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CrossMark
Abstract

Scattering amplitudes of tr(¢?) theory can be encoded as the canonical form of
the Stasheff associahedron. Similarly, the flat-space wavefunction coefficients
of the same theory are captured by the recently proposed cosmohedron, a non-
simple polytope associated to the Stasheff associahedron; unitarity and locality
of the amplitudes and wavefunction coefficients are then encoded in the fac-
torisation properties of faces of these polytopes. In this paper, we argue that
these desirable properties of the Stasheff associahedron are shared by a wider
class of polytopes called acyclonestohedra and generalise the cosmohedron
construction to arbitrary acyclonestohedra. Acyclonestohedra are generalisa-
tions of Stasheff associahedra and graph associahedra defined on the data of
a partially ordered set or, more generally, an acyclic realisable matroid on a
building set. When the acyclonestohedron is associated to a partially ordered
set, it may be interpreted as arising from Chan-Paton-like factors that are
only (cyclically) partially ordered, rather than (cyclically) totally ordered as
for the ordinary open string. In this paper, we argue that the canonical forms
of acyclonestohedra encode scattering-amplitude-like objects that factorise
onto themselves, thereby extending recent results for graph associahedra, and
construct truncations of acyclonestohedra into acyclonesto-cosmohedra whose
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canonical forms may be interpreted as encoding a generalisation of the cosmo-
logical wavefunction coefficients. As a byproduct, we provide evidence that
acyclonesto-cosmohedra can be obtained as sections of graph cosmohedra.

Keywords: cosmohedron, positive geometries,
cosmological wavefunction coefficient, associahedron

1. Introduction and summary

Various functions that arise in physics—scattering amplitudes, correlation functions and wave-
function coefficients—are often characterised by factorisation channels. In certain kinematic
limits, these functions become singular, and the residues at these singularities factorise into
simpler components. This behaviour ultimately reflects the unitarity and locality of the under-
lying physical theory [AHRT18]. The positive geometries programme (reviewed in [F21,
Lam?24a]) aims to manifest these properties by encoding the physical quantity of interest as the
canonical form of a positive geometry [AHBL17, AHT14]. Within this framework, going to
a factorisation channel corresponds to approaching a boundary facet of the positive geometry.
We will focus on positive geometries given by convex polytopes. However, not every convex
polytope is suitable in the sense that the faces may not factorise into smaller polytopes of the
same class. Thus, one can ask the question: which classes of polytopes are ‘physics-like’ in
that their faces factorise as products of simpler polytopes of the same class?

In this article, we propose that acyclonestohedra [MPP24, MPP25] provide a large class
of such physics-like polytope and thus offer an approximate answer to this question. This
family includes, as special cases, the classical associahedron which describes the scattering
amplitudes of biadjoint ¢* theory [AHBHY 18], as well as the graph associahedra of [DHV11]
that appear in cosmological contexts [AHFV24]. They also encompass the poset associahedra
of [Gal24] which have not yet found application to physical processes.

Furthermore, we generalise the construction of graph cosmohedra in [GL25] to define
acyclonesto-cosmohedra; these further generalise the classical cosmohedron in [AHFV24].
The key realisation being that for any polytope with faces indexed by nested sets, the nes-
ted sets themselves come equipped with a Hasse diagram which can be further imbued with
nested sets, these ideas are advertised in figure 1. As a byproduct of our results, we provide
evidence that acyclonesto-cosmohedra can be obtained as sections of graph cosmohedra, this
generalises similar observations made for the acyclonestohedra [MPP24].

This paper is organised as follows. In section 2, we argue that acyclonestohedra repres-
ent a general class of polytopal positive geometries manifesting locality and unitarity as well
as other desirable physical properties. In section 3, we review the definition of acyclonesto-
hedra and associate rational functions, called amplitubes, that reflect the exotic kinematics of
the acyclonestohedra. In section 4, we associate generalisations of the cosmohedron to acyc-
lonestohedra and present realisations and examples thereof.

2. Polytopes that model physical processes

As emphasised, in order for the canonical form of a convex polytope to model physical
processes, there are several desired properties, all modelled on the Stasheff associahedron
describing the scattering amplitudes of biadjoint cubic scalar field theory [AHBHY 18]:



J. Phys. A: Math. Theor. 58 (2025) 465403 S Forcey et al

Figure 1. The acyclonestohedron (left) and associated acyclonesto-cosmohedron (right)
for nestings of the poset K> 3. The acyclonestohedron is shown as a realisation in
[Sac23], and both polytopes as realisations here in figure 4. One vertex of each polytope
is circled, with the corresponding maximal nesting 7 of K> 3 shown below and maximal
nested nesting (7,.\") shown above.

e Its faces should factorise into products of smaller polytopes of the same class. For example,
the faces of the Stasheff associahedron factorise into products of lower-dimensional
associahedra.

e It should be obtained as a compactification (or blow-up or truncation) of the interior of a
simpler polytope modelling a colour or flavour structure. For example, the Stasheff associ-
ahedron is obtained as a compactification of the simplex [AHBHY 18], which arises directly
from the Chan—Paton factors of open strings.

e It should have a construction in terms of intersections of half-spaces associated to
Mandelstam-like variables and positive cut parameters. For example, the Stasheff asso-
ciahedron can be obtained as an intersection of half-spaces associated to the planar
Mandelstam variables [AHBHY 18].

We argue that these criteria are all met by the class of acyclonestohedra.

2.1. Locality and unitarity

Factorisation is an essential ingredient of the positive-geometries programme, encompassing
both unitarity and locality of physical systems. For graph associahedra [CD06], it has been
argued [GL.25] that the locality is given by the fact that the denominators for the correspond-
ing amplitude-like quantities (‘amplitubes’) correspond to connected subgraphs while unitar-
ity corresponds to the fact that the residues of amplitubes are given by products of simpler
amplitubes.
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acyclonestohedra

nestohedra

associahedra

poset associahedra

Figure 2. Venn diagram of different classes of polytopes whose faces factorise.
Acyclonestohedra include all other classes shown. Operahedra, as defined in [LA22], are
poset associahedra when the Hasse diagram of the poset is a tree. In that case tubings
on the line graph are all compatible with the poset and they are thus included in the
intersection of graph associahedra and poset associahedra.

Table 1. Comparison of different classes of polytopes whose faces factorise.

concrete (graph, poset) abstract (set systems)

unoriented graph associahedra [CD06] nestohedra [Pos09, FK04, FS05]
partially oriented poset associahedra [Gal24] acyclonestohedra [MPP24]

However, there exist classes of polytope beyond graph associahedra which also have this
factorisation property. In one direction, the properties that characterise the tubes and tubings in
terms of which graph associahedra are defined can be axiomatised into the notion of a building
set; these define a generalisation of graph associahedra known as nestohedra [Pos09, FK04,
FS05, Zel06]3. In another direction, the poset associahedra introduced in [Gal24] also have
boundaries which factorise into lower poset associahedra, but in a way not captured by the
axiomatics of building sets. Subsequently, it was realised in [MPP24] that poset associahedra
are naturally associated to building sets that carry additional orientation data, the authors axio-
matised this structure into the notion of an oriented building sets. The oriented building sets
then yield a broader class of polytopes known as acyclonestohedra, which encompass both the
nestohedra and poset associahedra, see figure 2 and table 1. Thus, acyclonestohedra appear to
us to be a large and natural class of polytopes that encapsulate the phenomenon of factorisation.

In fact, the definition of oriented building sets is easy to motivate, which we do so before
launching into formal definitions in section 3. A poset may be represented by the corresponding
Hasse diagram, which is a directed acyclic graph G; the poset associahedron’s faces correspond
to a subset of the faces of the graph associahedron for the line graph L(G), where some would-
be faces are eliminated according to a criterion depending on the orientation data of G. Thus,
to generalise graph associahedra and nestohedra, one must keep track of the orientation data

3 Nestohedra do not generalise pseudograph associahedra [CDF11], whose tubes do not form building sets.
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in a way that is consistent with factorisation—that is, in some structure that behaves naturally
according to restriction and contraction, the same way that building sets restrict and contract
naturally (definition 1). A combinatorialist will immediately realise that oriented matroids fit
the bill, such that an oriented building set is a building set equipped with an oriented matroid
(definition 3).

Finally, we note in passing that every acyclonestohedron may be realised as a slice of a
certain graph associahedron [MPP24, definition 2.17], such that their amplitubes can always be
realised as spurious poles inside certain representations of amplitubes for graph associahedra.

2.2. Order polytope and generalised colour

We wish to consider generalisations of the Stasheff associahedron that capture aspects of phys-
ics. The Stasheff associahedron can be obtained as a certain compactification or blowup of the
interior of a simplex [AHBHY 18], which captures aspects of colour structure. We argue that
a natural generalisation to this picture is provided by (generalised) order polytopes, which are
non-linear (in the sense of no longer being a linear order) generalisations of the simplex; their
compactifications are the Galashin poset associahedra and, more generally, acyclonestohedra.
Let us first recall the origin of the simplex from colour symmetry. Suppose that we have
a theory of massless fields that have a u(N) adjoint colour (or flavour) symmetry, so that we
may work with colour-ordered n-point scattering amplitudes. If the theory arises as a limit of an
open-string theory in which the colour factor is realised by Chan—Paton factors at the boundary
of the open string, then the tree-level amplitude is associated to the open string moduli space

Mo, (R) = Mo, (R) /SL(2R), (1
where Mo,,l(R) is the space of cyclic-order-preserving maps

o: {l,...,n} = RP', )
where {1,...,n} is given the standard cyclic order. For n > 3, the fundamental unit cell

(amongst (n — 1)!/2 unit cells [Dev99]) in the SL(2;R) action may be identified by the gauge
choice

og: 10, n—1—1, n+— 00, 3)

so that the unit cell is given by (ordinary) order-preserving maps
o:{2,...,n=2} = (0,1), 4

which is the simplex. The kinematic associahedron then naturally arises [AHBHY 18] as a
natural compactification or blowup of (the interior of) the simplex. That is, the simplex (and
its compactification, the associahedron) arises as a natural consequence of the colour structure
given by the open string.

This identification may also be seen directly from the bulk rather than the worldsheet. It
is well known [Kaj02, Kaj07, DIMS20] that open string field theory (and quantum field the-
ories obtained as its limits) are, in general, given by an A,-algebra; more generally, in the
homotopy-algebraic approach to scattering amplitudes [HZC17, JRSW19, JMR+19, Arv19,
JKM+20, BKJ+21, BKJ+22], the L,-algebra of a quantum field theory theory with su(N)
adjoint fields may be factorised into an A, -algebra (the colour-stripped field theory) tensored
with the colour Lie algebra su(N) [JMSW20, BKJ+21]. The A,-algebra, in turn, is governed
by the A.-operad, whose space of (n — 1)-ary operations (corresponding to n-point amp-
litudes) may be realised as the (n — 2)-dimensional Stasheff associahedron (see e.g. [Vall4]).

5
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Similarly, cyclohedra and permutohedra may be obtained as compactified moduli spaces of
configurations [LTV10] and may be interpreted as corresponding to generalised colour.

We would like to extend this construction to a much broader class. An immediate choice is
to generalise from the totally ordered set {1,2,...,n} in (2) to an arbitrary cyclically partially
ordered set (or cycloposet for short)*. Let P be an arbitrary cycloposet, and consider the space
of cyclic-order-preserving maps

o: P— RP! (5)

modulo SL(2;R). Now, using the special conformal generator of the SL(2; R) gauge symmetry,
we may pick a particular element T € Pand map o(T) = co. Then P := P\ {T } forms a poset
(with partial order i < j iff R(i,j, T)), and o reduces to an order-preserving map

c: P—>R. (6)

Using the translation generator of SL(2;R), we may require that

> (i) =0. (7
icP
Finally, using the dilatation generator of SL(2;R), we may require that (assuming < is
nontrivial)

dool)—ol)=1, ®)

ijep

i<j
where i < j (read as ‘i is covered by j’) means that i < j and that there does not exist a k € P
such that i < k <j [Aig79, p 13] [DP02, p 11 and section 1.14]. The space of such maps then
forms the order polytope [Sta86, Gal24], which is a convex simple polytope of dimension
#P — 2.5 When P is a totally cyclically ordered set, this reduces to the simplex found in open
strings. A natural compactification / blow-up of the interior of the order polytope then produces
Galashin’s poset associahedra [Gal24]°, which form a large class of acyclonestohedra.

We can also directly interpret the ‘generalised colour’ given by order polytopes directly

from a bulk field-theoretic picture rather than from the open string worldsheet. For a field
theory with only adjoint fields ¢y, ¢», ..., one writes the Lagrangian as, for example,

L= /Tr (0,0i0" &' + N bidin + Nuabidydui+ -+ ) - 9

The entire action is enclosed inside a big trace, and inside it one may treat the adjoint-valued
fields ¢; as non-commuting variables; modulo cyclicity of the trace, the Lagrangian is a non-
commutative associative polynomial of the fields (with coefficients in differential operators).
When gauge symmetry (and thus the Batalin—Vilkovisky formalism) is involved, one should
relax the associativity up to homotopy; the different ways of multiplying terms, such as

((9:i9j) D) D1 ~ (Giy) (Prpr) ~ i (&5 (dxr)) ~ -+, (10)

4 A cyclic partial order on a set S is a ternary relation R(x,y,z) that is cyclically invariant (R(x,y,z) <=
R(y,z,x)), antisymmetric (if R(x,y,z), then not R(y,x,z)), and transitive (if R(x,y,w) and R(y,z,w), then R(x,z,w))
[Miil74, Meg76].

5 More precisely, this gives Galashin’s generalisation [Gal24] of the order polytope; when P is bounded above and
below, this reduces to Stanley’s original definition [Sta86] (see [Sac23, remark 3.1]).

6 These are not to be confused with the earlier Devadoss—Forcey—Reisdorf—Showers poset associahedra [DFRS15];
it is not clear whether the faces of the latter class factorise due to the filledness condition.
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then define the vertices of the Stasheff associahedron, and the homotopies that relate them
define the faces of the Stasheff associahedron. Thus, one may only multiply symbols that are
adjacent—that is, that correspond to edges in a path graph. One may then replace the path graph
with a more general graph; then one may interpret the colour structure as ways to multiply
generalised words, where one may multiply symbols only along edges [Sac23, section 2.3]
(see [LA22, section 2.1]).

Poset associahedra, however, do not encompass examples, such as the cyclohedron, which
also arise as compactifications of moduli spaces [LTV10]. More generally, as generalisations
of simplices and order polytopes, we may consider positive cells (topes) in a hyperplane
arrangement. Suppose that we have a collection of vectors vy,...,v; € V= R". These vectors
then induce a collection of hyperplanes in the dual space V*, where each vector v; corresponds
to the hyperplane

H,:{)\GV*|)\(V,):O}CV* (11)

Furthermore, each hyperplane comes with a sign, that is, V* is partitioned into V* = H; U
H;U Hf where

HE = {\e V| £ A(v) > 0}. (12)

The data of such ‘signed’ hyperplanes defines a realisable oriented matroid on the set
{v1,...,v}; this oriented matroid is acyclic if the positive tope (;H;” C V* is nonempty.
The positive tope then serves as a generalisation of the simplex and the order polytope: the
order polytope is the special case where the realisable oriented matroid arises as the oriented
matroid associated to the Hasse digraph of a poset. The acyclonestohedron is then obtained as
a compactification or blowup of this positive tope [MPP24, theorem 4.1].

2.3. Kinematic variables

In a Poincaré-invariant field theory in d spacetime dimensions, for an n-point scattering
amplitude with incoming momenta py,...,p,, one can form the () Mandelstam variables
sij =pi-pj. If d>n—1, then the complete set of identities amongst them consists of the n
conditions of the form

S pep=0 (13)
Je{l o\ {i}

for each i. Thus, there are (}) —n = in(n—3) independent Mandelstam variables. If the
particles all transform under the adjoint representation of a colour symmetry, then one can
require that py,...,p, be cyclically colour-ordered, and then these independent variables are

naturally parameterised by the %n(n — 3) planar Mandelstam variables

Xiji=(pit-+pia)’  (I<i<j<ni+1#) (ij)#(n). (14

The fact that these planar Mandelstam variables are manifestly positive means that the kin-
ematic associahedron (for biadjoint ¢ theory) is obtained by a truncation of the simplex

X; ;> 0. (15)

These planar Mandelstam variables are then in bijection with the tubes of the path graph
L(P,—1) = P,_7), thus providing a natural kinematic interpretation of the (n — 3)-dimensional
Stasheff associahedron; these tubes are certain connected intervals in the totally ordered set
with n — 1 elements, whose Hasse diagram is P,_;.

7
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When we generalise from the path graph P,_; (the Hasse diagram of the totally ordered
set with n — 1 elements, or the cyclically totally ordered set with n elements with an element
at ‘infinity’ removed) to Hasse diagrams of arbitrary posets (corresponding to Galashin poset
associahedra), we continue to have tubes associated to certain connected intervals’; these may
be considered poset generalisations of the planar Mandelstam variables. In the full generality
of arbitrary acyclonestohedra, this condition is abstracted to even more in terms of oriented
matroids and building sets; however, one may still interpret a k-dimensional acyclonestohedron
as describing a k + 3-point process (the 3 corresponds to the dimension of SL(2;R) that can
be gauge-fixed); the dimension k is given by the dimension of the span of the vectors realising
the oriented matroid.

Note that, in general, the number of independent kinematic variables (i.e. number of facets)
for an (n — 3)-dimensional acyclonestohedron can be greater than or less than $n(n—3);
for example, at n =35 points (that is, in two dimensions), both the triangle (i.e. simplex)
and hexagon (i.e. permutahedron) are possible in addition to the pentagon (i.e. Stasheff
associahedron).

3. Acyclonestohedra and their realisation

Having argued that acyclonestohedra are a natural class of physics-like geometries, we now
move on to the formal definition of these polytopes. As we will show the canonical forms of the
acyclonestohedra allow us to define amplitude-like functions called amplitubes. We illustrate
these ideas through multiple examples.

3.1 Building sets and nestohedra

We begin by defining building sets and nestings, which axiomatise the notion of tubes and
tubings on a graph. In general, the terms nesting, nested set, tubing, and piping are closely
related: the first two are synonymous and the the second two are specializations to graphs and
posets respectively.

Definition 1 ([Pos09, FK04, FS05]). A building set B on a ground set S is a collection of
nonempty subsets of S such that

e forany s € S, then {s} € B;
e whenever B,B’ € Bwith BNB' # &, then BUB’ € B.

A connected component of a building set (S, B) is an inclusion-maximal element of B; the set
of connected components is denoted by max(B) C B. A nesting N of a building set B is a
subset max(B) C N C B such that

e whenever B,B’ ¢ N/, theneither BC B’ B’ CBor BNB' = &;
e for any finite collection of pairwise disjoint elements By, ...,B; € N (with k > 1), then B; U
---UBy € B.

The collection of nestings { "\ max(B) | NVis nesting} under reverse inclusion define the poset
of faces of a convex polytope called the nestohedron. The facets of the nestohedron are labelled

7 namely, sets 7 such that whenever i,j € T and i < k < j, then k € T; these are called convex subsets in the poset

literature.
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by nestings of the form {B} for B € B. These facets factorise into products of two nestohedra
defined on the restriction and contraction of B to {B}. Where, for any subset R C S, the restric-
tion B|g and contraction B g of BB to S are defined as the building sets

B :={B€B|BCR}, B/r:={B\R|R2BeB}. (16)

Example 1 ([CD06]). Let G be a simple graph with vertex set S = V(G). We define the graph-
ical building set 55 to be the collection of subsets of S whose induced subgraphs of G are
connected. The corresponding nestohedron, as defined in [Pos09], is the graph associahedron
of G. The connected components of the graphical building set correspond to the connected
components of the graph®. Given a set of vertices R C S, then B |r and B are the graphical
building sets of the induced subgraph of R in G and the reconnected complement of R in G.

3.2. Oriented matroids

A matroid can be seen as an abstraction of both linear independence in vector spaces and acyc-
lic edge subsets in graphs, while oriented matroid can be seen as a refinement that incorporates
direction, generalising vectors over ordered fields and acyclic edge subsets in directed graphs
[BLVS+99]. Note, oriented matroids and their connection to amplitudes have recently been
studied in [Lam24b, EL25].

Definition 2. A signed set X = (X,0 is a Z,-graded set, i.e. a set X together with a an
assignment of signs o: X — {41,—1} to every element. We may formally write such a set
asX=X"—X" =x;+x+---—y; —y»—--- where x1,xs,... € X are the elements with
degree +1 and y;,y,,... € X~ are the elements with degree —1; thus —X = X~ — X* is the
signed set with all degrees reversed. An oriented matroid (S,C) on a finite set S is a collection
of signed sets (called signed circuits) C such that

e J¢C

e if Cc(C,then —CecC

eifXcCaY,andXTUX =YtUY ,thenX=YorX=-Y

e if X, Y€ C with X# —Y and s € XT NY~, then there exists a Z € C such that 7ZF C (XiU

Y5)\ {e}.

Given a subset R C S, the restriction (S,C) g and contraction (S,C) /g are the oriented matroids
given by

(8,C) g = (R,{CeC|CTUCT CR}), (17

(S,C)/R = (S\R,{(C*\R)—(C*\R) |C€C}) (18)
respectively. An oriented matroid is acyclic if it does not have a signed circuit whose elements
are all positive.

Example 2 (Oriented matroid from matrix). Let M be an m x n matrix over R (or, more
generally, any ordered field). Consider the collection of linear dependencies of the columns

8 Note that the original definition in [CD06] allowed proper subsets of connected components to be included in each
nesting. Under the present definition this is equivalent to including in the building set the base set S, so that S itself
becomes the only connected component. Thus, for instance, we find the simplex from a single edge hypergraph; see
example 8.
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of M, i.e. coefficients \ € R” such that M\ = 0; some of them are minimal in that \ has the
fewest nonzero components under the obvious partial ordering. Let S = {1,...,n}. For each
minimal linear dependency, we can associate the signed set whose positive elements are i € S
such that \; > 0 and whose negative entries are j € S such that \; < 0. The collection of signed
sets associated to minimal linear dependencies forms an oriented matroid over S. An oriented
matroid definable from a matrix is called realisable.

Example 3 (Oriented matroid from hyperplane arrangement). The preceding example can
be more geometrically phrased in terms of a hyperplane arrangement as follows. Let V be a
finite-dimensional real vector space, and let ay,...,a; € V* be a finite set of linear functionals
on V. This defines a hyperplane arrangement {kera, ... ,kera;} on V together with the choice
of a positive half-space H;” = {v € V|a;(v) > 0} for each hyperplane H; = kera,. The collec-
tion of hyperplanes partitions V into strata depending on whether the values of (aj,...,a;)
are positive, negative, or zero, which correspond to the covectors of the associated oriented
matroid; circuits may be defined in terms of covectors [BLVS—+99].

Example 4 (Oriented matroid from directed graph). Let G be a directed pseudograph (i.e.
self-loops and multiple parallel arcs are allowed). Then the graphical oriented matroid is the
matroid on the set of arcs E(G) whose circuits C are minimal circuits, with C being the edges
oriented along the circuit and C_ being the edges oriented opposite to the circuit. Restriction
and contraction correspond to restriction and contraction of a subset of arcs. The graphical
oriented matroid is acyclic if and only if the directed pseudograph is acyclic. Every oriented
matroid arising from a directed pseudograph is realisable.

3.3. Oriented building sets and acyclonestohedra

We now finally define oriented building sets and acyclonestohedra, their ABHY-like realisa-
tions, and their associated amplitubes.

Definition 3 ((MPP24]). An oriented building set (S,15,C) is a building set (S, B) together with
an oriented matroid (S,C) on the same ground set S. An acyclic nesting of an oriented build-
ing set (S, B,C) is a nesting N C B of (S, B) such that, for every B € N, the oriented matroid
((5,C)5) JU{NEN | NCB) is acyclic (the notation | means the union of all elements of a col-
lection of sets). When (S,C) is realisable, the collection { NV \ max 3| Nis an acyclic nesting}
under reverse inclusion is the poset of faces of a convex polytope called the acyclonestohedron

of (8,B,C)°.

From the definition, it follows that the unique codimension 0 face (the interior of the poly-
tope) is the unique nesting max 3 (which is trivially acyclic), whilst the facets (codimension 1
faces) are in canonical bijection with those sets B € 3 such that the oriented matroids (S,C) s
and (S,C) /5 are both acyclic, and the vertices (maximal-codimension faces) are in canonical
bijection with acyclic nestings that are maximal under inclusion.

If the oriented matroid (S,C) is realised by the vectors (a;);cs that span a k-dimensional
vector space, the dimension of the acyclonestohedron is given by k — | max |, where | max B|
is the number of connected components of B. Given a realisable oriented building set (S, 3,C)
and a facet given by B € B such that (S,C) p and (S,C) 5 are both acyclic, then the facet of

9 The fact that this poset actually corresponds to a convex polytope is not obvious, but is shown in [MPP24] under the
assumption that C is realisable.
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the acyclonestohedron corresponding to B factorises as

facet for B = acyclonestohedron for (S, B 5,C )
x acyclonestohedron for (S,B/5,C/p) .

This may be applied recursively to higher-codimension faces.

Example 5. Suppose that (S, B) is a building set (for example, given by a graph or hypergraph).
Then one can always take the trivial oriented matroid C = &, which can be realised by an S-
indexed collection of linearly independent vectors. This trivialises the acyclicity condition
so that the acyclonestohedron reduces to the nestohedron for (S, 1); the graph associahedron
[CDO06] is a special case.

Example 6 ([Gal24]). Given a poset P, let the set of its covers be S := {(i,j) € P?|i < j}; this
is, equivalently, the set of edges of the Hasse diagram G of P. On S, we may construct the
building set (S, ) associated to the line graph L(G) as well as the realisable oriented matroid
(S,C) associated to the digraph structure of G. Then the acyclonestohedron corresponding to
the oriented building set (S, B,C) is the Galashin poset associahedron for P.

3.4. ABHY-like realisations of acyclonestohedra and amplitubes

The mathematics literature [Sac23, MPP24, MPP25] contains realisations of acyclonestohedra
in terms of intersections of half-spaces that generalise the ABHY-like realisations of graph
associahedra given in [GL25], in terms of which we may define amplitude-like functions,
called amplitubes, defined from the associated canonical forms.

Suppose that we are given an oriented building set (S,5,C) and that C is realised by a
collection of vectors a; € V* that span a finite-dimensional real vector space V*. Foreach B € 3
such that (S,C) 5 and (S,C) 5 are both acyclic, define the kinematic variable Xp: V — R as
the affine function

XB = Za,- — Z cp/, (19)

icB B'eB

B'CB
where the cp are nonnegative real numbers (the cut parameters) for each B € BB, chosen such
that cg > 0 is a positive real number whenever B contains more than one element and cg = 0
whenever B contains only one element. In particular, we have a cut parameter c,, for each
connected component x € max 3. Note that the X are not linearly independent if the vectors

a; realising the oriented matroid (S,C) are not linearly independent; one has the relations

> Ni|Xg— > cp | =0whenever Y \a; =0. (20)
i€B B'eB i€B
B'CB

Then the ABHY-like realisation of the acyclonestohedron is given by the set of points v € V
such that

Xp (v) > 0 for every B € B such that (S,C)  and (S,C)  are acyclic en

X,; (v) = 0 for every k € max 3.
This manifestly generalises the ABHY-like realisation for graph associahedra given in [GE25].
On the other hand, when the vectors realising the oriented matroid are not all linearly inde-
pendent, we must impose additional conditions on the cut parameters cp in addition to their

1
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positivity—that is, in physical terms, there are additional exotic constraints amongst the
Mandelstam variables. A sufficient condition to satisfy these exotic kinematic constraints is to
impose

cp L cpr (22)

whenever |B| < |B’[; to be precise, it suffices to have cp/cp < R, where R > 1 is a certain
constant depending only on (S, B,C) [MPP24, definition 2.16].

Given this realisation, we may define the amplitube associated to the realisable oriented
building set (S, 5,C) as

Asso=>_]] XLB (23)

T Ber

where the sum ranges over the acyclic nestings of (S,5,C) that are maximal under inclusion
(i.e. the vertices of the acyclonestohedron). This manifestly generalises the amplitube of the
graph associahedron given in [GE25].

Just like the amplitubes for graph associahedra, locality and unitarity are manifest for amp-
litubes for general acyclonestohedra in that denominators correspond to connected subsets
according to the poset topology [Wac07] of B (or, for Galashin poset associahedra, subgraphs
of the edge graph of the Hasse diagram) and that residues factorise. Note that the acyclonesto-
hedron amplitubes often lack certain poles that would have existed in the corresponding nesto-
hedron but are ruled out by the acyclicity condition.

Since the acyclonestohedron is a simple polytope, the amplitube (23) may be recovered
from the canonical form € of the acyclonestohedron as

Q=Ai5.0) /\dX{B}, (24)
B

where the wedge product ranges over all singleton acyclic nestings except for | max B| many
singleton acyclic nestings, which we may eliminate by solving the equality constraints in (21).

3.5. Examples of acyclonestohedra and their realisations

Let us consider some examples. Examples 7-9 simply reproduce nestohedra (these examples
are also found in [GL25]). On the other hand, examples 10 and 11 showcase the more general
acyclonestohedra.

Example 7 (Stasheff associahedron). Let P be a totally ordered set consisting of n+ 1 ele-
ments and 7 covers ey, ..., e,:

| en

p= le, (25)
[ ]
e
[
B

L]
That is, the Hasse diagram is the path graph P, ;. The ground set is the set of covers:
S={er,...,en}. (26)
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The acyclic oriented matroid contains no signed circuits (C = &) and can be realised by any
set of n linearly independent vectors. The building set is the graphical building set associated
to the line graph L(P,41) = P, of the Hasse diagram of P:

B={{ei,....ej1}|1<i<j<n+1}. 27

Since the oriented matroid is trivial, the corresponding acyclonestohedron is the same as the
graph associahedron of the path graph P,, which is the (n — 1)-dimensional Stasheff asso-
ciahedron that describes (n + 2)-point scattering amplitudes of the biadjoint scalar field. For
example, for n =3, the building set is

B={{ei}, {e2}, {es},{e1,e2},{e2,e3},{e1,e2,03}}. (28)
The ABHY-like realisation of the acyclonestohedron is given by

X{el} 2 07 X{ez} 2 07 X{eg} 2 Oa
Xie} T X(e2} Z Clere}r X{ea} T X{es} = Clenses}
X} +X{er} T X{es} = Cler,er} T Cleres} T Cleyen,es) (29)

This is therefore the two-dimensional associahedron, which is a pentagon. When the cut para-
meters cyp,c23 — 0, this reduces to the order polytope, namely the two-dimensional simplex
(i.e. triangle). The corresponding five-point amplitube is

1 1 1 1 1
XieX(ereo}  X{e}X{erea} X{en}X{eres} X{es}X{eres} X{e}X{es}

(30)

which can be identified as the tree-level five-point double-partial amplitude of the biadjoint
scalar theory when the two colour orderings agree. The example for n =4 which is the three-
dimensional associahedron is pictured in figure 8.

Example 8 (Simplex). Consider the building set associated to the trivial connected hyper-

graph on n vertices S = {vy,...,v;}, all contained within a single hyperedge (and no other
hyperedges). The corresponding building set is
B={{vi},....{v.},S} 3D

on the ground set S. Consider the trivial oriented matroid on S with no signed circuits, which
may be realised by any set of n linearly independent vectors. Since the oriented matroid is
trivial, the corresponding acyclonestohedron is simply the nestohedron of 3, which is the sim-
plex A". The ABHY-like realisation is given by the standard simplex

X{el} >0, ..., X{e,l} >0, X{e1}+"'+X{en}:CS- (32)
The corresponding (1 + 2)-point amplitube is given by
Xgerp + + Xfe)

A, = . (33)
XteXfer}  Xe}

Example 9 (Permutohedron). Consider the claw poset of n 4 1 elements and n covers:
[ ] [ ] e [ ] [ ]

P, = ~ \ / . (34)

The ground set is the set of covers

S={er,...,en}. (35)

13
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The building set is that associated to the complete graph on § (i.e. the line graph of the Hasse
diagram of P,), consisting of all nonempty (possibly improper) subsets of S:

B={BCS|B+o}. (36)

The corresponding oriented matroid has no signed circuits, i.e. it may be realised by any set of
n linearly independent vectors. Since the oriented matroid is trivial, the corresponding acyc-
lonestohedron is simply the nestohedron of B (i.e. graph associahedron of the complete graph
K,,), which is the permutohedron. The corresponding (n 4 2)-point amplitube is given by

1
An = g 9 (37)
€S, X{ea(l)}X{ea(l)sea(Z)} . 'X{ea(l)secr(n)}

where S, is the set of all permutations of {1,...,n}. For example, at n =3, the ABHY-like
realisation is given by

X{el} = Oa X{ez} = Oa X{eg} = Oa
Xier} T X{er} 2 Cleren}r Xfer} T X{es} 2 Cleres}r Ko} T X (o3} 2= Cleyes}r (38)
X{el} +X{ez} +X{es} = Cler,er} + Cles,es} + Cle,es} + Clei,er,e3}s

and we have the amplitube

A 1 n 1 L 1
3 =
Xien}X12 X{ez}X{euez} X(e1}X{er o5}
1 1 1
+ + . 39)
X X(ere} X X{eres}  X(es}X{ere3)
Example 10 (Hexagon from diamond poset). Consider the diamond poset
* b
7\
P,= o ° - (40)
c\ /d
[ ]
The corresponding ground set of the oriented building set is the set of covers:
S={a,b,c,d}. (41)
The oriented matroid on the ground set S is given by the two signed circuits:
C=+x{at+c—d—>b}. (42)

It is realised by vectors v,, Vy, V¢, and v4 such that v, + v, = vy, + v4 but where every subset
of three vectors is linearly independent. The building set on S is given by the collection of all
nonempty subsets of S except for two disconnected ones:

B="P(S)\{2,{ad},{b,c}}, 43)

where P(S) denotes the power set of S. There are 13 nestings:

e one trivial nesting: {S}
e six facets, of the form {S,B} for B € B\ {{a,c},{b,d}} with |B| < 2. The would-be facets
{S,{a,c}} and {S,{b,d}} violate the acyclicity condition.

14
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e Six vertices:

{S:{ap}.{a}}  {S{ap}.{p}},  {S{c.d} {c}},
{S{c,a},{a}},  {S.{a}.{d}},  {S,{p}.{c}}.

The corresponding acyclonestohedron is thus a hexagon (see [MPP24, figure 3(b)]). The
ABHY-like realisation is as follows:

X{a} 2 07 X{b} > 07 X{c} 2 07 X{d} > 07
X(a} + X(p} 2 C{ap}s X{c} +X{ay 2 C{ca}

(44)

X{a} + X (o) + X(c} +X{a) = Cap) T C{ca) T Clapca)s

X(a} +X(e} = Xppy —X(ay =0.
This simplifies to the square with two corners truncated:

0< X <CO0< X,y <C

Xy + Xy 2 capy, (C—Xpay) +(C—Xpy) > cqeays (45)
where

1
C:= 5 (cfamp} +Ciear + Clapeal) s (46)

and X;¢) = C — Xy,y and X4y = C — X{1,). For this to be a valid realisation, the cut parameters
must satisfy the kinematic constraint

|clap) — Cle.at| < Clapc.ar- 47)

The amplitube associated to the diamond poset is then

1 1 1 1 1 1
A= X{a}X{ap} i X(o}X{a ) i X{e1X{ca) i X{a}X{c.a) i X(a3X{ay i XwyXiey @
Example 11 (Octagon from bowtie poset). Consider the bowtie poset
[ ) d [ ]
Pu= 4 >< . (49)
[ ] [

The ground set, the set of signed circuits, and the building set are respectively
S={a,b,c,d} C={taFbtcFd} B=P(S)\{{a,c},{b,d},2}, (50)
where P(S) is the power set of S. There are 17 nestings:

e one trivial nesting: {S},
e cight facets: {S, T} for T € Bwith 1 < |T| <2,
e cight vertices: {S,T,7’} for T € Bwith |T| =2 and T’ C T with |T'| = 1.

15
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Thus the corresponding acyclonestohedron is an octagon, as pictured in figure 7. The ABHY-
like realisation is
Xy 20, X5y 20, X320, Xgqy 20,
X{ap = X(o} +X{e} = X(ay =0,
X} + Xy 2 cfap)s Xpp} T X(c} 2 v} (51
X} +X(a) 2 Cfeayy Xfap +X(a) 2 Cfaas
X{ap + X(o} + X(e} + X{a} = Cfap} T Cpo.e} T C{ear T ¢{aa} T Capcar-

This simplifies to the truncated square

(X1a},Xppy) €[0,€) x [0,C1,
Xia) +Xpp) 2 Clap)s (C—Xpa}) +Xpp) > e (52)
X(a) + (C— X)) 2 Claays (C—Xpa}) +(C—X}) > ey

where C:= %(c{a,b} + Cfo,c} T C{ca} +Cfa,a} T C{ap,c,a})- This correctly realises the acyc-
lonestohedron (octagon) as long as the cut parameters obey the constraint

max {|¢fap} +C(oc} — Clea} — Claal|s[Cloe) T Clear — Claa) —Cramy|)
< c{a,b,c,d}- (53)

The corresponding amplitube is

1 1 1 1
= + + +
X3 Xfapr  XppXapy  XppXpey X)X qo,c}
1
+ + .
XieyXicay  XaXfeat X{a)X{aa) X{a}X{a.a}

A

(54)

4. Acyclonesto-cosmohedra

In this section, we associate to every acyclonestohedron a non-simple polytope called
the acyclonesto-cosmohedron that generalises the cosmohedron for Stasheff associahedra
[AHFV24] and graph cosmohedra [GL25] as well as rational functions called cosmolo-
gical amplitubes that generalise the cosmological amplitubes for graph associahedra [GE25].
The acyclonesto-cosmohedra are also called poset cosmohedra in the poset case. For the
Stasheff case, amplitubes are known to be closely related to wavefunction coefficients for
Bunch-Davies vacua in flat space as well as Friedman-Lemaitre—Robertson—Walker metrics
[AHFV24], and we may expect that the acyclonesto-cosmohedra are related to wavefunction
coefficients in cosmological states with exotic kinematics whose scattering amplitudes are
described by the amplitubes for the acyclonestohedra.

4.1. Definition of acyclonesto-cosmohedra

Intuitively, in a cosmohedron, each face of the original positive geometry is refined into a poset
of faces. Since faces in the acyclonestohedron correspond to nestings, it follows that we are to
associate a nesting to a nesting, that is, to construct nested nestings; the poset of such nested
nestings then define the acyclonesto-cosmohedron.

16
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o

Figure 3. The maximal nested nestings here are on the building set from a path graph
or poset as described in example 7. They are paired with their corresponding pictures of
subpolygon collections from [AHFV24].

More concretely, recall that, for any acyclic nesting 7 C B on an oriented building set
(S,B,C), the elements of 7 are partially ordered by inclusion. The Hasse diagram of the poset
(1,C) is a rooted forest due to the requirement of elements in 7 to be pairwise nested or dis-
joint, with the roots given by max B. Since we are dealing with forests (acyclic graphs), the
orientation does not matter, and we may simply consider the building set on the line graph
L(G,) of the Hasse diagram G of (7, C). This naturally leads to the following definition.

Definition 4. Given a building set (S, ), a nested nesting (7,/\') is a nesting 7 C I3 together
with a nesting A" C P({(i,j) € 7 x T|i <j}) on (the Hasse diagram of) the poset (7,C).
Nested nestings are ordered by operations of collapsing a nest that is minimal in the poset A/
(the edges are contracted and the nodes are identified, and given the label of the largest nest) or
discarding a non-maximal nest of \. That is, given two nested nestings (7,\") and (7/,N/'),
then (7/,N/') < (7,N) means that A/’ is formed from A by repeatedly collapsing a minimal
nest or discarding a non-maximal nest. Note that this implies that 7/ C 7. The acyclonesto-
cosmohedron for the realisable oriented building set (S,5,C) is a polytope whose poset of
faces is equivalent to the poset of nested nestings on (S, 5,C) (with the relation =< reversed).

An acyclic nesting 7 of the acyclonestohedron may be identified with the nested nesting
(1,conn(L(G,))), where G is the Hasse diagram of (7, C) and conn(L(G)) is the (collection
of sets of vertices of) connected components of the line graph of G, (or, equivalently, the
collection of sets of edges of each connected components of G, ignoring one-vertex connected
components).

This is superficially different from the definition based on ‘regions’ in previous literature
[AHFV24, GL25]; however, explicit computation shows that they agree. The regions asso-
ciated to a nested nesting (7,/\) are in bijection with the elements of N; each Ne N is a
set consisting of pairs (i,j) € 7 x 7 with i =< j, and the region corresponding to N is then the
‘union’ of the formal differences j \ i. For the case of the classical cosmohedron of [AHFV24],
we show the correspondence between collections of subpolygons (Russian dolls) and nested
nestings in figure 3.

An advantage of the present definition is that it generalises readily: one can consider nested
nested nestings, nested? nestings, and so on, to obtain iterated cosmohedra (if such iterated
nestings in fact are polytopal).
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The acyclonesto-cosmohedron also satisfies a factorisation property generalising that given
in [GL25]. Each facet of the acyclonesto-cosmohedron Cs 5,y for the oriented nested com-
plex (S,5,C) corresponds (via the identification just mentioned) to a nesting 7 C B, and we
have the factorisation for the corresponding facet F..:

F, =A, x H Cls.5.0),) (55)

Ber /U{NeT NGB}

yvhere A, is the poset associahedron f(?r the poset (T,g)lo and C(gsﬁsvc)\ﬁ)/u{.NEﬂNgk}
is the acyclonesto-cosmohedron associated to the oriented building set given by
((S,B,C) ) /Uiner |ncay (this is the same restriction—contraction found in definition 3).

4.1.1. Face combinatorics and simplicity. ~ In what follows we will assume that the building
set has only one connected component. For any nested nesting (7,\') the codimension of the
face of the acyclonesto-cosmohedron labelled by that nested nesting is the number of nests in
N, always including the improper nest. That is, the dimension of a face is d — |[NV|. Then any
facet (7,\) of an acyclonesto-cosmohedron has N'= {7}. We often simply draw this as the
nesting 7. A facet which corresponds to a maximal nesting 7 is combinatorially equivalent to
the Galashin poset associahedron A-. A poset of nests in a nesting always has a Hasse diagram
which is a tree. Thus as shown in [DS24] a facet equivalent to A is in fact an operahedron, as
defined in [LA22]. In fact, all the poset associahedra A occurring in the factorisation of faces
just described are operahedra.

We use the same facts to bound the degree of any vertex of the acyclonesto-cosmohedron
and to generalise the fact mentioned in [AHFV?24] that the cosmohedra are non-simple as
polytopes.

In the acyclonesto-cosmohedron, a vertex is a maximal nesting 7 with a maximal nesting N’
of its Hasse diagram. Edges incident on that vertex are labelled via dropping a proper nest from
N or by collapsing a minimal nest of AV. In a d-dimensional acyclonestohedron, a maximal
nesting will have d + 1 nests. Then the tree (or forest) of these tubes contains at most | (d +
1)/2] minimal nests, all a single edge. This maximum occurs for instance when the Hasse
diagram is linear, a totally ordered poset. (That in turn does occur if the building set is from a
simple graph; it may not be the case when the building set is from a general hypergraph)'!.

Thus for the acyclonesto-cosmohedron in this case, there is a maximum of |(3d—1)/2|
edges incident to such a vertex. Thus in this case it is always a non-simple polytope for dimen-
sion d > 2.

The minimum degree of a vertex is of course the dimension d. That is always seen to occur
for some vertices of the acyclonesto-cosmohedron, since we can find vertices (7,.\') where N/
is totally nested (for each tree). In this case there is only one minimal nest, and so the number
of incidentedgesisd— 1+ 1 =d.

4.2. ABHY-like realisation of acyclonesto-cosmohedra and cosmological amplitubes

Acyclonesto-cosmohedra may be realised in an ABHY-like fashion as intersections of half-
spaces similar to acyclonestohedra themselves; this construction generalises that for graph

10 Or, equivalently, the graph associahedron for the line graph of the Hasse diagram of (7, C); this line graph is called
the spine in [GL25, (3.10)].

!l Thanks to Andrew Sack for pointing out that the Galashin poset associahedra from [Gal24] do always contain
totally ordered nestings, when there is a single connected component. The poset associahedra from [DFRS15] do not
always contain totally ordered tubings.
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cosmohedra given in [GE25]. Suppose that we are given an oriented building set (S,5,C)
where (S,C) is realised by a collection of vectors a; € V* that span a finite-dimensional real
vector space V*. For each acyclic nesting 7 C B, define the kinematic variable Y, : V— R as
the affine function

Y. = ZXB - Z5B\U{Ner INCB}» (56)
BeT Ber
where dp\ j{ner|nCp} 1S @ positive real number (additional cut parameters) associated to the
subset B\ | J{B' € 7| B’ C B}, and where X was defined in (19).
Then the ABHY-like realisation of the acyclonesto-cosmohedron is given by the set of
points v € V such that
Y. (v) = Ofor every acyclic nesting 7 C B 57)
X, (v) = Ofor every k € max 3.
(Of course, one also always has the additional equations (20) for the linear dependence
amongst the Xp.) For this to realise the acyclonesto-cosmohedron, there are additional inequal-
ities that must be satisfied by the cut parameters § and c; it suffices to have

Os K i, Os < Cp (58)

whenever |S’| < |S’/| and for arbitrary B, in addition to (22).
In the next section we calculate convincing examples, but finding a general proof that our
construction gives the same face poset as the combinatorial definition should not be difficult.

Proof sketch: The proof for the validity of our realization is straightforward for the case of
poset cosmohedra, starting with the realization of the graph cosmohedra as defined in [GL25]
and following the logic of the proof for the poset associahedra in [MPP25]. Note that the cos-
mohedron for a cycle-free, tree-like, poset is precisely the graph cosmohedron for the line
graph of the Hasse diagram of that poset. For the acyclic restriction of a general poset we
show 1) that the nested nestings of the poset cosmohedron are combinatorially equivalent as
a poset to the acyclic restriction of the associated line graph cosmohedron; 2) that our realiza-
tion is actually a cross section of the graph cosmohedron (an intersection with the hyperplane
determined by the cycle equalities), which we also state below as a separate conjecture; and
moreover 3) that this cross section intersects faces of the graph cosmohedron if and only if
those cells correspond to acyclic nestings.

Similarly to amplitubes for acyclonestohedra, to the acyclonesto-cosmohedra we may asso-
ciate rational functions called the cosmological amplitubes:

1
Usso= ] 1] R (59)
(7,N)NeN

where Ry are new formal variables associated to each N C B x B. (Recall from section 4.1
that these may be identified with regions in the sense of [AHFV24, GL25].) These may be
read off from the canonical form of the acyclonesto-cosmohedron in the same manner as for
graph cosmohedra [GL25, section 3.5].

4.3. Examples of acyclonesto-cosmohedra

As the combinatorial explosion becomes extreme for the acyclonesto-cosmohedron, we
explain in detail only the acyclonesto-cosmohedron for the diamond poset; in addition, a por-
tion of the cosmohedron for the Stasheff associahedron together with a diagrammatic depiction

19
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Figure 4. Explicit realisations for the acyclonestohedron and its associated acyclonesto-
cosmohedron for the K> 3 poset discussed in example 17.

of the nested nestings is given in figure 8, and the acyclonesto-cosmohedron for the permuta-
hedron (which is the permutoassociahedron) is shown in figure 9.

Example 12 (Diamond poset). Consider the diamond poset

a * b
p, = .< >. (60)
c d

from example 10, whose oriented building set is
S={a,b,c,d}, C={+atcFdFb}, B=P(S)\{9,{a,d},{b,c}}, (61)
with 13 nestings:

e one trivial nesting: {S}

e six nestings that correspond to facets of the acyclonestohedron, of the form {S,B} for B €
B\ {{a,c},{b,d}} with |B| < 2. (The would-be facets {S,{a,c}} and {S,{b,d}} violate
the acyclicity condition).

e six nestings that correspond to vertices of the acyclonestohedron:

{S:{a;p}.{a}t},  {S:{ab},{b}},{S,{c,a},{c}},
{S{c,da}.{d}},  {S.{a}.{d}},  {S,{p}.{c}}.

The Hasse diagrams for all nestings are path graphs, so that we have the following nested
nestings:

e one trivial nested nesting: ({S}, @)
e the six nestings that correspond to facets of the acyclonestohedron each admit a unique
nested nesting. For example, to the nesting {S, {a,b}}, we can associate the nested nesting

({S.{a,p}},{{({a,p},5)}}).
o the six nestings that correspond to facets of the acyclonestohedron each correspond to threes
nested nestings, for 18 total. For example, the nesting {S,{a},{d}} corresponds to the nested

nestings
({S.{a} {d}}, {{({a}, )} . {({a},$).({a},9)}})
({S.{a} {d}}, {{({a},9)} . {({a},9).({a},9)}})
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Figure 5. The poset associahedron (left) and poset cosmohedron (right) for the poset
depicted in figure 1 of [Gal24]. Both polytopes are obtained as sections of the graph
associahedron/cosmohedron for the line graph of the Hasse diagram.

and

({S.{a} {d}}. {H{{a},S),({d},$)}}).

Therefore, the acyclonesto-cosmohedron for the diamond poset is a dodecagon. The ABHY-
like realisation of the corresponding acyclonesto-cosmohedron is as follows:

Yisfap}faty = Xs +2X(a} + X} = Capy = 0fa} = Ofp} —gca} 20
Yisfap) o)} = Xs +Xfay +2X (0} = Cap) = Ofa) = o} = 0fcay =0
Yisfapy) = X5+ Xjay + X(o) = C{ap) = Ofap) —0fcay =0

Yisfeay ety = Xs +2X(e} + Xjay = Cfeay = 0fc} = Ofay = Ogap} 20
Yis ey {ayy = X5 +X(ey +2X(a} = Cfe,ay = Oc} —Ofa} = 0fap} =0
Yisfeayy = Xs+X{ey +X(a) = Cap) = Ofap) ~Ofcay =0
Yisfayqayy = Xs + X(a} +Xjay = Ofp,c} = 0fa} = 0ga} 20
Yis oy gty = Xs + Xqpy + Xpey = 0faay = Oppy =g} 20

Yisqa}} = Xs +Xfay = 0fa) = Oppcap 20

Yisfoyy = Xs + Xy = 0pp} —facap 20

Yisqeyy = Xs + Xjey =0t} = Ofapay 20

Yisayy = Xs +X{ay = 0{a) = gap,c} 20

Xs = X{ay +X(p} + X(c} +X{a) — C{ap) ~C{ea} ~ Cfabica) =0
X(a) = X(p} +X(e) —X(ay =0

(62)

With C as in (46), this reduces to

Ofa} +0ppc,ay < Xa < C—0fc) — Ofapa}
Opy +0fac,ay < Xo < C—0gay — fapc)
X{a) +X(p} 2 C{ap) +0{ap) +9(c.a)
x (C=Xpap) + (€~ Xqa}) = cfoay +0fap} +0fca}
2X(a} + X{p} = Cfap) +0icay T0{a) + 0}
X{a) +2X(p} 2 C{ap) +0{c.a) T 0(a) T (v}
x2(C—Xap) + (C—Xpy) > cfeap +0apy + (e} +0a)
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Figure 6. The poset cosmohedron for the diamond poset (left) and the bow-tie poset
(right) realised as sections of the graph cosmohedron for the four-cycle.

X (C=Xpa)) +2(C—Xpp}) 2 cleay +0fap) +0(c) +(a)
X{a} +X{a} 2 0gp,c} +0a} + d4a}
Xpy +X{c} = Ofa,a) + 9o} T0(c}> (63)

which indeed defines a dodecagon provided that the inequalities (22) and (58) hold. The corres-
ponding cosmological amplitube has 12 terms corresponding to the 12 vertices of the dodeca-
gon, which we omit.

Example 13 (Simplex). Recall the single edge hypergraph from example 8. The Hasse dia-
grams of the maximal nestings 7 are claw graphs, and nestings N of those will always be totally
nested. Thus the acyclonesto-cosmohedron in this case will be simple, and will recapture the
combinatorics of the permutohedron, as pointed out in [GL25].

Example 14 (Bowtie poset). Recall the bowtie poset from example 11. Figure 7 shows the
combinatorics of the acyclonesto-cosmohedron for that poset, which is a 16-sided polygon.

Example 15 (Stasheff associahedron). Recall the path graph, as a totally ordered set from
example 7. The cosmohedron in two dimensions is a decagon, and the three-dimensional cos-
mohedron is shown in figure 8.

Example 16 (Permutohedron). Recall the claw poset from example 9. The acyclonesto-
cosmohedron in two dimensions is a dodecagon, and the three-dimensional acyclonesto-
cosmohedron is shown in figure 9. Note that every maximal nesting of the claw poset is totally
nested, so that the corresponding facets of the acyclonesto-cosmohedron are copies of the
associahedron. Thus the claw poset acyclonesto-cosmohedra (and its line graph, the complete
graph) recaptures the combinatorics of the permutoassociahedron as shown in [GL25].

Example 17 (K, 3). The poset with three maximal nodes, two minimal nodes, and all covering
relations between them is pictured in figure 1. Explicit realisations of both the acyclonesto-
hedron and acyclonesto-cosmohedron for this case are shown in figure 4. Note that the acyc-
lonestohedron has three octagonal facets and its acyclonesto-cosmohedron has three 16-gons.
As well, every maximal nesting of the poset K5 3 is totally nested, so that the corresponding
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Figure 7. The poset associahedron for the poset in example 11 is pictured on the left,
and its acyclonesto-cosmohedron is the 16-gon.

facets of the acyclonesto-cosmohedron are pentagonal: copies of the two-dimensional associ-
ahedron, which is the operahedron on the linear tree.

Example 18 (Poset cosmohedra as sections). It was shown in [MPP25] that acyclonesto-
hedra can be obtained as sections of graph associahedra. In this example we provide evidence
that the same holds true for acyclonesto-cosmohedra, that is, they can be obtained as sections of
the graph cosmohedra associated to the line graph of the Hasse diagram. Consider the diamond
and bow-tie posets. The line graph of the Hasse diagram for both posets produces the graph Cjy.
This suggests that both poset cosmohedra can be obtained as sections of the same polytope, the
graph cosmohedron for C4. We find this is indeed the case, as illustrated in figure 6. This leads
us to conjecture that all poset cosmohedra can be obtained as sections of graph cosmohedra.
Further evidence to support this conjecture is displayed in figure 5.

5. Outlook

As this paper was being finished, the paper [FV25] appeared introducing the correlatron, a
polytope that interpolates between the cosmohedron and the associahedron. It would be inter-
esting to see if the construction of correlation polytopes extends nicely to graph associahedra
and acyclonestohedra.
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Figure 8. Three-dimensional cosmohedron for the Stasheff associahedron. The associ-
ahedron (lower left) can be labelled by tubings on a path graph with nodes a,b, c,d, or
nestings on the totally ordered poset with edges a,b, c,d. Every nesting 7 contains the
improper nest {a,b, c,d}, and every nesting A/ on 7 contains the improper nest {7},
although the pictures leave this out. Single proper nests label nine of the facets in the
cosmohedron as shown here. Note for comparison that part of the zoomed-in portion
here matches part of figure 8 in [AHFV24].

We also note that our constructions should extend easily to other combinatorial polytopes
that are based on a ‘nested set’ paradigm. Whenever the faces of the polytope are labelled by
certain subsets of a power set, the natural partial ordering on that subset, by inclusion, allows a
poset associahedron construction for each face. Thus a cosmohedron construction is available
by blowing up each original face to codimension one according to its poset associahedron.
One candidate for this process that deserves study is the poset associahedra of [DFRS15],
or acyclic versions of those. These poset associahedra contain and generalise nestohedra and
graph associahedra, so therefore with the addition of an oriented matroid they generalise the
acyclonestohedra as well.
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Figure 9. Acyclonesto-cosmohedron for the permutahedron: this gives a different view
of the permutoassociahedron.
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