, the proposed method remains almost
unbiased, with a slight tendency towards underestimation at the highest
intensity (0.386 > 0.326), while Fig. 6f’s directional errors are much
larger even when its total bias appears small due to cancellation.

For multivariate cases (Fig. 6g-1), in low intensity, Fig. 6g records a
value of 0.196/0.178 (total —0.021) versus 0.485/0.285 (total —0.149)
in Fig. 6] as the best benchmark method, which is accompanied by a
reduction of 0.289 (more) and 0.107 (less) of the directional bias. At
medium intensity, Fig. 6g is 0.327/0.356 (total +0.027) versus Fig. 61’s
0.835/0.664 (total —0.037), reducing ~0.51 (over) and ~0.31 (under).
At high intensity, Fig. 6g remains 0.431/0.492 (total +0.008) against
Fig. 6I's 1.210/1.179 (total —0.096), reducing directional error by
~0.78 (over) and ~0.69 (under). Quantitatively, moving from univar-
iate to multivariate increases the proposed method’s directional bias by
about 0.02-0.11 at low/medium intensity and ~0.10-0.11 at high in-
tensity; for the best benchmark, the jump is much larger (~0.29-0.51 at
low/medium and ~0.24-0.20 at high for over/under). Overall, multi-
variate gaps are harder than univariate. Even in the hardest case (high-
intensity, multivariate), the proposed method’s directional biases stay
low and lean slightly toward underestimation: under = 0.492, over =
0.431. In contrast, the best benchmark has much larger directional er-
rors and leans toward overestimation: over = 1.210, under = 1.179.
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Fig. 5. RMSE and R? performance of data imputation methods based on type of missing data and characteristics of rainfall*: (a) UV/LI/SD; (b) UV/LI/LD; (c) UV/MI/
SD; (d) UV/MI/LD; (e) UV/HI/SD; (f) UV/HI/LD; (g) MV/LI/SD; (h) MV/LI/LD; (i) MV/MI/SD; (j) MV/MI/LD; (k) MV/HI/SD; (1) MV/HI/LD. Note: Type: UV
(Univariate) = one missing data, MV (Multivariate) = 4 missing data (average required time for fixing the problem by operator); Rainfall classification is based on K-
means clustering technique recommendations by He et al. (2022): For I (Intensity): H(High) = greater than 12 mm/h, M (Medium) = 8-12 mm/h, L (Low) = less than
8 mm/h; For D(Duration): H(High) = longer than 3hrs, M(Medium) = between 1.5 and 3 h, L(Low) = less than 1.5hr.
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3.2.2.3. Sensitivity analysis. Fig. 7 provides a detailed sensitivity anal-
ysis of RMSE performance for the proposed and benchmark imputation
methods across different temporal positions within wet-weather events
(more details in Table A5 in the Appendix). These temporal points track
the evolution of rainfall from its initiation (point 1), through its rise
(point 2), stable phases before and after the peak (points 3 and 5), the
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peak itself (point 4), and the falling limb (point 6), to the event’s
conclusion (point 7) and the immediate post-event dry period (point 8).
The results are separated into univariate gaps (Fig. 7a-c) and multi-
variate gaps (Fig. 7d-f) for low-, medium-, and high-intensity rainfall
events, respectively. In the multivariate case, points 1, 7, and 8 are not
applicable because a four-timestep missing-data block cannot be
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Fig. 6. Bias performance of data-imputation methods by rainfall characteristics. Univariate: (a) Proposed model; (b) B1; (c) B2; (d) B3; (e) B4; (f) B5. Multivariate:
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positioned entirely at the very start or very end of an event without
extending into a non-event period, which would distort the evaluation of
wet-weather imputation. In practice, all multivariate gaps occur in the
central or “active” portion of the event, where rainfall is sustained.

For univariate scenarios, the proposed model achieves consistently
low RMSE values across all temporal points in low-intensity events
(Fig. 7a), reflecting the relative simplicity of infilling when rainfall
changes gradually and errors in peak reconstruction are minimal. As
intensity increases to medium (Fig. 7b), RMSE values rise across all
points for all methods due to sharper gradients in rainfall, but the pro-
posed approach retains a clear advantage, especially at critical points 4
(peak) and 6 (falling limb), where accurate representation of both the
maximum and the decline of rainfall is vital for downstream flood
forecasting accuracy. In high-intensity events (Fig. 7c), the challenge
intensifies: all benchmarks show significant performance degradation,
particularly at point 4, whereas the proposed model maintains
comparatively low error, highlighting its ability to handle rapid, high-
magnitude changes in intensity.

In multivariate cases, the difficulty is greater because missing-data
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blocks span longer intervals, erasing more temporal information. Even
so, in low-intensity rainfall (Fig. 7d), the proposed model still delivers
the best performance at all applicable points, benefiting from its event-
driven external-benchmark integration. In medium-intensity events
(Fig. 7e), RMSE grows for all models, but the proposed method con-
tinues to outperform others, especially at point 4 (peak), where precise
reconstruction prevents critical underestimation of flood potential.
High-intensity multivariate scenarios (Fig. 7f) are the most demanding,
with benchmarks often exhibiting severe underestimation at the peak
and overestimation in the falling limb (point 6). The proposed approach
demonstrates resilience here, achieving the lowest RMSE at both critical
points and avoiding the dangerous underestimation at the peak-which
could delay flood warnings-and the overestimation during decline-
which could unnecessarily keep emergency resources on standby.

3.2.3. Performance of the model on extreme unseen events

Fig. 8 and Table A6 (in the Appendix) evaluates the robustness of the
proposed and benchmark imputation methods when confronted with an
extreme, unseen rainfall event - defined here as a storm with intensity
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Fig. 7. RMSE performance of data imputation methods based on type of missing data, characteristics of rainfall, and location of missing data in the wet weather

event: (a) UV/LIL; (b) UV/MI; (c¢) UV/HI; (d) MV/LL (e) MV/MI; (f) MV/HI.
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(b) multivariate missing data.

greater than 5 mm per 15-min interval. The key distinction is that these
events were not included in the training datasets for any model, meaning
the results reflect the models’ ability to generalise beyond the conditions
they were optimised for. Performance is assessed for both univariate
(Fig. 8a) and multivariate (Fig. 8b) missing-data scenarios, with RMSE
values summarised alongside the rainfall intensity time series and
imputed values at the missing points.

In the univariate case (Fig. 8a), where only single timesteps are
missing, the proposed model achieved an RMSE of 0.63 mm, substan-
tially outperforming all benchmarks (RMSE ranging from 1.02 to 3.52
mm). This superior accuracy is evident across all five missing points,
where the proposed method’s estimates are consistently closer to the
actual observed intensities. Its hybrid decision framework - combining
event detection, cross-covariance analysis, and adaptive method selec-
tion - appears to generalise well even in high-intensity, unfamiliar
conditions. In contrast, several benchmarks either systematically
underestimated or overestimated the peaks, reflecting overfitting to
patterns present in their training datasets.

The multivariate case (Fig. 8b) posed a greater challenge, as each
missing-data block spanned four consecutive timesteps, erasing more
temporal structure. Even here, the proposed model maintained clear
superiority, with an RMSE of 0.85 mm, compared to 1.91-2.73 mm for
the benchmarks. The improvement is especially critical at peak rainfall
points (points 3 and 4), where benchmark methods frequently under-
estimated intensity by more than 1-2 mm. Such underestimation during
extreme events can directly impair flood forecasting accuracy, delaying
warnings and reducing lead time for emergency response. Similarly, in
the falling limb of the event, the proposed method avoided the tendency
of some benchmarks to overestimate intensities, which would unnec-
essarily prolong emergency stand-by measures.

3.3. Impact of the proposed model on early warning system

Fig. 9 demonstrates the influence of different data imputation stra-
tegies on the performance of the one recurrent time-series ML model (E-
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NARX) used in an EWS (Details listed in Tables A7-8 in the Appendix).
The comparison is made under varying proportions of missing rainfall
data, ranging from 5 % to 30 %. The black line in each panel represents
the baseline case in which the E-NARX model is run without missing
data - this acts as the “ideal” or reference scenario. The green line cor-
responds to the proposed imputation method, which consistently tracks
closest to the black baseline across all missing data percentages, while
other benchmark methods (B1-B5) deviate more substantially. The
NRMSE for lead times from 15 min (1 timestep ahead) up to 3 h (12
timesteps ahead). As illustrated in these figures, the proposed imputa-
tion is superior at every lead time and missing-data level, staying closest
to the no-missing baseline. Errors rise roughly linearly with lead time
(15 min-3 h) and increase as missingness grows (5 %-30 %). At 1 step
ahead the baseline is ~4-6 % NRMSE; the proposed method is typically
only 0.5-1.0 absolute percentage higher, while the best benchmark is
1-2.5 absolute percentage higher. By 3 h the gaps widen: with 5 %
missing, baseline ~24 %, proposed ~25-26 %, best benchmark ~27-28
%; with 30 % missing, baseline ~27-28 %, proposed ~29-30 %, best
benchmark ~33-34 %. Thus, the proposed method maintains the lowest
NRMSE among all filled-data runs, and its advantage over the best
competitor grows from about 1 to 3 absolute percentage at low miss-
ingness to 3-6 absolute percentage under the most severe missing rates
and longest lead times.

Across the middle panels of Fig. 9(b-e, h, k, n, q), which chart NSE
(%) by lead time, the proposed imputation stays closest to the no-
missing baseline at every horizon and for every missing-data level.
NSE decreases as forecasts extend from 15 min to 3 h and as missingness
rises from 5 % to 30 %. At one step ahead the baseline is ~99-100 %, the
proposed method is only ~1-2 absolute percentage lower (~97-99 %),
and the best benchmark lags by ~2-4 (~95-97 %). By 3 h the separation
is clearer: with 5 % missing, baseline ~85-86 %, proposed ~82-84 %,
best benchmark ~79-81 %; with 30 % missing, baseline ~84-85 %,
proposed ~72-74 %, best benchmark ~69-71 % (others lower). Over-
all, while NSE degrades with both longer horizons and higher missing-
ness, the proposed imputation retains the most skill, keeping a small gap
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to the baseline at easy settings and opening an advantage over the best
competitor of roughly 2-4 absolute percentage at low missingness and
3-5 under the harshest (30 %) case.

The panels on the right of Fig. 9 show the false alarm ratio (FAR), a
critical operational metric measuring the share of false flood alarms
among all predicted flood events. Here, the performance gap between
the proposed method and the benchmarks is clearly visible - and it
widens as missing data increase. FAR is more sensitive than NRMSE to
errors in peak magnitude and timing: because alarms trigger at thresh-
olds, even small peak underestimates can cause missed alarms, while
overestimates inflate false alarms. This sensitivity is already evident in
the 5 % missing case (panel f): the no-missing baseline drops from about
95 % to ~60 % over 15 min to 3 h; the proposed method tracks closely
(~90 %—~55 %), whereas the best benchmark falls much lower (~85
%-~45 %), indicating many more false alarms for the benchmark at
longer horizons. As missingness rises, the separations grow: at 15 %
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(panel i), the proposed method is roughly 8-12 absolute percentage
higher than the best benchmark across horizons; by 30 % (panel r), the
baseline is ~90 %—~55 %, the proposed method ~75-80 %—~40 %, and
the best benchmark only ~65-70 % to ~30-32 %, leaving a ~8-12
point advantage for the proposed method at short leads and ~10-15
points by 3 h. In short, while NRMSE increases and NSE decreases as
data loss and lead time grow, the FAR results show that the proposed
imputation consistently keeps alarm reliability closest to the no-missing
reference, limiting both missed and spurious triggers even under the
harsh 30 % scenario.

3.3.1. Multi catchment training, validation and testing

To provide a more generalised evaluation of the proposed framework
and to compare the results from the initial case study (RAF Northolt
station) with other regions exhibiting different characteristics, four
additional case studies. as shown in Fig. 10, were selected based on

40 100 100
230 9% 80
S - -
= S £ 60
20 Z 80 g
z @ Z 40
Z10 70 2
0 60 0
123 .45 6 7 8 9101112 12345678 9101112 1234567 8 9101112
Timestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
(a) (b) ©
40 100 100
g » % 2 M&*&
< S S 60
%20 I 80 z
w
FE‘ z = 40
Z 10 70 20
60 0
123 456 7 8 9101112 12345678 9101112 123456 7 8 9101112
Timestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
(d) (e) )
40 100 100
- 80
330 0 _
= 3 X 60
720 = 80 =z
2
Z 10 70 20
0 60 0
1 3456 7 8 91011 12 12345678 9101112 123 456789101112
Timestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
() (h) ()
40 100 100
- 80
330 o _
et g )
EZO I 80 z
2
z 2 Z 40
z
10 70 20
0 60 0
123 4 5 6 7 8 9 1011 12 12345678 9101112 12345678 9101112
Timestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
()] ® a
40 100 100
o . \‘\\‘\“_’ Axo
et S £ 60
gzo = 80 g
210 z =
70 20
0 60 0
b2 3 estep head (1smim 0 11 12 123 456 7 89101112 1 23 456 7 89101112
imestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
(m) (n) (0
40 100 100
230 o0 o
bt S 60
gzo =80 4
2
Z 2 e
Z 10 70 20
60 0
1 3,45 6 7 8 9 1011 12 1 23456 78 9101112 123 456789101112
Timestep ahead (15min) Timestep ahead (15min) Timestep ahead (15min)
(1) (@ (r)
[—e—No missing data Bl e B2 —eB3 B4 —e—B5 —e—P|

Fig. 9. Performance of proposed data imputation and selected benchmark methods in data infilling of E-NARX model based on percentage of missing data: (a—c) 5 %,
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Fig. 10. Geographical distribution of selected case studies.

different rainfall characteristics (classification is inspired form
DEFRA,2025). The initial case study, RAF Northolt, is located in an
oceanic rainfall region. To examine similar climatic conditions in a less
urbanised and more natural setting, the Tavistock station in the east of
England was chosen. This comparison allows assessment of the frame-
work’s performance under comparable rainfall regimes but differing
land-use characteristics. The Thetford station, located in the west of
England, was selected to represent a region with more pronounced
seasonal rainfall. In this case, the benchmark rainfall stations are

situated farther from the gauge containing missing data, providing an
opportunity to test the model’s robustness under sparse spatial coverage.
For the north of England, where rainfall is generally steady and
consistent, the Carlisle station was selected. This area features closely
spaced rainfall stations within predominantly natural landscapes,
allowing evaluation of the model under dense monitoring conditions.
Finally, Shrewsbury in the Midlands was chosen to represent a region
with heavy rainfall and relatively urbanised conditions, where rainfall
stations are widely spaced. This case provides insights into the

Table 4
Performance comparison of proposed framework with selected case studies.
KPI Case study
RAF Northolt Thetford Carlisle Shrewsbury Tavistock
Missing data detection
TPR (%) 97 94 98 91 96
TNR (%) 98 96 98 93 97
Missing data imputation
RMSE (mm) 0.45 0.6 0.43 0.58 0.46
R* (%) 90 87 92 85 91
Bias total (mm) 0.009 0.016 0.033 0.009 —0.052
Bias overestimation (mm) 0.305 0.331 0.246 0.394 0.235
Bias underestimation (mm) 0.296 0.315 0.213 0.385 0.287

? Data is provided only for multivariate missing data infilling.
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framework’s performance under high-intensity rainfall and limited data
availability.

Table 4 shows that performance stays broadly stable across the five
UK catchments. For missing-data detection, rates are uniformly high -
TPR 91-98 % and TNR 93-98 % - indicating reliable identification of
gaps everywhere. For multivariate infilling, accuracy varies only
modestly: RMSE spans 0.43-0.60 mm and R? 85-92 %. Relative to RAF
Northolt (RMSE 0.45; R? 90), Carlisle is slightly better (0.43; 92),
Tavistock is comparable (0.46; 91), while Shrewsbury and Thetford are
a little weaker (0.58; 85 and 0.60; 87, respectively). Total bias is near-
zero at most sites (RAF 0.009 mm; Thetford 0.016; Carlisle 0.033;
Shrewsbury 0.009), with Tavistock showing a small negative total
(—0.052 mm, mild underestimation). Directional components reinforce
this picture: Tavistock’s over/under biases (0.235/0.287 mm) are
noticeably smaller than Shrewsbury’s (0.394/0.385 mm). Overall, the
framework’s accuracy does not change noticeably across regions; where
gauge networks are denser/closer (e.g., Carlisle, Tavistock) results are a
little stronger than RAF Northolt, whereas sparser or more urbanised
settings (Shrewsbury, Thetford) show slightly higher errors but remain
within a tight performance band.

3.3.2. Evaluation of real-time performance

The RTUFF framework was deployed on a standard workstation
equipped with an Intel i7 processor (3.7 GHz, 64 GB RAM) and imple-
mented in MATLAB. The end-to-end processing time, including data
acquisition from the Environment Agency API, pre-processing, and
model inference, averaged 2.4 s per update cycle for the 15-min data
stream. This latency represents less than 3 % of the data refresh interval,
indicating that the system is capable of operating in near-real-time mode
without compromising responsiveness. Model inference alone accoun-
ted for approximately 0.9 s of this total, demonstrating efficient pre-
diction generation suitable for operational decision-making
environments.

To evaluate scalability, the framework was tested using simulated
parallel data streams from multiple catchments. Results showed that the
modular architecture, based on asynchronous data retrieval and batch
inference, allows for horizontal scaling across additional stations with
minimal computational overhead (less than 8 % increase in latency
when expanded to five concurrent streams). Overall, the combination of
rapid inference, low communication latency, and modular scalability
confirms that the RTUFF framework can operate as a practical real-time
component within an early warning system. However, future extensions
could integrate GPU-based processing or cloud-computing deployment
to further enhance throughput and redundancy under high-demand
conditions.

4. Conclusions

This study addressed a critical operational challenge in real-time
flood EWS which is the presence of missing rainfall data that can
significantly degrade the performance of forecasting models. While most
existing data imputation approaches are applied only during pre-
processing and are not applied for real-time operations, this research
proposes an innovative event-driven decision framework that dynami-
cally selects the most appropriate imputation strategy based on the
temporal position, duration, and nature of missing data. The framework
integrates data mining AI models, hydrological-hydraulic event identi-
fication, and external benchmark data to enhance imputation accuracy
in operational settings. A real-world case study in an UDS in London, UK,
was used to evaluate the framework against established Al-based
imputation methods. The approach not only assesses imputation accu-
racy but also examines its effect on downstream flood forecasting per-
formance, ensuring that the reconstructed rainfall data enables timely
and reliable flood warnings. The main research findings are summarised
as follows:
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- The proposed framework demonstrated a strong capability in
detecting both missing data and confirming the correctness of rain-
fall records (precision more than 95 %). While detection accuracy
was slightly reduced in certain cases, the overall performance
remained outstanding (still above 90 %). This is particularly
important for ensuring that EWS operate consistently with robust-
ness and reliability.

Under dry and wet conditions, and in both univariate and multi-
variate gaps, the proposed method consistently achieves about half
the RMSE of the best benchmark; it also keeps total bias near zero
with smaller directional over/underestimation (slight underestima-
tion only in the harshest cases) and maintains higher R? (retaining
markedly more explainable variance across all scenarios). The main
difficulties arise in wet weather where sharp peaks are harder to
reconstruct - an important direction for future work.

In event-based sensitivity analysis across the rainfall timeline, the
model maintained robust performance from the start of rainfall
through peak and recession phases, with particularly strong results in
multivariate missing data cases - critical for flood warning reliability
where underestimation at the peak or overestimation in the falling
limb can have severe operational consequences.

When tested on unseen events not included in model training, the
proposed approach significantly outperformed all benchmark
methods, demonstrating its generalisation capability for operational
real-time applications. However, still adapting this system with
future impact of climate change is recommended for future studies.
To evaluate the impact of the proposed framework on the flood EWS,
the results showed that the proposed method maintained predictive
accuracy comparable to the no-missing-data baseline and signifi-
cantly outperformed alternative approaches in terms of the FAR,
particularly at low missing data percentages where threshold sensi-
tivity is most critical.

With minimal configuration, the framework transferred well across
five UK basins, keeping gap-detection accuracy high and imputation
accuracy tight. Performance varied predictably with network ge-
ometry and setting: Carlisle (denser, more natural) slightly out-
performed RAF Northolt, Tavistock was comparable with a small
negative total bias, while Shrewsbury and Thetford (wider spacing/
more urban) showed modestly higher errors yet stayed within a
narrow band. This evidences portability and highlights benchmark-
gauge distance and station density as practical levers for further
gains.

This study was tested on a single case study and tested again for more
four other catchments in the UK for the generalisation. However, it
worth it to be tested for other regions rather than the UK. On the other
hand, it did not examine the impact of wider network errors, where
multiple external benchmark stations may also contain erroneous data.
Although such scenarios appear extreme and rare, they should be
investigated and are considered a limitation of this work. Furthermore,
this study evaluated only one well-established method for flood fore-
casting. The impact of data imputation on other models, such as LSTM or
CNN-layered recurrent models, should also be explored in future
research.

Finally, While the proposed framework demonstrates strong perfor-
mance in real-time anomaly detection and multi-strategy imputation,
one limitation is the absence of direct benchmarking against industry-
grade operational systems. Although we incorporated widely recog-
nised academic models for comparative evaluation, access to pro-
prietary platforms and datasets was not feasible within the scope of this
study. This constraint is acknowledged and is highlighted it as an
important avenue for future research. Integrating the framework with
commercial early warning systems and validating its performance using
large-scale, industry-standard datasets would not only strengthen the
generalisability of the approach but also accelerate its adoption in
operational environments. This step represents a critical pathway
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toward bridging the gap between research innovation and practical
deployment in flood risk management.
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