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ARTICLE INFO ABSTRACT

Keywords: Accelerated neuromodulation, which involves multiple daily sessions of repetitive transcranial magnetic stim-
Repetitive transcranial magnetic stimulation ulation (rTMS), is increasingly recognized as a time-efficient and clinically effective treatment for major
Treatment

depressive episodes, including treatment-resistant and bipolar depression. Given the considerable variability in
Fast-acting stimulation parfimeters and therapeutic outcomes, thi? study a.ims to provide preliminary insights to optimize
Treatment.resistant depression accelerated excitatory rTMS protocols for enhanced clinical efficacy.

Bipolar depression We performed a meta-regression analysis including controlled and uncontrolled trials reporting the effect of
high-frequency prefrontal cortex accelerated rTMS (arTMS) and intermittent Theta Burst Stimulation (aiTBS) on
depression response rate in patients diagnosed with major depressive disorder, treatment-resistant depression
and bipolar depression (both men and women, all ages).

The systematic search identified 25 arTMS/aiTBS interventions in depression studies with 5 or more partic-
ipants, totaling 810 participants and 722 stimulation sessions.

Meta-regression analysis revealed a significant dose-response relationship in clinical outcomes. Both a higher
number of pulses and a greater total number of sessions (i.e., more than 20) were associated with enhanced
antidepressant effects. Additionally, longer intersession intervals (>50 min) appeared to positively influence
treatment effectiveness. No significant differences emerged between stimulation modalities (iTBS vs. arTMS) or
methods of target localization.

Despite some limitations, these findings provide preliminary evidence of the significant impact that parameter
settings in accelerated rTMS protocols have on clinical outcomes, offering valuable guidance for the future
optimization of neuromodulation strategies in the treatment of depression.

Depression
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1. Introduction

Depression carries significant medical and social burdens, driving
extensive global research efforts aimed at identifying effective thera-
peutic approaches. The limited response to first-line antidepressant
treatments, along with the rising prevalence of treatment-resistant
depression (TRD), has spurred the development of non-invasive neuro-
modulation techniques. Among these, repetitive transcranial magnetic
stimulation (rTMS)—a method that modulates cortical excitability via
magnetic pulses—has emerged as a particularly promising intervention
(Lisanby, 2024).

The introduction of accelerated rTMS (arTMS) protocols—defined as
the administration of >2 sessions per day—has shown considerable
promise in advancing the clinical utility of neuromodulation for the
treatment of depression (Chen et al., 2023). Compared to standard
protocols delivering one session per day, arTMS has demonstrated
comparable efficacy (Shi et al., 2024; Pettorruso et al., 2023), with an
average response rate of 42.4 % (Caulfield et al., 2022). Nonetheless, the
considerable variability in reported outcomes—ranging from 19.4 % to
90.5 %—leaves open the critical question of which specific protocol
parameters most significantly determine clinical efficacy.

Although it is well established that neuromodulation can be
administered through highly heterogeneous protocols, accelerated ap-
proaches introduce additional layers of variability. Standard rTMS
protocols may differ in several key parameters: total dose (defined by
the cumulative number of pulses or sessions); type of stimulation (sin-
gle-pulse trains in conventional rTMS vs. triplet-pulse trains in Theta
Burst Stimulation, TBS); stimulation frequency (in rTMS: low frequency
<5 Hz, typically inhibitory, vs. high frequency >5 Hz, typically excit-
atory; in TBS: continuous [cTBS], inhibitory, or intermittent [iTBS],
excitatory); stimulation intensity (expressed as a percentage of the
resting motor threshold, RMT); and methods of target localization (using
craniometric measurements, structural imaging, or functional imaging).
Accelerated protocols, however, must also define additional parameters,
including the number of sessions delivered per day (ranging from 2 to as
many as 10), the total number of treatment days required to complete
the protocol, and the intersession interval, which can range from 15 min
to 12 h (Caulfield et al., 2022).

Caulfield et al. (2022) recently conducted a qualitative analysis of
various arTMS/aiTBS parameters, highlighting the potential impact of
protocol heterogeneity on clinical outcomes. However, a quantitative
approach is crucial to strengthen our understanding of the underlying
mechanisms and to identify the most effective implementation strat-
egies—thereby supporting the broader integration of arTMS into clinical
practice.

To address this need and inform the development of future protocols
grounded in stronger empirical evidence, we performed meta-regression
analyses on data from both controlled and uncontrolled trials reporting
the effects of accelerated high-frequency rTMS or intermittent TBS pa-
rameters on response rates in patients with depressive disorders. Owing
to differences in their hypothesized mechanisms, we focused solely on
excitatory protocols—which constitute the majority of current arTMS
interventions—to investigate a potential linear effect. Expanding the
analysis to inhibitory and combined protocols, and defining their
respective efficacy domains, was deferred to future studies.

2. Methods
2.1. Protocol

This review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 framework. The study protocol was pre-registered with the Inter-
national Prospective Register of Systematic Reviews (PROSPERO)
(CRD42024552199).
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2.2. Literature search and eligibility criteria

We performed a meta-regression analysis of data from controlled and
uncontrolled trials reporting the effects of accelerated protocols of high-
frequency rTMS or iTBS on depression response rate in patients diag-
nosed with major depressive disorder (MDD), treatment-resistant
depression (TRD) and bipolar depression (BD) (both men and women,
all ages).

We included only studies of TMS interventions targeting the pre-
frontal cortex, specifically the dorsolateral and dorsomedial regions.
Studies with less than 5 participants and studies not reporting the
number of responders were excluded. Only studies assessing depressive
symptomatology with validated depression rating scale (i.e., standard-
ized psychometric instruments) were included. Studies combining
different intervention protocols (e.g., excitatory and inhibitory) were
excluded from the analysis.

Articles published before May 22, 2024 were identified using
PubMed. Key words used included a combination of accelerated or
intensive and transcranial magnetic stimulation or theta burst along with
depress* (abbreviations and synonyms included). Supplementary
searches of relevant systematic reviews were performed manually.

Two reviewers screened titles/abstracts and full texts. Discrepancies
were resolved by consensus with a third reviewer.

2.3. Outcomes and data extraction

Primary outcome: depression response rate (RR), defined as the
proportion of responders (i.e., individuals showing a >50 % reduction in
depressive symptoms) within the total sample. RRs were collected
immediately after treatment (within one week of the final session).

Secondary outcome: depression remission rate (RmR), defined as the
proportion of remitters, namely individuals whose symptoms were
reduced to a level no longer considered clinically significant, based on a
cutoff score on standardized rating scales. As for RRs, RmRs were
collected immediately after treatment.

In addition to the outcomes, two independent authors extracted the
following data from eligible studies: i) Bibliographic identifiers; ii)
Population: number of accelerated rTMS participants, diagnosis, mean
age at baseline, proportion of males; iii) Study design; iv) Intervention:
stimulation location, targeting method, TMS intensity (% motor
threshold), TMS frequency (Hz), train duration (seconds), intertrain
interval (seconds), number of trains per session, total pulses per session,
number of sessions per day, intersession interval (minutes), number of
treatment days, total number of sessions, tapering, neuronavigation,
total pulses, assessment instrument/tool, assessment timing.

Two reviewers extracted all data. Discrepancies were resolved by
consensus with a third reviewer.

2.4. Data analysis

Average RR and corresponding 95 % Confidence Interval (CI) were
calculated using a random-effects meta-analysis including both
controlled and uncontrolled studies (effect size index: event rate).

The extent to which study-level variables explained outcome het-
erogeneity was investigated by fitting multivariable meta-regression
models (random-effects [MM], Z-distribution).

The first model (dosing factor) included the following variables: type
of stimulation (rTMS vs iTBS), method of target localization (neuro-
navigated or not), and total pulses (number in thousands).

To provide guidance on dose distribution (timing factor), we have
developed a model that considers how sessions are differently
“concentrated” across days (total sessions = sessions/day x number of
days) and temporally spaced. This model thus included the following
variables: type of stimulation (rTMS vs iTBS), pulses per session (num-
ber), number of sessions, number of days, and intersession interval (in
minutes).
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The secondary outcome (short-term RmR) was included in a sensi-
tivity analysis to explore whether the main findings were observable
using this alternative parameter. Given that patients with BD may
respond differently to neuromodulation interventions (Gama-Chonlon
et al., 2022), an additional sensitivity analysis was performed excluding
studies that included participants diagnosed with BD.

A subgroup analysis was conducted comparing studies using short
versus long intersession intervals to explore the effect of intersession
interval duration on outcomes. The categorization of intervals was
derived from the distribution of observed durations across studies
(sample median: 50 min). Short intervals were defined as 10-30 min and
long intervals as >50 min. No studies reported intervals between 30 and
50 min.

All analyses were conducted using Comprehensive Meta-Analysis
(Version 4). Risk of bias was evaluated using RoB 2 (Sterne et al., 2019).

3. Results

The PubMed search returned 167 results; among these, 49 were not
relevant to the subject reading title and abstract, and 23 were non-
original articles. Of the 95 full-text articles assessed for eligibility, 68
did not match the inclusion criteria for our review, and 4 were not
available. The manual search identified an additional article that met
the inclusion criteria. Finally, 24 articles were included in the final re-
view (see eFig. 1 for the flow diagram of the study selection process).
The final sample consisted of 25 arTMS/aiTBS interventions with 5 or
more participants, totaling 810 participants and 722 stimulation ses-
sions (see Table 1 for characteristics of the included studies). Risk of bias
assessment indicated that 15 studies were at high risk, 6 had some
concerns, and 3 were at low risk (eFig. 2).

The depression response rate ranged from 19.4 % to 90.5 % across
studies. On average, 52.2 % (95 % CI: 44.2-60.0 %) of participants
achieved a >50 % reduction in depressive symptoms (response)
following the intervention (random-effects meta-analysis), with sub-
stantial/considerable heterogeneity (I2 = 74.8 %). In the 24 studies
assessing remission, on average 32.5 % (95 % CI: 24.9-41.2 %) of par-
ticipants experienced a reduction in depressive symptoms to a level no
longer considered clinically significant.

The extent to which study-level variables could explain heteroge-
neity in RR was explored by fitting random-effects multivariable meta-
regression models. The analyses highlight the central importance of
the ‘total dose’ of TMS pulses in accelerated neuromodulation (dosing
factor; Fig. 1 and Table 2). Results remained consistent when studies
including BP patients were excluded (eTable 1a). Moreover, only the
total number of TMS pulses was significantly associated with the
depression response rate, while demographic and clinical characteristics
of the patients showed no significant effects when controlling for total
pulses (eTable 2).

Additionally, we developed a model that considers how the dose is
distributed (timing factor; Fig. 2). Results show that increasing the total
number of sessions (p < 0.01; Fig. 2a), rather than the number of pulses
per session (p > 0.05; Fig. 2b), appears to be more beneficial. Further-
more, maintaining adequate intersession intervals seems to be crucial (p
< 0.05; Fig. 2c). Long intervals (>50 min) appear to significantly
improve the efficacy of arTMS protocols (subgroup analysis - test of
interaction: Q = 12.581, df = 1, p < 0.001; eTable 3). Notably,
concentrating the dose over a few days does not seem to negatively
impact the efficacy (p > 0.05; Fig. 2d), confirming the idea that, with
adequate intersession intervals, the activation of neuroplastic phenom-
ena by arTMS protocols is not negatively affected by concentrating the
dose over fewer days. When studies including BP patients were
excluded, results remained consistent, showing a significant effect of
both the total number of sessions and the intersession interval on
depression RR (eTable 1b).

When applied to the secondary outcome (RmR), the multivariable
meta-regression models revealed a less consistent pattern compared to
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the findings for RR. While the total dose of TMS pulses remained a key
determinant of remission (eTable 4a), variations in the intersession in-
terval no longer showed a significant effect, and only a non-significant
trend emerged for the total number of sessions (p = 0.07; eTable 4b).
Weaker associations with some stimulation parameters were antici-
pated, given the more limited clinical relevance of acute remission
compared to short-term response rate.

4. Discussion

Given the number of available studies (n = 24) and the substantial
heterogeneity observed in both stimulation parameters and clinical
outcomes (I2 = 74.8 %), we conducted a quantitative meta-regression
analysis. Although the method carries inherent limitations—such as
variability in study design, sample size, and outcome measures—and
further research is needed to validate these findings, the analysis offers
preliminary guidance for researchers and clinicians seeking to select
protocol parameters most likely to enhance therapeutic efficacy.

The analyses highlight the central importance of the total dose of
TMS pulses even in accelerated neuromodulation (Fig. 1), confirming for
the first time through a quantitative approach what was recently pro-
posed (Lefaucheur et al., 2025). Several meta-analyses on standard
rTMS (Hsu et al., 2024) have demonstrated a dose-response relation-
ship, with treatment effects increasing with dose up to a saturation
point, beyond which no further benefit is observed (Yu et al., 2024). This
study provides the first replication of what was previously observed with
standard rTMS, offering clear guidance for developing more efficient
accelerated protocols. It is intriguing that this notion—beyond being
interpretable similarly to pharmacological interventions (i.e., more
stimuli, more effect)}—may also hold meaning in terms of the likelihood
of engaging the target when considered within a brain-state dependent
stimulation framework (i.e., more stimuli, greater probability of
encountering the brain in a receptive state; Sack et al., 2024; Makki-
nayeri et al., 2025).

Furthermore, our analysis suggests that neither the type of stimula-
tion (rTMS vs. iTBS) nor the method of target localization (neuro-
navigated vs. non-neuronavigated) significantly contributes to the
variance in treatment response (Table 2). This observation aligns with
emerging evidence indicating that advanced fMRI-based targeting
methods account for only a limited portion of the variability in neuro-
modulation outcomes (Elbau et al., 2023), in line with the hypothesis
that non-neuronavigated protocols—by engaging broader, functionally
relevant neural networks—may enhance clinical efficacy in the treat-
ment of depressive disorders (Briley et al., 2024). While this finding
should be interpreted with caution, its replication in larger, prospective
studies could have important implications for how healthcare systems
prioritize and allocate resources for the clinical application of neuro-
modulation therapies (Millet et al., 2025).

In examining the temporal distribution of the dose, we developed a
model that incorporates parameters specific to accelerated protocols
(Fig. 2). An identical total number of sessions can be delivered with
varying levels of temporal compression, depending on the number of
sessions per day and the total number of treatment days. Assuming that
dose distribution follows “iso-sessions” curves (total sessions = sessions
per day x number of days), specifying any two of these three parameters
allows for the unique determination of a specific temporal dosing
configuration. The interval between sessions (i.e., intersession interval)
may influence the efficacy of neuromodulatory interventions, indepen-
dently of the total pulse dose. Notably, our findings suggests that the
number of sessions—rather than the number of pulses per session—is
the primary factor driving increased efficacy in accelerated protocols.
Moreover, delivering treatment over a shorter overall duration does not
appear to compromise clinical outcomes.

Our meta-regression insights support the hypothesis that the neu-
roplastic mechanisms engaged by arTMS are not compromised by a
condensed treatment schedule, provided that adequate intersession
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Table 1
Characteristics of depression studies employing arTMS/iTBS.
First author, year =~ Diagnosis  Age Sex TMS TMS TMS Intensity ~ Neuronav. Intersession Pulses per Sessions per Treatm Total Total Sample RR
(mean) (% M) Type Freq. (% MT) (Y/N) Interval (min) session (n) day (n) duration sessions (n) pulses (n) size
(Hz) (days)

Baeken et al., TRD 49.3 38.0 arTMS 20 110 N 17.5* 1560 5 4 20 31200 20 0.350
2013

Barnes et al., MDD 46.4 25.0 arTMS 10 120 N 240* 5625 2 10 20 112500 109 0.596
2023

Blumberger MDD 40.7 33.9 iTBS - 120 Y 60 600 2 30 60 36000 88 0.443
et al., 2021

Brocker et al., MDD/BD 40.7 22.2 iTBS - 80 N 20 1782 2.5 8 20 35640 9 0.556
2019

Bulteau et al., BD 52.7 41.7 iTBS - 80 Y 180 990 2 15 30 29700 12 0.750
2019

Cole et al., 2020 TRD 44.9 42.8 iTBS - 90 Y 50 1800 10 5 50 90000 21 0.905

Cole et al., 2022 TRD 49.0 64.0 iTBS - 90 Y 50 1800 10 5 50 90000 14 0.714

Dardenne et al., MDD 73.9 0.0 arTMS 20 110 N 15 1560 5 4 20 31200 10 0.400
2018

Desbeaumes MDD 57.4 49.0 arTMS 20 110 N 90 3000 2 10 20 60000 73 0.452
Jodoin, 2019

Duprat et al., TRD 41.7 29.8 iTBS - 110 Y 15 1620 5 4 20 32400 47 0.277
2016

Filipcic et al., MDD 52.0 44.0 arTMS 18 120 N 560" 1980 2 10 20 39600 16 0.625
2021a

Filipci¢ et al., MDD 56.0 50.0 arTMS 18 120 N 560" 1980 2 15 30 59400 12 0.833
2021b

Fitzgerald et al., MDD 48.2 43.1 arTMS 10 120 N 22.5%* 3500 3 6 18 63000 59 0.203
2018

Fitzgerald et al., MDD 44.0 47.2 iTBS - 120 N 15 600 3 7 21 12600 36 0.278
2020

Holtzheimer TRD 51.0 64.3 arTMS 10 100 N 50 1000 7.5 2 15 15000 12 0.500
et al., 2010

Kong et al., 2023 MDD 24.0 25.0 iTBS - 120 Y 120° 600 2 14 28 16800 32 0.780

Loo et al., 2007 TRD 49.8 47.4 arTMS 10 110 N 120 1500 2 10 20 30000 18 0.333

McGirr et al., TRD 47.7 25.0 arTMS 10 120 N 60 3000 2 10 20 60000 27 0.556
2015

Modirrousta MDD 45.4 47.0 arTMS 10 110 N 15 3000 2 15 30 90000 17 0.824
et al., 2018

Quinn et al., MDD 65.0 12.0 iTBS - 120 Y 50 1800 5 9 45 81000 25 0.520
2023

Schulze et al., MDD/BD 39.7 24.6 arTMS 20 120 N 80 3000 2 10 20 60000 65 0.415
2018

Wang et al., 2022 TRD 46.0 58.0 arTMS 15 110 N 60 3000 5 5 25 75000 31 0.645

Williams et al., MDD/BD 56.0 33.3 iTBS - 120 Y 50 1800 10 5 50 90000 6 0.833
2018

Zhang et al., MDD 14.8 90.3 iTBS - 100 Y 10 600 2 10 20 12000 31 0.194
2024

Zhao et al., 2024 TRD 18.6 27.3 iTBS - 100 Y 50 1800 10 5 50 90000 20 0.650

Note. *from 15 to 20 min, **from 15 to 30 min; “from 120 to 360 min; *from 480 to 640 min; °minimum 120. Only interventions targeting the PFC were included; all but one targeted the DLPFC, with one targeting the
DMPEFC (i.e. Schulze et al., 2018). Abbreviation. arTMS: accelerated repetitive Transcranial Magnetic Stimulation; BD: Bipolar Disorder; iTBS: Intermittent Theta Burst Stimulation; MDD: Major Depressive Disorder; MT:
Motor Threshold; RR: Response Rate (depression); TRD: Treatment-Resistant Depression; DLPFC: dorsolateral prefrontal cortex, DMPFC: dorsomedial prefrontal cortex.
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Total number of pulses (thousands)

4.0-

-4.0-

Coeff=0.0146 (95%Cl: 0.003, 0.026); p=0.011
| |

| | | ! |
a0

0 20 4an /0 100 120

Fig. 1. Bubble plots with fitted meta-regression line (black) and 95 % CI (grey)
showing the logit depression response rate against the total number of pulses
(thousands) (n = 25 studies). R? (percentage of variance explained by the pa-
rameters): 11 %. Bubble sizes are proportional to the study weights. RR=Res-
ponse Rate.

intervals are maintained. Specifically, intervals of at least 50 min appear
to significantly enhance treatment efficacy (Cole et al., 2024). These
results align with the principles of spaced learning, which posit that

Journal of Psychiatric Research 192 (2026) 289-295

temporally distributed stimulation promotes synaptic consolidation and
memory retention more effectively than massed training (Smolen et al.,
2016). Consolidation theory suggests that synaptic plasticity is maxi-
mized when a subsequent trial follows the decay of the effects induced
by the first. A refractory period has been proposed, during which pre-
mature stimulation fails to elicit additional potentiation. Mechanisms
hypothesized to underlie this time-dependent LTP consolidation include
priming and the activation of transcriptional processes. Although based
on a meta-regression framework, our analysis provides preliminary
clinical evidence consistent with laboratory findings that an
inter-stimulation interval of approximately 40-50 min optimally en-
hances LTP via successive theta-burst stimulations, whereas shorter in-
tervals lack additive effects (Kramar et al., 2012; Lynch et al., 2013). In
the context of neuromodulation, appropriately spaced sessions may
therefore optimize plasticity-related processes and contribute to more
durable clinical outcomes.

In conclusion, this study provides valuable insights that may guide
the development of more effective accelerated excitatory neuro-
modulation protocols. The analysis presents several limitations, stem-
ming both from the inclusion of controlled and uncontrolled
studies—which introduces methodological heterogeneity—and from the
observational nature of meta-regression, which precludes causal infer-
ence. Furthermore, the results cannot be generalized to all intervention
types, as the efficacy of inhibitory protocols may be influenced by
distinct factors. Nonetheless, the number of sessions and intersession
intervals have preliminarily emerged as key determinants of treatment
outcomes, whereas the clinical relevance of targeting precision (e.g.,

Table 2

Main result for Model 1 (dosing factor)® (25 interventions; R? = 11 %).
Covariate Coefficient SE 95 % CI Lower 95 % CI Upper Z value p-value#
Intercept —0.4679 0.3910 —1.2342 0.2984 -1.20 0.2314
TMS type: arTMS —0.0333 0.6441 —1.2958 1.2292 —0.05 0.9587
Neuronavigation: No —0.3449 0.6479 —1.6147 0.9249 —0.53 0.5945
Total pulses (thousands) 0.0146 0.0057 0.0034 0.0258 2.56 0.0106

Notes. “Random effects (MM), Z-distribution, Logit Response rate; #2-sided p-values. Abbreviations. arTMS: accelerated repetitive Transcranial Magnetic Stimulation;

CI: Confidence interval; SE: standard error.

A .
Number of sessions
4.0-
2.0-
0.0-
2.0~
-4.0-
Coeff=0.0438 (95%Cl: 0.0118, 0.0758); p=0.0074
0 10 20 30 40 50 60
C L )
Intersession interval (minutes)
4.0-
2.0-
0.0-
2.0-
-4.0-
Coeff=0.0029 (95%Cl: 0.0005, 0.0054); p=0.0191
-100 0 100 200 300 400 500 600 700

70

4.0~

D

Number of pulses per session

Coeff=0.0001 (95%Cl: -0.0002, 0.0004); p=0.5605

] ] ] ]
0 1000 2000 3000 4000 5000 6000 7000

Number of days

Coeff=-0.0342 (95%Cl: -0.0923, 0.0239); p=0.2482

-5 0 5 10 15 20 25 30 35

Fig. 2. Bubble plots with fitted meta-regression lines (black) and 95 % CIs (grey) showing the logit depression response rate against moderators: a) total sessions, b)
pulses per session, ¢) intersession interval, d) days of treatment (n = 25 studies). R? (percentage of variance explained by the parameters): 20 %. Bubble sizes are

proportional to the study weights. RR=Response Rate.
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neuronavigation) may have been overemphasized. If confirmed by
future research, these findings could play a crucial role in the optimi-
zation of arTMS protocols, ultimately increasing their efficacy in the
treatment of clinical depression.
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