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A B S T R A C T 

Twisted coronal loops in the solar atmosphere may become kink unstable when their magnetic field lines are sufficiently twisted. 
This instability can trigger magnetic reconnection, leading to the emission of electromagnetic radiation, which manifests as a 
solar flare. Previous research has demonstrated that oscillations in microwave emissions, resembling observed quasi-periodic 
pulsations, can be generated by the reconnecting loop. Our aim is to investigate the relationship between the oscillations of the 
loop and these microwave pulsations. Using 3D magnetohydrodynamical simulations, we examine two models: a straight loop 

in a uniform-density atmosphere and a curved loop in a gravitationally stratified atmosphere. Using a new methodology, we 
extract the reconnecting loop-top from both models and identify structural oscillations. We then compare these oscillations with 

the gyrosynchrotron (GS) radiation emitted from the simulations, which is forward modelled using a radiative transfer code. We 
find that oscillations in the GS emissions are driven by sausage- and kink-mode oscillations. However, the relationship between 

the oscillation frequencies of the GS emission and the identified loop oscillation modes is complex. The dominant mode in 

the former may result from interference between sausage-mode and kink-mode oscillations or entirely different mechanisms. 
Results such as these increase our understanding of the time-dependent behaviour of solar flares and lay the groundwork for 
potential diagnostic tools that could be used to determine physical parameters within a flaring loop. 

Key words: magnetic reconnection – MHD – plasmas – Sun: corona – Sun: magnetic fields – Sun: oscillations. 
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 I N T RO D U C T I O N  

t is widely accepted that solar flares are the manifestation of
mitted electromagnetic radiation resulting from a release of stored
agnetic energy in complex magnetic structures within the solar

orona through magnetic reconnection (L. Fletcher et al. 2011 ; A. O.
enz 2017 ). Reconnection can be triggered when these structures

nteract with each other, themselves, or with their surrounding
agnetic field (E. Priest 1982 ; K. Shibata & T. Magara 2011 ).
his mechanism rearranges the magnetic field and releases energy.
onsequently, hot plasma and accelerated particles emit radiation
cross the electromagnetic spectrum out of the flaring region. Solar
ares are also associated with coronal mass ejections (CMEs) and the
elease of energetic particles from the Sun. They play a significant
ole in the dynamics of the solar wind and space weather (N. Meyer-
ernet 2007 ; A. A. Vidotto 2021 ). They can vary in duration, ranging

rom a few minutes to several hours (L. Fletcher et al. 2011 ; A. O.
enz 2017 ), and their intensity and frequency of occurrence vary
ith the solar cycle (D. H. Hathaway 2010 ). 
Quasi-periodic pulsations (QPPs), short-lived oscillations, are

requently detected in flare emissions in various wavelengths. The
arliest documentation of these oscillations can be dated back to
 review on solar continuum bursts written by A. R. Thompson
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 A. Maxwell ( 1962 ). However, it was G. K. Parks & J. R.
inckler ( 1969 ) who initially drew attention to these oscillations

y highlighting a 16-s modulation in the X-ray intensity–time
rofile of a 1968 solar flare. Since then, the presence of QPPs
n solar flares has been consistently recorded. In a review by A.
. Inglis et al. ( 2016 ), a 30 per cent detection rate of QPPs was

eported in 675 GOES (Geostationary Operational Environmental
atellite) M- and X-class flares observed between 2011 and 2016.
ubsequently, M. Dominique et al. ( 2018 ) reported a 90 per cent
etection rate of QPPs within the EUV (extreme ultraviolet) and
XR (soft X-ray) bands among 90 flares detected during solar cycle
4. Further research has shed light on the properties and potential
heoretical mechanisms governing QPP emissions. Statistical studies
ndicate that QPPs exhibit a range of durations, typically lasting
etween a few seconds and several minutes (I. V. Zimovets et al.
021 ) with some briefer QPP events (T. Takakura et al. 1983 ) and
onger lasting oscillations (such as one lasting for over 30 min; T.
aqarashvili et al. 2013 ), being observed. QPPs have been observed

n stellar flares (M. Mathioudakis et al. 2003 , 2006 ; U. Mitra-
raev et al. 2005 ) and pre-main-sequence star flares (F. Reale et al.
018 ). 
Advances in QPP detection techniques, outlined by A.-M.

roomhall et al. ( 2019 ), have unveiled a diverse array of temporal
ehaviours exhibited by QPPs. These behaviours include aperiodic
rends, anharmonic shapes, modulated periods and amplitudes, and
PPs superimposed with background noise. The variability observed
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n QPP periods and temporal behaviours, coupled with the different 
lectromagnetic signatures they exhibit, hints at the existence of 
ultiple QPP driving mechanisms at play within a flaring region. 
 comprehensive summary of the current understanding of QPPs, 

ncluding their observation and their theoretical driving mechanisms, 
an be found in recent reviews by J. A. McLaughlin et al. ( 2018 ), V.
. Nakariakov et al. ( 2019 ), T. van Doorsselaere et al. ( 2020 ), and

. V. Zimovets et al. ( 2021 ). 
Developing our understanding of QPPs holds great potential. 

rimarily, gaining insight into the driving mechanisms behind QPPs 
ill contribute to a more comprehensive understanding of the time- 
ependent nature of energy release in flares, an area that has histori-
ally not been fully understood. Furthermore, some QPP oscillations 
ave been shown to exhibit a strong correlation with the background 
arameters of the flaring plasma, such as temperature, magnetic field 
trength, and plasma density. For example, K. Karampelas et al. 
 2023 ) identified a quantitative relationship between the period of
he waves propagating away from a region undergoing oscillatory 
econnection and the aforementioned plasma parameters. Oscillatory 
econnection has previously been studied as a candidate mechanism 

or QPP generation (J. A. McLaughlin et al. 2009 , 2012 , 2018 ; J. O.
hurgood, D. I. Pontin & J. A. McLaughlin 2017 , 2018 ; V. M. Nakari-
kov et al. 2019 ; T. van Doorsselaere et al. 2020 ; K. Karampelas et al.
022 , 2023 ; J. Stewart, P. K. Browning & M. Gordovskyy 2022 ). As
uch, this indicates that it is possible to develop seismological tools
apable of deducing plasma parameters of a flaring region from QPP 

ata. 
One important structure related to flares and QPPs is the twisted 

oronal loop, which can be modelled as a magnetic flux rope. 
hese structures, ubiquitous throughout the corona, are common 
ources of solar flares (L. Fletcher et al. 2011 ). Coronal loops may
cquire twist, originating from sunspot rotation or subphotospheric 
otions before they emerge from the photosphere, resulting in 

he formation of a twisted coronal loop (K. J. H. Phillips 1995 ;
. Fan 2009 ; V. Archontis, A. W. Hood & K. Tsinganos 2013 ).
scillations manifest in these loops during reconnection, including 
ink-mode oscillations, characterized by lateral swaying, sausage- 
ode oscillations, involving radial expansion and contraction of the 

oop, and other oscillations such as torsional, fluting, or acoustic 
odes (V. M. Nakariakov & E. Verwichte 2005 ; I. De Moortel &
. M. Nakariakov 2012 ; V. M. Nakariakov et al. 2016 ). Previous

esearch points to a potential correlation between these oscillations 
nd the occurrence of QPPs in solar flare data (V. Nakariakov, V.
elnikov & V. Reznikova 2003 ; D. Li et al. 2020 ; T. I. Kaltman &

. G. Kupriyanova 2023 ), though recent observational data suggest 
hat this does not apply to all flaring loops (F. Shi et al. 2023 ). 

Kink-unstable twisted coronal loops have long been considered a 
riving mechanism of solar flares and CMEs (A. W. Hood & E. R.
riest 1979 ; T. Török & B. Kliem 2005 ; A. K. Srivastava et al. 2010 ; P.
umar et al. 2012 ). In ideal magnetohydrodynamic (MHD), this oc- 

urs when the twist of the magnetic lines within a magnetic flux rope
urpasses a critical value, resulting in a breakdown of equilibrium, 
oop deformation, and magnetic reconnection, ultimately leading to 
 flare (A. W. Hood & E. R. Priest 1981 ; T. Török & B. Kliem
003 ). The resultant oscillations from this process are considered 
andidate mechanisms for QPPs (M. Gordovskyy et al. 2014 ; R. F.
into et al. 2016 ; J. A. McLaughlin et al. 2018 ; S. K. Mishra et al.
023 ). The value of the critical twist depends on various factors,
ncluding aspect ratio, plasma and magnetic pressure ratios, and the 
tructure of the surrounding magnetic field (A. W. Hood & E. R.
riest 1979 ; T. Török & B. Kliem 2003 ; M. R. Bareford, A. W. Hood
 P. K. Browning 2013 ). Also significant is the loop’s curvature,
hich can introduce new oscillation modes into the mechanism (P. 
. Cargill, J. Chen & D. A. Garren 1994 ; T. van Doorsselaere, E.
erwichte & J. Terradas 2009 ) and affects the stability of the loop

M. R. Bareford et al. 2016 ). 
Recently C. Smith, M. Gordovskyy & P. K. Browning ( 2022 )

emonstrated in a simulation of a kink-unstable coronal loop, coupled 
o a radiative transfer model of microwave emissions, that slowly 
ecaying microwave oscillations were emitted from the reconnection 
ite irrespective of the inclusion or exclusion of energetic elec- 
rons in their gyrosynchrotron (GS) radiation calculations. These 
scillations, resembling QPPs, may result from a standing global 
HD mode modulating the radiation emitted by the reconnecting 

lasma. While the precise mechanism driving these oscillations 
emains unidentified, ‘structural oscillations’ (i.e. sausage, kink, 
orsional modes, etc.) are potential candidates. It should be noted 
hat C. Smith et al. ( 2022 ) also identify strong higher frequency
PPs associated with rapid variations in the electron acceleration 
rocess, possibly due to the triggering of anomalous resistivity. 
his is an example of the generation of QPPs by temporal (and
patial) variations in energetic electron acceleration, which may 
e a key mechanism for QPPs as found by G. D. Fleishman, T.
. Bastian & D. E. Gary ( 2008 ) and H. Collier et al. ( 2024 ).
owever, our focus here is on characterizing the MHD modes that

rise in a reconnecting loop, as well as their potential observable
ignatures. 

Motivated by these recent findings, we aim to explore the rela-
ionship between the structural oscillations of kink-unstable coronal 
oops and the observed oscillations in emitted GS radiation. To 
his end, we conduct MHD simulations of straight and curved 
wisted coronal loops undergoing the kink instability. We identify the 
scillations of the loop and the internal plasma parameters resulting 
rom this process and determine their connection with the emitted 
adiation. Since our main interest here is the MHD oscillations, we
alculate only the emission from thermal plasma, which should be 
ost strongly correlated with these oscillations. Emission from non- 

hermal electrons has been considered by C. Smith et al. ( 2022 ),
ut this has a more complex signature including high-frequency 
ulsations likely associated with time variations in the energy release 
nd acceleration processes, which are outside the scope of this paper.
e note that purely thermal flares are observed, albeit rarely (D. E.
ary & G. J. Hurford 1994 ; G. D. Fleishman, G. M. Nita & D. E.
ary 2015 ). 
Section 2 describes the straight and curved loop models, their 

mplementation within 3D resistive MHD simulations, and the 
ethodologies used for identifying structural oscillations and calcu- 

ating GS radiation. Results are presented in Section 3 and discussed
n Section 4 , focusing on the effect of curvature and the implications
f these results for flares and QPPs. 

 M E T H O D O L O G Y  

e investigate two models of a kink-unstable coronal loop in 
onditions representative of the solar corona, using MHD simulations 
escribed in Section 2.1 . The first model, introduced in Section 2.2 ,
epresents a straight coronal loop within a constant-density environ- 
ent. This simpler model serves as a basis for understanding the more

ealistic curved loop model, simulated in a gravitationally stratified 
tmosphere, discussed in Section 2.3 . Section 2.4 explains how the
S radiation is calculated, while Section 2.5 focuses on the edge
etection algorithm used for identifying sausage- and kink-mode 
scillations. 
MNRAS 544, 2296–2315 (2025)
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M

Table 1. Normalization constants used in LARE simulations, including user-defined values ( L0 , B0 , ρ0 ) and their derived counterparts. Values 
used in the straight and curved loop mode simulations are listed. 

Normalization constant Definition Value (straight loop) Value (curved loop) 

L0 Loop-top radius 12 × 106 m 4 × 106 m 

B0 Loop-top magnetic field strength 0.02 T 0.02 T 

ρ0 Background coronal density 10−11 kg m−3 3 × 10−11 kg m−3 

v0 B0 /
√ 

μ0 ρ0 5 . 64 × 106 m s−1 3 . 26 × 106 m s−1 

P0 B2 
0 /μ0 318 Pa 318 Pa 

t0 L0 /v0 2.07 s 1.23 s 
j0 B0 / (μ0 L0 ) 1 . 33 × 10−3 A m−2 3 . 98 × 10−3 A m−2 

ε0 v2 
0 3 . 18 × 1013 J kg−1 1 . 06 × 1013 J kg−1 

T0 (1 . 2 mp ε0 ) /kB 4 . 62 × 109 K 1 . 54 × 109 K 

η0 μ0 L0 v0 8 . 51 × 107 � m 1 . 64 × 107 � m 
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.1 Solving the resistive MHD equations 

e solve a form of the resistive 3D MHD equations in the Lagrangian
egime, incorporating a viscous force term denoted as f visc , which is
mplemented to capture weak shocks within the system (T. D. Arber
t al. 2001 ). The equations can be expressed as follows: 

Dρ

Dt 
+ ρ∇ · v = 0 , (1) 

Dv 

Dt 
= ( ∇ × B ) × B − ∇P + f visc , (2) 

DB 

Dt 
= ( B · ∇) v − B ( ∇ · v ) − η∇ × ( ∇ × B ) , (3) 

Dε

Dt 
= −P 

ρ
( ∇ · v ) + η

ρ
j 2 , (4) 

 = ρε ( γ − 1) . (5) 

Here, the mass density is denoted by ρ, plasma velocity by v ,
agnetic field by B , pressure by P , magnetic resistivity by η, specific

nergy density by ε, current density by j , and the heat capacity
atio, set to 5/3, by γ . While thermal conduction and radiation could
nfluence the observational predictions of our model, they are not
ncorporated into this research as they were not initially considered
y C. Smith et al. ( 2022 ), with whom we are comparing. Equations
re expressed in dimensionless form, but the results are presented
n dimensional form. The latter is necessary for calculating GS
missions. The normalization constants, which scale the straight and
urved loop models, are defined in Table 1 . 

The viscous force term f visc incorporated in our simulations
as initially developed by E. J. Caramana, M. J. Shashkov & P.

. Whalen ( 1998 ) and later adapted to be used in MHD by T. D.
rber et al. ( 2001 ). This term consists of three contributions. The
rst contribution involves approximating the fluid as a set of finite
olume masses distributed across a staggered grid, following the
ethod proposed by J. Von Neumann & R. D. Richtmyer ( 1950 ).
he term is calculated by considering the non-linear energy exchange

hat arises from inelastic collisions among these particles. A second
inear term is then included to mitigate non-physical oscillations that

ay occur behind shock fronts. This approach was first introduced
y R. Landshoff ( 1955 ). Finally, a third term is included to account
or errors arising from dividing a continuous fluid into finite volume
asses. This correction is necessary to prevent inaccurate viscous

issipation calculations due to self-similar isentropic compression,
s discussed by E. J. Caramana et al. ( 1998 ). E. J. Caramana et al.
 1998 ) combined the work of R. B. Christensen ( 1990 ) and D. J.
enson & S. Schoenfeld ( 1993 ) to achieve this, introducing a term

hat deactivates the artificial viscosity in smooth regions of the flow.
NRAS 544, 2296–2315 (2025)
ombined, these three terms effectively capture weak shocks and
ontribute a value comparable to the kinetic energy density difference
etween a plasma element at a grid point and its nearest neighbours.

The resistive MHD equations are solved using LARE3D , a La-
rangian remap code, developed by T. D. Arber et al. ( 2001 ). We
pply zero gradient boundary conditions (except for the velocity
t z = 0) for the curved loop model (see Section 2.3 ). We utilize
 current-driven anomalous resistivity, in which the resistivity ( η)
ncreases when the current density exceeds a critical value ( jcrit ): 

( j ) =
{

10−6 , if j ≤ jcrit ; 
10−3 , if j ≥ jcrit . 

(6) 

The chosen value of jcrit is specific to each model and is defined
n its respective sections. 

.2 Straight loop model 

he development of the kink instability and subsequent reconnection
n straight twisted loops has been studied extensively (P. K. Browning
 R. A. M. Van der Linden 2003 ; P. Browning et al. 2008 ; M. R.
areford et al. 2013 ; M. R. Bareford & A. W. Hood 2015 ; R. F.
into, N. Vilmer & A. S. Brun 2015 ; A. W. Hood et al. 2016 ; B.
now et al. 2017 ; J. Reid et al. 2018 ). We construct a force-free
traight twisted loop of length L = 20 following the model used in
. W. Hood, P. K. Browning & R. A. M. van der Linden ( 2009 ),
hich has previously found success in the study of MHD avalanches

esulting from interacting kink-unstable coronal loops (K. V. Tam
t al. 2015 ; A. W. Hood et al. 2016 ; J. Reid et al. 2018 ). The initial
agnetic field for this model, in cylindrical coordinates, is a force-

ree equilibrium: 

θ =
{

λr
(
1 − r2 

)3 
, if r < 1; 

0 , if r ≥ 1 . 
(7) 

y =
⎧ ⎨ 

⎩ 

√ 

1 − λ2 

7 + λ2 

7 

(
1 − r2 

)7 − λ2 r2 
(
1 − r2 

)6 
, if r < 1; √ 

1 − λ2 

7 , if r ≥ 1 . 
(8) 

Here, θ represents the azimuthal angle in the x –z plane, r denotes
he radius from the origin in the x –z plane, and λ signifies the degree
f twist in the flux rope. The flux rope undergoes the kink instability
hen λ > λc , where λc stands for the critical twist. This parameter

s also constrained by the requirement that B2 
y must remain positive,

imiting λ to be less than 2.438 (A. W. Hood et al. 2009 ). We select a
alue, λ = 2 . 3, just above the threshold for the ideal kink instability
or a loop with a radius-to-length ratio of 0.05. For simplicity, we
se a constant-density atmosphere instead of a stratified atmosphere,
ith ρ and ε set to 1.0 and 0.01, respectively. We select jcrit manually,
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xamining the system before reconnection and selecting a value of j 
ust above the equilibrium value. This value was set to jcrit = 5 . 0. 

We use a three-dimensional grid, bounded by [ −3:3, −10:10, 
3:3] with 321 × 641 × 321 grid points. The dimensions of this
odel are chosen to later match, as closely as possible, the resolution

f the curved loop model. The ratio of the magnetic field at the centre
f the flux rope to the background magnetic field is 2.0, while the
lasma beta is 0.01 inside the loop and 0.05 outside the loop. 

.3 Curved loop model 

ore realistically, coronal loops are curved with their ends rooted 
n the photosphere, which may affect both their energy release and 
scillations. Various models of curved and twisted coronal loops 
xist and have been previously used to study topics such as their
nteraction with non-uniform magnetic fields (F. Reale et al. 2016 ), 
actors influencing their critical twist (V. S. Titov & P. Démoulin 
999 ; T. Török, B. Kliem & V. S. Titov 2004 ; T. Török & B. Kliem
005 ), and the release of energy in MHD avalanches (G. Cozzo et al.
023 ). We use the model developed by M. Gordovskyy et al. ( 2014 ),
hich has previously been used by R. F. Pinto et al. ( 2016 ), M.
ordovskyy, P. K. Browning & E. P. Kontar ( 2017 ), and C. Smith

t al. ( 2022 ) to study the observational signatures of thermal and
on-thermal particles in kink-unstable coronal loops and by M. R. 
areford et al. ( 2016 ) to investigate the influence of field geometry
nd various thermodynamic effects on the stability of twisted flux 
ubes. 

We begin by initializing an untwisted magnetic field by positioning 
wo magnetic monopoles beneath the numerical domain, given by 

B ( t = 0) = B1 

(
r − m 1 

|r − m 1 |3 −
r − m 2 

|r − m 2 |3 
)

. (9) 

Here B represents the magnetic field of the flux rope, B1 scales the 
agnitude field strength of the loop, and r is the position vector from

he origin. The vectors m 1 and m 2 indicate the positions of the two 
onopoles: m 1 = (0 , a, −h ) and m 2 = (0 , −a, −h ). The parameter
 corresponds to the position of the footpoints on the photosphere. 
he depth of the monopoles beneath the domain is represented by h .
e use the values B1 = 50, a = 6 . 4, and h = 3 . 2. 
The twist is created by applying slow vortical motions to each 

f the loop’s circular footpoints. We utilize the method developed 
y M. R. Bareford et al. ( 2016 ), which injects twist similar to M.
ordovskyy et al. ( 2014 ) but at a consistent rate that prevents twist
issipation. The azimuthal velocity within each circular footpoint 
egion is given by 

rot ( r, t) = ψ( r) ζ ( t) , (10) 

( r) = r

[
1 − tanh 

(
r − R 

χ

)]
, (11) 

( t) = wtwist 

2 
tanh 

(
t − t1 

τ1 

)
tanh 

(
0 . 5 − t − t2 

τ2 

)
. (12) 

Equation ( 11 ) describes the spatial distribution of the twisting 
otions, where the r represents the radius measured from the centre 

f the footpoint, while R is the radius of the footpoint. The rotational
elocity gradually increases from the centre of the footpoint towards 
ts edge, declining sharply to zero near the footpoint edge. The 
osition of the peak and the rate of decrease are dependent on the
arameter χ . We have chosen R = 0 . 5 and χ = 0 . 05, resulting in
he rotational velocity peaking very close to r = R and exhibiting a
teep decline thereafter. 
The temporal evolution of the azimuthal velocity is described by 
quation ( 12 ). Here, wtwist scales the magnitude of the rotational
elocity. The parameters t1 and τ1 determine the onset time and the 
ate at which the twist increases, respectively. Similarly, t2 and τ2 

etermine the end time and the rate at which the twist decreases. The
actor of 1/2 is included because the twisting profile is applied to
oth footpoints, which effectively doubles the rate of twist. We have
hosen the following parameter values: wtwist = 0 . 02, t1 = 120, t2 =
60, τ1 = 40, and τ2 = 20, selected to prevent significant dissipation,
et remain slow enough so that the field prior to instability onset is
lose to equilibrium. Once the loop becomes unstable, at a critical
wist of about 4π, we switch off the rotational velocity. The described
ethod of generating a twisted loop by injecting helicity at the

ootpoints can also be found in studies such as those performed
y F. Reale et al. ( 2016 ), J. Reid et al. ( 2018 ), and G. Cozzo et al.
 2023 ). It generates an approximate twisted force-free equilibrium 

or a curved loop; however, it should be noted that the initial twisting
hase in these simulations is not intended to accurately represent the
ormation of a real twisted loop. 

Using the aforementioned model, we construct an untwisted loop 
ithin a 512 × 512 × 512 Cartesian grid bounded by [ x = −10:10,
 = −10:10, and z = 10:10]. The initial configuration of the loop has
 height of 8.34, a footpoint separation of 12.8, a length of 24, and
 cross-section at the loop-top of 0.63 in dimensionless units. The
agnetic field strength at the loop-top is evaluated to be 0.28, while

he magnitude at the footpoint is determined as 4.82. Consequently, 
e observe an aspect ratio of 38.4 between the length of the loop and

he cross-section at the loop-top, as well as a magnetic field strength
atio of 0.058 between the loop-top and the footpoints. 

We construct a gravitationally stratified atmosphere, following M. 
ordovskyy et al. ( 2014 ), with three layers: a chromospheric layer

ituated at the lower boundary of the domain, a transitional layer, and
 coronal layer occupying the majority of the domain. The density
rofile is given by 

( z) = ρ1 e
− z−zc 

z1 + ρ2 e
− z−zc 

z2 . (13) 

Here, ρ1 denotes the density of the chromosphere, ρ2 corresponds 
o the density of the solar corona, zc represents the height of the
ransitional layer, and z1 and z2 are the gradients of the density 
n the transitional layer and chromospheric layer, respectively. 
his is consistent with empirical models, such as those discussed 
y J. E. Vernazza, E. H. Avrett & R. Loeser ( 1981 ). We set
1 = 5 . 15 × 107 , ρ2 = 3 . 03, zc = 4 . 675 × 10−7 , z1 = 5 . 5 × 10−8 ,
nd z2 = 5 . 0 × 10−6 , with a factor of 104 difference between the
ensity of the chromospheric and coronal layers. These parameters 
esult in a temperature of ∼105 K at the chromospheric level and 
107 K at the coronal level. The plasma beta starts at 0.1 at the

ootpoints, decreases to 0.005 in the lower corona, and rises to 0.01
t the loop-top. 

To determine the critical current, we adopt the criterion employed 
y M. Gordovskyy et al. ( 2014 ), assuming plasma instabilities
eading to increased resistivity arise when the electron drift velocity 
urpasses the sound speed, i.e. vdrift > vthermal . Consequently, the 
ritical current is expressed as 

crit (r ) = 2 e 

mp 

√ 

γ ( γ − 1) ρ(r )
√ 

ε(r ) . (14) 

Here, r denotes the position vector, e represents the charge of an 
lectron, and mp is the mass of a proton. However, as discussed by
. Gordovskyy et al. ( 2014 ), it is crucial to consider that the current

ensity in global MHD models is limited by the grid resolution. To
ddress this limitation, we multiply the above equation by a factor of
MNRAS 544, 2296–2315 (2025)
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Figure 1. Demonstration of the edge detection algorithm in action. The top-left image shows an unprocessed input image (a 2D slice of pressure at the loop-top 
within the mid-plane of an evolving straight loop), while the top-right image displays the input image with outer edges detected (along with some inner edge 
artefacts). The bottom-left image illustrates Delaunay triangulation, with triangles plotted between each point in the edge data set. The solid circles depict the 
circumcircles of the edge points associated with the convex hull, and the dashed circles outline the alpha shape of these circumcircles. The bottom-right image 
exclusively features the outer edge points and a fitted ellipse. 
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L/RL , where δL denotes the grid resolution and RL is the Larmor
adius of a proton. In dimensionless units, the critical current is 

crit = 2 eN 

mp 

√ 

γ ( γ − 1) μ0 ρ0 , (15) 

here N is the number of grid points, typically in the direction with
he lowest resolution. 

.4 GS radiative transfer code 

ildly relativistic electrons within a coronal loop gyrate in magnetic
elds, leading to GS radiation emission. In a solar flare, this is

ypically in the microwave frequency range. However, accurately
alculating GS radiation is computationally expensive. To overcome
his, we use a fast GS radiative transfer code developed by G. D.
leishman & A. A. Kuznetsov ( 2010 ), G. M. Nita et al. ( 2015 ), and
. A. Kuznetsov & G. D. Fleishman ( 2021 ). 
The GS code enables the user to take the number density (cm−3 ),

emperature (K), and magnetic field (T) along a line of sight and
alculate the GS radiation intensity (in solar flux units) emitted along
hat line of sight for a range of selected frequencies. It reduces the
omputational time required for calculating GS radiation by several
rders of magnitude, yielding results within 1–10 per cent of their
xact solutions. The algorithm has previously been implemented in
he study of solar flares (M. Gordovskyy et al. 2017 ; E. P. Kontar et al.
017 ; B. Chen et al. 2020 ), for investigating QPPs (G. Mossessian &
. D. Fleishman 2012 ; A. Altyntsev et al. 2016 ; E. G. Kupriyanova,
. I. Kaltman & A. A. Kuznetsov 2022 ; C. Smith et al. 2022 ; T. I.
altman & E. G. Kupriyanova 2023 ; M. Shi et al. 2023 ), and has

ound applications outside of solar physics (C. O. G. Waterfall et al.
019 ; J. B. Climent et al. 2022 ). 
NRAS 544, 2296–2315 (2025)
We do not consider non-thermal electrons, which has been done by
. Smith et al. ( 2022 ). Instead, we use a thermal energy distribution
nd an isotropic pitch-angle distribution and compute the radiation
mitted along multiple line of sights for both models. This focuses
n oscillations associated with the MHD behaviour of the loop and
llows us to determine how the emitted radiation evolves and identify
eriods of any fluctuating components that may be correlated with
tructural or parameter oscillations within the reconnecting loop,
ncreasing our understanding of what mechanisms drive QPPs. 

.5 Structural oscillation analysis 

e detect structural oscillations (oscillations of the loop struc-
ure, such as sausage modes, kink modes, etc.) by introducing
 new method to isolate structures within a background plasma.
pecifically, we isolate the loop-top of both models and study the
HD oscillations occurring therein. To achieve this, we construct

 multistage algorithm that utilizes Canny edge detection (J. Canny
986 ), Delaunay triangulation, and the construction of alpha shapes
o determine the boundaries of structures in a 2D colour map.
ausage-mode and kink-mode oscillations can then be detected
y fitting ellipses to the edges of the structure and tracking their
volution over time. A visual demonstration of this algorithm is
rovided in Fig. 1 . This algorithm is not limited to identifying
tructural oscillations and may lend itself to additional potential
pplications. 

The first step in this algorithm is to calculate the edges within a
elected 2D slice. We focus on oscillations at the loop-top, so we take
 2D slice of the loop’s mid-plane, corresponding to a parameter with
 well-defined boundary between the inside and outside of the loop,
n this case, pressure. We then remove all values within the image
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Figure 2. The evolution of the straight loop’s interior magnetic field lines. The blue field lines originate from the footpoint at y = −10 . 0, while the red field 
lines originate from the footpoint at y = 10 . 0. 
MNRAS 544, 2296–2315 (2025)
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Figure 3. The temporal evolution of the average twist (top-left), total magnetic energy (top-right), kinetic energy (bottom-left) of the system, and cumulative 
Ohmic heating (bottom-right) for the straight loop. A black dashed line has been marked on each graph at the time at which the total magnetic energy starts to 
drop, differentiating between different phases of the loop’s evolution. 
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elow a threshold value. This results in a crude extraction of the loop-
op from the background plasma, which we will further refine. From
here, we implement the Canny edge detection algorithm to calculate
he edges within the 2D image. The Canny edge detection algorithm
J. Canny 1986 ) has been applied to a variety of non-astrophysical
cenarios (S. Agaian, A. Almuntashri & A. Papagiannakis 2009 ; X.
ou et al. 2009 ), and has seen continued development in the field
f computer vision (W. Rong et al. 2014 ). In this paper, we use a
raditional method outlined in E. Trucco & A. Verri ( 1998 ). 

The Canny edge detection algorithm works as follows: first, we
pply a grey scale transformation to the image and then blur it with
 Gaussian kernel. This step helps minimize noise within the image.
ubsequently, the edges of the image are identified by calculating the
radient of the image. This generates regions with sharp gradients
‘strong edges’) over a limited number of pixels and larger regions
ith more gradually changing gradients (‘weak edges’). Our final

mage should have clearly defined edges, so the next step is to convert
eak edges into strong edges using non-maximum suppression. This

echnique involves evaluating for each pixel whether its gradient
NRAS 544, 2296–2315 (2025)
erves as the local maximum within a neighbourhood of pixels
haring the same gradient direction. If this criterion is met, the local
aximum is retained along with any immediately adjacent weak

dges, thereby forming a strong edge and enhancing the image’s
larity. 

The outcome is an image containing the extracted edges of the
oop-top, with some inner edges left over that we wish to remove to
ccurately calculate the structural oscillations of the loop. We build
pon the Canny edge detection algorithm by incorporating Delaunay
riangulation and implementing alpha shapes to achieve this. We
tart by constructing a concave hull around the boundary edges of
he isolated structure. To achieve this, we use Delaunay triangulation
o generate a set of non-overlapping triangles from the edge data
et. Subsequently, a convex hull is computed around these triangles,
roviding a preliminary estimate of the boundary between the loop-
op and any remaining plasma that had not been removed earlier in
he algorithm. 

Then, we enhance the accuracy of the hull using alpha shapes.
or each point along the convex hull, we compute a circumcircle
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Figure 4. Colour maps illustrating the evolution of the in-plane magnetic field, density, and temperature of the straight loop in the X –Z plane at the mid-plane 
of the loop ( y = 0) over time. 
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round the associated triangle’s vertices. The circle’s radius is 
hen scaled by a parameter, α, resulting in the creation of an
lpha shape. Points within the edge data set that fall within this
lpha shape are designated as ‘boundary edges’, and are separated 
rom the interior edges. To create an accurate hull around the 
oop-top, the α parameter must be carefully chosen. A larger 

value produces a less-detailed convex boundary, whereas a 
maller value risks missing potential points along the boundary. 
n our analysis, we opted for α = 0 . 5 for the straight and curved
oop. 

The structure is now isolated from the background plasma and 
an be used for other purposes if desired. To identify structural
scillations, we fit an ellipse to the isolated loop-top for each time-
tep. By tracking the evolution of the fitted ellipse, we can isolate
ink-mode oscillations (through the motion of the elliptical centre) 
nd sausage-mode oscillations (through changes in the area of the 
llipse) in the reconnecting loop. 

 RESULTS  

he kink instability was induced and simulated for both straight and
urved loops. The resulting evolution, including magnetic reconnec- 
ion, plasma heating, emitted radiation, and structural oscillations, is 
escribed below. 
MNRAS 544, 2296–2315 (2025)
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Figure 5. Analysis of the structural oscillations observed in the straight loop model. The first row illustrates how the fitted ellipses cross-sectional area, central 
coordinates ( xc and zc ), and how the average twist of the loop evolves over time. A dashed black line separates data points before and after 322.5 s. In the second 
row, the post 322.5 s data, with the removal of its moving average, are presented. The third row showcases the periods of the power spectrum of this processed 
data. Finally, the fourth row maps Gaussian peaks to the corresponding peak periods identified in power spectra. 
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.1 Evolution of the straight loop 

e generate a model of a straight coronal loop in a state of
nstable force-free equilibrium, with a twisting parameter λ = 2 . 3
s described in Section 2.2 . Upon starting the simulation, the loop
ndergoes the kink instability and begins to reconnect, eventually
elaxing to a new equilibrium state. 
NRAS 544, 2296–2315 (2025)
Fig. 2 shows how the interior magnetic field lines develop as the
ystem evolves. Fig. 3 depicts the evolution of both the average
wist and the energetics of the system over time. We calculated the
verage twist by determining the total twist of 200 magnetic field
ines distributed inside the loop around the central loop axis and then
veraging these values. Additional visualization is provided in Fig. 4 ,
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Figure 6. Analysis of parameter oscillations at the centre of the loop. The first column analyses the system’s density, the second column examines temperature, 
and the third column, Bx . The rows follow the same structure as those in Fig. 5 . 
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hich takes a slice of the loop in the X –Z plane at y = 0, and shows
ow the in-plane magnetic field, density, temperature, and current 
agnitude within the loop change with time. 
The simulation was run for 702 Alfvén times (1453 s). Between 

 = 0 s and around t = 286 s, inhomogeneities in the in-plane
agnetic field, density, temperature, and current magnitude form 

s the kink instability progresses from its linear phase into its non-
inear phase. Reconnection at multiple current sheets within the 
oop follows, and we observe similar magnetic field and energetic 
volution to A. W. Hood et al. ( 2009 ). After around t = 286 s, the loop
elaxes towards a new equilibrium with reduced twist and magnetic 
nergy; however, we do not extend the simulation to reach a fully
tatic equilibrium. 

Post-reconnection, we observe multiple structural oscillations in 
he loop (Fig. 5 ). We take a cross-sectional slice of the loop (at
he mid-plane y = 0) and use our edge-detection and ellipse-fitting
lgorithm to monitor the changes in the area and central coordinates
 xc and zc ) of the loop-top over time (see Section 2.5 ). We observe
n expansion of the loop-top, likely driven by Ohmic heating that
ncreases the loop’s internal temperature and by reconnection of the 
oop’s field lines with ambient untwisted field lines (M. Gordovskyy 
t al. 2014 ). We also observe lateral shifts in the loop-top in the x and z
MNRAS 544, 2296–2315 (2025)
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Figure 7. Periods of the power spectrum for internal parameter oscillations observed at x = 0 . 5 , z = 0 . 0 for the straight loop. The first column analyses the 
system’s density, the second column examines temperature, and the third column, Bx . 

Figure 8. Intensity of GS radiation emitted from the loop-top as a function of frequency at various points in time (s) throughout the straight loop’s evolution. 
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irections. The central coordinates oscillate around new equilibrium
alues mainly after about t = 323 s (though some oscillations are
bserved before this point). The expansion and the contraction of
he cross-sectional area resemble a sausage-mode oscillation, and
he swaying motions detected in xc and zc resemble a kink-mode
scillation. We also detect clear post-reconnection oscillations in the
oop’s average twist (see first panel of Fig. 3 ). 

We analyse these structural oscillations further by removing a
oving average from the original data and calculating the oscilla-

ions’ power spectra. The periods contained within the spectra are
hen identified. For each oscillation, we observe multiple broad peaks
NRAS 544, 2296–2315 (2025)
hat can be used to determine the dominant periods contributing
o each oscillation (see lower panels of Fig. 5 ). Spectral leakage
nd inaccuracies are expected when calculating these periods due to
imitations in the simulation’s total length and temporal resolution.
o address this, Gaussian peaks were fitted to each peak. The means
f these curves provide a value for peak periods, while the variances
erve as errors that allow for comparison with peaks from other power
pectra. 

We detect in each variable a dominant period at ∼83 s, along with
maller contributions detected in the sausage-mode oscillations. This
ommon period suggests two things: the structural oscillations are
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Figure 9. The variation of GS radiation at 1.2 GHz with time (top-left) for the straight loop, detrended GS radiation (top-right), the periods identified in its 
associated power spectrum (bottom-left), and Gaussian fits to those periods (bottom-right). 
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onnected, and the oscillations observed in the average twist are 
ikely due to the expansion and contraction of the loop rather than
he presence of an additional ‘torsional-like’ Alfvén wave, which 
ould be characterized by oscillatory rotational motions around the 

oop-top. 
Using a similar methodology, we construct power spectra of 

scillations detected in the density, temperature, and line-of-sight 
agnetic field ( Bx ) at the centre of the loop-top [0, 0, 0] (Fig. 6 ).
hese variables, in a complex and non-linear way, together determine 

he emitted GS radiation. Two common periods are observed in 
ach quantity. The first overlaps with the ∼83 s mode identified 
n the structural oscillations. The second, at ∼107 s, aligns with a 
inor peak observed in the cross-sectional area power spectra. This 

uggests that the parameter oscillations are primarily associated with 
he observed structural oscillations. The other minor peaks observed 
ay be associated with harmonics or other modes of oscillations not 

dentified in this paper. 
Away from the reconnection site, additional oscillations are 
etected in the density, temperature, and line-of-sight magnetic 
eld. Fig. 7 shows that at point x = 0 . 5, z = 0 . 0, a new oscillation
t approximately ∼240 s emerges alongside the ∼83 and ∼107 s 
scillations. Interference could be a potential reason why this 
dditional mode does not appear at the centre of the reconnection 
ite. 

Oscillations at ∼83 and ∼107 s are observed along with a new 

scillation at ∼240 s at x = 0 . 5, z = 0 . 0. All three align with
scillations detected in the sausage mode. 
Finally, we identify oscillations in the GS radiation emitted from 

he loop-top (see Section 2.4 ). To calculate the emitted radiation, we
ake ∼9000 lines of sight transverse to the loop, in the x -direction,
ear the mid-plane, equally spaced within a region bound by [ −2:2,
0.67:0.67, −2:2], and record the density, temperature, and line- 

f-sight magnetic field along those lines. Subsequently, we partition 
his region into 356 subregions, and for each subregion, we average
MNRAS 544, 2296–2315 (2025)
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Figure 10. Evolution of the curved model coronal loop’s magnetic field lines in the Y –Z plane over time. The blue field lines originate from the footpoint at 
y = −6 . 4, while the red field lines originate from the footpoint at y = 6 . 4. 
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he aforementioned parameters for each point between each line of
ight to reduce the computational expense of the GS calculations. We
void taking an average of the whole loop-top as different segments
f the loop contribute different quantities of GS radiation due to
arying internal parameters throughout the simulation. We carefully
elect a number of subregions that strike a balance between reducing
omputational strain and ensuring that the final radiation calculated
emains representative of the behaviour of the loop. 

The GS microwave frequency spectra emitted from this region
t different points in time are illustrated in Fig. 8 . Continuous
mission is predominantly observed around 1 GHz, with the total
ntensity decreasing over time as the magnetic field strength of the
oop weakens. The spectra show typical shapes, with optically thick
adiation at low frequencies rising to a peak, with a gradual decrease
f intensity through the higher (optically thin) frequency range. We
lso detect oscillations across the calculated spectrum, similar to C.
NRAS 544, 2296–2315 (2025)
mith et al. ( 2022 ). In Fig. 9 , we focus on the radiation emitted
t 1.2 GHz, noting that other frequencies exhibit similar behaviour.
his choice of frequency for analysis means we are in the partially
ptically thick regime. This means the microwave emission may
ave a less direct correspondence with the underlying plasma and
agnetic field parameters than in the optically thin regime. 
A primary peak is observed at ∼222 s, with two secondary peaks

round 107 s. These peaks align with those found in the internal
arameter oscillations and also appear as minor peaks in the sausage-
ode oscillations. Notably, no peak is observed at ∼83 s. 
There is a complex relationship between the sausage-mode oscilla-

ions, internal parameter oscillations, and oscillations in the emitted
S radiation. This complexity is expected due to the highly non-

inear mechanisms by which GS emission arises from plasma param-
ters and the magnetic field (G. Mossessian & G. D. Fleishman 2012 ;
. G. Kupriyanova et al. 2022 ; T. I. Kaltman & E. G. Kupriyanova
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Figure 11. The temporal evolution of: average twist of the loop (top-left), total magnetic energy (top-right) and kinetic energy (bottom-left) of the system, and 
cumulative Ohmic heating (bottom-right). A black dashed line has been used to separate the initial setting up of the initial state and the resultant evolution. 
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023 ). A notable feature is that though the 222 . 2 s mode is dominant
n the emitted GS radiation and internal parameter oscillations 
away from the centre loop-top), it is less prominent in structural
scillations. There are several potential explanations for this. 
One possibility is that the 222 . 2 ± 35 . 2 s GS oscillation results

rom interference between the 111 . 28 ± 2 . 8 s and 82 . 0 ± 4 . 2 s
eaks seen in the sausage-mode oscillations. Alternatively, other 
ave modes – undetected by the edge detection algorithm – could 

ontribute to the emission oscillations. A potential candidate is 
 longitudinal acoustic mode, whereas a torsional mode can be 
uled out since the ∼222 s peak would also appear in the average
wist oscillations, which were not observed. Furthermore, since the 
adiation we analyse is in the optically thick region of the spectrum,
t will be determined by the plasma and magnetic field across the line
f sight in a complex way, and not just depend on the local conditions
t the emission site. 

.2 Evolution of the curved loop 

ollowing M. Gordovskyy et al. ( 2014 ), we induce the kink instability
n a curved loop by applying a twist to the loop’s footpoints. We inject
 total twist of approximately 4π before the loop becomes unstable, 
econnects, and relaxes towards a new equilibrium state. 

We analyse the curved loop in a similar way to the straight loop.
he simulation was run for 1500 Alfvén times (1845 s). Once the

oop reaches an average twist of 3 . 41π, at around t = 565 s, the
oop becomes unstable, indicating that some of the injected twist 
issipated during this initial phase. The evolution prior to this is
nly to establish an unstable equilibrium, and this time corresponds 
o t = 0 for the straight loop discussed above. When the loop
egins to reconnect, it exhibits similar behaviour to the straight loop 
oncerning energetics and internal dynamics (see Figs 3 and 4 ) and
s similar to previous work with this model (M. Gordovskyy et al.
014 ; M. R. Bareford et al. 2016 ; R. F. Pinto et al. 2016 ; C. Smith
t al. 2022 ). 

The evolution of the loop’s interior magnetic field lines is depicted
n Fig. 10 , while Fig. 11 illustrates the evolution of the average twist
nd energetics over time. The internal dynamics of the loop evolve
imilarly to the straight loop (Fig. 4 ). Discussions of behaviour prior
o approximately t = 565 s will be omitted, as this phase serves
olely to set up an unstable twisted approximate equilibrium and the
ynamics are non-physical. 
We again use our edge-detection and ellipse-fitting algorithm on 

 cross-sectional slice of the loop at y = 0 to quantify changes in
he loop-top’s area and central coordinates ( xc and zc ) over time (see
ig. 12 ). We observe expansion and contraction of the loop, similar

o the straight loop, and lateral displacement. The direction of the
ateral shift differs in the curved loop. This is due to the straight
oop’s symmetry, which results in a random initial shift, whereas 
he curvature of the curved loop provides a preferred direction. In
ig. 12 , we also identify post-reconnection oscillations in the loop’s
verage twist. 

A single common period of approximately 190 s is observed in
ll four structural parameters. Additionally, a second period of about 
70 s is observed in all parameters except the average twist. This
uggests, similar to the straight loop, that the sausage-mode and 
ink-mode oscillations are connected, and the sausage mode drives 
scillations in the loop’s twist. However, unlike the straight loop, a
nique period is observed in the average twist oscillations (∼119 s),
ndicating the presence of a potential alternative mechanism that is 
lso affecting the loop’s twist. 

Further oscillations in the density, temperature, and line-of-sight 
agnetic field are observed inside the loop-top over time, measured 

t coordinates [0, 0, 12] (Fig. 13 ). This point is located internally
MNRAS 544, 2296–2315 (2025)
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Figure 12. Analysis of the structural oscillations observed in the curved loop model, following the same structure as Fig. 5 . 
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t the centre of the loop, drifts from the centre as the loop evolves,
ut remains within the loop-top throughout the simulation. A peak
t ∼190 s is observed in the density and Bx oscillations, while a
eak at ∼270 s is observed in all three variables. These two peaks
re associated with the sausage-mode and kink-mode oscillations. A
hird peak at ∼119 s is also observed in all three variables. This
eak aligns with the 119-s peak observed in the loop’s average
wist, suggesting that the internal parameters are also affected by the
NRAS 544, 2296–2315 (2025)
echanism influencing the loop’s average twist, perhaps torsional
lfvén waves. 
To calculate the GS radiation, we use the same approach as the one

sed for the straight loop. However, this time we consider 18 350 lines
f sight along the x -axis, bounded by [ −10:10, −2:2, 7:14], divided
nto 356 subregions. Compared to the straight loop, we observe a
ider range of emitted frequencies, resembling those seen in C.
mith et al. ( 2022 ). 
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Figure 13. Analysis of parameter oscillations at [0, 0, 12], located at the mid-plane of the curved loop. The first column analyses the system’s density, the 
second column examines temperature, and the third column, Bx . The rows follow the same structure as those in Fig. 6 . 
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The intensity versus frequency distribution for the curved loop has 
he same shape as the straight loop (Fig. 7 ), with a peak at 15 GHz.
ig. 14 shows a map of GS radiation emitted from the coronal loop in

he Y –Z plane at 15 GHz, at the same snapshots as in Fig. 10 . A total
f 146 800 lines of sight are grouped into 9025 averaged subregions,
rom which the emitted radiation is calculated. Brightenings and 
ne structure are observed within the loop. While this level of
patial resolution cannot be observed with current observational 
echniques, the figure provides insight into the origins of the emission
eaks. 
Fig. 15 focuses on oscillations at 15 GHz, noting that other

requencies exhibit similar behaviour. We observe two peaks: one 
t approximately 233 s and another around 526 s. The first peak
ligns with the 270-s oscillations observed in the structural modes, 
uggesting that, similar to the straight loop, it is driven by sausage-
nd kink-mode oscillations. 
MNRAS 544, 2296–2315 (2025)
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Figure 14. Normalized GS radiation at 15 GHz in the Y –Z plane (spanning Y = −8 to 8, Z = 0 to 14), for the same time-steps as images of the evolving curved 
coronal loop presented in Fig. 10 . 
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However, the dominant peak at 526 s does not directly correspond
o any structural oscillations. As in the straight loop, there is
vidence to suggest that they may arise from interference effects.
nterference of the peaks at 175 . 4 ± 50 . 2 and 263 . 2 ± 59 . 7 s area
scillations, 183 . 5 ± 16 . 6 and 277 . 8 ± 32 . 0 s in the xc oscillations,
nd 208 . 3 ± 22 . 9 and 303 . 3 ± 45 . 4 s in the zc oscillations gives a
eriod similar to the 526-s peak. Additionally, interference between
djacent peaks in the density oscillations also aligns with the 526-s
eak. We also note that the 119-s oscillation detected in the loop’s
verage twist does not appear in the GS radiation oscillations. Though
his mechanism remains unidentified, it does not significantly influ-
nce the oscillations in the emitted GS radiation. 

 DISCUSSION  A N D  C O N C L U S I O N S  

e performed 3D resistive MHD simulations of both a straight
nd curved kink-unstable twisted coronal loop using LARE3D . Both
oops underwent reconnection, releasing stored magnetic energy, and
xhibited broadly similar behaviour in terms of their energetics and
nternal dynamics. The GS emissions, observed in the microwave
and, were forward modelled using a fast GS code developed by G.
. Fleishman & A. A. Kuznetsov ( 2010 ), similar to the approach used

n C. Smith et al. ( 2022 ). The outcomes of our study are twofold. First,
e have demonstrated a new methodology for analysing structural
scillations in a realistic model of a solar coronal loop, and used
his to identify these. Secondly, we have explored the relationship
etween these structural modes and the associated local oscillations
n plasma and magnetic field parameters, with oscillations in the GS
mission light curves. 

Using new methodology, we identified ‘structural’ oscillations of
he loop (kink- and sausage-mode oscillations) by taking a cross-
ectional slice of the loop-top, fitting an ellipse using Canny edge
etection, Delaunay triangulation, and alpha shapes, and tracking the
volution of the loop-top’s shape. We calculated the peak periods in
he power spectra of these structural oscillations and compared them
o peak periods observed in the emitted GS radiation, average twist,
nd internal parameters of the loop. 
NRAS 544, 2296–2315 (2025)
We identified sausage-mode and kink-mode oscillations in both
oops. These oscillations shared similar peak periods, which were
lso observed in the oscillations of the loop’s average twist. A
otential reason for this is that a swaying loop, moving through
egions of increased and decreased magnetic field strength, would
ead to the loop-top periodically expanding and contracting. This
ould manifest as a sausage-mode oscillation and would also induce
scillations in the loop’s average twist. 
For the straight loop, a dominant period of approximately 222 s

as observed in the oscillations of the GS emissions. Two similar
eaks were also observed around 107 s. The 107-s period aligns
ith minor peaks found in the sausage-mode power spectra and
scillations seen in the internal parameters of the loop-top. The 222-
 peak was not directly associated with any structural oscillation,
hich is expected due to the strongly non-linear relationship between

adiative transport and radiative emissions. It was observed that the
nternal parameter oscillations and interference between observed
ausage-mode oscillations give a period that aligns with the 222-
 peak. Alternatively, other wave modes – undetected by the edge
etection algorithm – could contribute to the emission oscillations.
he approximately 83-s period observed in the structural and internal
arameter oscillations did not appear in the GS emissions at all. 
Similar conclusions can be drawn for the curved loop. The peaks

n the GS emissions were observed at ∼233 and ∼527 s. The first
eak overlapped with the 270-s peaks observed in the structural
scillations, indicating that, like the straight loop, one of the peaks
n the GS oscillation is also driven by the sausage- and kink-mode
scillations. The dominant ∼526 s peak is not associated with any
tructural oscillations but could be associated with interference in the
ausage-mode, kink-mode, and density oscillations. This suggests
hat for both the straight and curved loop, the GS oscillations could
e generated by sausage- and kink-mode oscillations and interference
f those modes. 
A potential additional process was observed in the curved loop,

ffecting the oscillations in the loop’s average twist. This oscillation
ad a period of approximately 119 s and could be caused by a
orsional-like mode, which would induce oscillations in the average
wist of the loop due to rotational motion around the loop-top.
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Figure 15. Analysis of the measured GS radiation at 15 GHz for the curved loop. The first row demonstrates how the GS radiation for each frequency evolves 
over time. The subsequent rows follow the same structure as in Fig. 9 . 
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owever, the 119-s oscillation did not appear in the GS radiation 
scillations, suggesting that even if an additional mechanism was 
ffecting the loop’s twist, it did not contribute to the dominant period
n the GS oscillations. Furthermore, in the straight loop, only one 
eriod was observed in the average twist oscillations, and this was 
hared with the periods observed in the kink- and sausage-mode 
scillations. This suggests that there were no other mechanisms 
riving the oscillations in the average twist for the straight loop, 
iscounting the potential contribution of a torsional-like mode for 
he straight loop as well. 

In summary, both sausage- and kink-mode oscillations were 
etected in the straight and curved loop models. While these modes 
lay a crucial role in shaping the GS emission – and thus any
bserved QPPs in the flare – the relationship between light-curve 
ulsations and underlying loop oscillations remains complex. This is 
ot unexpected, due to the non-linear dependence of GS emission on 
he plasma and field parameters (G. Mossessian & G. D. Fleishman 
012 ; E. G. Kupriyanova et al. 2022 ; T. I. Kaltman & E. G.
upriyanova 2023 ). Optically thick effects on the radiation may play 
 significant role in the relationship between the parameters in the 
mission regions and in the observed radiation. It is possible that the
ausage- and kink-mode oscillations are the sole contribution to the 
S oscillations, but it is also possible that mechanisms unidentified 
ere play a role in determining the frequencies of the GS oscillations.
There is evidence to suggest that sausage- and kink-mode oscil- 

ations (and interference of these modes) may account for the GS
scillations emitted from the straight and curved loop model. While 
 torsional mode is unlikely to be responsible, other unidentified 
echanisms could also influence their frequencies. In the curved 

ase, curvature effects could introduce an acoustic mode. 
Future research should investigate whether GS oscillations result 

rom interference between sausage and kink modes or from another 
echanism entirely. If the GS oscillations result from interference, it 

s important to gain a deeper understanding of how the sausage and
ink modes interact, how this interaction translates into observable 
eatures of the microwave oscillations, and how variations in plasma 
arameters influence this behaviour. Deepening our understanding 
f these mechanisms not only increases our understanding of the 
ime-dependent nature of solar flares but also paves the way for the
evelopment of seismological tools that could be used to determine 
MNRAS 544, 2296–2315 (2025)
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lasma parameters within a flaring region from observed QPP data
n the future. 
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