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A B S T R A C T

Real-time flood warning systems play a crucial role in mitigating impacts of flooding. However, their perfor
mance is highly dependent on input data, which can often contain missing values. While data imputation 
techniques have been widely applied in pre-processing stages, their integration into real-time operations remains 
underexplored. This study presents a real-time automated decision support system that integrates a soft-voting 
stacked data mining ensemble model comprising decision tree, K-nearest neighbour, Naive Bayes, Neural 
Network, Support Vector Machine, Discriminant Analysis, and Gaussian Regression. The system also incorporates 
hydrological–hydraulic event identification, external benchmarking, and a multi-data fuzzy weighted spatial 
imputation framework. The effectiveness of the proposed method was evaluated through a real-world case study 
involving a flood early warning system in an urban drainage network in London, UK. Comparative analyses were 
conducted against well-established artificial intelligence model, and a sensitivity analysis was performed for 
further assessment. Results showed that all types of missing data were correctly identified with a precision 
exceeding 90 % and were accurately imputed - particularly in situations where other models failed to recognise 
current rainfall values during the onset, peak, and falling limb of events (with no reduction in accuracy compared 
to the best-performing benchmark models). For the 3-h-ahead flood forecasting, the proposed method reduced 
the normalised root mean square error by up to 30 % compared to alternative approaches. To ensure the gen
eralisability of the approach, additional locations across the UK were used for validation, which demonstrates the 
stability and robustness of the system, with only minor error variations.

1. Introduction

Urban areas worldwide increasingly face the challenge of managing 
excess rainfall and mitigating flood risks (Girotto et al., 2024). Efficient 
urban drainage systems (UDS) are critical for preventing water accu
mulation that can cause property damage, traffic disruptions, and 
threats to public safety (Piadeh et al., 2023a). As the impacts of climate 
change intensify and urban development expands, these systems become 
more vulnerable to inundation during extreme rainfall events (Piadeh 
et al., 2023b). In this context, early warning systems (EWS), particularly 
those focused on real-time urban flood forecasting (RTUFF), play a vital 
role in strengthening the resilience of UDS and mitigating the adverse 
effects of flooding (Li and Burian, 2023). RTUFF models offer a dynamic, 
data-driven solution by continuously integrating and analysing infor
mation from weather stations, river gauges, and other monitoring 

sources (Piadeh et al., 2022). These systems deliver real-time assess
ments of changing rainfall patterns and water levels which equips urban 
planners, emergency responders, and residents with timely, actionable 
insights to support informed decision-making during potential flood 
events (Bakhtiari et al., 2024).

The performance of EWS heavily relies on data availability, as 
missing or incomplete data can significantly impact their accuracy (Fang 
et al., 2020). RTUFF typically depend on hydrometeorological variables, 
particularly rainfall data, collected from weather and gauging stations 
(Duarte et al., 2022). In contemporary applications, these stations are 
increasingly adopting Internet of Things (IoT)-based devices to enhance 
spatial coverage, data frequency, and accessibility. While this transition 
offers substantial benefits, it also introduces several operational chal
lenges (Bakhtiari et al., 2025). Data transmission from IoT sensors and 
open-access APIs can be affected by latency, temporary outages, or 
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incomplete uploads caused by network interruptions or maintenance 
issues (Brunner et al., 2021). Additionally, temporal mismatches be
tween rainfall and water-level records may occur during real-time 
acquisition, necessitating post-processing to ensure synchronisation 
and continuity (Kamwaga et al., 2018). These constraints highlight the 
importance of implementing robust data quality control, redundancy 
protocols, and automated error-handling mechanisms within the 
real-time framework to maintain the reliability and predictive perfor
mance of the EWS (Anbarasan et al., 2020). Furthermore, real-time data 
infilling is especially important in areas that are prone to urban flash 
flooding, where flood events can occur suddenly with little time lead for 
warning. In these situations, accurate forecasts can be the difference 
between life and death (Bakhtiari et al., 2023). Therefore, research and 
development of effective real-time data infilling techniques is critical to 
improve the performance of RTUFF systems and reducing the impact of 
flood events on communities and the environment (Umar and Gray, 
2023).

Addressing these challenges highlights the role of automated missing 
data imputation methods and their vital contributions in maintaining 
the reliability and effectiveness of real-time EWS as well as delivering 
accurate warnings to mitigate potential hazards (Ben Aissia et al., 2017). 
While there is no clear consensus on the best approach to infill missing 
data of rainfall for flood EWS systems, several imputation methods have 
been tested. The initial solutions primarily involved relatively simple 
techniques, including linear regressions, inverse distance weighting, 
moving-median substitution, and nonlinear interpolation methods such 
as Kriging (Bárdossy and Pegram, 2014; Wangwongchai et al., 2023).

Although These methods can perform well for short-term or isolated 
data gaps of flood EWS systems, their accuracy diminishes for long-term 
imputation or dynamically evolving rainfall conditions (Bárdossy and 
Pegram, 2014; Ding et al., 2020; Lv et al., 2020). Consequently, as 
shown in Table 1, data-driven models have emerged as promising al
ternatives. Simpler models such as support vector machine (SVM), 
self-organising map, decision tree (DT), Gaussian process regression 
(GPR), K-Nearest Neighbourhood (KNN), multi-linear regression, and 
principal component analysis have been employed effectively for 
multistep data infilling, especially in historical datasets (Sattari et al., 
2020; Boulin et al., 2022; Tavares et al., 2025). However, most of these 
techniques have been validated only on retrospective or post-event 
datasets, limiting their real-time applicability.

Recent works have expanded this field using advanced data-driven 
frameworks. More robust and adaptive techniques, such as feed- 
forward neural networks, convolutional neural networks, adaptive 
neuro-fuzzy inference systems, ensemble learning, and hybrid deep 
learning frameworks, have proven superior for extended imputation 
scenarios involving temporal anomalies and rainfall fluctuations 
(Papailiou et al., 2022; Lupi et al., 2023; Kumar and Dwarakish, 2025). 
For example, Sriwahyuni et al. (2025) integrated spatiotemporal 
attention networks with radar rainfall products to improve urban flood 
forecasting accuracy under missing-data conditions. Similarly, Li et al. 
(2024) developed a hybrid CNN–LSTM architecture for dynamic rainfall 
infilling, showing significant accuracy improvements but at high 
computational costs. Golkhatmi and Farzandi (2024) proposed an 
adaptive ensemble approach combining random forest and Bayesian 

Table 1 
Recent advances on rainfall data imputation methods in the context of flood EWS*.

Application** Applied method*** Benchmark methods*** Case study Reference

HDP ​ ANFIS ​ ARX ​ South Africa ​ Nawaz et al. (2016)
RTO ​ PCA ​ SOM, LR, KNN ​ Malaysia ​ Miró et al. (2017)
HDP ​ MLR ​ LR ​ Bangladesh ​ Jahan et al. (2019)
RTO ​ KNN + Hot deck + LR ​ – ​ Nigeria ​ Aieb et al. (2019)
HDP ​ PCA-based FFNN ​ – ​ Colombia ​ Canchala-Nastar et al. (2019)
HDP ​ Ensemble DT ​ Data augmentation ​ China ​ Chen et al. (2019)
HDP ​ PCA + EMA ​ LR, PCA ​ Malaysia ​ Chuan et al. (2019)
HDP ​ Bayesian PCA ​ KNN ​ Malaysia ​ Lai et al. (2019a)
HDP ​ KNN ​ – ​ Malaysia ​ Lai and Kuok (2019b)
RTO ​ Ensemble DT + LR ​ KNN, RF, SVM, FFNN ​ UK ​ Chivers et al. (2020)
HDP ​ Vector sampling ​ IDW, Kriging, KNN ​ Denmark, Australia, 

Swiss, Switzerland
​ Oriani et al. (2020)

HDP ​ PCA-based FFNN ​ – ​ Colombia ​ Ocampo-Marulanda et al. (2021)
HDP ​ SVM ​ GPR, RF ​ Turkey ​ Sattari et al. (2020)
HDP ​ GPR ​ – ​ Canada ​ Boulin et al. (2022)
HDP ​ ANN + MLR ​ – ​ Greece ​ Papailiou et al. (2022)
HDP ​ FFNN ​ FFNNs ​ India ​ Kumawat et al. (2023)
HDP ​ LSTM + CNN ​ – ​ Italy ​ Lupi et al. (2023)
HDP ​ MLR ​ MLRs ​ South Korea ​ Narimani et al. (2023)
HDP ​ LR, OK, SCK ​ LR ​ Portugal ​ Fagandini et al. (2024)
HDP ​ Bayesian LR ​ Non-Bayesian LR. MICE, PMM, UMI, RS ​ Iran ​ Golkhatmi and Farzandi (2024)
HDP ​ KNN, EMA ​ HI, LR ​ Turkey ​ Hırca and Eryılmaz Türkkan (2024)
HDP ​ EMA ​ PCA, RF, MICE ​ India ​ Kannegowda et al. (2024)
HDP ​ GP ​ MLR, RF, SVR, MLP ​ Thailand ​ Pinthong et al. (2024)
HDP ​ ANFIS ​ LR, MLR, OK, SVM ANN ​ Iran ​ Dariane and Borhan (2025)
HDP ​ CART ​ KNN, PMM, RF, LLR, Bayesian LR ​ India ​ Kumar and Dwarakish (2025)
HDP ​ CNN ​ MLR, SVM ​ Indonesia ​ Sriwahyuni et al. (2025)
HDP ​ SMA ​ SMA, NRM, IDW, BE ​ Brazil ​ Tavares et al. (2025)
HDP ​ MTGP ​ UMI, MICE, KNN ​ Burkina Faso ​ Zio et al. (2025)

*:The search in the Scopus database covering the last decade (2015–2025) was based on keywords “imputation”, “infilling”, “missing data”, “rainfall”, “rain”, “storm”, 
“Harkins”, “thunder”, and “flood early warning system” “flooding”. Research works that applied conventional data imputation methods as a pre-processing step of 
flood forecasting are excluded. Papers were reviewed then to select appropriated journal papers focusing on AI-based data infilling methods.
**:HDP: Historical Data Preparation, RTO: Real-Time Operation, ANN: Artificial Neural Network, ANFIS: Adaptive neuro fuzzy inference system, ARX: Autoregressive 
with eXtra Input, ***:, BE: Best Estimator, CART: Classification And Regression Trees, CNN: Convolutional Neural Network, DT: Decision Tree, EMA: Expectation 
Maximisation algorithm, FFNN: Feed Foreword Neural Network, GP: Genetic Programming, GPR: Gaussian Process Regression, HI: Hot-deck Imputation, IDW: Inverse 
distance weighting, LLR: Lasso Linear Regression, LR: Linear Regression, KNN: K-Nearest Neibourhood, MICE: Multiple Imputation by Chained Equations, MLR: Multi 
Linear Regression, MTGP: Multi-Task Gaussian Process, NRM: Normal Ratio Method, OK: Ordinary Kriging, PCA: Principal Component Analysis, PMM: Predictive 
Mean Matching, RF: Random Forest, RS: Random Sampling, SCK: Simple Cokriging, SMA: Simple Arithmetic Mean, SOM: Self Organising Map, SVM: Support Vector 
Machine, UMI: Unconditional Mean Imputation.
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updating to handle streaming IoT sensor data with latency issues. More 
recently, Murakami (2024) demonstrated that transformer-based hybrid 
models can enhance anomaly detection and real-time imputation but 
require high data redundancy and cloud-based computation. Despite 
these advances, few studies have explicitly addressed the operational 
trade-off between accuracy, computational efforts, and scalability under 
real-time conditions - highlighting the need for more practical frame
works that integrate automated anomaly detection with 
benchmark-driven imputation strategies.

However, a significant research gap persists most of these methods in 
the context of data imputation of flood EWS focus on historical data 
infilling, where both past and future data are available to estimate 
missing values (Chuan et al., 2019; Oriani et al., 2020). In contrast, 
real-time operation imputation, which requires decisions based solely on 
past and current data, remains under-explored (Aieb et al., 2019; 
Chivers et al., 2020). This limitation is particularly critical during the 
early stages of rainfall events, where delayed or incorrect imputation (e. 
g., treating actual rainfall as dry weather) can drastically impair flood 
forecasting performance (Miró et al., 2017; Aieb et al., 2019). Therefore, 
developing accurate, context-sensitive, and responsive real-time data 
imputation strategies is vital for flood EWS, especially in urban areas 
prone to flash floods.

Moreover, recent studies emphasise the importance of detecting and 
handling diverse types of data issues, not just NaN gaps. Outliers 
(Dunkerle, 2023), anomalies (Lupi et al., 2023), incorrect zero values 
(Sa’adi et al., 2023), and false wet/dry classifications are among the 
critical challenges impacting EWS accuracy. For example, a scenario 
where dry weather and no rainfall are erroneously identified as wet 
conditions due to the absence of explicit data can lead to false alarms 
(Sa’adi et al., 2023; Balcha et al., 2023). Conversely, failing to recognise 
actual wet conditions can result in underestimating flood risk, creating a 
mismatch between the recorded values and the true state of the envi
ronment (Golkhatmi and Farzandi, 2024). These issues - often caused by 
sensor lag, hardware faults, or data transmission errors - can severely 
compromise flood forecasting performance. Golkhatmi and Farzandi 
(2024) further demonstrated that zero rainfall values recorded during 
ongoing rainfall events can mislead the model into assuming dry con
ditions, leading to significant underestimations. To address these com
plexities, recent advances have introduced hybrid imputation models 
that combine external benchmarks with regression techniques, 
including ordinary kriging, simple cokriging, and Bayesian linear 
regression. These hybrid approaches have demonstrated significant 
improvements in real-time data accuracy (Fagandini et al., 2024; 
Dariane and Borhan, 2025). It should be mentioned that when referring 
to an external benchmark, its definition can vary depending on the scope 
of the study. However, there is a general agreement that it involves using 
rainfall data obtained from a broader range of collection sources. For 
instance, the external benchmark may include data from neighbouring 
rain gauges or radar systems for a single specific rain gauge with missing 
data, that record rainfall over adjacent or overlapping catchment areas 
(Dariane and Borhan, 2025; Sriwahyuni et al. 2025).

Additionally, computational efficiency has become a growing 
concern, especially in large-scale monitoring networks. Tavares et al. 
(2025) and Zio et al. (2025) highlighted the importance of adaptive, 
scalable imputation techniques such as multiple imputation by chained 
equations and multi-task Gaussian process, which offer robust perfor
mance under increasing data loss and system complexity. Together, 
these advancements underscore the critical need for real-time, anom
aly-aware, and computationally sustainable imputation frameworks 
tailored for flood EWSs.

Finally, while some research has explored distinct states of rainfall, 
such as dry and wet weather or considering nature of rainfall such as 
monsoon and non-monsoon, there remains a gap in addressing differ
ences between dry and wet weather conditions when applying imputa
tion methods. This oversight has significant implications for both 
computational efforts and predictive accuracy (Aieb et al., 2019; 

Narimani et al., 2023). In smaller-scale studies with limited rainfall 
monitoring points, the impact of computational efforts may be negli
gible. However, when dealing with a larger geographical area, the 
continuous operation of models in response to zero rainfall values 
(indicating dry weather conditions) can lead to excessive computational 
efforts. In such scenarios, more straightforward methods could be 
initially employed to provide the necessary level of intervention and 
prediction, optimising computational resources and ensuring efficiency.

Hence, the present study aims to develop a comprehensive decision- 
making framework that integrates a multi-choice infilling method with 
the advantages of external benchmark data sources. To address the 
challenge of missing data in real-time flood EWS, the proposed approach 
incorporates external benchmark resources to enhance infilling accu
racy by leveraging additional knowledge beyond the local dataset. 
Furthermore, two automated Decision Support Systems (DSS) were 
developed: one designed to identify all types of missing data—not 
limited to NaN values—thereby enabling a more robust and compre
hensive data quality assessment; and another designed to apply fuzzy 
weighted spatial interpolation for imputing the missing data. In addi
tion, a data mining-based method is introduced to accurately distinguish 
between dry and wet weather conditions, a capability that is particularly 
critical during the early stages of rainfall events when timely and ac
curate detection can significantly improve forecasting outcomes. 
Finally, unlike previous models focused solely on accuracy or algo
rithmic sophistication, this framework prioritises real-time applica
bility, anomaly awareness, and computational efficiency, advancing the 
operational reliability of flood EWS for urban resilience and risk 
management.

2. Methodology

This methodology is exemplified through IoT-based rainfall moni
toring systems and application programming interface (API), which are 
now widely applicable globally. The scope of this approach, initially 
designed for rainfall data, can be expanded to encompass other real-time 
stations such as gauge monitoring in weather stations and radar systems. 
While originally tailored for rainfall data, the concept of handling 
missing data can also be extended to include other input sources such as 
temperature, wind speed and direction, or soil moisture. This method 
specifically addresses numerical/temporal data and does not cover 
spatial-based image data, such as those obtained from satellite produc
tion. The exclusion of spatial-based image data is justified by the fact 
that, despite the increasing popularity and global application of such 
images, the primary source for rainfall data collection worldwide re
mains temporal-based data collection. Therefore, this paper aims to 
introduce a concept applicable to general scenarios, focusing on the 
predominant method of rainfall data collection globally.

This study proposes a real-time hybrid imputation method integrated 
into a real-time platform linked with an EWS. This platform seamlessly 
incorporates decision support systems, data mining techniques, statis
tical analysis, and leverages IoT-based and API-based external bench
mark rainfall stations as additional resources. Ideally, the benchmark 
rainfall stations should form a geographical network surrounding the 
main rainfall station i.e. at least three stations. This enhances the sys
tem’s understanding by incorporating physical-based information from 
various locations, contributing to a more comprehensive understanding 
of the meteorological conditions. Illustrated in Fig. 1, the methodology 
comprises three key steps: (1) The DSS continuously monitors incoming 
data streams from IoT-based rain gauge networks and applies multi- 
criteria anomaly detection rules. These include range checks, temporal 
consistency analysis, and dynamic quantile-based thresholds derived 
from local climatological statistics, (2) Ensemble data mining platform 
classifies rainfall events into dry or wet conditions to guide the impu
tation strategy. It employs a soft-voting stacked ensemble model inte
grating several base models. Each base learner contributes probabilistic 
outputs, which are aggregated to improve classification robustness 
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under diverse meteorological scenarios. This classification step is critical 
for selecting context-appropriate imputation techniques and maintain
ing forecast accuracy, and (3) a multi-strategy-based framework for data 
imputation that adapts dynamically to event type and data availability. 
For dry conditions, linear regression and temporal smoothing are 
prioritized, while wet conditions invoke advanced probabilistic tech
niques such as t-Copula and move-median strategies. A key innovation is 
the Fuzzy Weighted Spatial Interpolation, which integrates fuzzy logic 
with spatial weighting to handle uncertainty and heterogeneity in 
rainfall patterns. This assigns membership degrees to candidate stations 
based on geographic proximity, wind drift, and historical correlation, 
and then computes adaptive weights to interpolate missing values. This 
mechanism ensures that spatial variability and physical plausibility are 
preserved, outperforming traditional deterministic interpolation 
methods in complex hydrometeorological settings.

This platform initiates by assessing the availability and reliability of 
the main monitoring rainfall data for each real-time interval, depending 
on the specifications of the data collection device. This evaluation is 
conducted through a proposed DSS that uses data obtained from 
benchmark external rainfall data resources as well as a range of data 
mining techniques. If missing data is identified, an alarm, including 
error detection and error type, is sent to the operator for immediate 
resolution.

Meanwhile, platform will provide missing data required for input of 
EWS prediction system. To achieve this, the level of required accuracy 
for imputation is first determined based on predicting the event state, i. 
e., whether the weather conditions are dry or wet. To accomplish this, a 
proposed binary ensemble data mining framework, already trained on 
historical data from both main and external benchmark stations, spec
ifies this state by considering the correlation of each benchmark station 
with the main station. Ultimately, based on the recognised states, the 
hybrid method combines several efficient infilling techniques to provide 
a range of available data. This data is then interpolated using the novel 
developed kriging with external drafts. Finally, the infilled data is sent to 
the EWS to be used as part of the input data required for RTUFF.

2.1. Step 1: Real-time decision support system for missing data detection

The proposed DSS framework addresses strategies applied for 
missing data detection as illustrated in Fig. 2a. The concept of missing 
data is inspired by Thudumu et al. (2020), encompassing four types of 
data deficiencies: (1) lack of data or NaN data (Type 1 in Fig. 2b), (2) 

zero reported for a non-zero value (indicating dry weather for wet 
weather -Types 2.1, 2.2, and 2.4 in Fig. 2b), (3) non-zero reported for a 
zero value (indicating wet weather for dry weather - Type 3.1 Fig. 2b), 
and (4) abnormal large values for wet weather situations i.e. anomaly 
(Type 3.4 in Fig. 2b). For each real-time data point (i.e., Rmaᵢnt in 
Fig. 2a), the framework defines an appropriate procedure to handle 
cases where data is not reported or transmitted from the device source.

These processes are shown in detailed in the Algorithm 1, but 
generally, when the main rainfall station reports a zero value, the pro
posed DSS verifies its validity by examining both temporal and spatial 
rainfall patterns. The previous rainfall observation (Rmaᵢnt-1) is first 
assessed to determine whether the zero represents a genuine dry period 
or a potential recording error. If the previous value is zero, the system 
calculates the rainfall network value (RNV) using data from surrounding 
benchmark stations. A zero value is considered faulty if all benchmarks 
report rainfall (Type 2.1), while partial rainfall across benchmarks 
triggers a KNN-based spatial path recognition (inspired by Teegavarapu, 
2014; Chiu et al., 2019) to check whether rainfall could have passed over 
the main station - identifying missing data if a viable path exists (Type 
2.2) or confirming correct data otherwise (Type 2.3). When the previous 
observation is nonzero, the system applies a normalised Continuous 
Wavelet Transform (CWT) to detect continuity in the rainfall pattern, 
classifying decreasing wavelet energy as rainfall cessation (Type 2.4) 
and increasing energy as a false zero during ongoing rainfall (Type 2.5). 
For positive rainfall readings, the same RNV metric is used to confirm 
whether wet conditions are consistent across the network. If all bench
mark stations indicate dry weather, the value is flagged as missing (Type 
3.1). Otherwise, the reported value is validated using historical bench
mark correlations (Type 3.2), Isolation Forest analysis (inspired by Gao 
et al., 2025; Zhang et al., 2024) for joint data plausibility, and 
Angle-Based Outlier Detection (inspired by De Luca et al., 2024; Liu and 
Wang, 2024) for novelty evaluation. These models distinguish between 
overestimated or anomalous rainfall (Type 3.3) and new but credible 
rainfall conditions (Type 3.4).

To enhance robustness during extreme rainfall conditions, the 
anomaly detection module incorporates dynamic quantile-based adap
tive limits derived from local climatological statistics. Instead of relying 
on fixed upper thresholds, each observation is compared against a time- 
varying percentile envelope (typically the 95–99 % percentile), 
computed from long-term rainfall records using a moving historical 
window. These adaptive limits allow the system to distinguish physi
cally plausible extreme events from sensor faults, thereby reducing false 

Fig. 1. Real-time data imputation platform for infilling rainfall missing data used for real-time flood early warning systems.
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Fig. 2. DSS framework for automated detection of missing data in flood early warning system: (a) workflow of proposed framework, (b) Schematic illustration of 
various missing and corrected data detection scenarios based on total four external benchmark stations.
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positives during high-intensity rainfall and improving the reliability of 
real-time flood early warning.

Algorithm 1 
Pseudocode of DSS framework for automated detection of missing data in flood 
early warning system

% Inputs:

Initiate R_main_t % main station at t (may be NaN)
Initiate R_main_t-1 % main station at t-1 (may be NaN)
Initiate {R_i_t} i = 1.n %benchmark stations at t
​
% Pretrained/derived (referenced, not implemented here):
Compute RNV({R_i_t}) =

∑n
i=1

if (Ri t ∕= 0)
% RNV is network rainfall value, Ri t is the 
value of rainfall intensity for ith external 
% benchmark station at timestep t.

Count (R_i_t > 0)
Compute CWT_index: 
∑t

i=2 (Rmain i − Rmain i− 1)
2

Rmain

% CTWt is continuous wavelet transform for 
range of data finished by timestep t, Rmain i is 
the rainfall intensity of main station at 
timestep i, and Rmain is the average intensity of 
rainfall event.

Path viable: Compute KNN({R_i_t}) % 0/1 feasibility for rain cloud over main
In common rainfall range: Compute Linear regression (R_main_t, {R_i_t})
Isolation forest: Compute inlier ([R_main_t, {R_i_t}])
Angle based outlier: Compute inlier (R_main_t)
​
% Outputs:
Status ∈ {Correct data, Missing data}
Type ∈ {1, 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3, 3.4}
(optional) Correction → send to imputation step if missing
​
% Begin
if isNaN(R_main_t):

Status = Missing data; Type = 1; Goto Imputation
else if R_main_t = = 0:

Compute RNV({R_i_t}) % Two parallel checks: previous step and CWT 
on current event

if R_main_t-1 = = 0:
if RNV = = n:

Status = Missing data; Type = 2.1; Goto Imputation
else if 0 < RNV < n:

If Path viable = true:
Status = Missing data; Type = 2.2; Goto Imputation
else
Status = Correct data; Type = 2.3; End

else: %RNV = = 0
Status = Correct data; Type = 2.3; End

else if R_main_t-1 > 0:
Compute CWT_t % branch B: CWT change (current event consistency)
Compute CWT_t-1
if (CWT_t - CWT_t-1) < 0:

Status = Correct data; Type = 2.4; End %Rain ended
else

Status = Missing data; Type = 2.5; Goto Imputation % Erroneous zero mid- 
event

Else % unknown R_main_t-1 → fall back to RNV + path
if RNV = = n:

Status = Missing data; Type = 2.1; Goto Imputation
else if 0 < RNV < n:

if path viable = = true:
Status = Missing data; Type = 2.2; Goto Imputation

else
Status = Correct data; Type = 2.3; End

else
Status = Correct data; Type = 2.3; End

else if R_main_t = /0: %treat as suspect wet reading; validate against network and 
models
Compute_RNV({R_i_t})

if RNV = = 0:
Status = Missing data; Type = 3.1; DQBL = True

Else % validate magnitude
Isolation forest: Compute inlier ([R_main_t, {R_i_t}])
if in_common_rainfall_range = = true:

Status = Correct data; Type = 3.2; End
else
Angle based outlier: Compute inlier (R_main_t)

(continued on next column)

Algorithm 1 (continued )

% Inputs:

if angle_based_outlier_is_inlier(R_main_t) = = false:
Status = Missing data; Type = 3.3; DQBL = True

else
Status = Correct data; Type = 3.4; End

If DQBL = = True
Hist_window ← select H_i = { r_i(τ) |τ ∈ [t-K, t-1] and season(τ) ≈ season(t) }

if size(Hist_window) < Min_samples_required
% Fallback to global or longer-term historical distribution if window is too 

small 
Hist_window ← extend_to_longer_history(Hist_main_i)

Q_i_α_t ← compute_quantile(Hist_window, α) % e.g., 95th–99th percentile
if R_main_t ≤ Q_i_α_t then

Status_extreme = Climatologically_plausible
Flag_anomaly = False
Return

else
Status_extreme = Potential_extreme_or_fault

2.2. Ensemble data-mining event determination

The objective of this step is to identify potential states leading to 
missing data. For instance, missing data may occur during dry weather 
conditions, allowing for straightforward infilling using simple methods 
such as linear or non-linear regression. On the other hand, it might occur 
during rainfall, necessitating more advanced techniques. To address 
this, a data mining model is developed inspired by Piadeh et al. (2023). 
For each set of data containing main station and one benchmark station, 
one stacked ensemble data mining model was developed, helping 
determine the prevailing weather conditions based on these correla
tions. To do this, seven weak learner data mining models (detailed 
provided in Table 2) were selected for their demonstrated potential and 
widespread use in previous hydrological classification studies (Piadeh 
et al., 2023b): DT, KNN, Naive Bayes (NB), Neural Network Pattern 
Recognition (NPR), SVM with Error-Correcting Output, Discriminant 
Analysis (DA), and GPR. All models were developed and optimised in 
MATLAB 2025a. Model parameters were tuned using automated 
hyperparameter optimisation, minimising the 5-fold cross-validation 
loss over 30 iterations (demonstrated for the one station as an 
example in Fig. A1 in the Appendix). To ensure equal representation, all 
identified events were randomly distributed across the training, vali
dation, and testing databases.

A distinct dataset needs to be initially prepared using historical data 
and transformed into the required features. The set of required data, 
specifically the necessary timesteps for rainfall intensity, is not uniform 
across all models. This variability arises because the correlation of each 
station may demand a specific set of data. To address this, lag time 
analysis was implemented to ascertain the effective data sets between 
each external station and the main station that can significantly impact 
predictions. Here, cross-correlation analysis, as one of mutual 
information-based methods used here (through the XCORR function in 
MATLAB, 2025b), is considered an effective method for mutual analysis 
especially because it accommodates non-linear dependencies and pat
terns of rainfall occurrence. It is also well-suited for time series analysis, 
capturing both spatial and temporal dependencies (Wei et al., 2020; 
Wang et al., 2023). To achieve this, the specific lag time corresponding 
to the highest coefficient was identified for each external benchmark 
and the main rainfall station, and this lag time was selected as the 
optimal data window for the subsequent step.

This step involves extracting distinct rainfall events from the his
torical records of the main rainfall station, following the methodology 
proposed by Piadeh et al. (2023b).Subsequently, each rainfall event is 
further decomposed into extended rainfalls and for every extended 
rainfall event, a range of required data, equivalent to the best-found lag 
time, is extracted from the historical data of the benchmark station. All 
the extracted data will then be systematically organised and stored in 
the data cube. Similarly, the rainfall events of each benchmark station 
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will undergo extraction and be stored into the same data cube.
The entirety of the extracted data is then transformed into the fea

tures outlined in Table 3. These features encapsulate various charac
teristics of the benchmark stations’ rainfall, such as intensity, duration, 
normalised absolute energy, normalised continuous wavelet transform, 
total entropy, antecedent conditions, season occurrence, and weather 
class. These features serve as the foundation for constructing the 
necessary data mining framework. The primary output of these models is 
the predicted weather class. Finally, a voting-based stacked ensemble 
model was employed to blend the output of each developed base model, 
thereby enhancing the overall accuracy of the model. All trained models 
are stored in the model library for use in real-time missing data infilling.

2.3. Multi-data imputation framework

When missing rainfall data are detected, the proposed DSS first de
termines whether the condition represents a dry or wet state as shown in 
Algorithm 2. For dry states, the missing values are imputed directly 
using linear regression based on historical data from the main station, 
without requiring benchmark inputs. For wet states, the process be
comes adaptive, and data driven. The system computes the cross- 
covariance between each benchmark and the main station to evaluate 
their dependency using identified lag times. If strong dependency is 
detected (zero-matrix condition), the missing value is reconstructed 
using a t-copula approach, which flexibly models correlated rainfall 
behaviour without strict assumptions on data distribution and is robust 
to outliers and heavy tails. When dependency is weak, an external-based 
move-median method is used, which estimates the missing value from 
benchmark data within a lag-based sliding window. All preliminary 
imputed values are stored in a data repository for further spatial 
refinement.

To enhance the spatial and temporal accuracy of rainfall recon
struction, the proposed framework incorporates a fuzzy weighted spatial 
interpolation model that explicitly integrates topographical, hydrome
teorological, and dynamic environmental factors to enhance spatial and 
temporal accuracy. This approach extends conventional spatial inter
polation by embedding external drifts into a fuzzy inference system, 
enabling more adaptive weighting in regions with sparse monitoring 
and reducing estimation bias (Bi et al., 2023; Henriksen et al., 2024). 
Three drift components are calculated for each benchmark station: (1) a 
geographical drift DVi that quantifies spatial separation using the station 
coordinates (Equation (1)), (2) a wind drift Dwi that captures the 
directional alignment and relative influence of local wind fields (Equa
tion (2)), and (3) a CWT-based drift representing the similarity in 
rainfall signal structure. These three inputs form the basis of a 
Mamdani-type fuzzy inference system (Komsiyah et al., 2023) with 

Gaussian membership functions defined for low, medium, and high 
levels of each drift component. The fuzzy architecture uses a complete 
rule base of 27 rules (3 × 3 × 3), through which stations that are 
eographically close, wind-aligned, and spectrally similar receive higher 
linguistic weights (high or very high), while stations with weak align
ment in any dimension receive proportionally lower weights. The 
aggregated fuzzy outputs are defuzzied using the centroid method to 
generate the adaptive station weight λi for each benchmark. These 
weights are subsequently combined with the drift terms in the spatial 
interpolation formulation, where the final imputed rainfall value RT at 
the main station is computed as a normalised drift-weighted sum of 
benchmark values (Equation (3)). The adaptive weight λi, shown in 
Equation (4), ensures that stations with stronger physical, meteorolog
ical, and spectral relevance contribute more heavily to the infilled value. 
By integrating fuzzy reasoning with externally derived drifts, this 
method enhances replicability and provides a transparent mathematical 
structure for the spatial decision-making process in real-time 
imputation. 

DVi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
x2

i − x2
R
)2

+
(
y2

i − y2
R
)2

√

Equation (1) 

where DVi is geography drift for external ith benchmark station, xi and yi 
are the latitude and longitude of ith benchmark station respectively, and 
xr and yr are the latitude and longitude of the main rainfall station with 
missing data respectively. 

Dwi =Wi ×
θi − θRi

180
Equation (2) 

where Dwi is wind drift for external ith benchmark station, Wi is the wind 
speed, Ɵi is the wind direction relative to north, ƟRi relative difference 
in angle between the main station and ith external benchmark station. 
Finally, the missing data are estimated using Equation (9) and integrated 
into the database supporting the EWS, which is employed for real-time 
flood forecasting. 

RT =

∑

i
Ri × e− DV2

i × e− Dw2
i × e− CWT2

i × λi

∑

i
λi

Equation (3) 

λi =
e− DV2

i × e− Dw2
i × e− CWT2

i

∑

i
e− DV2

i × e− Dw2
i × e− CWT2

i
Equation (4) 

Where RT is the infilled missing data and λi is the adaptive weight 
computed as Equation (4).

Table 2 
Selected weak learner data mining models to develop Ensemble data-mining event determination.

Selected methods Description Optimised hyperparameters

Discriminant Analysis ​ Multiple linear regression expressing one dependent variable as a 
combination of other features or measurements

​ - Delta: Linear coefficient threshold 
- Gamma: Amount of regularisation

Decision Tree ​ The regression tree utilised a top-down recursive tree of an inner node. The 
decision tree model is divided into smaller subgroups until ultimately 
separated into an exclusive mutual subset.

​ - Minimum leaf size: Minimum number of leaf node 
observations

Gaussian Process Regression ​ The kriging method providing the best linear unbiased prediction at 
unsampled locations

​ - Sigma: Initial value for the noise standard deviation

K-Nearest Neighbourhood ​ Non-parametric method finding the closest neighbourhoods based on 
similarity

​ - Distance: Neighbour search method 
- Neighbours number: Number of nearest neighbours in 
observant data to find for classifying each point when 
predicting

Naive Bayes ​ Supervised learning method applying the theory of Bayes with strong 
independence assumptions between the different features

​ - Kernel distribution: Approach of data distribution and 
data smoothing 
- Width: Regulating width of Kernel smoothing window

Neural network Pattern 
Recognition

​ Finding data regularities and similarities translated by different nodes, biases 
and weights

​ - Nodes: Number of small individual units 
- Layer: Number of hidden nodes group

Supervised Vector Machine 
with Error-Correcting 
Output

​ Linear classification by splitting the data into subsets, e.g. pattern recognition 
and data classification based on the statistical learning theory and structural 
risk minimisation principle

​ - Kernel scale: Approach of data distribution and data 
smoothing 
- Box constraint: controller of the maximum penalty 
aiding to prevent overfitting
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Algorithm 2 
Pseudocode of DSS framework for automated infilling of missing data by external benchmark data sources

%Inputs:

R_main_t is missing
Hist_main % past main-station series for ith rain gauge
{R_i_t} for i = 1.n % benchmark readings at t (maybe missing or zero)
{L_i} for i = 1.n % lag times
{x_i, y_i} % benchmark coordinates
(x_R, y_R) % main-station coordinates
{W_i, θ_i} % wind speed and direction at time t
​
%Pretrained/derived (referenced, not implemented here):

Compute CWT_i =
∑t

i=2 (Rmain i − Rmain i− 1)
2

Rmain
Copute linear_regression_impute (Hist_main) % leveraging the preceding data from the ith station calculated by “fitlm” code in MATALB
Compute_cross_covariance(CR) =

∑t− 1
j=1

[
Rmain j − Rmain

]
×
[[

Ri j− d − Rj
]]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

1
[
Rmain j − Rmain

]2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
1
[
Ri j− d − Rj

]2
√

% CR is the cross-correlation at dth lag time, Rmain j is rainfall intensity of main station at timestep j, Ri j is rainfall intensity of jth benchmark station at timestep of j by XCOV code in MATALB

is_high_dependency(CV_matrix) ∈ {true, false} %per your criterion (text: “zero-matrix” ⇒ high)
Compute t_copula_impute(R_i_window, R_main_window) % kernel CDF → copula scale → MLE fit → infill
Compute move_median_impute (R_i_series, window_len) % sliding window median based on lag L_i
Compute_geography_drift (DVi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
x2

i − x2
R
)2

+
(
y2

i − y2
R
)2

√
% xi and yi are the latitude and longitude of ith benchmark station respectively, and xr and yr are the latitude and longitude of the main rainfall station with missing data respectively

Compute_wind_drift (Dwi) = Wi ×

θi − θRi

180

% Wi is the wind speed, Ɵi is the wind direction relative to north, ƟRi relative difference in angle between the main station and ith external benchmark station

Compute_lambda_i (λi) =
e− DV2

i × e− Dw2
i × e− CWT2

i

∑
ie− DV2

i × e− Dw2
i × e− CWT2

i

Compute fuzzy_weighted_spatial_interpolation (R_i_pt) =
∑

iRi × e− DV2
i × e− Dw2

i × e− CWT2
i × λi

∑
iλi

​
% Outputs:
Determine_state (value) ∈ {Dry, Wet}
R_i_pt_repo % data resource to store intermediate infills (R_i_pt)
Store_repo(repo, station_id, t, value)
​
Begin
determine global state E_t for the missing main reading E_t ← determine_state(context around t) % Dry or Wet based on classifier
for i in 1.n: %i is the ith external benchmark
​ E_t_i = Determine_state(R_i_t) %dry or wet
If E_t_i = = Dry
​ R_T_i = Linear_regression_impute (Hist_main)
​ Store_repo(R_i_pt_repo, i, t, R_i_pt)
​ Update database; Stop; i = i+1
Else %E_t_i = = Wet % for each benchmark, decide correlated vs not, and create candidate infills R_i_pt
​ Initialize set S_candidates = ∅
​ R_i_window ← R_i(t-L_i-1: t-1)
​ R_main_shifted ← R_main(t-L_i-1: t-1) shifted by L_i
​ CV_i ← compute_cross_covariance(R_i_window, R_main_shifted, L_i)
​ dep_flag ← is_high_dependency(CV_i)
​ if dep_flag = = true then %correlated → t-copula infill
​ ​ R_i_pt ← t_copula_impute(R_i_window, R_main_shifted)
​ Else % weaker dependency → external-based move-median
​ ​ window_len ← f(L_i)
​ ​ R_i_pt ← move_median_impute(R_i_window, window_len)
​ Store_repo(R_i_pt_repo, i, t, R_i_pt)

(continued on next page)
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2.4. Performance assessment and comparison

To illustrate the application of the proposed model, a selection of 
benchmark models from the literature is used for comparison. These 
include: (B1) An external-based LR model tested by Duarte et al. (2022), 
representing a well-established statistical approach using external data; 
(B2) FFNN coupled with MLR proposed by Papailiou et al. (2022), 
considered a robust AI-based method; (B3) A vector sampling method 
developed by Oriani et al. (2020), which effectively applies statistical 
modelling to similar datasets; (B4) An event identification approach 
based on XGBoost followed by LR, introduced by Chivers et al. (2020), 
representing a leading data mining technique; and (B5) A hybrid 
external benchmark-based model incorporating hot deck imputation, 
KNN, MLP, and LR, as demonstrated by Aieb et al. (2019).

The performance of the proposed model and benchmark models are 
evaluated under a range of scenarios designed to reflect realistic oper
ational conditions. These scenarios include: (1) weather conditions – 
categorised into dry and wet periods, (2) missing data types – 
comprising univariate gaps and four-timestep multivariate gaps - the 
average time required to repair station errors, (3) rainfall characteristics 
– including intensity and duration, and (4) temporal placement of 
missing data within a rainfall event – including occurrence at the start, 
rising limb, steady stage before peak, peak time, steady stage after peak, 
at the end of the event, and immediately after rainfall.

To evaluate the impact of imputation model accuracy on the per
formance of the flood EWS and to compare real-time flood forecasting 
results with and without the proposed framework, an event-based 
nonlinear autoregressive model with exogenous input (E-NARX) devel
oped by Piadeh et al. (2023b) was employed. Several missing data sce
narios, including both unimodal and multimodal gaps, were considered 
to evaluate the system’s robustness under different conditions. The 
imputation preprocessing for this model was conducted five times—four 
times using the benchmark models and once using the proposed 
framework. The results were then compared across different prediction 
time steps for water level forecasting to examine how the proposed 
framework enhances model performance.

3. Result & discussion

The proposed methodology is validated through its application to 
real-time flood forecasting in a real-world UDS pilot study in the UK. A 
comprehensive evaluation of the results is presented focusing on three 
key aspects: (1) the standalone accuracy of the rainfall data imputation 
model, (2) the influence of the imputation quality on the overall per
formance of the EWS, and (3) generalising the outcomes, using this 
model is pretrained and run for the same period of time in different 
location of the UK.

3.1. Study area and time-series data acquisition

Fig. 3a presents the spatial layout of the study area, including the 
urban catchment, the Ruislip gauging station, and the RAF Northolt rain 
gauge, which support the RTUFF of the EWS deployed at Ruislip. The 
open-channel UDS in Ruislip, situated in the Borough of Hillingdon in 
northwest London, conveys surface runoff from a 9.3 km2 catchment via 
the River Pinn to a tributary of the River Thames. Rainfall events in this 
area occur regularly throughout the year, with the majority of storms 
characterised by durations under 600 min (10 h) and rainfall depths 
typically less than 10 mm (Piadeh et al., 2023a). These events have 
triggered several fluvial floods across Ruislip’s urban neighbourhoods, 
resulting in traffic disruptions, extensive surface water pooling, and 
significant damage to infrastructure and private property.

The Ruislip gauging station is equipped with an ultrasonic IoT-based 
depth sensor that records water levels within the UDS at 15-min in
tervals. The RAF Northolt rain gauge was selected as the primary 
meteorological input based on prevailing south-westerly wind patterns A
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(See Windrose in Fig. 3a) and cross-correlation analysis between avail
able rainfall stations and water level data (Fig. 3b). It captures rainfall 
using a high-resolution IoT-enabled tipping bucket system and is sup
ported by five nearby rain gauge stations, which serve as external 
benchmarks for model validation.

All hydrometeorological data - both rainfall and water levels - are 
retrieved via open-access application programming interfaces provided 
by the UK Environment Agency. Fig. 3c depicts the data availability and 
continuity for both the Ruislip and RAF Northolt stations (DEFRA, 
2025). Although data availability varied across stations, all records were 
standardised to a consistent 12-year monitoring period from 2013 to 
2025. The final dataset comprises 365,233 time-stamped entries, of 
which 70 % were used for training and validating the data mining 
platform (2013–2022), while the remaining 30 % were reserved for 
performance evaluation of the model (2022–2025).

3.2. Performance of the proposed methodology

3.2.1. Missing data component performance
Fig. 4 provides an overview of the standalone performance of the 

pre-data imputation components. This focus on the (1) precision of the 
DSS in detecting different types of missing and correct rainfall data, (2) 
the effectiveness of the ensemble data mining framework in weather 
state recognition, and (3) the contribution of each rainfall feature to 
model performance. Results show that DSS achieved consistently high 
detection accuracy across most data types (See Fig. 4a), with precision 
values generally exceeding 0.90. The system performed particularly well 
for Type 1 (NaN value detection) and Type 2 series (incorrect zero values 
during wet weather), reflecting the relative simplicity of these scenarios 
where the absence of a value or inconsistencies in zero reporting are 
more readily identified through RNV checks and geographical path 
validation.

However, performance declined in certain challenging categories. 
Specifically, for missing data, the lowest scores occurred in Type 3.1 and 
Type 3.4. According to the scenarios defined in Fig. 2, these correspond 
to cases where non-zero rainfall is reported during dry conditions (Type 
3.1) or where reported rainfall values are anomalously high (Type 3.4). 
In both situations, the data physically exists, and the system must detect 

whether the value is an outlier using isolation forest and angle-based 
anomaly detection methods. This inherently increases complexity, as 
the distinction relies on subtle deviations from historical patterns rather 
than on absolute absence or binary inconsistencies.

For correct data detection, the DSS generally maintained high ac
curacy, but Type 3.3 showed a comparatively lower precision (still more 
than 95 % for Type 3.1 and 3.3). This type involves identifying outlier- 
like values that are, in fact, valid observations. As with Types 3.1 and 
3.4, the difficulty raises from distinguishing true extreme rainfall events 
- potentially intensified by climate variability - from erroneous anoma
lies. Such cases require a balance between avoiding false alarms and 
ensuring that the permissible limit values in the dataset are maintained, 
which explains the slightly lower performance in this category.

Fig. 4 b and c evaluate the role of individual rainfall features in the 
performance of the ensemble data mining framework, which is 
responsible for determining the dry or wet state of each event before 
data imputation. In the baseline configuration (original model), the 
system was tested against an equal number of events - 2400 dry and 
2400 wet - and, according to Table A1, correctly classified 97 % of wet 
events (true positives) and 98 % of dry events (true negatives), with only 
3 % false positives and 2 % false negatives. The sensitivity analysis in 
Fig. 4b systematically removes each rainfall feature to assess its impact 
on classification performance. Across all cases, feature removal caused a 
marked decline in accuracy, with reductions exceeding 20 % in most 
instances. This is consistent with the changes in the confusion matrix 
values in Table A1, where removal of any feature led to increases in both 
false positives and false negatives, highlighting that all features 
contribute meaningfully to the discrimination between dry and wet 
states.

Fig. 4c complements this by applying PCA and partial least squares 
(PLS) to quantify the explanatory power of each feature. The explained 
variance plots and cumulative variance curves reveal that all seven 
features contribute non-negligibly to the total variance, reinforcing that 
none of them can be considered redundant in the classification process. 
Both PCA and PLS indicate that the information contained in these 
features is well distributed and removing anyone would impair the 
model’s ability to capture the underlying rainfall dynamics needed for 
accurate weather state detection.

Table 3 
Introduced rainfall features extracted for developing data mining modelsa.

Extracted rainfall 
feature

Code Description/Equation Transformation 
key

Unit/Class

Intensity ​ RI ​ The ratio of total rainfall depth to the duration ​ Numerical ​ mm per 
timestep 
interval

Duration ​ RD ​ Number of timesteps between the start and end of the rainfall ​ Numerical ​ Timestep 
interval

Normalised absolute 
energy

​ RA ​
Total kinetic energy, here intensity, associated with rainfall calculated as 

∑
iR

2
j i

Rj 

where Rj i is intensity of station j at timestep i, and R is the average intensity

​ Numerical ​ mm

Normalised 
continuous 
wavelet transforms

​ RC ​
Time-frequency intensity of rainfall signals calculated as 

∑t
i=2 (Rmain i − Rmain i− 1)

2

Rmain

​ Numerical ​ mm

Total entropy ​ RH ​ Uncertainty or disorder in a rainfall distribution calculated as 
∑

i
P
(
Rj i

)
× log2Rj i 

where P is probability of ith intensity

​ Numerical ​ –

Antecedent 
conditions

​ RP ​ Detecting impact of evapotranspiration. The range of data is equalled to time of 
concentration of catchment for which EWS applied.

​ Binary class ​ 0: No 
1: Yes

Season occurrence ​ RS ​ A different class of humid temperate climate based on recommendation of Peel et al. 
(2007).

​ Multi class ​ 1: Dry 
2: Mild 
3: Rainy

Weather class 
(predictor)

​ WC ​ Transforming rainfall value of main station to predicted state of current data i.e. dry 
or wet weather condition

​ Binary class ​ 0: Dry 
1: Wet

a The search in the Scopus database covering the last decade (2015–2025) was based on keywords “rainfall”, “prediction”, “forecasting”, “data driven”, “data 
mining”, “artificial intelligence”, and “machine learning”. Research works were reviewed to select introduced parameters made by rainfall intensity. All parameters 
were analysed for the case study through sequential sensitivity analysis and particle component analysis recommended by Miró et al. (2017) and Ocampo-Marulanda 
et al. (2021), and ineffective parameters were excluded from the data mining framework. Remained selected parameters, reported here, are mainly inspired by, Fan 
et al. (2023) Liu et al. (2023), Piadeh et al. (2023), Piadeh et al. (2023b), and Zhang et al. (2023).
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As illustrated in Fig. 4d, the uncertainty analysis on the size of data 
feed follows a clear three-regime pattern. First, trimming the dataset 
from 100 % down to roughly ~75 % leads to only marginal change 
(resistance region) - performance stays close to the full-data baseline 
(retaining >~90 % of baseline skill, with RMSE nearly flat). However, 
afterward until to ~35 %, the relationship is approximately linear in 
which each incremental reduction produces a roughly proportional 
deterioration in accuracy (steady RMSE increase). Finally, once the 
training fraction falls below ~35 %, performance drops sharply which 
results in error escalates rapidly.

3.2.2. Framework performance

3.2.2.1. Error performance. Fig. 5 presents a comprehensive compari
son of the proposed method with five benchmark data imputation 
techniques under varying operational scenarios, using RMSE and R2 as 
the performance metric. The results are grouped by rainfall intensity, 
rainfall duration, and the type of missing data - either univariate 
(Fig. 5a–f) or multivariate (Fig. 5g–l). In this study, univariate gaps 
represent single-timestep missing data, while multivariate gaps involve 
four consecutive timesteps, simulating the average time needed for an 
operator to restore faulty measurements. This distinction is critical 
because multivariate scenarios are inherently more challenging: the loss 
of multiple successive observations removes valuable temporal 

continuity, making it more difficult for any imputation model to 
reconstruct the true signal without distortion.

The first clear observation is that dry-weather cases (Table A2) 
consistently yielded RMSE values below 0.1 mm for both univariate and 
multivariate gaps, regardless of method. This is expected because in the 
absence of rainfall, imputing missing values is trivial - most methods can 
correctly fill zeros without introducing error. Under wet-weather con
ditions, however, performance varied considerably with rainfall char
acteristics and missing data type. For univariate cases with low- 
intensity, short-duration rainfall (Fig. 5a), all models, including the 
benchmarks, achieved relatively low RMSE values, with the proposed 
method performing slightly better due to its accurate detection of event 
onset and reliance on simple but reliable interpolation when variability 
is low (0.19 mm for the proposed method versus 0.24–0.41 mm for 
benchmarks). In low-intensity, long-duration events (Fig. 5b), the gap 
length remained short, but sustained low rainfall created a more uniform 
signal, leading to consistently low RMSE across all models (~0.23–0.31 
mm, with the proposed method at 0.23 mm). The difficulty increased 
sharply with medium- and high-intensity rainfall (Fig. 5c–f).

For univariate medium-intensity, short-duration events (Fig. 5c), 
RMSE rose across all methods because the short bursts of moderate 
rainfall offer limited temporal context for imputation, and small errors 
in peak estimation can significantly affect RMSE (0.46 mm for the pro
posed method versus 0.77–1.04 mm for benchmarks). In medium- 
intensity, long-duration events (Fig. 5d), the proposed method 

Fig. 3. Geographical map and hydrological data of the pilot study: (a) location of stations, (b) Cross-correlation between selected rainfall and water level data, (c) 
characteristics of rainfall and water level data, (d) characteristics of the rainfall data source.
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retained a marked advantage over benchmarks by using extended tem
poral correlation patterns from benchmark stations, though RMSE 
remained higher than in low-intensity cases (0.43 mm versus 0.71–0.94 
mm). The greatest challenges arose in high-intensity events (Fig. 5e and 
f), especially short-duration storms, where rapid changes in intensity 
and narrow peaks left little margin for interpolation error. Here, the 
proposed method’s hybrid approach helped, but all methods saw sub
stantial error increases.

For multivariate scenarios (Fig. 5g–l), RMSE values were consistently 
higher than their univariate counterparts under similar rainfall condi
tions, reflecting the added difficulty of reconstructing longer missing 
intervals. Low-intensity rainfall (Fig. 5g and h) still produced relatively 
low RMSE values, and in these categories the proposed model out
performed all benchmark methods by a clear margin, benefiting from its 

integration of external benchmark data and applied imputation strate
gies (0.24–0.34 mm for the proposed method versus 0.57–0.94 mm for 
benchmarks). In medium- and high-intensity events (Fig. 5i–l), recon
struction errors were amplified due to the loss of fine-scale temporal 
variability and peak structure across multiple timesteps; nonetheless, 
this model maintained the lowest RMSE in each case, showing greater 
resilience to data gaps compared to other techniques (e.g., 0.45–0.65 
mm for the proposed method versus 1.10–2.70 mm for benchmarks). 
The highest RMSE values occurred in high-intensity, long-duration 
multivariate cases (Fig. 5l), where the combination of sustained heavy 
rainfall and extended data gaps severely limited the accuracy of all ap
proaches; even in this most challenging scenario, the proposed method 
still achieved the best performance (0.68 mm versus 1.92–2.89 mm), 
reducing error more effectively than all benchmarks.

Fig. 4. Performance of pre-data imputation components: (a) precision of DSS framework in detecting missing and correct data, (b) accuracy of data mining 
framework for weather recognition and impact of removing features, (c) PCA and PLS analysis of feature selection used for data mining, (d) uncertainty analysis of 
model performance based on size of training data.
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In the multivariate cases in Figs. 5g–1, the R2 pattern is clear and 
strongly supports the proposed method. It remains close to the ceiling in 
easy conditions and decreases pleasantly as events become more severe. 
In low-intensity rain, R2 remains very high despite four-step gaps - 98 
(short) and 94 (long) - while the best benchmark (B5) trails at 96/70 and 
the others sit much lower (44–80 short; 40–65 long). Moving to medium 
intensity, the explanatory power decreases but the advantage remains: 
the proposed method holds 90 (short) and 88 (long), compared with 69/ 
69 for B5 and roughly 24–44 (short) and 14–21 (long) for the others. 
This shows that longer gaps and stronger dynamics degrade the 
benchmarks’ fit much more than they do the proposed approach. The 
most demanding setting is high-intensity rain, where rapid peaks plus 
four-step gaps suppress R2 the most. Even so, the proposed method re
mains strong at 86 (short) and 83 (long), versus 63/61 for B5 and only 
12–20 (short) and 4–9 (long) for the other benchmarks. Overall, R2 falls 
steadily as conditions toughen - from low to medium and medium to 
high intensity, and from short to long duration. The proposed method 
still explains the most variance (98–83). The best competitor drops from 
96 to 61, and the others often stay below 50. This widening gap high
lights where robust imputation matters most.

3.2.2.2. Bias performance. Fig. 6 and Table A4 indicate a comparison of 
the proposed method with five benchmark imputation methods under 
different rainfall characteristics, using bias as the performance metric. 
For univariate cases (Fig. 6a–f), comparing the proposed method 
(Fig. 6a) with the strongest benchmark (Fig. 6f), directional biases are 
consistently smaller for Fig. 6a across intensities. In low-intensity rain, 
Fig. 6a’s over/under are 0.163/0.146 (total − 0.014) versus Fig. 6f’s 

0.194/0.161 (total − 0.025) - Fig. 6a reduces directional error by 0.031 
(over) and 0.015 (under). At medium intensity, Fig. 6a holds 0.360/ 
0.363 (total +0.004) against Fig. 6f’s 0.567/0.556 (total 0.000), trim
ming directional error by ~0.20–0.21. Under high intensity, the gap 
widens: Fig. 6a’s 0.326/0.386 (total +0.043) versus Fig. 6f’s 0.939/ 
0.980 (total − 0.007), a reduction of ~0.61 (over) and ~0.59 (under). 
Overall, in the univariate case, the proposed method remains almost 
unbiased, with a slight tendency towards underestimation at the highest 
intensity (0.386 > 0.326), while Fig. 6f’s directional errors are much 
larger even when its total bias appears small due to cancellation.

For multivariate cases (Fig. 6g–l), in low intensity, Fig. 6g records a 
value of 0.196/0.178 (total − 0.021) versus 0.485/0.285 (total − 0.149) 
in Fig. 6l as the best benchmark method, which is accompanied by a 
reduction of 0.289 (more) and 0.107 (less) of the directional bias. At 
medium intensity, Fig. 6g is 0.327/0.356 (total +0.027) versus Fig. 6l’s 
0.835/0.664 (total − 0.037), reducing ~0.51 (over) and ~0.31 (under). 
At high intensity, Fig. 6g remains 0.431/0.492 (total +0.008) against 
Fig. 6l’s 1.210/1.179 (total − 0.096), reducing directional error by 
~0.78 (over) and ~0.69 (under). Quantitatively, moving from univar
iate to multivariate increases the proposed method’s directional bias by 
about 0.02–0.11 at low/medium intensity and ~0.10–0.11 at high in
tensity; for the best benchmark, the jump is much larger (~0.29–0.51 at 
low/medium and ~0.24-0.20 at high for over/under). Overall, multi
variate gaps are harder than univariate. Even in the hardest case (high- 
intensity, multivariate), the proposed method’s directional biases stay 
low and lean slightly toward underestimation: under = 0.492, over =
0.431. In contrast, the best benchmark has much larger directional er
rors and leans toward overestimation: over = 1.210, under = 1.179.

Fig. 5. RMSE and R2 performance of data imputation methods based on type of missing data and characteristics of rainfall*: (a) UV/LI/SD; (b) UV/LI/LD; (c) UV/MI/ 
SD; (d) UV/MI/LD; (e) UV/HI/SD; (f) UV/HI/LD; (g) MV/LI/SD; (h) MV/LI/LD; (i) MV/MI/SD; (j) MV/MI/LD; (k) MV/HI/SD; (l) MV/HI/LD. Note: Type: UV 
(Univariate) = one missing data, MV (Multivariate) = 4 missing data (average required time for fixing the problem by operator); Rainfall classification is based on K- 
means clustering technique recommendations by He et al. (2022): For I (Intensity): H(High) = greater than 12 mm/h, M (Medium) = 8–12 mm/h, L (Low) = less than 
8 mm/h; For D(Duration): H(High) = longer than 3hrs, M(Medium) = between 1.5 and 3 h, L(Low) = less than 1.5hr.
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3.2.2.3. Sensitivity analysis. Fig. 7 provides a detailed sensitivity anal
ysis of RMSE performance for the proposed and benchmark imputation 
methods across different temporal positions within wet-weather events 
(more details in Table A5 in the Appendix). These temporal points track 
the evolution of rainfall from its initiation (point 1), through its rise 
(point 2), stable phases before and after the peak (points 3 and 5), the 

peak itself (point 4), and the falling limb (point 6), to the event’s 
conclusion (point 7) and the immediate post-event dry period (point 8). 
The results are separated into univariate gaps (Fig. 7a–c) and multi
variate gaps (Fig. 7d–f) for low-, medium-, and high-intensity rainfall 
events, respectively. In the multivariate case, points 1, 7, and 8 are not 
applicable because a four-timestep missing-data block cannot be 

Fig. 6. Bias performance of data-imputation methods by rainfall characteristics. Univariate: (a) Proposed model; (b) B1; (c) B2; (d) B3; (e) B4; (f) B5. Multivariate: 
(g) Proposed model; (h) B1; (i) B2; (j) B3; (k) B4; (l) B5. Points are coloured by intensity (low/medium/high); the red line is 1:1. Insets report total bias and 
directional over- and underestimation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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positioned entirely at the very start or very end of an event without 
extending into a non-event period, which would distort the evaluation of 
wet-weather imputation. In practice, all multivariate gaps occur in the 
central or “active” portion of the event, where rainfall is sustained.

For univariate scenarios, the proposed model achieves consistently 
low RMSE values across all temporal points in low-intensity events 
(Fig. 7a), reflecting the relative simplicity of infilling when rainfall 
changes gradually and errors in peak reconstruction are minimal. As 
intensity increases to medium (Fig. 7b), RMSE values rise across all 
points for all methods due to sharper gradients in rainfall, but the pro
posed approach retains a clear advantage, especially at critical points 4 
(peak) and 6 (falling limb), where accurate representation of both the 
maximum and the decline of rainfall is vital for downstream flood 
forecasting accuracy. In high-intensity events (Fig. 7c), the challenge 
intensifies: all benchmarks show significant performance degradation, 
particularly at point 4, whereas the proposed model maintains 
comparatively low error, highlighting its ability to handle rapid, high- 
magnitude changes in intensity.

In multivariate cases, the difficulty is greater because missing-data 

blocks span longer intervals, erasing more temporal information. Even 
so, in low-intensity rainfall (Fig. 7d), the proposed model still delivers 
the best performance at all applicable points, benefiting from its event- 
driven external-benchmark integration. In medium-intensity events 
(Fig. 7e), RMSE grows for all models, but the proposed method con
tinues to outperform others, especially at point 4 (peak), where precise 
reconstruction prevents critical underestimation of flood potential. 
High-intensity multivariate scenarios (Fig. 7f) are the most demanding, 
with benchmarks often exhibiting severe underestimation at the peak 
and overestimation in the falling limb (point 6). The proposed approach 
demonstrates resilience here, achieving the lowest RMSE at both critical 
points and avoiding the dangerous underestimation at the peak-which 
could delay flood warnings-and the overestimation during decline- 
which could unnecessarily keep emergency resources on standby.

3.2.3. Performance of the model on extreme unseen events
Fig. 8 and Table A6 (in the Appendix) evaluates the robustness of the 

proposed and benchmark imputation methods when confronted with an 
extreme, unseen rainfall event - defined here as a storm with intensity 

Fig. 7. RMSE performance of data imputation methods based on type of missing data, characteristics of rainfall, and location of missing data in the wet weather 
event: (a) UV/LI; (b) UV/MI; (c) UV/HI; (d) MV/LI; (e) MV/MI; (f) MV/HI.
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greater than 5 mm per 15-min interval. The key distinction is that these 
events were not included in the training datasets for any model, meaning 
the results reflect the models’ ability to generalise beyond the conditions 
they were optimised for. Performance is assessed for both univariate 
(Fig. 8a) and multivariate (Fig. 8b) missing-data scenarios, with RMSE 
values summarised alongside the rainfall intensity time series and 
imputed values at the missing points.

In the univariate case (Fig. 8a), where only single timesteps are 
missing, the proposed model achieved an RMSE of 0.63 mm, substan
tially outperforming all benchmarks (RMSE ranging from 1.02 to 3.52 
mm). This superior accuracy is evident across all five missing points, 
where the proposed method’s estimates are consistently closer to the 
actual observed intensities. Its hybrid decision framework - combining 
event detection, cross-covariance analysis, and adaptive method selec
tion - appears to generalise well even in high-intensity, unfamiliar 
conditions. In contrast, several benchmarks either systematically 
underestimated or overestimated the peaks, reflecting overfitting to 
patterns present in their training datasets.

The multivariate case (Fig. 8b) posed a greater challenge, as each 
missing-data block spanned four consecutive timesteps, erasing more 
temporal structure. Even here, the proposed model maintained clear 
superiority, with an RMSE of 0.85 mm, compared to 1.91–2.73 mm for 
the benchmarks. The improvement is especially critical at peak rainfall 
points (points 3 and 4), where benchmark methods frequently under
estimated intensity by more than 1–2 mm. Such underestimation during 
extreme events can directly impair flood forecasting accuracy, delaying 
warnings and reducing lead time for emergency response. Similarly, in 
the falling limb of the event, the proposed method avoided the tendency 
of some benchmarks to overestimate intensities, which would unnec
essarily prolong emergency stand-by measures.

3.3. Impact of the proposed model on early warning system

Fig. 9 demonstrates the influence of different data imputation stra
tegies on the performance of the one recurrent time-series ML model (E- 

NARX) used in an EWS (Details listed in Tables A7-8 in the Appendix). 
The comparison is made under varying proportions of missing rainfall 
data, ranging from 5 % to 30 %. The black line in each panel represents 
the baseline case in which the E-NARX model is run without missing 
data - this acts as the “ideal” or reference scenario. The green line cor
responds to the proposed imputation method, which consistently tracks 
closest to the black baseline across all missing data percentages, while 
other benchmark methods (B1-B5) deviate more substantially. The 
NRMSE for lead times from 15 min (1 timestep ahead) up to 3 h (12 
timesteps ahead). As illustrated in these figures, the proposed imputa
tion is superior at every lead time and missing-data level, staying closest 
to the no-missing baseline. Errors rise roughly linearly with lead time 
(15 min–3 h) and increase as missingness grows (5 %–30 %). At 1 step 
ahead the baseline is ~4–6 % NRMSE; the proposed method is typically 
only 0.5–1.0 absolute percentage higher, while the best benchmark is 
1–2.5 absolute percentage higher. By 3 h the gaps widen: with 5 % 
missing, baseline ≈24 %, proposed ≈25–26 %, best benchmark ≈27–28 
%; with 30 % missing, baseline ≈27–28 %, proposed ≈29–30 %, best 
benchmark ≈33–34 %. Thus, the proposed method maintains the lowest 
NRMSE among all filled-data runs, and its advantage over the best 
competitor grows from about 1 to 3 absolute percentage at low miss
ingness to 3–6 absolute percentage under the most severe missing rates 
and longest lead times.

Across the middle panels of Fig. 9(b–e, h, k, n, q), which chart NSE 
(%) by lead time, the proposed imputation stays closest to the no- 
missing baseline at every horizon and for every missing-data level. 
NSE decreases as forecasts extend from 15 min to 3 h and as missingness 
rises from 5 % to 30 %. At one step ahead the baseline is ~99–100 %, the 
proposed method is only ~1–2 absolute percentage lower (~97–99 %), 
and the best benchmark lags by ~2–4 (~95–97 %). By 3 h the separation 
is clearer: with 5 % missing, baseline ~85–86 %, proposed ~82–84 %, 
best benchmark ~79–81 %; with 30 % missing, baseline ~84–85 %, 
proposed ~72–74 %, best benchmark ~69–71 % (others lower). Over
all, while NSE degrades with both longer horizons and higher missing
ness, the proposed imputation retains the most skill, keeping a small gap 

Fig. 8. Demonstration of Performance of data imputation methods for generating rainfall data in extreme unseen events (intensity >5: (a) univariate missing data; 
(b) multivariate missing data.
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to the baseline at easy settings and opening an advantage over the best 
competitor of roughly 2–4 absolute percentage at low missingness and 
3–5 under the harshest (30 %) case.

The panels on the right of Fig. 9 show the false alarm ratio (FAR), a 
critical operational metric measuring the share of false flood alarms 
among all predicted flood events. Here, the performance gap between 
the proposed method and the benchmarks is clearly visible - and it 
widens as missing data increase. FAR is more sensitive than NRMSE to 
errors in peak magnitude and timing: because alarms trigger at thresh
olds, even small peak underestimates can cause missed alarms, while 
overestimates inflate false alarms. This sensitivity is already evident in 
the 5 % missing case (panel f): the no-missing baseline drops from about 
95 % to ~60 % over 15 min to 3 h; the proposed method tracks closely 
(~90 %–~55 %), whereas the best benchmark falls much lower (~85 
%–~45 %), indicating many more false alarms for the benchmark at 
longer horizons. As missingness rises, the separations grow: at 15 % 

(panel i), the proposed method is roughly 8–12 absolute percentage 
higher than the best benchmark across horizons; by 30 % (panel r), the 
baseline is ~90 %–~55 %, the proposed method ~75–80 %–~40 %, and 
the best benchmark only ~65–70 % to ~30–32 %, leaving a ~8–12 
point advantage for the proposed method at short leads and ~10–15 
points by 3 h. In short, while NRMSE increases and NSE decreases as 
data loss and lead time grow, the FAR results show that the proposed 
imputation consistently keeps alarm reliability closest to the no-missing 
reference, limiting both missed and spurious triggers even under the 
harsh 30 % scenario.

3.3.1. Multi catchment training, validation and testing
To provide a more generalised evaluation of the proposed framework 

and to compare the results from the initial case study (RAF Northolt 
station) with other regions exhibiting different characteristics, four 
additional case studies. as shown in Fig. 10, were selected based on 

Fig. 9. Performance of proposed data imputation and selected benchmark methods in data infilling of E-NARX model based on percentage of missing data: (a–c) 5 %, 
(d–f) 10 %, (g–i) 15 %, (j–l) 20 %, %, (m–o) 25 %, (p–r) 30 %, (left) NRMSE, (middle) NSE, (Right) FAR 3.4. Generalisation of the framework in the context of the UK.
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different rainfall characteristics (classification is inspired form 
DEFRA,2025). The initial case study, RAF Northolt, is located in an 
oceanic rainfall region. To examine similar climatic conditions in a less 
urbanised and more natural setting, the Tavistock station in the east of 
England was chosen. This comparison allows assessment of the frame
work’s performance under comparable rainfall regimes but differing 
land-use characteristics. The Thetford station, located in the west of 
England, was selected to represent a region with more pronounced 
seasonal rainfall. In this case, the benchmark rainfall stations are 

situated farther from the gauge containing missing data, providing an 
opportunity to test the model’s robustness under sparse spatial coverage. 
For the north of England, where rainfall is generally steady and 
consistent, the Carlisle station was selected. This area features closely 
spaced rainfall stations within predominantly natural landscapes, 
allowing evaluation of the model under dense monitoring conditions. 
Finally, Shrewsbury in the Midlands was chosen to represent a region 
with heavy rainfall and relatively urbanised conditions, where rainfall 
stations are widely spaced. This case provides insights into the 

Fig. 10. Geographical distribution of selected case studies.

Table 4 
Performance comparison of proposed framework with selected case studies.

KPI Case study

RAF Northolt Thetford Carlisle Shrewsbury Tavistock

Missing data detection
​ TPR (%) ​ 97 ​ 94 ​ 98 ​ 91 ​ 96
​ TNR (%) ​ 98 ​ 96 ​ 98 ​ 93 ​ 97
Missing data imputation
​ RMSE (mm) ​ 0.45 ​ 0.6 ​ 0.43 ​ 0.58 ​ 0.46
​ R2a (%) ​ 90 ​ 87 ​ 92 ​ 85 ​ 91
​ Bias total (mm) ​ 0.009 ​ 0.016 ​ 0.033 ​ 0.009 ​ − 0.052
​ Bias overestimation (mm) ​ 0.305 ​ 0.331 ​ 0.246 ​ 0.394 ​ 0.235
​ Bias underestimation (mm) ​ 0.296 ​ 0.315 ​ 0.213 ​ 0.385 ​ 0.287

a Data is provided only for multivariate missing data infilling.
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framework’s performance under high-intensity rainfall and limited data 
availability.

Table 4 shows that performance stays broadly stable across the five 
UK catchments. For missing-data detection, rates are uniformly high - 
TPR 91–98 % and TNR 93–98 % - indicating reliable identification of 
gaps everywhere. For multivariate infilling, accuracy varies only 
modestly: RMSE spans 0.43–0.60 mm and R2 85–92 %. Relative to RAF 
Northolt (RMSE 0.45; R2 90), Carlisle is slightly better (0.43; 92), 
Tavistock is comparable (0.46; 91), while Shrewsbury and Thetford are 
a little weaker (0.58; 85 and 0.60; 87, respectively). Total bias is near- 
zero at most sites (RAF 0.009 mm; Thetford 0.016; Carlisle 0.033; 
Shrewsbury 0.009), with Tavistock showing a small negative total 
(− 0.052 mm, mild underestimation). Directional components reinforce 
this picture: Tavistock’s over/under biases (0.235/0.287 mm) are 
noticeably smaller than Shrewsbury’s (0.394/0.385 mm). Overall, the 
framework’s accuracy does not change noticeably across regions; where 
gauge networks are denser/closer (e.g., Carlisle, Tavistock) results are a 
little stronger than RAF Northolt, whereas sparser or more urbanised 
settings (Shrewsbury, Thetford) show slightly higher errors but remain 
within a tight performance band.

3.3.2. Evaluation of real-time performance
The RTUFF framework was deployed on a standard workstation 

equipped with an Intel i7 processor (3.7 GHz, 64 GB RAM) and imple
mented in MATLAB. The end-to-end processing time, including data 
acquisition from the Environment Agency API, pre-processing, and 
model inference, averaged 2.4 s per update cycle for the 15-min data 
stream. This latency represents less than 3 % of the data refresh interval, 
indicating that the system is capable of operating in near-real-time mode 
without compromising responsiveness. Model inference alone accoun
ted for approximately 0.9 s of this total, demonstrating efficient pre
diction generation suitable for operational decision-making 
environments.

To evaluate scalability, the framework was tested using simulated 
parallel data streams from multiple catchments. Results showed that the 
modular architecture, based on asynchronous data retrieval and batch 
inference, allows for horizontal scaling across additional stations with 
minimal computational overhead (less than 8 % increase in latency 
when expanded to five concurrent streams). Overall, the combination of 
rapid inference, low communication latency, and modular scalability 
confirms that the RTUFF framework can operate as a practical real-time 
component within an early warning system. However, future extensions 
could integrate GPU-based processing or cloud-computing deployment 
to further enhance throughput and redundancy under high-demand 
conditions.

4. Conclusions

This study addressed a critical operational challenge in real-time 
flood EWS which is the presence of missing rainfall data that can 
significantly degrade the performance of forecasting models. While most 
existing data imputation approaches are applied only during pre- 
processing and are not applied for real-time operations, this research 
proposes an innovative event-driven decision framework that dynami
cally selects the most appropriate imputation strategy based on the 
temporal position, duration, and nature of missing data. The framework 
integrates data mining AI models, hydrological-hydraulic event identi
fication, and external benchmark data to enhance imputation accuracy 
in operational settings. A real-world case study in an UDS in London, UK, 
was used to evaluate the framework against established AI-based 
imputation methods. The approach not only assesses imputation accu
racy but also examines its effect on downstream flood forecasting per
formance, ensuring that the reconstructed rainfall data enables timely 
and reliable flood warnings. The main research findings are summarised 
as follows: 

- The proposed framework demonstrated a strong capability in 
detecting both missing data and confirming the correctness of rain
fall records (precision more than 95 %). While detection accuracy 
was slightly reduced in certain cases, the overall performance 
remained outstanding (still above 90 %). This is particularly 
important for ensuring that EWS operate consistently with robust
ness and reliability.

- Under dry and wet conditions, and in both univariate and multi
variate gaps, the proposed method consistently achieves about half 
the RMSE of the best benchmark; it also keeps total bias near zero 
with smaller directional over/underestimation (slight underestima
tion only in the harshest cases) and maintains higher R2 (retaining 
markedly more explainable variance across all scenarios). The main 
difficulties arise in wet weather where sharp peaks are harder to 
reconstruct - an important direction for future work.

- In event-based sensitivity analysis across the rainfall timeline, the 
model maintained robust performance from the start of rainfall 
through peak and recession phases, with particularly strong results in 
multivariate missing data cases - critical for flood warning reliability 
where underestimation at the peak or overestimation in the falling 
limb can have severe operational consequences.

- When tested on unseen events not included in model training, the 
proposed approach significantly outperformed all benchmark 
methods, demonstrating its generalisation capability for operational 
real-time applications. However, still adapting this system with 
future impact of climate change is recommended for future studies.

- To evaluate the impact of the proposed framework on the flood EWS, 
the results showed that the proposed method maintained predictive 
accuracy comparable to the no-missing-data baseline and signifi
cantly outperformed alternative approaches in terms of the FAR, 
particularly at low missing data percentages where threshold sensi
tivity is most critical.

- With minimal configuration, the framework transferred well across 
five UK basins, keeping gap-detection accuracy high and imputation 
accuracy tight. Performance varied predictably with network ge
ometry and setting: Carlisle (denser, more natural) slightly out
performed RAF Northolt, Tavistock was comparable with a small 
negative total bias, while Shrewsbury and Thetford (wider spacing/ 
more urban) showed modestly higher errors yet stayed within a 
narrow band. This evidences portability and highlights benchmark- 
gauge distance and station density as practical levers for further 
gains.

This study was tested on a single case study and tested again for more 
four other catchments in the UK for the generalisation. However, it 
worth it to be tested for other regions rather than the UK. On the other 
hand, it did not examine the impact of wider network errors, where 
multiple external benchmark stations may also contain erroneous data. 
Although such scenarios appear extreme and rare, they should be 
investigated and are considered a limitation of this work. Furthermore, 
this study evaluated only one well-established method for flood fore
casting. The impact of data imputation on other models, such as LSTM or 
CNN-layered recurrent models, should also be explored in future 
research.

Finally, While the proposed framework demonstrates strong perfor
mance in real-time anomaly detection and multi-strategy imputation, 
one limitation is the absence of direct benchmarking against industry- 
grade operational systems. Although we incorporated widely recog
nised academic models for comparative evaluation, access to pro
prietary platforms and datasets was not feasible within the scope of this 
study. This constraint is acknowledged and is highlighted it as an 
important avenue for future research. Integrating the framework with 
commercial early warning systems and validating its performance using 
large-scale, industry-standard datasets would not only strengthen the 
generalisability of the approach but also accelerate its adoption in 
operational environments. This step represents a critical pathway 
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toward bridging the gap between research innovation and practical 
deployment in flood risk management.
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