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ABSTRACT

Twisted coronal loops in the solar atmosphere may become kink unstable when their magnetic field lines are sufficiently twisted.
This instability can trigger magnetic reconnection, leading to the emission of electromagnetic radiation, which manifests as a
solar flare. Previous research has demonstrated that oscillations in microwave emissions, resembling observed quasi-periodic
pulsations, can be generated by the reconnecting loop. Our aim is to investigate the relationship between the oscillations of the
loop and these microwave pulsations. Using 3D magnetohydrodynamical simulations, we examine two models: a straight loop
in a uniform-density atmosphere and a curved loop in a gravitationally stratified atmosphere. Using a new methodology, we
extract the reconnecting loop-top from both models and identify structural oscillations. We then compare these oscillations with
the gyrosynchrotron (GS) radiation emitted from the simulations, which is forward modelled using a radiative transfer code. We
find that oscillations in the GS emissions are driven by sausage- and kink-mode oscillations. However, the relationship between
the oscillation frequencies of the GS emission and the identified loop oscillation modes is complex. The dominant mode in
the former may result from interference between sausage-mode and kink-mode oscillations or entirely different mechanisms.
Results such as these increase our understanding of the time-dependent behaviour of solar flares and lay the groundwork for

potential diagnostic tools that could be used to determine physical parameters within a flaring loop.

Key words: magnetic reconnection - MHD — plasmas — Sun: corona — Sun: magnetic fields — Sun: oscillations.

1 INTRODUCTION

It is widely accepted that solar flares are the manifestation of
emitted electromagnetic radiation resulting from a release of stored
magnetic energy in complex magnetic structures within the solar
corona through magnetic reconnection (L. Fletcher et al. 2011; A. O.
Benz 2017). Reconnection can be triggered when these structures
interact with each other, themselves, or with their surrounding
magnetic field (E. Priest 1982; K. Shibata & T. Magara 2011).
This mechanism rearranges the magnetic field and releases energy.
Consequently, hot plasma and accelerated particles emit radiation
across the electromagnetic spectrum out of the flaring region. Solar
flares are also associated with coronal mass ejections (CMEs) and the
release of energetic particles from the Sun. They play a significant
role in the dynamics of the solar wind and space weather (N. Meyer-
Vernet 2007; A. A. Vidotto 2021). They can vary in duration, ranging
from a few minutes to several hours (L. Fletcher et al. 2011; A. O.
Benz 2017), and their intensity and frequency of occurrence vary
with the solar cycle (D. H. Hathaway 2010).

Quasi-periodic pulsations (QPPs), short-lived oscillations, are
frequently detected in flare emissions in various wavelengths. The
earliest documentation of these oscillations can be dated back to
a review on solar continuum bursts written by A. R. Thompson
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& A. Maxwell (1962). However, it was G. K. Parks & J. R.
Winckler (1969) who initially drew attention to these oscillations
by highlighting a 16-s modulation in the X-ray intensity—time
profile of a 1968 solar flare. Since then, the presence of QPPs
in solar flares has been consistently recorded. In a review by A.
R. Inglis et al. (2016), a 30 per cent detection rate of QPPs was
reported in 675 GOES (Geostationary Operational Environmental
Satellite) M- and X-class flares observed between 2011 and 2016.
Subsequently, M. Dominique et al. (2018) reported a 90 per cent
detection rate of QPPs within the EUV (extreme ultraviolet) and
SXR (soft X-ray) bands among 90 flares detected during solar cycle
24. Further research has shed light on the properties and potential
theoretical mechanisms governing QPP emissions. Statistical studies
indicate that QPPs exhibit a range of durations, typically lasting
between a few seconds and several minutes (I. V. Zimovets et al.
2021) with some briefer QPP events (T. Takakura et al. 1983) and
longer lasting oscillations (such as one lasting for over 30 min; T.
Zaqarashvili et al. 2013), being observed. QPPs have been observed
in stellar flares (M. Mathioudakis et al. 2003, 2006; U. Mitra-
Kraev et al. 2005) and pre-main-sequence star flares (F. Reale et al.
2018).

Advances in QPP detection techniques, outlined by A.-M.
Broombhall et al. (2019), have unveiled a diverse array of temporal
behaviours exhibited by QPPs. These behaviours include aperiodic
trends, anharmonic shapes, modulated periods and amplitudes, and
QPPs superimposed with background noise. The variability observed

© The Author(s) 2025.

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.


mailto:jamie.stewart@hse.gov.uk
https://creativecommons.org/licenses/by/4.0/

in QPP periods and temporal behaviours, coupled with the different
electromagnetic signatures they exhibit, hints at the existence of
multiple QPP driving mechanisms at play within a flaring region.
A comprehensive summary of the current understanding of QPPs,
including their observation and their theoretical driving mechanisms,
can be found in recent reviews by J. A. McLaughlin et al. (2018), V.
M. Nakariakov et al. (2019), T. van Doorsselaere et al. (2020), and
1. V. Zimovets et al. (2021).

Developing our understanding of QPPs holds great potential.
Primarily, gaining insight into the driving mechanisms behind QPPs
will contribute to a more comprehensive understanding of the time-
dependent nature of energy release in flares, an area that has histori-
cally not been fully understood. Furthermore, some QPP oscillations
have been shown to exhibit a strong correlation with the background
parameters of the flaring plasma, such as temperature, magnetic field
strength, and plasma density. For example, K. Karampelas et al.
(2023) identified a quantitative relationship between the period of
the waves propagating away from a region undergoing oscillatory
reconnection and the aforementioned plasma parameters. Oscillatory
reconnection has previously been studied as a candidate mechanism
for QPP generation (J. A. McLaughlin et al. 2009, 2012, 2018; J. O.
Thurgood, D. 1. Pontin & J. A. McLaughlin 2017, 2018; V. M. Nakari-
akov et al. 2019; T. van Doorsselaere et al. 2020; K. Karampelas et al.
2022, 2023; J. Stewart, P. K. Browning & M. Gordovskyy 2022). As
such, this indicates that it is possible to develop seismological tools
capable of deducing plasma parameters of a flaring region from QPP
data.

One important structure related to flares and QPPs is the twisted
coronal loop, which can be modelled as a magnetic flux rope.
These structures, ubiquitous throughout the corona, are common
sources of solar flares (L. Fletcher et al. 2011). Coronal loops may
acquire twist, originating from sunspot rotation or subphotospheric
motions before they emerge from the photosphere, resulting in
the formation of a twisted coronal loop (K. J. H. Phillips 1995;
Y. Fan 2009; V. Archontis, A. W. Hood & K. Tsinganos 2013).
Oscillations manifest in these loops during reconnection, including
kink-mode oscillations, characterized by lateral swaying, sausage-
mode oscillations, involving radial expansion and contraction of the
loop, and other oscillations such as torsional, fluting, or acoustic
modes (V. M. Nakariakov & E. Verwichte 2005; 1. De Moortel &
V. M. Nakariakov 2012; V. M. Nakariakov et al. 2016). Previous
research points to a potential correlation between these oscillations
and the occurrence of QPPs in solar flare data (V. Nakariakov, V.
Melnikov & V. Reznikova 2003; D. Li et al. 2020; T. I. Kaltman &
E. G. Kupriyanova 2023), though recent observational data suggest
that this does not apply to all flaring loops (F. Shi et al. 2023).

Kink-unstable twisted coronal loops have long been considered a
driving mechanism of solar flares and CMEs (A. W. Hood & E. R.
Priest 1979; T. Torok & B. Kliem 2005; A. K. Srivastavaetal. 2010; P.
Kumar et al. 2012). In ideal magnetohydrodynamic (MHD), this oc-
curs when the twist of the magnetic lines within a magnetic flux rope
surpasses a critical value, resulting in a breakdown of equilibrium,
loop deformation, and magnetic reconnection, ultimately leading to
a flare (A. W. Hood & E. R. Priest 1981; T. Torok & B. Kliem
2003). The resultant oscillations from this process are considered
candidate mechanisms for QPPs (M. Gordovskyy et al. 2014; R. F.
Pinto et al. 2016; J. A. McLaughlin et al. 2018; S. K. Mishra et al.
2023). The value of the critical twist depends on various factors,
including aspect ratio, plasma and magnetic pressure ratios, and the
structure of the surrounding magnetic field (A. W. Hood & E. R.
Priest 1979; T. Torok & B. Kliem 2003; M. R. Bareford, A. W. Hood
& P. K. Browning 2013). Also significant is the loop’s curvature,
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which can introduce new oscillation modes into the mechanism (P.
J. Cargill, J. Chen & D. A. Garren 1994; T. van Doorsselaere, E.
Verwichte & J. Terradas 2009) and affects the stability of the loop
(M. R. Bareford et al. 2016).

Recently C. Smith, M. Gordovskyy & P. K. Browning (2022)
demonstrated in a simulation of a kink-unstable coronal loop, coupled
to a radiative transfer model of microwave emissions, that slowly
decaying microwave oscillations were emitted from the reconnection
site irrespective of the inclusion or exclusion of energetic elec-
trons in their gyrosynchrotron (GS) radiation calculations. These
oscillations, resembling QPPs, may result from a standing global
MHD mode modulating the radiation emitted by the reconnecting
plasma. While the precise mechanism driving these oscillations
remains unidentified, ‘structural oscillations’ (i.e. sausage, kink,
torsional modes, etc.) are potential candidates. It should be noted
that C. Smith et al. (2022) also identify strong higher frequency
QPPs associated with rapid variations in the electron acceleration
process, possibly due to the triggering of anomalous resistivity.
This is an example of the generation of QPPs by temporal (and
spatial) variations in energetic electron acceleration, which may
be a key mechanism for QPPs as found by G. D. Fleishman, T.
S. Bastian & D. E. Gary (2008) and H. Collier et al. (2024).
However, our focus here is on characterizing the MHD modes that
arise in a reconnecting loop, as well as their potential observable
signatures.

Motivated by these recent findings, we aim to explore the rela-
tionship between the structural oscillations of kink-unstable coronal
loops and the observed oscillations in emitted GS radiation. To
this end, we conduct MHD simulations of straight and curved
twisted coronal loops undergoing the kink instability. We identity the
oscillations of the loop and the internal plasma parameters resulting
from this process and determine their connection with the emitted
radiation. Since our main interest here is the MHD oscillations, we
calculate only the emission from thermal plasma, which should be
most strongly correlated with these oscillations. Emission from non-
thermal electrons has been considered by C. Smith et al. (2022),
but this has a more complex signature including high-frequency
pulsations likely associated with time variations in the energy release
and acceleration processes, which are outside the scope of this paper.
We note that purely thermal flares are observed, albeit rarely (D. E.
Gary & G. J. Hurford 1994; G. D. Fleishman, G. M. Nita & D. E.
Gary 2015).

Section 2 describes the straight and curved loop models, their
implementation within 3D resistive MHD simulations, and the
methodologies used for identifying structural oscillations and calcu-
lating GS radiation. Results are presented in Section 3 and discussed
in Section 4, focusing on the effect of curvature and the implications
of these results for flares and QPPs.

2 METHODOLOGY

We investigate two models of a kink-unstable coronal loop in
conditions representative of the solar corona, using MHD simulations
described in Section 2.1. The first model, introduced in Section 2.2,
represents a straight coronal loop within a constant-density environ-
ment. This simpler model serves as a basis for understanding the more
realistic curved loop model, simulated in a gravitationally stratified
atmosphere, discussed in Section 2.3. Section 2.4 explains how the
GS radiation is calculated, while Section 2.5 focuses on the edge
detection algorithm used for identifying sausage- and kink-mode
oscillations.
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Table 1. Normalization constants used in LARE simulations, including user-defined values (L, By, po) and their derived counterparts. Values

used in the straight and curved loop mode simulations are listed.

Normalization constant Definition Value (straight loop) Value (curved loop)
Ly Loop-top radius 12 x 10°m 4% 10°m

By Loop-top magnetic field strength 0.02T 0.02T

00 Background coronal density 10~ kg m~3 3x 107" kgm™3
vo Bo//Iopo 5.64 x 10°ms~! 3.26 x 10® m s~
Py B2 /1o 318 Pa 318 Pa

to Lo/vo 2.07 s 1.23s

jo Bo/(oLo) 1.33 x 1073 Am™2 3.98 x 1073 Am™2
€ v? 3.18 x 103 Jkg™! 1.06 x 10"3 T kg™!
Ty (1.2mpeo) /kp 4.62 x 10°K 1.54 x 10° K
1o woLovo 8.51 x10’Qm 1.64 x 10’ Qm

2.1 Solving the resistive MHD equations

We solve a form of the resistive 3D MHD equations in the Lagrangian
regime, incorporating a viscous force term denoted as f';,., which is
implemented to capture weak shocks within the system (T. D. Arber
et al. 2001). The equations can be expressed as follows:

Doy ovv=0 )
=zr v =

Dt P ,

Dv

Py = (VX BYx B=VP+ fy. @)
DB

E:(B~V)v—B(V-v)—nVX(VXB), 3)
De P n .,

e _ Dy 1 4
Di p( v)+p] 4
P=pe(y—1). 5)

Here, the mass density is denoted by p, plasma velocity by v,
magnetic field by B, pressure by P, magnetic resistivity by n, specific
energy density by €, current density by j, and the heat capacity
ratio, set to 5/3, by y. While thermal conduction and radiation could
influence the observational predictions of our model, they are not
incorporated into this research as they were not initially considered
by C. Smith et al. (2022), with whom we are comparing. Equations
are expressed in dimensionless form, but the results are presented
in dimensional form. The latter is necessary for calculating GS
emissions. The normalization constants, which scale the straight and
curved loop models, are defined in Table 1.

The viscous force term f;. incorporated in our simulations
was initially developed by E. J. Caramana, M. J. Shashkov & P.
P. Whalen (1998) and later adapted to be used in MHD by T. D.
Arber et al. (2001). This term consists of three contributions. The
first contribution involves approximating the fluid as a set of finite
volume masses distributed across a staggered grid, following the
method proposed by J. Von Neumann & R. D. Richtmyer (1950).
The term is calculated by considering the non-linear energy exchange
that arises from inelastic collisions among these particles. A second
linear term is then included to mitigate non-physical oscillations that
may occur behind shock fronts. This approach was first introduced
by R. Landshoft (1955). Finally, a third term is included to account
for errors arising from dividing a continuous fluid into finite volume
masses. This correction is necessary to prevent inaccurate viscous
dissipation calculations due to self-similar isentropic compression,
as discussed by E. J. Caramana et al. (1998). E. J. Caramana et al.
(1998) combined the work of R. B. Christensen (1990) and D. J.
Benson & S. Schoenfeld (1993) to achieve this, introducing a term
that deactivates the artificial viscosity in smooth regions of the flow.
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Combined, these three terms effectively capture weak shocks and
contribute a value comparable to the kinetic energy density difference
between a plasma element at a grid point and its nearest neighbours.
The resistive MHD equations are solved using LARE3D, a La-
grangian remap code, developed by T. D. Arber et al. (2001). We
apply zero gradient boundary conditions (except for the velocity
at z = 0) for the curved loop model (see Section 2.3). We utilize
a current-driven anomalous resistivity, in which the resistivity (1)
increases when the current density exceeds a critical value (j):

: 1078, if j < jeric
77(/) - { 10—3’ lf] 2 jcrit~ (6)

The chosen value of j. is specific to each model and is defined
in its respective sections.

2.2 Straight loop model

The development of the kink instability and subsequent reconnection
in straight twisted loops has been studied extensively (P. K. Browning
& R. A. M. Van der Linden 2003; P. Browning et al. 2008; M. R.
Bareford et al. 2013; M. R. Bareford & A. W. Hood 2015; R. F.
Pinto, N. Vilmer & A. S. Brun 2015; A. W. Hood et al. 2016; B.
Snow et al. 2017; J. Reid et al. 2018). We construct a force-free
straight twisted loop of length L = 20 following the model used in
A. W. Hood, P. K. Browning & R. A. M. van der Linden (2009),
which has previously found success in the study of MHD avalanches
resulting from interacting kink-unstable coronal loops (K. V. Tam
et al. 2015; A. W. Hood et al. 2016; J. Reid et al. 2018). The initial
magnetic field for this model, in cylindrical coordinates, is a force-
free equilibrium:

3.
Bez{kr(l—rz) ,ifr < 1; %)

0, ifr > 1.
\/1—%2—{—*72(1—r2)7—A2r2(1—r2)6, ifr <1
1-%

y =
- =,

Here, 6 represents the azimuthal angle in the x—z plane, r denotes
the radius from the origin in the x—z plane, and A signifies the degree
of twist in the flux rope. The flux rope undergoes the kink instability
when A > A., where A. stands for the critical twist. This parameter
is also constrained by the requirement that B‘z, must remain positive,
limiting A to be less than 2.438 (A. W. Hood et al. 2009). We select a
value, A = 2.3, just above the threshold for the ideal kink instability
for a loop with a radius-to-length ratio of 0.05. For simplicity, we
use a constant-density atmosphere instead of a stratified atmosphere,
with p and € setto 1.0 and 0.01, respectively. We select j; manually,

®

ifr > 1.



examining the system before reconnection and selecting a value of j
just above the equilibrium value. This value was set to jei = 5.0.
We use a three-dimensional grid, bounded by [—3:3, —10:10,
—3:3] with 321 x 641 x 321 grid points. The dimensions of this
model are chosen to later match, as closely as possible, the resolution
of the curved loop model. The ratio of the magnetic field at the centre
of the flux rope to the background magnetic field is 2.0, while the
plasma beta is 0.01 inside the loop and 0.05 outside the loop.

2.3 Curved loop model

More realistically, coronal loops are curved with their ends rooted
in the photosphere, which may affect both their energy release and
oscillations. Various models of curved and twisted coronal loops
exist and have been previously used to study topics such as their
interaction with non-uniform magnetic fields (F. Reale et al. 2016),
factors influencing their critical twist (V. S. Titov & P. Démoulin
1999; T. Torok, B. Kliem & V. S. Titov 2004; T. Torok & B. Kliem
2005), and the release of energy in MHD avalanches (G. Cozzo et al.
2023). We use the model developed by M. Gordovskyy et al. (2014),
which has previously been used by R. F. Pinto et al. (2016), M.
Gordovskyy, P. K. Browning & E. P. Kontar (2017), and C. Smith
et al. (2022) to study the observational signatures of thermal and
non-thermal particles in kink-unstable coronal loops and by M. R.
Bareford et al. (2016) to investigate the influence of field geometry
and various thermodynamic effects on the stability of twisted flux
tubes.

We begin by initializing an untwisted magnetic field by positioning
two magnetic monopoles beneath the numerical domain, given by

B(t:O):Bl(r_ml - r_mz), )

lr—m3  |r—m)?

Here B represents the magnetic field of the flux rope, B, scales the
magnitude field strength of the loop, and r is the position vector from
the origin. The vectors m; and m, indicate the positions of the two
monopoles: m; = (0, a, —h) and m, = (0, —a, —h). The parameter
a corresponds to the position of the footpoints on the photosphere.
The depth of the monopoles beneath the domain is represented by /.
We use the values B} = 50,a = 6.4, and h = 3.2.

The twist is created by applying slow vortical motions to each
of the loop’s circular footpoints. We utilize the method developed
by M. R. Bareford et al. (2016), which injects twist similar to M.
Gordovskyy et al. (2014) but at a consistent rate that prevents twist
dissipation. The azimuthal velocity within each circular footpoint
region is given by

Vrot(r, 1) = Y (r)¢ (1), (10)
r—R
v(r)y=r {1 — tanh (7)} , (11)
X
c(t) = 2% tanh (’ — t‘) tanh (0.5 _= ’2) . (12)
2 T 1%

Equation (11) describes the spatial distribution of the twisting
motions, where the r represents the radius measured from the centre
of the footpoint, while R is the radius of the footpoint. The rotational
velocity gradually increases from the centre of the footpoint towards
its edge, declining sharply to zero near the footpoint edge. The
position of the peak and the rate of decrease are dependent on the
parameter x. We have chosen R = 0.5 and x = 0.05, resulting in
the rotational velocity peaking very close to r = R and exhibiting a
steep decline thereafter.
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The temporal evolution of the azimuthal velocity is described by
equation (12). Here, wyis scales the magnitude of the rotational
velocity. The parameters #; and 7; determine the onset time and the
rate at which the twist increases, respectively. Similarly, #, and 1,
determine the end time and the rate at which the twist decreases. The
factor of 1/2 is included because the twisting profile is applied to
both footpoints, which effectively doubles the rate of twist. We have
chosen the following parameter values: wyise = 0.02, ¢, = 120,11, =
460, 1 = 40, and 7, = 20, selected to prevent significant dissipation,
yet remain slow enough so that the field prior to instability onset is
close to equilibrium. Once the loop becomes unstable, at a critical
twist of about 471, we switch off the rotational velocity. The described
method of generating a twisted loop by injecting helicity at the
footpoints can also be found in studies such as those performed
by F. Reale et al. (2016), J. Reid et al. (2018), and G. Cozzo et al.
(2023). It generates an approximate twisted force-free equilibrium
for a curved loop; however, it should be noted that the initial twisting
phase in these simulations is not intended to accurately represent the
formation of a real twisted loop.

Using the aforementioned model, we construct an untwisted loop
within a 512 x 512 x 512 Cartesian grid bounded by [x = —10:10,
y=—10:10, and z = 10:10]. The initial configuration of the loop has
a height of 8.34, a footpoint separation of 12.8, a length of 24, and
a cross-section at the loop-top of 0.63 in dimensionless units. The
magnetic field strength at the loop-top is evaluated to be 0.28, while
the magnitude at the footpoint is determined as 4.82. Consequently,
we observe an aspect ratio of 38.4 between the length of the loop and
the cross-section at the loop-top, as well as a magnetic field strength
ratio of 0.058 between the loop-top and the footpoints.

We construct a gravitationally stratified atmosphere, following M.
Gordovskyy et al. (2014), with three layers: a chromospheric layer
situated at the lower boundary of the domain, a transitional layer, and
a coronal layer occupying the majority of the domain. The density
profile is given by

2=2¢ 2=2¢

p(z)=pre 1 +pe 2.

13)

Here, p; denotes the density of the chromosphere, p, corresponds
to the density of the solar corona, z. represents the height of the
transitional layer, and z; and z, are the gradients of the density
in the transitional layer and chromospheric layer, respectively.
This is consistent with empirical models, such as those discussed
by J. E. Vernazza, E. H. Avrett & R. Loeser (1981). We set
p1 =5.15x 107, py =3.03, zc = 4.675 x 1077, z; = 5.5 x 1078,
and z; = 5.0 x 107%, with a factor of 10* difference between the
density of the chromospheric and coronal layers. These parameters
result in a temperature of ~10° K at the chromospheric level and
~107 K at the coronal level. The plasma beta starts at 0.1 at the
footpoints, decreases to 0.005 in the lower corona, and rises to 0.01
at the loop-top.

To determine the critical current, we adopt the criterion employed
by M. Gordovskyy et al. (2014), assuming plasma instabilities
leading to increased resistivity arise when the electron drift velocity
surpasses the sound speed, i.e. Vgrifi > Vhermal- Consequently, the
critical current is expressed as

2
Jern(r) = m—e\/y(y —Dpr)/e). (14)
P

Here, r denotes the position vector, e represents the charge of an
electron, and m, is the mass of a proton. However, as discussed by
M. Gordovskyy et al. (2014), it is crucial to consider that the current
density in global MHD models is limited by the grid resolution. To
address this limitation, we multiply the above equation by a factor of
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Figure 1. Demonstration of the edge detection algorithm in action. The top-left image shows an unprocessed input image (a 2D slice of pressure at the loop-top
within the mid-plane of an evolving straight loop), while the top-right image displays the input image with outer edges detected (along with some inner edge
artefacts). The bottom-left image illustrates Delaunay triangulation, with triangles plotted between each point in the edge data set. The solid circles depict the
circumcircles of the edge points associated with the convex hull, and the dashed circles outline the alpha shape of these circumcircles. The bottom-right image

exclusively features the outer edge points and a fitted ellipse.

8L /Ry, where §L denotes the grid resolution and Ry is the Larmor
radius of a proton. In dimensionless units, the critical current is

. 2eN
Jerit = ——/v(¥ — Diropo, (15)
nyp

where N is the number of grid points, typically in the direction with
the lowest resolution.

2.4 GS radiative transfer code

Mildly relativistic electrons within a coronal loop gyrate in magnetic
fields, leading to GS radiation emission. In a solar flare, this is
typically in the microwave frequency range. However, accurately
calculating GS radiation is computationally expensive. To overcome
this, we use a fast GS radiative transfer code developed by G. D.
Fleishman & A. A. Kuznetsov (2010), G. M. Nita et al. (2015), and
A. A. Kuznetsov & G. D. Fleishman (2021).

The GS code enables the user to take the number density (cm™),
temperature (K), and magnetic field (T) along a line of sight and
calculate the GS radiation intensity (in solar flux units) emitted along
that line of sight for a range of selected frequencies. It reduces the
computational time required for calculating GS radiation by several
orders of magnitude, yielding results within 1-10 per cent of their
exact solutions. The algorithm has previously been implemented in
the study of solar flares (M. Gordovskyy etal. 2017; E. P. Kontar et al.
2017; B. Chen et al. 2020), for investigating QPPs (G. Mossessian &
G. D. Fleishman 2012; A. Altyntsev et al. 2016; E. G. Kupriyanova,
T. I. Kaltman & A. A. Kuznetsov 2022; C. Smith et al. 2022; T. L.
Kaltman & E. G. Kupriyanova 2023; M. Shi et al. 2023), and has
found applications outside of solar physics (C. O. G. Waterfall et al.
2019; J. B. Climent et al. 2022).
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We do not consider non-thermal electrons, which has been done by
C. Smith et al. (2022). Instead, we use a thermal energy distribution
and an isotropic pitch-angle distribution and compute the radiation
emitted along multiple line of sights for both models. This focuses
on oscillations associated with the MHD behaviour of the loop and
allows us to determine how the emitted radiation evolves and identity
periods of any fluctuating components that may be correlated with
structural or parameter oscillations within the reconnecting loop,
increasing our understanding of what mechanisms drive QPPs.

2.5 Structural oscillation analysis

We detect structural oscillations (oscillations of the loop struc-
ture, such as sausage modes, kink modes, etc.) by introducing
a new method to isolate structures within a background plasma.
Specifically, we isolate the loop-top of both models and study the
MHD oscillations occurring therein. To achieve this, we construct
a multistage algorithm that utilizes Canny edge detection (J. Canny
1986), Delaunay triangulation, and the construction of alpha shapes
to determine the boundaries of structures in a 2D colour map.
Sausage-mode and kink-mode oscillations can then be detected
by fitting ellipses to the edges of the structure and tracking their
evolution over time. A visual demonstration of this algorithm is
provided in Fig. 1. This algorithm is not limited to identifying
structural oscillations and may lend itself to additional potential
applications.

The first step in this algorithm is to calculate the edges within a
selected 2D slice. We focus on oscillations at the loop-top, so we take
a 2D slice of the loop’s mid-plane, corresponding to a parameter with
a well-defined boundary between the inside and outside of the loop,
in this case, pressure. We then remove all values within the image
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drop, differentiating between different phases of the loop’s evolution.

below a threshold value. This results in a crude extraction of the loop-
top from the background plasma, which we will further refine. From
there, we implement the Canny edge detection algorithm to calculate
the edges within the 2D image. The Canny edge detection algorithm
(J. Canny 1986) has been applied to a variety of non-astrophysical
scenarios (S. Agaian, A. Almuntashri & A. Papagiannakis 2009; X.
Hou et al. 2009), and has seen continued development in the field
of computer vision (W. Rong et al. 2014). In this paper, we use a
traditional method outlined in E. Trucco & A. Verri (1998).

The Canny edge detection algorithm works as follows: first, we
apply a grey scale transformation to the image and then blur it with
a Gaussian kernel. This step helps minimize noise within the image.
Subsequently, the edges of the image are identified by calculating the
gradient of the image. This generates regions with sharp gradients
(‘strong edges’) over a limited number of pixels and larger regions
with more gradually changing gradients (‘weak edges’). Our final
image should have clearly defined edges, so the next step is to convert
weak edges into strong edges using non-maximum suppression. This
technique involves evaluating for each pixel whether its gradient

MNRAS 544, 2296-2315 (2025)

serves as the local maximum within a neighbourhood of pixels
sharing the same gradient direction. If this criterion is met, the local
maximum is retained along with any immediately adjacent weak
edges, thereby forming a strong edge and enhancing the image’s
clarity.

The outcome is an image containing the extracted edges of the
loop-top, with some inner edges left over that we wish to remove to
accurately calculate the structural oscillations of the loop. We build
upon the Canny edge detection algorithm by incorporating Delaunay
triangulation and implementing alpha shapes to achieve this. We
start by constructing a concave hull around the boundary edges of
the isolated structure. To achieve this, we use Delaunay triangulation
to generate a set of non-overlapping triangles from the edge data
set. Subsequently, a convex hull is computed around these triangles,
providing a preliminary estimate of the boundary between the loop-
top and any remaining plasma that had not been removed earlier in
the algorithm.

Then, we enhance the accuracy of the hull using alpha shapes.
For each point along the convex hull, we compute a circumcircle
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around the associated triangle’s vertices. The circle’s radius is
then scaled by a parameter, «, resulting in the creation of an
alpha shape. Points within the edge data set that fall within this
alpha shape are designated as ‘boundary edges’, and are separated
from the interior edges. To create an accurate hull around the
loop-top, the o parameter must be carefully chosen. A larger
a value produces a less-detailed convex boundary, whereas a
smaller value risks missing potential points along the boundary.
In our analysis, we opted for « = 0.5 for the straight and curved
loop.

The structure is now isolated from the background plasma and
can be used for other purposes if desired. To identify structural

oscillations, we fit an ellipse to the isolated loop-top for each time-
step. By tracking the evolution of the fitted ellipse, we can isolate
kink-mode oscillations (through the motion of the elliptical centre)
and sausage-mode oscillations (through changes in the area of the
ellipse) in the reconnecting loop.

3 RESULTS

The kink instability was induced and simulated for both straight and
curved loops. The resulting evolution, including magnetic reconnec-
tion, plasma heating, emitted radiation, and structural oscillations, is
described below.

MNRAS 544, 2296-2315 (2025)
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Figure 5. Analysis of the structural oscillations observed in the straight loop model. The first row illustrates how the fitted ellipses cross-sectional area, central
coordinates (x. and z.), and how the average twist of the loop evolves over time. A dashed black line separates data points before and after 322.5 s. In the second
row, the post 322.5 s data, with the removal of its moving average, are presented. The third row showcases the periods of the power spectrum of this processed
data. Finally, the fourth row maps Gaussian peaks to the corresponding peak periods identified in power spectra.

3.1 Evolution of the straight loop

We generate a model of a straight coronal loop in a state of
unstable force-free equilibrium, with a twisting parameter A = 2.3
as described in Section 2.2. Upon starting the simulation, the loop
undergoes the kink instability and begins to reconnect, eventually
relaxing to a new equilibrium state.

MNRAS 544, 2296-2315 (2025)

Fig. 2 shows how the interior magnetic field lines develop as the
system evolves. Fig. 3 depicts the evolution of both the average
twist and the energetics of the system over time. We calculated the
average twist by determining the total twist of 200 magnetic field
lines distributed inside the loop around the central loop axis and then
averaging these values. Additional visualization is provided in Fig. 4,
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Figure 6. Analysis of parameter oscillations at the centre of the loop. The first column analyses the system’s density, the second column examines temperature,
and the third column, B,. The rows follow the same structure as those in Fig. 5.

which takes a slice of the loop in the X—Z plane at y = 0, and shows
how the in-plane magnetic field, density, temperature, and current
magnitude within the loop change with time.

The simulation was run for 702 Alfvén times (1453 s). Between
t =0 s and around 7 = 286 s, inhomogeneities in the in-plane
magnetic field, density, temperature, and current magnitude form
as the kink instability progresses from its linear phase into its non-
linear phase. Reconnection at multiple current sheets within the
loop follows, and we observe similar magnetic field and energetic
evolutionto A. W. Hood et al. (2009). After around ¢ = 286 s, the loop
relaxes towards a new equilibrium with reduced twist and magnetic

energy; however, we do not extend the simulation to reach a fully
static equilibrium.

Post-reconnection, we observe multiple structural oscillations in
the loop (Fig. 5). We take a cross-sectional slice of the loop (at
the mid-plane y = 0) and use our edge-detection and ellipse-fitting
algorithm to monitor the changes in the area and central coordinates
(x. and z.) of the loop-top over time (see Section 2.5). We observe
an expansion of the loop-top, likely driven by Ohmic heating that
increases the loop’s internal temperature and by reconnection of the
loop’s field lines with ambient untwisted field lines (M. Gordovskyy
etal.2014). We also observe lateral shifts in the loop-top in the x and z

MNRAS 544, 2296-2315 (2025)
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directions. The central coordinates oscillate around new equilibrium
values mainly after about + = 323 s (though some oscillations are
observed before this point). The expansion and the contraction of
the cross-sectional area resemble a sausage-mode oscillation, and
the swaying motions detected in x. and z. resemble a kink-mode
oscillation. We also detect clear post-reconnection oscillations in the
loop’s average twist (see first panel of Fig. 3).

We analyse these structural oscillations further by removing a
moving average from the original data and calculating the oscilla-
tions’ power spectra. The periods contained within the spectra are
then identified. For each oscillation, we observe multiple broad peaks

MNRAS 544, 2296-2315 (2025)

that can be used to determine the dominant periods contributing
to each oscillation (see lower panels of Fig. 5). Spectral leakage
and inaccuracies are expected when calculating these periods due to
limitations in the simulation’s total length and temporal resolution.
To address this, Gaussian peaks were fitted to each peak. The means
of these curves provide a value for peak periods, while the variances
serve as errors that allow for comparison with peaks from other power
spectra.

We detect in each variable a dominant period at ~83 s, along with
smaller contributions detected in the sausage-mode oscillations. This
common period suggests two things: the structural oscillations are



0.620

0.598

0.576

0.554

Intensity (s.f.u.)

0.532

0.510

580 870
Time (s)

1160 1450

0.200

0.175

0.150

0.125

Normalised Power
o
p
(=]
o

o
=)
2
e

0.050

0.025

0.000

200 300 400

Period (s)

500

QPPs driven by kink-unstable coronal loops

Al (s.f.u)

2307

L]
0.0010
0.0005
0.0000
-0.0005
~0.0010 .
®
-0.0015 =
425 630 835 1040 1245 1450
Time (s)
e 995+72s
s 1087+8.6s
0.20 ® 2222+353s
0.15
]
=
(=]
o
o
@
n
T 0.10
E
o
z
0.05
0.00
0 100 200 300 400 500
Period (s)
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connected, and the oscillations observed in the average twist are
likely due to the expansion and contraction of the loop rather than
the presence of an additional ‘torsional-like’ Alfvén wave, which
would be characterized by oscillatory rotational motions around the
loop-top.

Using a similar methodology, we construct power spectra of
oscillations detected in the density, temperature, and line-of-sight
magnetic field (B,) at the centre of the loop-top [0, 0, 0] (Fig. 6).
These variables, in a complex and non-linear way, together determine
the emitted GS radiation. Two common periods are observed in
each quantity. The first overlaps with the ~83 s mode identified
in the structural oscillations. The second, at ~107 s, aligns with a
minor peak observed in the cross-sectional area power spectra. This
suggests that the parameter oscillations are primarily associated with
the observed structural oscillations. The other minor peaks observed
may be associated with harmonics or other modes of oscillations not
identified in this paper.

Away from the reconnection site, additional oscillations are
detected in the density, temperature, and line-of-sight magnetic
field. Fig. 7 shows that at point x = 0.5, z = 0.0, a new oscillation
at approximately ~240s emerges alongside the ~83 and ~107 s
oscillations. Interference could be a potential reason why this
additional mode does not appear at the centre of the reconnection
site.

Oscillations at ~83 and ~107 s are observed along with a new
oscillation at ~240 s at x = 0.5, z =0.0. All three align with
oscillations detected in the sausage mode.

Finally, we identify oscillations in the GS radiation emitted from
the loop-top (see Section 2.4). To calculate the emitted radiation, we
take ~9000 lines of sight transverse to the loop, in the x-direction,
near the mid-plane, equally spaced within a region bound by [—2:2,
—0.67:0.67, —2:2], and record the density, temperature, and line-
of-sight magnetic field along those lines. Subsequently, we partition
this region into 356 subregions, and for each subregion, we average

MNRAS 544, 2296-2315 (2025)
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the aforementioned parameters for each point between each line of
sight to reduce the computational expense of the GS calculations. We
avoid taking an average of the whole loop-top as different segments
of the loop contribute different quantities of GS radiation due to
varying internal parameters throughout the simulation. We carefully
select a number of subregions that strike a balance between reducing
computational strain and ensuring that the final radiation calculated
remains representative of the behaviour of the loop.

The GS microwave frequency spectra emitted from this region
at different points in time are illustrated in Fig. 8. Continuous
emission is predominantly observed around 1 GHz, with the total
intensity decreasing over time as the magnetic field strength of the
loop weakens. The spectra show typical shapes, with optically thick
radiation at low frequencies rising to a peak, with a gradual decrease
of intensity through the higher (optically thin) frequency range. We
also detect oscillations across the calculated spectrum, similar to C.
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Smith et al. (2022). In Fig. 9, we focus on the radiation emitted
at 1.2 GHz, noting that other frequencies exhibit similar behaviour.
This choice of frequency for analysis means we are in the partially
optically thick regime. This means the microwave emission may
have a less direct correspondence with the underlying plasma and
magnetic field parameters than in the optically thin regime.

A primary peak is observed at ~222 s, with two secondary peaks
around 107 s. These peaks align with those found in the internal
parameter oscillations and also appear as minor peaks in the sausage-
mode oscillations. Notably, no peak is observed at ~83 s.

There is a complex relationship between the sausage-mode oscilla-
tions, internal parameter oscillations, and oscillations in the emitted
GS radiation. This complexity is expected due to the highly non-
linear mechanisms by which GS emission arises from plasma param-
eters and the magnetic field (G. Mossessian & G. D. Fleishman 2012;
E. G. Kupriyanova et al. 2022; T. I. Kaltman & E. G. Kupriyanova
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2023). A notable feature is that though the 222.2 s mode is dominant
in the emitted GS radiation and internal parameter oscillations
(away from the centre loop-top), it is less prominent in structural
oscillations. There are several potential explanations for this.

One possibility is that the 222.2 + 35.2 s GS oscillation results
from interference between the 111.28 £2.8 s and 82.0+4.2 s
peaks seen in the sausage-mode oscillations. Alternatively, other
wave modes — undetected by the edge detection algorithm — could
contribute to the emission oscillations. A potential candidate is
a longitudinal acoustic mode, whereas a torsional mode can be
ruled out since the ~222 s peak would also appear in the average
twist oscillations, which were not observed. Furthermore, since the
radiation we analyse is in the optically thick region of the spectrum,
it will be determined by the plasma and magnetic field across the line
of sight in a complex way, and not just depend on the local conditions
at the emission site.

3.2 Evolution of the curved loop

Following M. Gordovskyy et al. (2014), we induce the kink instability
in a curved loop by applying a twist to the loop’s footpoints. We inject
a total twist of approximately 47t before the loop becomes unstable,
reconnects, and relaxes towards a new equilibrium state.

We analyse the curved loop in a similar way to the straight loop.
The simulation was run for 1500 Alfvén times (1845 s). Once the
loop reaches an average twist of 3.417, at around r = 565 s, the
loop becomes unstable, indicating that some of the injected twist
dissipated during this initial phase. The evolution prior to this is
only to establish an unstable equilibrium, and this time corresponds
to t =0 for the straight loop discussed above. When the loop
begins to reconnect, it exhibits similar behaviour to the straight loop
concerning energetics and internal dynamics (see Figs 3 and 4) and

is similar to previous work with this model (M. Gordovskyy et al.
2014; M. R. Bareford et al. 2016; R. F. Pinto et al. 2016; C. Smith
et al. 2022).

The evolution of the loop’s interior magnetic field lines is depicted
in Fig. 10, while Fig. 11 illustrates the evolution of the average twist
and energetics over time. The internal dynamics of the loop evolve
similarly to the straight loop (Fig. 4). Discussions of behaviour prior
to approximately ¢ = 565 s will be omitted, as this phase serves
solely to set up an unstable twisted approximate equilibrium and the
dynamics are non-physical.

We again use our edge-detection and ellipse-fitting algorithm on
a cross-sectional slice of the loop at y = 0 to quantify changes in
the loop-top’s area and central coordinates (x. and z.) over time (see
Fig. 12). We observe expansion and contraction of the loop, similar
to the straight loop, and lateral displacement. The direction of the
lateral shift differs in the curved loop. This is due to the straight
loop’s symmetry, which results in a random initial shift, whereas
the curvature of the curved loop provides a preferred direction. In
Fig. 12, we also identify post-reconnection oscillations in the loop’s
average twist.

A single common period of approximately 190 s is observed in
all four structural parameters. Additionally, a second period of about
270 s is observed in all parameters except the average twist. This
suggests, similar to the straight loop, that the sausage-mode and
kink-mode oscillations are connected, and the sausage mode drives
oscillations in the loop’s twist. However, unlike the straight loop, a
unique period is observed in the average twist oscillations (~119 s),
indicating the presence of a potential alternative mechanism that is
also affecting the loop’s twist.

Further oscillations in the density, temperature, and line-of-sight
magnetic field are observed inside the loop-top over time, measured
at coordinates [0, 0, 12] (Fig. 13). This point is located internally

MNRAS 544, 2296-2315 (2025)
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Figure 12. Analysis of the structural oscillations observed in the curved loop model, following the same structure as Fig. 5.

at the centre of the loop, drifts from the centre as the loop evolves,
but remains within the loop-top throughout the simulation. A peak
at ~190 s is observed in the density and B, oscillations, while a
peak at ~270 s is observed in all three variables. These two peaks
are associated with the sausage-mode and kink-mode oscillations. A
third peak at ~119 s is also observed in all three variables. This
peak aligns with the 119-s peak observed in the loop’s average
twist, suggesting that the internal parameters are also affected by the

MNRAS 544, 2296-2315 (2025)

mechanism influencing the loop’s average twist, perhaps torsional
Alfvén waves.

To calculate the GS radiation, we use the same approach as the one
used for the straight loop. However, this time we consider 18 350 lines
of sight along the x-axis, bounded by [—10:10, —2:2, 7:14], divided
into 356 subregions. Compared to the straight loop, we observe a
wider range of emitted frequencies, resembling those seen in C.
Smith et al. (2022).
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Figure 13. Analysis of parameter oscillations at [0, 0, 12], located at the mid-plane of the curved loop. The first column analyses the system’s density, the
second column examines temperature, and the third column, By. The rows follow the same structure as those in Fig. 6.

The intensity versus frequency distribution for the curved loop has
the same shape as the straight loop (Fig. 7), with a peak at 15 GHz.
Fig. 14 shows a map of GS radiation emitted from the coronal loop in
the Y—Z plane at 15 GHz, at the same snapshots as in Fig. 10. A total
of 146 800 lines of sight are grouped into 9025 averaged subregions,
from which the emitted radiation is calculated. Brightenings and
fine structure are observed within the loop. While this level of
spatial resolution cannot be observed with current observational

techniques, the figure provides insight into the origins of the emission
peaks.

Fig. 15 focuses on oscillations at 15 GHz, noting that other
frequencies exhibit similar behaviour. We observe two peaks: one
at approximately 233 s and another around 526 s. The first peak
aligns with the 270-s oscillations observed in the structural modes,
suggesting that, similar to the straight loop, it is driven by sausage-
and kink-mode oscillations.
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Figure 14. Normalized GS radiation at 15 GHz in the Y-Z plane (spanning ¥ = —8 to 8, Z = 0 to 14), for the same time-steps as images of the evolving curved

coronal loop presented in Fig. 10.

However, the dominant peak at 526 s does not directly correspond
to any structural oscillations. As in the straight loop, there is
evidence to suggest that they may arise from interference effects.
Interference of the peaks at 175.4 £ 50.2 and 263.2 +59.7 s area
oscillations, 183.5 £ 16.6 and 277.8 £ 32.0 s in the x. oscillations,
and 208.3 +22.9 and 303.3 +45.4 s in the z. oscillations gives a
period similar to the 526-s peak. Additionally, interference between
adjacent peaks in the density oscillations also aligns with the 526-s
peak. We also note that the 119-s oscillation detected in the loop’s
average twist does not appear in the GS radiation oscillations. Though
this mechanism remains unidentified, it does not significantly influ-
ence the oscillations in the emitted GS radiation.

4 DISCUSSION AND CONCLUSIONS

We performed 3D resistive MHD simulations of both a straight
and curved kink-unstable twisted coronal loop using LARE3D. Both
loops underwent reconnection, releasing stored magnetic energy, and
exhibited broadly similar behaviour in terms of their energetics and
internal dynamics. The GS emissions, observed in the microwave
band, were forward modelled using a fast GS code developed by G.
D. Fleishman & A. A. Kuznetsov (2010), similar to the approach used
in C. Smith et al. (2022). The outcomes of our study are twofold. First,
we have demonstrated a new methodology for analysing structural
oscillations in a realistic model of a solar coronal loop, and used
this to identify these. Secondly, we have explored the relationship
between these structural modes and the associated local oscillations
in plasma and magnetic field parameters, with oscillations in the GS
emission light curves.

Using new methodology, we identified ‘structural’ oscillations of
the loop (kink- and sausage-mode oscillations) by taking a cross-
sectional slice of the loop-top, fitting an ellipse using Canny edge
detection, Delaunay triangulation, and alpha shapes, and tracking the
evolution of the loop-top’s shape. We calculated the peak periods in
the power spectra of these structural oscillations and compared them
to peak periods observed in the emitted GS radiation, average twist,
and internal parameters of the loop.
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We identified sausage-mode and kink-mode oscillations in both
loops. These oscillations shared similar peak periods, which were
also observed in the oscillations of the loop’s average twist. A
potential reason for this is that a swaying loop, moving through
regions of increased and decreased magnetic field strength, would
lead to the loop-top periodically expanding and contracting. This
would manifest as a sausage-mode oscillation and would also induce
oscillations in the loop’s average twist.

For the straight loop, a dominant period of approximately 222 s
was observed in the oscillations of the GS emissions. Two similar
peaks were also observed around 107 s. The 107-s period aligns
with minor peaks found in the sausage-mode power spectra and
oscillations seen in the internal parameters of the loop-top. The 222-
s peak was not directly associated with any structural oscillation,
which is expected due to the strongly non-linear relationship between
radiative transport and radiative emissions. It was observed that the
internal parameter oscillations and interference between observed
sausage-mode oscillations give a period that aligns with the 222-
s peak. Alternatively, other wave modes — undetected by the edge
detection algorithm — could contribute to the emission oscillations.
The approximately 83-s period observed in the structural and internal
parameter oscillations did not appear in the GS emissions at all.

Similar conclusions can be drawn for the curved loop. The peaks
in the GS emissions were observed at ~233 and ~527 s. The first
peak overlapped with the 270-s peaks observed in the structural
oscillations, indicating that, like the straight loop, one of the peaks
in the GS oscillation is also driven by the sausage- and kink-mode
oscillations. The dominant ~526 s peak is not associated with any
structural oscillations but could be associated with interference in the
sausage-mode, kink-mode, and density oscillations. This suggests
that for both the straight and curved loop, the GS oscillations could
be generated by sausage- and kink-mode oscillations and interference
of those modes.

A potential additional process was observed in the curved loop,
affecting the oscillations in the loop’s average twist. This oscillation
had a period of approximately 119 s and could be caused by a
torsional-like mode, which would induce oscillations in the average
twist of the loop due to rotational motion around the loop-top.



26.0

QPPs driven by kink-unstable coronal loops

25.2

24.4 4

Intensity (s.f.u.)

23.6

22.84

22.0

595 836 1077 1318 1559 1800
Time (s)

Normalised Power

0 140 280 420 560 700

Period (s)

2313

0.5

0.4

0.3

0.2

0.1

Al (s.f.u)

0.0

-0.1

-0.2

-0.3

580 754 928 1102 1276 1450
Time (s)

e 2326%x198s

0.35 526.3+117.6s

0.30

Normalised Power
o o o
- N [
w o w

o
=
o

0.05

0.00

0 140 280 420 560 700
Period (s)

Figure 15. Analysis of the measured GS radiation at 15 GHz for the curved loop. The first row demonstrates how the GS radiation for each frequency evolves

over time. The subsequent rows follow the same structure as in Fig. 9.

However, the 119-s oscillation did not appear in the GS radiation
oscillations, suggesting that even if an additional mechanism was
affecting the loop’s twist, it did not contribute to the dominant period
in the GS oscillations. Furthermore, in the straight loop, only one
period was observed in the average twist oscillations, and this was
shared with the periods observed in the kink- and sausage-mode
oscillations. This suggests that there were no other mechanisms
driving the oscillations in the average twist for the straight loop,
discounting the potential contribution of a torsional-like mode for
the straight loop as well.

In summary, both sausage- and kink-mode oscillations were
detected in the straight and curved loop models. While these modes
play a crucial role in shaping the GS emission — and thus any
observed QPPs in the flare — the relationship between light-curve
pulsations and underlying loop oscillations remains complex. This is
not unexpected, due to the non-linear dependence of GS emission on
the plasma and field parameters (G. Mossessian & G. D. Fleishman
2012; E. G. Kupriyanova et al. 2022; T. I. Kaltman & E. G.
Kupriyanova 2023). Optically thick effects on the radiation may play
a significant role in the relationship between the parameters in the

emission regions and in the observed radiation. It is possible that the
sausage- and kink-mode oscillations are the sole contribution to the
GS oscillations, but it is also possible that mechanisms unidentified
here play a role in determining the frequencies of the GS oscillations.

There is evidence to suggest that sausage- and kink-mode oscil-
lations (and interference of these modes) may account for the GS
oscillations emitted from the straight and curved loop model. While
a torsional mode is unlikely to be responsible, other unidentified
mechanisms could also influence their frequencies. In the curved
case, curvature effects could introduce an acoustic mode.

Future research should investigate whether GS oscillations result
from interference between sausage and kink modes or from another
mechanism entirely. If the GS oscillations result from interference, it
is important to gain a deeper understanding of how the sausage and
kink modes interact, how this interaction translates into observable
features of the microwave oscillations, and how variations in plasma
parameters influence this behaviour. Deepening our understanding
of these mechanisms not only increases our understanding of the
time-dependent nature of solar flares but also paves the way for the
development of seismological tools that could be used to determine

MNRAS 544, 2296-2315 (2025)



2314

plasma parameters within a flaring region from observed QPP data
in the future.
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