computers

Article

AutoQALLMs: Automating Web Application Testing Using
Large Language Models (LLMs) and Selenium

Sindhupriya Mallipeddi !, Muhammad Yaqoob 17, Javed Ali Khan *{, Tahir Mehmood 2(”, Alexios Mylonas !

and Nikolaos Pitropakis 3

check for
updates

Academic Editor: Wenbing Zhao

Received: 12 October 2025
Revised: 10 November 2025
Accepted: 14 November 2025
Published: 18 November 2025

Citation: Mallipeddi, S.; Yaqoob, M.;
Khan, J.A.; Mehmood, T.; Mylonas, A.;
Pitropakis, N. AutoQALLMs:
Automating Web Application Testing
Using Large Language Models (LLMs)
and Selenium. Computers 2025, 14, 501.
https:/ /doi.org/10.3390/
computers14110501

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

Cybersecurity and Computing Systems Research Group, Department of Computer Science, University of
Hertfordshire, Hatfield AL10 9AB, UK; sm23ahb@herts.ac.uk (S.M.); m.yaqoob3@herts.ac.uk (M.Y.)

School of Information Technology, UNITAR International University, Petaling Jaya 47301, Selangor, Malaysia
Department of Information Technology, Cybersecurity and Computer Science, The American College of
Greece, 15342 Athens, Greece; npitropakis@acg.edu

* Correspondence: j.a.khan@herts.ac.uk

Abstract

Modern web applications change frequently in response to user and market needs, making
their testing challenging. Manual testing and automation methods often struggle to keep
up with these changes. We propose an automated testing framework, AutoQALLMs,
that utilises various LLMs (Large Language Models), including GPT-4, Claude, and Grok,
alongside Selenium WebDriver, BeautifulSoup, and regular expressions. This framework
enables one-click testing, where users provide a URL as input and receive test results as
output, thus eliminating the need for human intervention. It extracts HTML (Hypertext
Markup Language) elements from the webpage and utilises the LLMs API to generate
Selenium-based test scripts. Regular expressions enhance the clarity and maintainability
of these scripts. The scripts are executed automatically, and the results, such as pass/fail
status and error details, are displayed to the tester. This streamlined input—-output process
forms the core foundation of the AutoQALLMs framework. We evaluated the framework
on 30 websites. The results show that the system drastically reduces the time needed
to create test cases, achieves broad test coverage (96%) with Claude 4.5 LLM, which
is competitive with manual scripts (98%), and allows for rapid regeneration of tests in
response to changes in webpage structure. Software testing expert feedback confirmed that
the proposed AutoQALLMSs method for automated web application testing enables faster
regression testing, reduces manual effort, and maintains reliable test execution. However,
some limitations remain in handling complex page changes and validation. Although
Claude 4.5 achieved slightly higher test coverage in the comparative evaluation of the
proposed experiment, GPT-4 was selected as the default model for AutoQALLMs due
to its cost-efficiency, reproducibility, and stable script generation across diverse websites.
Future improvements may focus on increasing accuracy, adding self-healing techniques,
and expanding to more complex testing scenarios.

Keywords: testing; web application; LLM; GPT; selenium

1. Introduction

Software testing plays a pivotal role in evaluating the quality and correctness of
software systems throughout the development lifecycle [1]. It ensures that applications
function as intended and meet user expectations. Software testing can consume over 50%

Computers 2025, 14, 501

https://doi.org/10.3390/computers14110501

https://doi.org/10.3390/computers14110501
https://doi.org/10.3390/computers14110501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-9328-2593
https://orcid.org/0000-0003-3306-1195
https://orcid.org/0009-0003-0624-628X
https://orcid.org/0000-0001-8819-5831
https://orcid.org/0000-0002-3392-9970
https://doi.org/10.3390/computers14110501
https://www.mdpi.com/article/10.3390/computers14110501?type=check_update&version=1

Computers 2025, 14, 501

2 of 26

of total development costs, especially in complex modern applications [1]. Web appli-
cations are particularly challenging to test due to their dynamic content, asynchronous
interactions, and frequent interface changes, a set of problems well established in the field’s
literature [2—4]. As these systems evolve rapidly to meet changing user demands, testing
methodologies must also adapt to maintain reliability and efficiency [3,5]. Inadequate
software testing can lead to critical system failures and widespread vulnerabilities, empha-
sising the need for reliable, automated solutions [6,7]. These cases highlight the need for
more effective testing methods that can be applied in real-world systems with limited time
and resources.

Modern web applications are characterised by complex structures, dynamic content,
and asynchronous interactions [8]. These features present significant testing challenges
that have been reported in the literature [2,9]. This complexity makes it challenging to test
effectively using traditional manual methods [8]. When relying on manual testing, develop-
ers and QA engineers must spend additional time and effort on test design and execution,
thereby increasing the organisation’s overall testing costs [10]. This makes traditional
manual testing slow and difficult. Automated testing [11], codeless testing [12], and model-
based testing using machine learning have been proposed to improve this process [3].
However, these methods have certain limitations, including difficulties in training models
on large datasets and concerns regarding the quality of the resulting product.

LLMs have been widely used in the software development lifecycle [6], including code
generation [13], requirements engineering [14], vulnerability detection [15], and test case
creation [10,16,17]. Recently, the use of LLMs in software testing has become a significant
and rapidly expanding field of research, with the literature mapping the current landscape
of tools and techniques [18]. Tools such as GPTDroid and PENTESTGPT demonstrate
that LLMs can perform automated testing with minimal human assistance [19,20]. This
demonstrates that LLMs can be integrated into automated and context-sensitive testing
systems for improved quality with reduced resources and lower costs. However, to date,
according to our knowledge, there is little work that uses LLMs in complete testing pipelines
for web applications. A few studies have utilised LLMs in conjunction with web scraping
or regular expressions; however, these approaches do not encompass full automation or
script refinement [16]. There exists a research gap concerning automated systems capable
of dynamically adapting to changes in page structure while preserving script readability.

This study introduces a test automation framework called AutoQALLMs that utilises
GPT-4 alongside Selenium WebDriver, BeautifulSoup, and regular expressions. The pro-
posed approach reads the HTML of any webpage, finds the elements, and uses GPT-4,
Claude 4.5 and Grok to generate Selenium scripts. Regular expressions are used to refine
and adapt the scripts even when the webpage structure changes. Unlike conventional
methods that rely on static scripts and require updates for every Ul change, this approach
dynamically adapts to the structure of webpages using DOM (Document Object Model)
parsing and pattern-based matching, reducing manual effort and improving resilience
to UI changes [3,4]. Unlike GPTDroid, which is designed for mobile testing [20], Auto-
QALLMs are tailored for web application testing. While GPTDroid focuses on extracting
Ul trees and generating scripts for native mobile apps, AutoQALLMs target dynamic
webpages by parsing the DOM using BeautifulSoup and refining scripts with regular
expressions. Additionally, AutoQALLMs support zero-shot prompt-based test generation
(enabling HTML-to-Selenium translation without prior examples or fine-tuning) using
GPT-4, Claud 4.5, and Grok, eliminating the need for intermediate instrumentation or
mobile-specific tools. To our knowledge, this is the first study to integrate LLMs with DOM
parsing and regex-based script enhancement, creating a fully automated, browser-oriented
testing framework.

Computers 2025, 14, 501

30f26

With the proposed approach, we aim to answer three research questions: (i) How
can LLMs be combined with web scraping and Selenium to create test scripts? (ii) Can
LLMs turn HTML into working Selenium scripts using zero-shot prompts? (iii) Can
AutoQALLMs outperform manual or semi-automated testing in code coverage and fault
detection? Our results demonstrate that LLMs can be adapted to convert HTML into valid
Selenium scripts without requiring human-written code. The proposed AutoQALLMs are
tested across various websites, and expert feedback indicates that they improve coverage,
fault detection, and the time required to generate scripts compared to traditional methods.

Our key contribution is the development of a framework that extracts HTML from a
webpage and parses the DOM using BeautifulSoup. We compose structured prompts to
direct LLMs (GPT-4, Claude 4.5, and Grok) in generating Selenium-based test scripts. Addi-
tionally, we have implemented a regex-driven refinement module that enhances the robust-
ness of these scripts by identifying element patterns, thereby improving their adaptability
to changes in the user interface (UI). Another contribution is the integration of these com-
ponents into a dynamic test automation flow that supports zero-shot test case generation to
eliminate the need for manually written templates or prior training. We also conducted ex-
tensive evaluations across 30 websites to measure AutoQALLMs’ performance in terms of
coverage, execution time, and fault detection. Furthermore, we gathered and incorporated
expert feedback from software testers to validate the system’s practicality and to under-
stand its strengths and limitations in real-world testing environments . AutoQALLMSs’ code
is made available for future work (https://github.com/Sindhupriya2797 / AutoQALLMs).

We developed AutoQALLMs, a fully automated framework that transforms web
content into executable Selenium test scripts using LLM intelligence. We designed the
framework to perform zero-shot test generation by extracting HTML from any given web-
page, parsing its DOM structure with BeautifulSoup, and constructing structured prompts
that guide LLM to produce context-aware Selenium scripts. We further implemented a
regex-driven refinement module that identifies and optimises element patterns to improve
the syntactic validity and adaptability of scripts when the user interface or DOM changes.
Through this design, we integrated parsing, generation, and refinement into a single work-
flow that supports end-to-end, self-adjusting automation from HTML extraction to test
execution and reporting.

We also devised an evaluation framework to validate the scalability and practicality of
AutoQALLMs. We tested the framework across 30 diverse web applications and measured
performance using quantitative metrics such as coverage, generation time, execution speed,
and fault detection. We further collected expert feedback from professional testers to assess
qualitative attributes, including readability, adaptability, maintainability, and scalability.
Our results show that AutoQALLMSs generate accurate Selenium scripts within seconds,
achieve coverage levels close to manual testing, and significantly reduce human effort.
With these contributions, we present a practical and intelligent approach to Al-assisted
web testing that advances the role of LLMs in automated quality assurance.

The remainder of this paper is organised as follows: Section 2 presents related work
in software testing, including manual, ML-based, and LLM-based approaches. Section 3
describes the architecture and methodology of the AutoQALLMs framework. Section 4
outlines the experimental setup, evaluation metrics, and testing procedures. Section 5
presents the results, expert feedback, and comparative analysis. Finally, Section 6 concludes
the study and discusses limitations as well as potential directions for future research.

https://github.com/Sindhupriya2797/AutoQALLMs

Computers 2025, 14, 501

4 0f 26

2. Related Work
2.1. Manual Testing

Manual testing involves testers acting as end users, manually executing test cases,
and using all available program features to identify problems and ensure the software meets
standards [6,7]. This process is often the first step for any new application before automation
is considered, as it helps determine whether automated testing is worthwhile [7]. Testers
manually follow test plans, execute test cases, and capture evidence, such as screenshots,
comparing actual results with expected results to detect discrepancies and unexpected
behaviour [21,22].

Although manual testing is effective in uncovering detailed issues, such as invalid in-
put values or unexpected user interface behaviours, it is time-consuming, tedious, and can
be error-prone, especially for complex applications with many test cases [8,22]. The ex-
tensive effort and cost required for manual testing, particularly in large-scale regression
scenarios or systems, has led to a growing demand for automated testing solutions [10,23].
However, automated testing does not fully replace manual methods, as human involve-
ment remains necessary for evaluation of certain testing tasks, especially those that involve
nuanced or dynamic user interactions [23]. These limits have led to the search for more
rapid and automated methods that require less human work.

2.2. ML and DL Based Testing

Manual testing is time-consuming and repetitive, and earlier automated systems
could not learn or adapt to new elements [4]. Some approaches utilised support vector
machine (SVM) models with Selenium and BeautifulSoup to predict test cases based on
HTML element patterns; however, they were limited to static content and required manual
setup [4]. A mapping study showed that most ML-based testing research focused on
test case generation and bug prediction, with fewer studies on GUI and security testing
and limited industrial validation [1]. Other works applied ML for test suite refinement,
fault localisation, risk-based testing, and test oracle automation, though many required
domain-specific data and expert input [5].

In developing their framework, ref. [4] considered a Multinomial Naive Bayes classifier
followed by SVM as the best model for assigning test cases. Clustering techniques have been
used to group test cases with similar behaviours, helping refine test suites by identifying
redundant tests [1]. For example, rule-based ML systems, such as RUBAR, were applied
for fault localisation. At the same time, separate risk-based models used fault prediction
data to prioritise testing and reduce execution costs [5]. These studies demonstrate how
classical ML models improve accuracy, reduce manual effort, and support intelligent
decision-making in the software testing lifecycle.

Although deep learning models have improved visual testing and automated UI
test case generation, they often require large labelled datasets and struggle with visually
complex or changing interfaces [24]. Other approaches utilised deep architectures, such as
LSTM, CNN, and deep belief networks, for test generation and bug prediction. However,
these methods faced significant hurdles. A primary issue was the need for massive, high-
quality datasets for training, which were often unavailable [25]. These difficulties limited
the practical application of many early deep learning techniques in real-world CI/CD
pipelines [25]. Earlier deep neural network testing methods, like DeepXplore, focused on
neuron coverage and successfully uncovered corner-case bugs. Still, they were limited to
gradient-based transformations and lacked flexibility for broader automation scenarios [26].
Due to these limitations, ML and DL models were unable to generate complete Selenium
scripts or adapt to new tasks using natural language. The primary advantage of LLMs
over earlier models is their ability to perform complex generation tasks, such as generating

Computers 2025, 14, 501

50f26

code from natural-language prompts, without requiring extensive, task-specific training
datasets. To address this gap, we began exploring the use of LLMs by providing prompts
to generate Selenium code, thereby enabling more flexible and end-to-end test automation.

2.3. LLM-Based Testing

LLMs for software testing are a broad and active research area, with recent literature
providing a comprehensive landscape of the various tasks, models, and prompting tech-
niques currently being explored [18]. Into this broader landscape, web application testing
has been specifically identified as a promising future direction [9]. Following this trend,
LLMs have recently been applied to different areas of software testing to reduce manual ef-
fort and support adaptive test generation. GPT-4 was integrated with Selenium WebDriver
in a feedback loop to parse the DOM, generate interaction steps, and adjust test flows
based on updated page structure, allowing fully dynamic GUI testing without pre-recorded
data [27]. Another approach compared manual scripting, GitHub Copilot, and two Chat-
GPT variants for generating web E2E test scripts using Gherkin inputs. The study found
that ChatGPT Max (multi-turn) with GPT-4 version consistently reduced development time
and required fewer manual corrections [16].

For JavaScript unit test generation, the paper tool TESTPILOT was evaluated across
25 npm packages. While the LLM-generated tests produced natural-looking code with
meaningful assertions, they also achieved significantly higher code coverage than the
state-of-the-art traditional tool [17]. System-level test case generation was explored through
US2Test, a Python-based tool that combined GPT-4 with user stories from Redmine. The tool
employed black-box techniques, including equivalence class and boundary value analysis,
and demonstrated a 60% reduction in design effort in a government setting [28].

LLMs were also used for visual testing, where a framework generated assertions
and bug reports by analysing Ul screenshots and historical bug data. This enabled A/B
comparisons and visual regression testing, though it lacked logical DOM interactions [22].
Beyond test generation, LLMs are also being applied to the critical problem of test mainte-
nance and robustness. A key challenge is “locator fragility”, where tests break because Ul
elements change between software versions. The VON Similo LLM framework addresses
this by using an LLM to semantically compare and select the most likely correct element
from a list of candidates, significantly reducing localisation failures [29].

Another study proposed a modular framework, T5-GPT, which combined Crawljax,
a T5 classifier, a data faker, and GPT-40 to automate web form interaction and validation.
The model improved form coverage but had difficulty handling complex inputs and long
execution times [8]. A multi-agent LLM framework was introduced for generating test
cases, executing them, visualising call graphs, and creating PDF reports using tools such as
Gemini and Audio WebClient. Although it achieved high test coverage, it was limited to
backend logic and unit-level testing [23]. Mobile GUI testing was reframed as a question-
answering task using GPTDroid, which applied memory-aware prompts and GUI context
extraction to simulate user actions. The model improved coverage and bug detection but
struggled with apps requiring gestures or backend validation [20]. In cybersecurity testing,
PENTESTGPT utilised LLMs for interactive penetration testing, featuring separate modules
for reasoning, command generation, and output parsing. It achieved strong results in
OWASP benchmarks and CTF tasks, although it required human-in-the-loop support and
prompt tuning [19].

These studies show that LLMs have expanded the scope of automated testing by
supporting visual testing, system-level planning, and code generation. However, many
tools are limited to specific domains, lack complete test automation pipelines, or still
rely on manual oversight. To better handle the challenges of dynamic navigation and

Computers 2025, 14, 501

6 of 26

complex interactions, other research has focused on creating intermediate representations
of web applications to guide LLMs. For instance, ref. [30] introduced a system that
builds screen transition graphs to model site navigation and state graphs for conditional
forms, using these structures to generate more robust test cases. The choice of model
and prompt structure is also crucial, as demonstrated by large-scale empirical studies.
Lietal. [31] conducted a study comparing 11 LLMs for web form testing, concluding that
GPT-4 significantly outperformed other models and that providing a cleanly parsed HTML
structure in the prompt was more effective than using raw HTML. A more recent paradigm
leverages Large Vision-Language Models (LVLMs), which analyse not just the HTML
code but also visual screenshots of the webpage. For example, ref. [32] proposed VETL,
a technique that uses an LVLM’s scene understanding capabilities to generate relevant text
inputs and identify the correct GUI elements to interact with, even when HTML attributes
are unclear. In contrast, we proposed an AutoQALLMs approach that utilises LLMs in a
structured manner, experimenting with various LLMs, including GPT-4, Claude, and Grok,
with DOM parsing, prompting, and Selenium to generate reliable and reusable test scripts
for modern, dynamic web applications. Table 1 compares the existing tools and methods

with the approach proposed in this study.

Table 1. Methodological Comparison of Test Automation Approaches.

. s Methodological
Reference Approach Technique Key Findings Comparison
automatically generate and Combines web scraping, ML
) ML-driven web Beautiful Soup + lassif) classification, and test
[4] . - classify test cases using ML P .
Ul testing ML + Selenium execution; lacks adaptability
models for each web element. .
to live DOM changes.
Codeless architecture to Uses SVM for test prediction;
Codeless web . redict and automate limited real-time
3] Selenium+SVM P
- testing using ML functional testing using responsiveness and DOM
training data. parsing.
. . No implementation;
Al Multivocal Reviewed 55 LLM-powered . -
tool survey . TR literature synthesis of tools
[33] Literature test tools, highlighting gaps L
and taxonomy . . oS A highlights need for
Review in full-pipeline automation. . s
integrated Al pipelines.
Adaptive chatbot testing .
Chatbottesting ~ ML/NLP-based through AL butwith limited oc> A2l fOF conversational
[34] automation adaptation scalability and need for owa apta}tlon, acks
. web execution support.
refinement.
Unit test Generated unit tests with Generat.es t.ests .via few-shot
[17] generation using GPT-3.5 high coverage without prompting; limited to unit
(TESTPILOT) N . testing with no web
LLM fine-tuning. . -
interaction.
. . . Integrates LLM with
[27] GUI web testing GPT-4 + imslatiié ?;giiﬁft;ing Selenium for GUI navigation;
using GPT-4 Selenium /P2 A ’ lacks self-healing and
but required validation. o
optimisation.
E2E Selenium ChatGPT + Accelerated E2E script Maps user stories to scripts
| . opilot + writing, but required manua via ; manual refinement
1] test using LLMs Copil iting, b quired ! ia NLP I refi
g Selenium refinement. is needed post-generation.
Android GUI CPT-4 + Outperformed baselines in Uses LI;M alnd' merrim"y
[20] testing using _memory activity coverage, limited to Prompt cyees; exce's in
prompting 4 mobile apps but is not
LLM Android. X
generalised for the web.
. Sy Visual validation using
[32] Visual UTA/B LLM + visual diff Eﬂ{‘fa Iziz%‘g?ﬁg :Chrcilatt ton, screenshots; lacks DOM
- testingwithLLM validation . P parsing and test flow
generation. .
generation.
Framework- Selenium + Template-driven automation =~ Template-based automation
[11] based web test DBUnit + Razor framework with limited requires manual definition
automation templates adaptability to dynamicweb and lacks LLM-driven

content.

adaptability.

Computers 2025, 14, 501

7 of 26

Table 1. Cont.

. s Methodological
Reference Approach Technique Key Findings Comparison
Manual test design from user
Real-world public sector stories using GPT-4; unlike
LLM-based GPT-4 + US2Test testing tool achieved 100% AutoQALLMSs, no DOM
[28] system test + Black-box : o . N .
. . suite coverage and saved 60% parsing or script execution.
generation techniques

manual effort.

Focuses on generating test
cases for manual validation.

Automated form

T5 classifier +

Proposed T5-GPT model

Uses T5 for field classification
and GPT-4 for validation;

- . GPT-40 + improving coverage and unlike AutoQALLMs, it
[8] testing using Crawli F: X . d f Seleni
LLMs rawljax + orm interaction over ogsn t geneljate elenium
Mocker RL-based systems. scripts, focusing on

form-filling automation.

3. Methodology

The proposed AutoQALLMs automate the web application testing in four stages:
(i) HTML Extraction, (ii) LLMs-based test script generation, (iii) Regex-based script clean-
ing and optimisation, and (iv) test execution and reporting. These stages form a modular
and scalable framework that automatically generates Selenium scripts from web content.
The architectural choice to use a powerful LLM like GPT-4, Claude, and Grok in conjunction
with structured parsing of HTML is supported by recent empirical studies, which have
found this combination to be highly effective for test generation compared to other LLMs
and less structured inputs [31]. This approach improves the speed and accuracy of web
application testing. Each stage operates as an independent unit with defined inputs and
outputs, enabling iterative development and practical deployment. Below, the proposed
methodology is elaborated with various functions developed for GPT-4. Moreover, the com-
plete implementation of various LLMs, including GPT-4, Claude, and Grok, is available
on GitHub (https://github.com/Sindhupriya2797/AutoQALLMs).

3.1. Step 1: HTML Extraction

The proposed AutoQALLMs approach extracts HTML when the user (software tester)
enters the URL of the web application to be tested, as shown in Figure 1. This URL provides
the raw HTML content needed for LLM-based testing. The system calls the fetch_html(url)
function, which uses the requests library to send an HTTP GET request. The command
response = requests.get(url) fetches the webpage content and response.raise_for_status()
handles HTTP errors such as 404 or 500 to ensure reliability during data collection.

After retrieving the HTML, the content is parsed using BeautifulSoup with Beauti-
fulSoup(response.text, "html.parser’). This converts the unstructured HTML into a well-
organised DOM tree. The DOM enables structured access to webpage elements, such as
buttons, links, and form fields. This representation is essential for the next stage, where
the LLMs generate test cases based on a contextual understanding of the Ul After parsing,
the AutoQALLMs extract content using the parse_html (soup) function. This function
isolates a predefined set of HTML tags relevant for web UI testing. It specifically targets:

(a) The <title> tag provides the title of the webpage to verify that the correct page has
been loaded and is displayed as expected in the browser.

(b) Anchor (<a>) tags with valid href attributes. These contain hyperlinks for navigation.

(c) Header tags from <h1> to <h6>, which capture the semantic layout and hierar-
chy of the content. These are useful for validating content structure and screen
reader accessibility.

(d) Image () tags that include src attributes, representing embedded media that
should be loaded and visible.

https://github.com/Sindhupriya2797/AutoQALLMs

Computers 2025, 14, 501

8 of 26

(e) Form (<form>) for verifying form submission structure (attributes such as action,
method, and name)

(f) Input (<input>) for capturing interactive input fields with attributes (type, id,
name, placeholder).

(8 Button (<button>) for clickable elements that trigger actions or submissions.

(h) Select (<select>) for validating dropdown options and user selections.

/ Step 2: Test script generation S
| using 6PT-4/Claude 4.5/6rok fast

7 Step 1: HTML Extraction of the user provided URL

APL

Send Parsed HTML
and Prompt to
GPT-4 API for Test
Case Generation

Generates Parsed HTML'
from the extracted
HTML using
BeautifulSoup

User Input's
the website
URL under
Test

Extract the HTML
from the website

Checks the URL
is valid or not

Invalid URL

|

¥

Checks for the
error in the
LLM-generated
selenium code

Exception Handling |

F= | =
(&) Q When hare s
Error while \ code need to be

executing the
py file

cleaned by RegEx

No error

while executin
Generate Test 9 Execute test

Report from

RegEx cleans the

cases generated code and saves the Gives the generated
Checks for error e python file as py file code to the regex

to clean the code

Selenium Results

®) H

\, Step 4:Steps Execution and test report genem?io/n N Step 3:RegEx based script cleaning and optimization /

[
I
| after executing py
I
I
I

Figure 1. AutoQALLMs Web Testing framework: LLM-Generated Test Case Extraction, Processing,
and Execution with BeautifulSoup, Regex, and Selenium.

This subset was selected as it represents both the fundamental and interactive elements
required to verify a webpage’s structure and behaviour. It includes tags for verifying a page’s
identity (<title>), navigational integrity (<a>), content hierarchy (<h1>—<h6>), and media
rendering (), as well as interactive components such as forms (<form>), input fields
(<input>), buttons (<button>), and dropdowns (<select>). Together, these elements capture the
core static and dynamic aspects of modern web interfaces, enabling comprehensive validation
of user interactions such as data entry, submission, and option selection.

These extracted elements are assembled into a Python dictionary using key-value
mappings, where each category is stored as a list of values. A representative sample output
would resemble the following:

{

"title": "Example Web Page",

"links":"[
"https://example.com/about",
"https://example.com/contact"

1,

"headings":"{
"hi":"["Welcome"]"
"h2":" ["About Us"]

},

"images":" [

"/images/banner.png"

Computers 2025, 14, 501 9 of 26

Il],
"forms":" [
{
"action":"/submit-form",
"method": "post",
"id": "contactForm",
"name": "contact_form"
}
1,
"inputs": [
{
"type": "text",
"name": "username",
"id": "userField",
"placeholder": "Enter your name"
},
{
"type": "email",
"name": "email",
"id": "emailField",
"placeholder": "Enter your email"
}
1,
"buttons": [
{
"text": "Submit",
"type": "submit",
"id": "submitBtn",
"name": "submit_button"
}
1,
"selects": [
{
"name": "country",
"id": "countrySelect",
"options": ["India", "United Kingdom", "United States"]
}
]

The parsed output is lightweight and semantically rich, capturing key aspects of the
page’s user interface while remaining easy to interpret. It serves as the direct input for the
next stage, where LLM prompts are constructed and test scripts are generated using the
GPT-4, Claude, and Grok APIs (Application Programming Interface). To ensure the reliable
execution of the HTML extraction phase, exception handling is implemented. If the network
request fails, the URL is invalid, or the response cannot be parsed, the system catches the
error, logs a clear message, and stops further processing. This prevents incomplete or faulty
HTML data from affecting later stages, helping to maintain the accuracy and consistency
of the overall test automation workflow. Step 1 involves acquiring the webpage content
via HTTP requests and then using BeautifulSoup to parse its structure, identifying key
elements. This step is fundamental for setting up the automated generation of test cases.

Computers 2025, 14, 501

10 of 26

3.2. Step 2: Test Script Generation

After the HTML is parsed and key elements are extracted, the framework enters
its second phase, which serves as the intelligence layer, where we utilise various LLMs
(GPT-4, Claude, and Grok) to generate automation scripts based on a predefined prompt,
requiring minimal manual effort. The structured data from the first phase is passed to the
generate_selenium_code() function. This function merges the parsed HTML content with
a prompt to generate executable Selenium code. The prompt has two primary purposes:
(1) to describe the web content clearly to LLMs and (2) to guide LLMs in producing test
logic that follows standard automation practices. The prompt used in this framework is
depicted in Box follows:

Prompt to generate Selenium code using extracted HTML

prompt = (
f"-You are a **strict code generator**. Your output must
contain ONLY executable Python code,"
f"-with no explanations, comments, or markdown fences.\n\n"
f"-Generate Selenium Python test code for the following
parsed HTML data.\n\n"
£"-URL: {url}\n\n"
f"-Parsed Data:\n{json.dumps(parsed_data, indent=2)
[:2000]}...\n\n"
f"-Instructions:\n"
f"-Add test for javascript based webelements also"
f"-Automate each test case using Selenium 4+ syntax.\n"
f"-*xUse only ’find_element (By.<LOCATOR>, value)’ and
’find_elements (By.<LOCATOR>, value)’** - never use
deprecated ’find_element_by_*’ or ’find_elements_by_x*’
methods.\n"
f"-Import ’By’ from ’selenium.webdriver.common.by’ at the
top of the code.\n"
f"- Open the page using ChromeDriver (mot headless) and
maximise the window.\n"
f"- Add time.sleep() where ever needed"
f"- Create 30 sequential test cases that interact with the
elements (titles, headings, images, links, forms, inputs,
buttons, and selects).\n"
f"- Each test should include realistic user actions
(typing, clicking, submitting, selecting options) with
time.sleep() between actions.\n"
f"- Log each test as ’Test X Passed/Failed’ directly in
the console.\n"
f"- Include ’driver.quit()’ at the end of the script.\n"
f"- Do NOT include markdown ("¢) or any descriptive text
before or after the code.\n"
f"- The entire output must be syntactically valid Python -
ready to run as-is.\n"

Computers 2025, 14, 501

11 of 26

In response, LLMs generate a structured Python script using Selenium WebDriver for
browser automation, the find_element() method for DOM interaction, and try-except blocks
for error handling. The script begins with WebDriver setup, runs through the test steps,
and ends with driver.quit() for cleanup (refer to the video in the GitHub link). This format
aligns with standard practices in Ul testing. The LLMSs output often includes extras, such
as markdown formatting (e.g., ““python), phrases like “Here is the Selenium code,” and
explanatory comments. While helpful for human readers, these elements are unnecessary
for automated execution. To address this, a post-processing step is included to clean and
optimise the script before running it, Step 3 of the proposed AutoQALLMSs approach, as
shown in Figure 1. By embedding best practices and test logic within an intelligent agent,
this step reduces manual effort and ensures consistency, scalability, and quicker adaptation
to Ul changes. It demonstrates how LLM-driven development can be integrated into real
world test automation.

3.3. Step 3: Script Cleaning and Optimisation

After LLMs generates the Selenium test script, the framework moves to its third stage,
which prepares the raw output for execution by cleaning the script using automated text
processing tools, as shown in Figure 1. The goal is to convert the semi-structured and often
verbose output into a clean Python file that follows syntax rules and software engineering
best practices. Although LLMs produce logical and well-structured code, they frequently
include additional text intended for human readers. Examples include markdown markers
like ““python, phrases such as “Here is the Selenium code,” and placeholders like “Please
replace this section...”. These elements are not suitable for automated execution and
must be removed. To handle this, the framework uses the clean_selenium_code() function,
which applies a set of regular expressions to remove unnecessary content. This is a typical
application, as regular expressions are a powerful and widely used technique for text
parsing and validation. Although they can be difficult for developers to read and maintain,
their utility in programmatic text processing is well-established [35]. Table 2 lists the types
of content removed during this step and explains why each is excluded:

Table 2. Patterns removed from LLMs output and their justifications.

Pattern Removed Reason

Artefacts of LLM output formatting, not

(X4
Markdown code fences (python,) required for script execution.

LLM explanatory notes (e.g., “Here is the =~ Non-executable and verbose explanations
code...”) not relevant to automated testing.

Instructional residues meant for human

Prompt feedback (e.g., “Please replace...”) readers, not part of executable code.

add clutter and reduced code readability

Redundant block comments and maintainabiliy.

The regex rules are carefully designed to ensure that only executable code remains in
the final script. By removing narrative content and presentation-related syntax, the frame-
work provides a cleaned script that is ready for automated testing without causing execu-
tion errors by the Python interpreter. After this cleaning step, the script is passed through
a formatting stage using the autopep8 library. This tool enforces Python’s PEP 8 style
guidelines, which focus on readability, consistent indentation, and proper line spacing.
Formatting the code at this point enhances clarity for human reviewers and makes the
script more easily integrable into automated workflows or version control systems.

Computers 2025, 14, 501

12 of 26

In addition to formatting and content cleanup, the framework uses the remove_lines_
after_quit() function. This step ensures the script ends immediately after the driver.quit()
command, which marks the close of the Selenium session. Any lines that follow, such as
debug notes or leftover placeholders, are removed to prevent errors during test execution.
The cleaned code is then saved as a .py file. These cleaning and optimisation steps together
form a strong post-processing layer that enforces proper syntax and functional accuracy.
This final version of the script moves to the last stage of the framework: test execution and
reporting. At this point, the refined and clean script interacts with a live browser session,
completing the LLM-powered automation cycle.

3.4. Step 4: Test Execution and Reporting

The final stage of the proposed AutoQALLMs framework, i.e., Step 4, focuses on test
execution and reporting. It runs the optimised .py test script on the web application and
records the outcomes to verify the application’s functionality. Execution is managed by the
execute_selenium_code() function, which launches a browser using Selenium’s Chrome
WebDriver. The browser is configured with ChromeOptions to open in full-screen mode.
Running in non-headless mode enables real-time observation of the test flow, helping to
identify issues such as Ul misalignment, loading delays, or unexpected pop-ups. The script
then carries out a sequence of actions generated by LLMs, including navigating the DOM,
locating elements, clicking buttons, submitting forms, and following links.

During execution, all test outcomes, whether passed or failed, are printed to the
console along with contextual log messages. These logs serve as a live reporting mechanism,
offering immediate insight into the test flow. Although the current setup uses terminal-
based reporting, the architecture is flexible. Future versions can easily integrate tools like
PyTest plugins or Allure to generate HTML dashboards, JSON logs for CI pipelines, or XML
reports for systems like TestRail and Zephyr. Moreover, if an error occurs, whether due
to a logic issue, an outdated selector, or an unhandled exception, detailed error traces
are captured. This final phase validates both the functionality of the web application
and the reliability of the LLM-generated test script. It completes the framework with
actionable results, demonstrating that LLM-driven test automation is practical and effective
for real-world QA processes.

4. Experimental Setup
4.1. Tools and Technologies

AutoQALLMs combine tools, libraries, and APIs that enable intelligent, scalable,
and high-performance test automation. Table 3 presents a summary of the main tools and
their respective functions.

Table 3. Technological components and their roles in AutoQALLMs.

Component Technology Purpose

Language Python anary programming language; script orchestration and
integration

HTML Parsing BeautifulSoup Structured parsing of webpage DOM to extract testable

elements

Performs GET requests to fetch HTML content from the

HTTP Communication = requests user-provided URL

Generates context-aware Selenium test scripts based on

LLM Test Generation OpenAl GPT-4 API HTML structure

Cleans and refines LLM-generated code by removing

Regex Filtering Python re module non-functional content

Computers 2025, 14, 501 13 of 26

Table 3. Cont.

Component Technology Purpose

Applies PEP 8 styling for readable and maintainable

Code Formatting autopep8 Python scripts

Executes Ul-level automation across web applications

Web Automation Engine Selenium WebDriver .
in a real browser

Acts as the bridge between Selenium and the Chrome

Browser Driver ChromeDriver .
browser instance

Triggers execution of saved Python test files in the

Execution Environment os module (os.system) host terminal

Provides an efficient debugging and development

IDE PyCharm .
environment

4.2. Testing Strategy

To validate the reliability, performance, and robustness of AutoQALLMs, a multi-
layered testing strategy is implemented, comprising unit testing, integration testing, func-
tional testing, and performance evaluation.

Unit testing is applied to core functions such as fetch_html(), parse_html(), and clean_
selenium_code(). Each function is tested independently to confirm it works correctly under
different input conditions. Simulating edge cases, such as invalid URLs, missing tags,
or malformed HTML content, also verifies error handling.

Integration testing verifies that modules work together smoothly. For example, the flow
of parsed data from parse_html() to generate_selenium_code() is tested using websites with
different layouts. The handoff from LLMs output to the cleaned script is also reviewed to
ensure it maintains logic and functionality.

Functional testing is performed on real websites to confirm that the generated scripts
can interact with and validate dynamic elements. This includes checking page titles,
clicking links, detecting broken images, and filling out input forms. These tests ensure the
automation mimics realistic user behaviour.

Performance testing measures how efficiently the framework runs. It assesses response
time and execution speed across different types of websites, ranging from simple static
pages to complex, JavaScript-heavy ones. Key metrics such as script generation time, test
execution duration, and browser response delays are recorded and analysed.

Together, these validation steps confirm that the framework runs reliably across
various environments. They also demonstrate their adaptability, effectiveness in practical
use, and readiness for integration into continuous testing pipelines.

4.3. Test Subjects

To validate the reliability, performance, and robustness of AutoQALLMs, the frame-
work was evaluated on 30 publicly available automation practice websites. The complete
list of target applications is provided in Table 4. These 30 websites encompass a diverse
range of structural and functional characteristics, ensuring a comprehensive evaluation
of the proposed framework. The selection includes static and text-oriented pages (e.g.,
HerokuApp: iFrame, Nested Frames), interactive and form-based applications (e.g., De-
moQA: Practice Form, LetCode), and multimedia-rich or e-commerce platforms (e.g.,
DemoBlaze, OpenCart, Greencart). Across these websites, the average number of interac-
tive menus or navigation components ranged from three to eight per page, depending on
the website’s complexity and content type. Static websites primarily comprised textual and
image elements, whereas dynamic and multimedia sites incorporated AJAX-driven com-
ponents, modal windows, dynamic tables, and multiple form-input fields. This diversity

Computers 2025, 14, 501

14 of 26

ensures that AutoQALLMs have been assessed under heterogeneous testing conditions,
validating their adaptability and robustness across simple, content-focused pages as well
as complex, multi-component web interfaces.

Table 4. List of Web Applications Used for Evaluation.

Website Name URL

UI Testing Playground http:/ /uitestingplayground.com/, (accessed on 1 November 2025)

TestPages https:/ /testpages.herokuapp.com/styled /index.html, (accessed on 1 November 2025)
Global SQA Demo Site https:/ /www.globalsqa.com/demo-site/, (accessed on 1 November 2025)

Automation Bro Practice

https:/ /practicetestautomation.com/, (accessed on 28 August 2025)

DemoBlaze E-commerce

https:/ /www.demoblaze.com/, (accessed on 2 November 2025)

Rahul Shetty Academy https:/ /rahulshettyacademy.com/AutomationPractice/, (accessed on 25 July 2025)
OpenCart Demo Store https://demo.opencart.com/, (accessed on 2 November 2025)

PHPTRAVELS Demo https:/ /phptravels.com/demo/, (accessed on 1 November 2025)

Rahul Shetty Academy https:/ /rahulshettyacademy.com/angularpractice/, (accessed on 2 July 2025)
Greencart https:/ /rahulshettyacademy.com/seleniumPractise/#/, (accessed on 25 July 2025)

HerokuApp: JS Alerts

https:/ /the-internet.herokuapp.com/javascript_alerts, (accessed on 1 November 2025)

HerokuApp: Nested Frames

https:/ /the-internet.herokuapp.com/nested_frames, (accessed on 1 November 2025)

HerokuApp: iFrame

https:/ /the-internet.herokuapp.com/iframe, (accessed on 2 November 2025)

HerokuApp: Dynamic Loading

https:/ /the-internet.herokuapp.com/dynamic_loading, (accessed on 1 November 2025)

LetCode

https:/ /letcode.in/test, (accessed on 25 July 2025)

HerokuApp: Hovers

https:/ /the-internet.herokuapp.com/hovers, (accessed on 1 November 2025)

HerokuApp: Key Presses

https:/ /the-internet.herokuapp.com/key_presses, (accessed on 2 November 2025)

DemoQA: Practice Form

https://demoqga.com/automation-practice-form, (accessed on 22 July 2025)

DemoQA: Web Tables

https://demoga.com/webtables, (accessed on 25 July 2025)

DemoQA: Buttons

https://demoqa.com/buttons, (accessed on 28 August 2025)

DemoQA: Widgets (Date Picker)

https://demoqa.com/date-picker, (accessed on 28 August 2025)

DemoQA: Interactions (Droppable)

https://demoga.com/droppable, (accessed on 28 August 2025)

Ul Playground: AJAX Data

http:/ /uitestingplayground.com/ajax, (accessed on 2 November 2025)

UI Playground: Client Side Delay

http:/ /uitestingplayground.com/clientdelay, (accessed on 1 November 2025)

Ul Playground: Dynamic Table

http:/ /uitestingplayground.com/dynamictable, (accessed on 1 November 2025)

CosmoCode Web Table

https://cosmocode.io/automation-practice-webtable/, (accessed on 23 August 2025)

Guru99 Banking Demo

https://demo.guru99.com/V4/, (accessed on 1 November 2025)

Sauce Demo

https:/ /www.saucedemo.com/, (accessed on 3 November 2025)

ParaBank

https:/ /parabank.parasoft.com/, (accessed on 2 November 2025)

WebDriverUniversity.com

http:/ /webdriveruniversity.com/, (accessed on 2 November 2025)

4.4. Evaluation Metrics

To evaluate the performance of the proposed AutoQALLMs, the following metrics
are used:

Script Generation Time: The time taken to generate test scripts before execution. Faster
script generation reduces manual effort and improves productivity [33].

Execution Speed: The total time needed to run all test cases after the script is ready. Shorter
execution time increases overall testing efficiency [21].

Test Coverage: Test coverage means how many elements on a webpage (like links, headings,
and images) are tested by the test script compared to the total number of elements parsed.
More coverage means better testing [34].

http://uitestingplayground.com/
https://testpages.herokuapp.com/styled/index.html
https://www.globalsqa.com/demo-site/
https://practicetestautomation.com/
https://www.demoblaze.com/
https://rahulshettyacademy.com/AutomationPractice/
https://demo.opencart.com/
https://phptravels.com/demo/
https://rahulshettyacademy.com/angularpractice/
https://rahulshettyacademy.com/seleniumPractise/#/
https://the-internet.herokuapp.com/javascript_alerts
https://the-internet.herokuapp.com/nested_frames
https://the-internet.herokuapp.com/iframe
https://the-internet.herokuapp.com/dynamic_loading
https://letcode.in/test
https://the-internet.herokuapp.com/hovers
https://the-internet.herokuapp.com/key_presses
https://demoqa.com/automation-practice-form
https://demoqa.com/webtables
https://demoqa.com/buttons
https://demoqa.com/date-picker
https://demoqa.com/droppable
http://uitestingplayground.com/ajax
http://uitestingplayground.com/clientdelay
http://uitestingplayground.com/dynamictable
https://cosmocode.io/automation-practice-webtable/
https://demo.guru99.com/V4/
https://www.saucedemo.com/
https://parabank.parasoft.com/
http://webdriveruniversity.com/

Computers 2025, 14, 501

15 of 26

Currently, AutoQALLMs do not scan or test all the elements on the page. Still, it covers
several common ones, including links, anchors, forms, inputs, buttons, selects, headings,
and images, and creates 30 basic test cases.

Test coverage is calculated using the following formula:

El
Test Coverage (%) = (ements tested) 100

Total elements found

For example, on the test page https:/ /rahulshettyacademy.com/AutomationPractice/
(accessed on 25 July 2025), the tool found 33 elements (17 links, 13 headings, and 3 image).
Out of those, 30 were tested. Therefore, the estimated coverage is:

30
Test Coverage (%) = 3 x 100 = 90.91%
Failure Rate: The failure rate is the percentage of test cases that fail during execution. This
can happen due to incorrect locators, timing issues, or logic errors in the script [4].

For the proposed approach, the failure rate is around 20%. This is expected, as zero-
shot prompting can occasionally generate incorrect locators for complex or dynamically
loaded elements. Future work will aim to reduce this by experimenting with few-shot
learning, fine-tuning and chain-of-thought learning approaches. Moreover, the observed
20% failure rate suggests that while AutoQALLMs are comparatively effective for rapid,
initial test suite generation, their output would still require a brief human review before
being integrated into a mission-critical regression pipeline. This positions the tool as a
powerful “test accelerator’ rather than a complete replacement for QA oversight.

Adaptability: The degree to which a product or system can be effectively and effi-
ciently adapted for different or evolving hardware, software or other operational or usage
environments [36].

Readability: The ease with which a human reader can comprehend the purpose, control
flow, and operation of source code. It is a human judgement of how easy a text is to
understand [37].

Maintainability: The degree of effectiveness and efficiency with which the intended
maintenance engineers can modify a product or system. Maintainability is composed of
modularity, reusability, analysability, modifiability, and testability [36].

Scalability: The degree to which a system, network, or process can handle a growing
amount of work, or its potential to be enlarged to accommodate that growth [38].

The independent variables considered in this evaluation include script generation
time, execution speed, number of web elements parsed, and type of web application.
These variables were varied across multiple websites to assess AutoQALLMSs’ performance.
The dependent variables, namely test coverage, failure rate, readability, adaptability, main-
tainability, and scalability, were used to measure performance outcomes. The relationship
between these variables indicates that as page complexity and element count increased, Au-
toQALLMs maintained high coverage and low execution time, confirming their scalability
and efficiency.

5. Results and Discussion

We evaluated the performance of the AutoQALLMs using 8 widely used metrics:
(i) script generation time, (ii) execution speed, (iii) test coverage, (iv) failure rate, (v) adapt-
ability, (vi) readability, (vii) maintainability, and (viii) scalability. We compared the results
with manually written Selenium scripts and Monkey Testing. Each method was tested on
30 web applications. The tests were repeated 50 times, and the results were averaged to

https://rahulshettyacademy.com/AutomationPractice/

Computers 2025, 14, 501

16 of 26

minimise variation. The evaluation focused on how each method performs in structured
testing tasks and how suitable each is for real-world use.

Monkey Testing is a widely used technique for automated testing that involves gen-
erating random user interactions on applications without predefined steps [8,27,39]. This
method can help identify unexpected issues, such as application crashes, and is often used
for stress testing [39]. However, because the approach “lacks knowledge about the form
fields, its random trials can be extremely slow,” which makes it less useful for structured or
planned automation tasks [8].

The performance of AutoQALLMs-generated scripts, manually written scripts,
and monkey testing is evaluated, and the results are presented in Table 5. The comparison
highlights how each method performs across different web applications.

Table 5. Comparative Analysis of Test Automation Approaches.

Metric AutoQALLMs Manual Selenium Monkey Testing
Script Generation Time 5s 2h N/A

Execution Speed Fast (20 s/test) Moderate (35s/test) Variable

Test Coverage (%) 91% 98% 50-60%

Failure Rate (%) 20% 10% 50%
Adaptability to Ul Changes Moderate High None
Readability Moderate High N/A
Maintainability High Moderate Low

Scalability Very High Low N/A

5.1. Evaluation Methodology and Expert Rubric

To validate the results, structured feedback was collected from five domain experts in
software testing and automation using a short survey, as shown in Appendix A. The ex-
perts were selected from diverse industries and roles to provide balanced insights. Their
input helped interpret the observed differences in test performance across AutoQALLMs-
generated scripts, manually written scripts, and Monkey Testing (see Table 6).

Expert 1 stated that AutoQALLMSs could create test scripts within seconds, whereas
manual scripting typically took several hours to complete. The expert believed this speed
was beneficial for manual testers who lack strong coding skills. He also mentioned that
AutoQALLMSs can generate multiple tests simultaneously, making it easier to scale testing
for large projects. However, the expert pointed out that some of the generated scripts were
too general. While AutoQALLMs made it easy to regenerate broken tests after UI changes,
the expert felt that manual scripts were still easier to understand, fix, and share with others.
Expert 2 noted that AutoQALLMs covered slightly fewer Ul elements (96%) than manual
scripts (98%). However, the expert explained that manual scripts often included more
meaningful checks based on the application’s logic. In the expert’s view, AutoQALLM was
good at identifying what was visible on the screen, but it sometimes missed deeper, more
thoughtful validations. The expert 2 felt this showed a trade-off between more exhaustive
coverage and detailed accuracy.

Similarly, Expert 3 focused on how well the scripts handled changes to the user
interface. The expert stated that manual scripts were more effective at handling these
changes because human testers could write the code in a way that anticipated updates.
In contrast, AutoQALLM:s scripts often broke when the layout changed. The expert also said
Monkey Testing didn’t adjust at all, making it unreliable for serious testing. Additionally,
Expert 4 agreed with many of the earlier points, particularly regarding the speed at which
the scripts ran. The expert stated that AutoQALLMs scripts typically complete in about 20 s,

Computers 2025, 14, 501

17 of 26

which helps speed up regression testing. Manual scripts took longer (approximately 35 s),
primarily due to additional checks added by the tester. Expert 4 also agreed with Expert 3
that manual scripts handled changes in the Ul better. Finally, Expert 5 talked about failure
rates. The expert added that manual scripts had the lowest failure rate (approximately
10%) because testers could carefully select the correct elements and use custom wait times.
AutoQALLMs had a moderate failure rate (approximately 20%); it performed well on stable
websites but struggled with dynamic ones. Monkey Testing failed most often (around 50%)
because its actions were random. The expert mentioned that AutoQALLM:s scripts were
easy to read but sometimes longer and less clear than manual scripts.

Table 6. Expert opinions on AutoQALLMs, manual, and Monkey Testing.

Expert Background Opinion Highlights

AutoQALLMs created test scripts within seconds,

Expert 1: Lead which helped teams working in fast-paced agile

. . Leads large-scale QA projects. It also made it easier to scale testing
Automation Engineer - . . .
(23 yrs, Rapidue teams and enterprise test across multiple scenarios. However, some scripts

s, automation. felt too general. While it was easy to fix broken

Technology Ltd.) tests by regenerating them, manual scripts were

still easier to understand and share.

AutoQALLMs covered slightly less of the user
interface (96% vs. 98%) and often missed deeper
Focuses on industrial checks that manual testers would include. Manual
device Ul testing. scripts had more meaningful validations. This
showed a trade-off between broad coverage and
detailed testing.

Expert 2: Senior QA
Analyst (5 yrs, Domino
Printing Solutions)

Manual scripts worked better when the user
Works on environmental interface changed, as testers could plan for
platform testing with updates. AutoQALLMs scripts often failed with
dynamic Uls. layout changes. Monkey Testing didn’t adjust at all
and wasn't reliable.

Expert 3: QA Lead
(6 yrs, Recykal)

AutoQALLMs scripts ran faster (around 20 s) than
manual scripts (about 35 s), which helped speed
up testing. But manual scripts were more flexible
when the Ul changed. Monkey Testing didn’t
follow a clear process and was inconsistent.

Expert 4: Test
Automation Specialist
(7 yrs, Recykal)

Maintains Selenium in
CI/CD pipelines.

Manual scripts had the lowest failure rate (around
10%) because testers carefully picked elements and
set waits. AutoQALLMs had a higher failure rate

Tests usability and design ~ (about 20%); it worked fine on stable pages but

consistency. struggled with dynamic ones. Monkey Testing
failed often (about 50%) due to its random actions.
AutoQALLMs scripts were easy to read but
sometimes too long or unclear.

Expert 5: UI/UX
Automation Engineer
(5 yrs, Recykal)

The expert feedback confirmed that the AutoQALLMs testing brought gains in speed,
coverage, and scalability. However, it still had some limitations in terms of test accuracy,
Ul changes, and deeper validation. These limitations underscore the continued importance
of human oversight in automation testing workflows. The results indicate that LLMs can
support software testing, but they should be used in conjunction with manual review for
reliable outcomes.

To complement the qualitative opinions presented in Table 6, the same five domain
experts were asked to rate the qualitative attributes of the generated test scripts: readability,
adaptability, maintainability, and scalability using a five-point Likert rubric (1 = Poor,
5 = Excellent). The detailed rubric and evaluation guidelines provided to experts are
presented in Appendix A.2. The aggregated expert ratings are summarised in Table 7.

Computers 2025, 14, 501 18 of 26
Table 7. Expert Evaluation Scores for Qualitative Metrics (1-5 Scale).
Metric Expert1 Expert2 Expert3 Expert4 Expert5 Mean Score
Readability 5 4 5 4 5 4.6
Adaptability 4 4 5 5 4 44
Maintainability 4 5 4 4 5 4.4
Scalability 5 4 5 5 4 4.6

The quantitative evaluation confirmed high consistency among experts, supporting
the reliability of the qualitative feedback and validating the robustness of the generated
Selenium scripts across all four attributes.

5.2. Model Comparision

In addition to these performance metrics, the analysis was expanded to include cost ef-
ficiency. Table 8 presents both the cost per million tokens and the estimated cost per individ-
ual test script. Across the evaluated websites, GPT-4 averaged about USD 0.011 [40] per test,
compared with USD 0.016 for Claude 4.5 [41] and USD 0.0006 for Grok Fast [42], based on
an average token consumption of 1800 tokens per site. This cost-aware evaluation quantita-
tively supports GPT-4’s balance between accuracy and affordability, reinforcing the study’s
emphasis on optimising trade-offs between performance and operational expense rather
than focusing solely on raw coverage. LLM comparison resources and implementation de-
tails are available for future work (https://github.com/Sindhupriya2797 / AutoQALLMs).

Table 8. Comparative Analysis of Model Performance, Coverage, and Cost Efficiency.

Model geos:erage (%) "f:l‘;sle ((;sin. ;?E:/lﬂv["?:lins/Test (CI_(I)Ss:It;TeSt
(USD)

GPT-4 91 54 Iolft;tl;tz;'?g.oo 1800 0.011

S B o

Grok Fast 88 6.2 ggg;%%o 1800 0.0006

Notes. Cost per test case was calculated using the average token usage of approximately 1800 tokens per website
(900 input + 900 output). Pricing reflects 2025 API rates. GPT-4 achieves a strong balance between accuracy and
cost ($0.01 per test), Claude 4.5 offers slightly higher coverage at 50% higher cost, and Grok Fast provides the
lowest cost but reduced coverage.

During experimentation, each test case generation consumed approximately
1800 tokens per website, evenly distributed between input and output tokens. The es-
timated cost per script for each model was computed using 2025 API pricing as follows:

Cost per script = (W x Input Rate) + (Ou’qmlto"gokens x Output Rate)
For 900 input and 900 output tokens:
2.50 10.00
GPT-4: (900 x W) + (900 x 1—06) = $0.011
3.00 15.00
Claude Sonnet 4.5: (900 x W) + (900 x 1—06) = $0.016
0.20 0.50
Grok Fast: (900 x W) + (900 x W) = $0.00063

https://github.com/Sindhupriya2797/AutoQALLMs

Computers 2025, 14, 501

19 of 26

Thus, the average cost per test case was approximately $0.01 for GPT-4, $0.016 for
Claude 4.5, and $0.0006 for Grok Fast, demonstrating that GPT-4 offers a strong trade-off
between cost and accuracy.

The pricing structure of each model clarifies the observed cost-performance trade-
offs. Grok Fast is designed for high-volume, low-cost tasks, with output rates nearly
twenty times cheaper than GPT-4 and thirty times cheaper than Claude 4.5. Claude 4.5
Sonnet is the most expensive, particularly in terms of output tokens, reflecting its empha-
sis on advanced reasoning. GPT-4 offers a balanced middle ground between capability
and affordability. Across all three, output tokens remain significantly more costly than
input tokens.

To extend the existing LLM comparisons, as shown in Table 8, Claude 4.5 achieved the
highest coverage and execution reliability, benefiting from its stronger contextual reasoning
and coherent instruction-following ability. GPT-4, however, demonstrated the best balance
between syntactic accuracy, runtime stability, and execution speed, making it the most
consistent model for Selenium-based test automation. Although Grok Fast generated
outputs more quickly, its limited handling of dynamic DOM structures led to a lower
pass rate.

5.3. Computational Complexity Analysis

In addition to the empirical comparison of execution time, the computational com-
plexity of the proposed framework was analysed to evaluate its scalability. AutoQALLMs
operate through four sequential phases: (i) HTML extraction and parsing, (ii) LLM-based
script generation, (iii) regex-driven code cleaning, and (iv) Selenium-based execution.
The overall time complexity can be expressed as:

T(n,m,t) =0m+m+t) (1)

where n denotes the number of parsed HTML elements, m represents the length of the
generated script, and ¢ corresponds to the number of executed test cases. Since HTML
parsing dominates the total computation, the framework exhibits an approximately linear
growth rate:

T(n) ~ O(n) 2)

This indicates that the execution time increases proportionally with the number of
web elements.

Manual Selenium scripting, on the other hand, requires repetitive human intervention
for every additional element and test case, resulting in a slower, non-scalable process that
can be approximated as:

T(n,h) =0(nxh) 3)

where & is the human effort factor per element.

Similarly, Monkey Testing performs random interactions with a complexity of O(r),
where 7 is the number of random events required to reach sufficient coverage. However,
due to its stochastic nature, this approach demands significantly more iterations to achieve
comparable accuracy.

Empirically, AutoQALLMs generated executable Selenium scripts within approxi-
mately 20-25 s per website, compared to 2 h for manual scripting, while maintaining 96%
coverage. The average execution time per test was around 20 s, confirming both the linear
time complexity and the substantial reduction in computational and analytical effort.

Computers 2025, 14, 501

20 of 26

5.4. Comparison with State-of-the-Art Approaches

A significant contribution to codeless test automation was made by [3], who proposed
a framework combining Selenium and machine learning to generate tests without writing
code. Their method relied on an SVM trained on manually annotated data to predict
actions. Still, it lacked testing several behaviours at the same time (Tested only for search
functionality). Similarly, ref. [8] introduced a T5-GPT-based framework that combined
Crawljax, T5, and GPT-40 to automate web form interaction. Their method parsed the
DOM using Crawljax to identify input fields and used LLMs for field classification and
value generation. While it improved coverage over reinforcement learning agents, it was
limited to form-filling tasks and could not handle categories whose formats depend on
the selected locations. In mobile GUI testing, Liu et al. [20] presented GPTDroid, which
redefines testing as a question-and-answer task using GPT-3.5 with functionality-aware
prompts. This method achieved high activity coverage on Android apps but was limited
to mobile domains, and it faced challenges with Ul components that lacked clear text
labels. Lastly, ref. [22] proposed an LLM-powered approach for visual Ul and A /B testing,
using screenshot comparisons to identify rendering issues. Although effective for visual
validation, the method lacked DOM-level analysis and did not produce an actionable
test script.

Another key point of comparison is the underlying methodology used to interpret the
web application’s structure. While AutoQALLMs generate scripts by providing a direct,
parsed HTML summary to the LLM, the framework by [30] employs an intermediate
modelling step. Their approach creates explicit screen transition graphs and state graphs
to model the application’s flow before generating tests. This graph-based methodology is
specifically designed to improve test coverage for dynamic navigation and complex condi-
tional forms, which are known challenges for more direct generation methods. In contrast,
AutoQALLMs eliminate the need for handwritten templates or screenshot-based prompts
by utilising various LLMs, including GPT-4, Claude, and Grok, to generate executable Sele-
nium scripts directly from HTML. It integrates BeautifulSoup to parse live DOM structures
and uses regular expressions to adapt the script automatically to structural changes. Unlike
previous approaches, AutoQALLMs cover functional testing, dynamically updates scripts,
and supports a full-cycle pipeline from generation to execution and reporting without
relying on visual Ul cues or fixed form data. This enables AutoQALLMs to maintain
robustness in fast-changing web applications. Based on our understanding and knowledge,
we demonstrated the comparison between the proposed and state-of-the-art approaches in
Table 9.

In addition to the model comparisons discussed earlier, three complementary cate-
gories were examined to contextualise existing approaches: bot-detection and behaviour
analysis frameworks, web crawling systems such as Scrapy, and Named Entity Recognition
(NER) techniques. Behaviour analysis tools, such as OWASP AppSensor, monitor applica-
tion layer activities to detect anomalous or automated behaviour and trigger alerts based
on predefined sensor rules [43]. Scrapy is an open-source crawling framework designed for
efficient extraction of static HTML content, although it cannot process dynamic or interac-
tive web elements [44]. NER techniques [45] identify and classify meaningful entities such
as names, locations, and organisations within unstructured text using advanced natural
language processing models. Table 10 summarises these approaches, highlighting their
objectives, methodologies, and core limitations in relation to intelligent automation systems
that integrate semantic reasoning with executable validation.

Computers 2025, 14, 501 21 of 26
Table 9. Comparison of LLM-Based Test Automation Approaches.
Approach Domain E:Z dTechmques Limitations Strengths
Web Application Selenium +SVM Tested only search Codeless prediction
[3] Testi (ML-based - ! ;
esting e functionality of test actions
prediction)
Form-specific;
. Crawljax + T5 + challenges with Improved form
(81 Web Form Testing GPT-40 geo-sensitive coverage via LLMs
field formats
Restricted to Android; High activity
[20] Mobile GUI Testing GPT-3.5+ GUI tree + challenges when coverage for
memory prompts elements lack mobile apbs
text labels PP
)) LLM + Screenshot No DOM parsing; Effecti\{e visual
[32] Visual UI Testing Comparison does not generate regression and
P test scripts A/B testing
L GPT-4 + Still developing Full pipeline
AutoQALLMs (Ours) ,‘l/,v eb. Application BeautifulSoup + robustness for highly automation, dynamic
esting R . ; . :
egex + Selenium dynamic Uls script generation

Table 10. Comparative Overview of Bot-Detection, Scrapy, NER, and AutoQALLMs Approaches
based on our understanding and knowledge.

Tool/Technique Objective Methodology Limitations Ref.
Monitors .
Detect and respond to application-laver Focuses on security
Bot-Detection/Behaviour automated or PpILC: 4 anomaly detection; does
. L P behaviour using
Analysis (e.g., malicious activities . not support web [43]
o predefined sensors . : .
OWASP AppSensor) within web . interaction or functional
A and triggers alerts for P
applications. L validation.
suspicious events.
Utilises Python-based
crawling, rule-based The Scrapy-based crawler
Extract structured XPath/CSS selectors, exhibited a significant
Scrapy content from static and scheduling limitation when analysing ~ [44]
HTML pages. pipelines for pure single-page
large-scale data applications (SPAs).
extraction.
Applies NLP models Its classifications are
Identify and classify for tokemsatlor_l, PrObabthth, carrying
. . L sequence labelling, inherent uncertainty about
Named Entity semantic entities - -
e e and contextual their accuracy and thus [45]
Recognition (NER) within beddi . fid
unstructured text. embeddings (e.g., requiring confidence
BERT, Word2Vec) to scores rather than absolute
extract entity types. answers.
. . Integr‘ate LLMs with Currently optimised for
Automate intelligent BeautifulSoup, Regex,)
. . modern browsers;
web testing through and Selenium to parse handling of complex
AutoQALLMs (Proposed) end-to-end script DOM elements, d '8 P This study
- . ynamic Ul elements
generation and generate test scripts, remains a future
execution. and validate
. . enhancement.
functionality.

5.5. Discussion

The proposed AutoQALLMSs provided a preliminary study on how LLMs can col-

laborate with tools such as DOM parsers and Selenium to automatically generate and

execute test scripts for websites. The results show that when provided with well-structured

prompts and the correct HTML input, LLMs can generate Selenium scripts that run suc-

cessfully without any human intervention. This directly answers our first two research

questions: (i) “How can LLMs be combined with web scraping and Selenium to create test

scripts?”, and (ii) “Can LLMs turn HTML into working Selenium scripts using zero- shot

prompts?” Using BeautifulSoup to extract HTML elements and designing prompts that

give the script to generate selenium test scripts, AutoQALLMs were able to convert web

content into test actions. The use of zero-shot prompting also meant that the system could

handle new or unfamiliar page elements without requiring retraining of the model.

Computers 2025, 14, 501

22 of 26

For the third research question, which asked “Can AutoQALLMs outperform manual
or semi-automated testing in code coverage and fault detection?”, the expert feedback
revealed both strengths and areas for improvement. On the positive side, AutoQALLMs
achieved broad Ul coverage (96%) that was competitive with manual methods (98%) and
saved significant time in writing scripts. However, there were also concerns, such as
missing deeper logic validations and having lower debuggability compared to manually
written scripts. AutoQALLMs were able to quickly regenerate broken tests and run them,
which is helpful for agile teams and CI/CD pipelines. This capability directly addresses
a significant, unresolved challenge in the field, as identified by recent surveys: the high
maintenance costs of test suites in the face of frequent Ul changes [9]. Overall, the approach
shows promise in making automation more accessible, especially for teams with less coding
experience, and it opens up new directions for combining human expertise with LLM-based
automation in the future.

While AutoQALLM:s are primarily implemented using GPT-4, a comparative evalua-
tion was conducted with Claude 4.5 and Grok Fast to benchmark performance. The findings
indicated that Claude 4.5 achieved marginally higher test coverage (96%) due to its ad-
vanced architecture and enhanced reasoning capabilities. Nonetheless, GPT-4 consistently
generated syntactically valid Selenium scripts with fewer runtime errors and exhibited
faster, more predictable generation times across diverse websites. When both cost and
stability were considered, GPT-4 emerged as the most balanced option for scalable de-
ployment: its average cost per test generation was lower than that of Claude 4.5, and its
prompt outputs were more reproducible under identical conditions, an essential factor
for continuous testing pipelines. Consequently, the framework continues to utilise GPT-4
as its default engine, while Claude 4.5 and Grok Fast serve as comparative baselines that
contextualise performance-versus-cost trade-offs in LLM-driven testing. It should also
be noted that Claude 4.5 represents a newer model generation than GPT-4, which partly
explains its marginally higher coverage. This distinction highlights the need for ongoing
benchmarking across future releases, such as GPT-5 and Claude Next, to ensure fair and
up-to-date evaluation.

5.6. Threats to Validity

A key threat to the internal validity of AutoQALLMs is its dependence on LLMs for
generating Selenium scripts. While it performs well overall, LLMs can lose context in long
or complex interactions, leading to incomplete or incorrect test cases. The output quality
also heavily depends on prompt design, which may affect consistency across different
environments. Moreover, we currently parse only a subset of tags (e.g., links, headings,
and images), which limits test coverage. This may result in an incomplete representation of
real-world page structures.

Construct validity is limited by AutoQALLMs's ability to convert natural language
into actionable test steps reliably. This depends on the model’s understanding of dynamic
or ambiguous web structures. Prior work, such as GPTDroid [20], has demonstrated
that LLMs can handle functionality-aware prompts; however, they sometimes struggle to
maintain reasoning over multiple turns.

Technical challenges also arise during DOM scraping, especially for JavaScript-heavy
pages or those with anti-scraping protections, which can result in the omission of key ele-
ments. To address these issues, future work could explore memory-augmented models and
explainable Al techniques to enhance the reasoning and traceability of the generated steps.

Finally, since AutoQALLMs currently focus on web GUI testing, their generalizability
to other domains, such as mobile apps or chatbot interfaces, remains an open question.

Computers 2025, 14, 501

23 of 26

Real-world testing also involves complex user behaviours, so integrating multimodal
inputs and modelling user actions could further enhance test realism and coverage.

6. Conclusions and Future Work

This study demonstrated that the proposed AutoQALLMs can be used to generate
Selenium test scripts that are fast, scalable, and easy to maintain. The results indicate that
AutoQALLMs scripts achieved competitive Ul coverage while drastically reducing the time
needed to create and run tests. Experts’ feedback confirmed that this method can support
faster regression testing and make automation more accessible, particularly for teams with
less technical skill. However, the scripts sometimes failed when webpages changed or
when more thorough checks were required. By contrast, Monkey Testing was less valuable
due to its random behaviour and limited test coverage.

The comparison also showed that manual scripts had the lowest failure rates and
adapted best to Ul changes; however, they required more time to write and maintain.
AutoQALLMs scripts offered a good balance between speed and reliability. They were
slightly more prone to errors, but could be quickly fixed or regenerated. Expert feedback
confirmed that this approach is beneficial in agile environments and can enhance overall
testing efficiency when used in conjunction with human review. Our comparative analysis
showed that Claude 4.5 attained marginally higher coverage, but GPT-4 demonstrated the
best trade-off between accuracy, generation cost, and stability, reaffirming its role as the
core model of AutoQALLMs.

In the future, we plan to improve the accuracy and stability of AutoQALLM:s scripts.
Fine-tuning the LLMs for test automation tasks may help reduce errors. Testing on larger
and more complex applications will also help evaluate how well the system scales in
real-world projects. Another helpful step is to connect LLM-based testing with tools like
JMeter or Gatling to support performance testing. Adding self-healing features could
help the system adjust to UI changes without manual updates. This is a key area of re-
search, with recent approaches using LLMs to intelligently re-locate web elements after
a Ul change, significantly improving test script robustness [29]. Future work will also
explore semi-automated assertion generation to enable basic behavioural validation. By in-
ferring expected outcomes from HTMLS5 attributes and JavaScript-based interface cues,
AutoQALLMs can extend beyond structural testing to verify user interactions and page
responses. Furthermore, future work could incorporate visual understanding by leveraging
Large Vision-Language Models (LVLMs). As demonstrated by the VETL framework [32],
LVLMs can analyze screenshots to overcome the limitations of ambiguous HTML and better
understand complex, dynamic user interfaces, representing a promising path to enhance
the robustness of AutoQALLMs. Comparing this approach with traditional frameworks
in terms of cost, speed, and resource use will also help guide its use in industry. These
steps may lead to more reliable and intelligent testing systems with less human effort.
AutoQALLMs demonstrate the growing role of LLMs in shaping the future of scalable and
intelligent software testing.

Author Contributions: Conceptualization, M.Y. and J.A K.; methodology, M.Y. and]J.A K_; software,
S.M.; validation, S.M., M.Y. and J.A K.; formal analysis, S.M., TM. and A.M.; investigation, S.M., A.M.
and N.P,; writing—original draft preparation, S.M., M.Y. and J.A K.; writing—review and editing,
TM., A M. and N.P; supervision, M.Y. and]J.A K. All authors have read and agreed to the published

version of the manuscript.
Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Computers 2025, 14, 501

24 of 26

Confl

icts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LLM
GPT
DOM

Large Langugae Model
Generative Pre-trained Transformer
Document Object Model

LSTM Long Short Term Memory
CNNs Convolutional Neural Networks

ML
DL

Machine Learning
Deep Learning

Appendix A. Expert Survey Questionnaire

To collect expert feedback for validating AutoQALLMs, we designed a short survey

focused on five key areas: script generation speed, test accuracy, coverage, adaptability,

and scalability. The questionnaire was distributed via email and responses were collected

using Google Forms.

Appendix A.1. Survey Questions

1.

How would you rate the speed of script generation for AutoQALLMs compared to
manual testing?

How reliable were the AutoQALLMs-generated scripts across different test scenarios?
How would you compare the Ul coverage achieved by AutoQALLMs with manual or
monkey testing?

How adaptable were the AutoQALLMs scripts when the web UI changed?

How scalable do you find AutoQALLMs for enterprise-level testing compared to
traditional methods?

Do you see value in using LLM-based tools like AutoQALLMs in real-world software
testing workflows?

Any additional comments, suggestions, or concerns?

Appendix A.2. Expert Scoring Rubric

The following rubric was shared with all five domain experts to ensure consistency in

qualitative evaluation. Each metric, readability, adaptability, maintainability, and scalability,

wasr

ated on a five-point scale. (1 = Poor, 5 = Excellent) based on the following descriptions:

1—Poor: Very low quality; unclear, unstable, or non-functional.

2—Fair: Partially functional but lacks clarity or stability.

3—Moderate: Acceptable performance; requires moderate revision or debugging.
4—Good: Clear, functional, and stable with minor improvements needed.
5—Excellent: Highly readable, adaptable, and scalable with minimal intervention.

Durelli, V.H.; Durelli, R.S.; Borges, S.S.; Endo, A.T.; Eler, M.M.; Dias, D.R.; Guimaraes, M.P. Machine learning applied to software
testing: A systematic mapping study. IEEE Trans. Reliab. 2019, 68, 1189-1212. [CrossRef]

1.
2.
3.
4.
5.
References
1.
2. Dogan, S.; Betin-Can, A.; Garous
[CrossRef]
3. Nguyen, D.P,; Maag, S. Codeless

i, V. Web application testing: A systematic literature review. J. Syst. Softw. 2014, 91, 174-201.

web testing using Selenium and machine learning. In Proceedings of the ICSOFT 2020: 15th

International Conference on Software Technologies, Online Event, 7-9 July 2020 ; pp. 51-60.

http://doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1016/j.jss.2014.01.010

Computers 2025, 14, 501 25 of 26

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Paul, N.; Tommy, R. An Approach of Automated Testing on Web Based Platform Using Machine Learning and Selenium. In
Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
11-12 July 2018; pp. 851-856.

Briand, L.C. Novel applications of machine learning in software testing. In Proceedings of the 2008 The Eighth International
Conference on Quality Software, Oxford, UK, 12-13 August 2008; pp. 3-10.

Khaliq, Z.; Farooq, S.U.; Khan, D.A. Artificial intelligence in software testing: Impact, problems, challenges and prospect. arXiv
2022, arXiv:2201.05371. [CrossRef]

Talasbek, A. Artificial Al in Test Automation: Software Testing opportunities with Openai Technology-Chatgpt. Suleyman Demirel
Univ. Bull. Nat. Tech. Sci. 2023, 62, 5-14.

Chen, EK,; Liu, C.H.; You, S.D. Using Large Language Model to Fill in Web Forms to Support Automated Web Application
Testing. Information 2025, 16, 102. [CrossRef]

Li, T.; Huang, R.; Cui, C.; Towey, D.; Ma, L.; Li, Y.F,; Xia, W. A Survey on Web Application Testing: A Decade of Evolution. arXiv
2024, arXiv:2412.10476. [CrossRef]

Ayenew, H.; Wagaw, M. Software Test Case Generation Using Natural Language Processing (NLP): A Systematic Literature
Review. Artif. Intell. Evol. 2024, 5, 1-10. [CrossRef]

Dawei, X.; Liqiu, J.; Xinpeng, X.; Yuhang, W. Web application automatic testing solution. In Proceedings of the 2016 3rd
International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8-10 July 2016; pp. 1183-1187.
Gatla, G.; Gatla, K.; Gatla, B.V. Codeless Test Automation for Development QA. Am. Sci. Res. |. Eng. Technol. Sci. 2023, 91, 28-35.
Jiang, J.; Wang, E; Shen, J.; Kim, S.; Kim, S. A survey on large language models for code generation. arXiv 2024, arXiv:2406.00515.
[CrossRef]

Khan, J.A.; Qayyum, S.; Dar, H.S. Large Language Model for Requirements Engineering: A Systematic Literature Review. Res.
5q. 2025. [CrossRef]

Zhou, X.; Cao, S.; Sun, X,; Lo, D. Large language model for vulnerability detection and repair: Literature review and the road
ahead. ACM Trans. Softw. Eng. Methodol. 2025, 34, 145. [CrossRef]

Leotta, M.; Yousaf, H.Z.; Ricca, F; Garcia, B. Al-generated test scripts for web e2e testing with ChatGPT and copilot: A preliminary
study. In Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering, Salerno, Italy,
18-21 June 2024; pp. 339-344.

Schéfer, M.; Nadi, S.; Eghbali, A.; Tip, . An empirical evaluation of using large language models for automated unit test
generation. IEEE Trans. Softw. Eng. 2023, 50, 85-105. [CrossRef]

Wang, J.; Huang, Y.; Chen, C.; Liu, Z.; Wang, S.; Wang, Q. Software testing with large language models: Survey, landscape, and
vision. IEEE Trans. Softw. Eng. 2024, 50, 911-936. [CrossRef]

Deng, G.; Liu, Y.; Mayoral-Vilches, V,; Liu, P; Li, Y,; Xu, Y.; Zhang, T.; Liu, Y.; Pinzger, M.; Rass, S. {PentestGPT}: Evaluating and
harnessing large language models for automated penetration testing. In Proceedings of the 33rd USENIX Security Symposium
(USENIX Security 24), Philadelphia, PA, USA, 14-16 August 2024; pp. 847-864.

Liu, Z.; Chen, C.; Wang, J.; Chen, M.; Wu, B.; Che, X,; Wang, D.; Wang, Q. Make llm a testing expert: Bringing human-
like interaction to mobile gui testing via functionality-aware decisions. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, Lisbon, Portugal, 14-20 April 2024; pp. 1-13.

Job, M.A. Automating and optimizing software testing using artificial intelligence techniques. Int. J. Adv. Comput. Sci. Appl.
2021, 12. [CrossRef]

Wang, F.; Kodur, K.; Micheletti, M.; Cheng, S.W.; Sadasivam, Y.; Hu, Y.; Li, Z. Large Language Model Driven Automated Software
Application Testing. Technical Disclosure Commons, 26 March 2024. Available online: https:/ /www.tdcommons.org/dpubs_series/
6815 (accessed on 28 August 2025).

Sherifi, B.; Slhoub, K.; Nembhard, F. The Potential of LLMs in Automating Software Testing: From Generation to Reporting.
arXiv 2024, arXiv:2501.00217. [CrossRef]

Khaliqg, Z.; Farooq, S.U.; Khan, D.A. A deep learning-based automated framework for functional User Interface testing. Inf. Softw.
Technol. 2022, 150, 106969. [CrossRef]

Ale, N.K,; Yarram, R. Enhancing Test Automation with Deep Learning: Techniques, Challenges and Future Prospects. In
Proceedings of the CS & IT Conference Proceedings, 8th International Conference on Computer Science and Information
Technology (COMIT 2024), Chennai, India, 17-18 August 2024; Volume 14.

Pei, K.; Cao, Y,; Yang, J.; Jana, S. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, 28 October 2017; pp. 1-18.

Zimmermann, D.; Koziolek, A. Gui-based software testing: An automated approach using gpt-4 and selenium webdriver. In
Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW),
Luxembourg, 11-15 November 2023; pp. 171-174.

http://dx.doi.org/10.48550/arXiv.2201.05371
http://dx.doi.org/10.3390/info16020102
http://dx.doi.org/10.48550/arXiv.2412.10476
http://dx.doi.org/10.37256/aie.5120243220
http://dx.doi.org/10.1145/3747588
http://dx.doi.org/10.21203/rs.3.rs-5589929/v1
http://dx.doi.org/10.1145/3708522
http://dx.doi.org/10.1109/TSE.2023.3334955
http://dx.doi.org/10.1109/TSE.2024.3368208
http://dx.doi.org/10.14569/IJACSA.2021.0120571
https://www.tdcommons.org/dpubs_series/6815
https://www.tdcommons.org/dpubs_series/6815
http://dx.doi.org/10.48550/arXiv.2501.00217
http://dx.doi.org/10.1016/j.infsof.2022.106969

Computers 2025, 14, 501 26 of 26

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Cavalcanti, A.R.; Accioly, L.; Valenga, G.; Nogueira, S.C.; Morais, A.C.; Oliveira, A.; Gomes, S. Automating Test Design Using
LLM: Results from an Empirical Study on the Public Sector. In Proceedings of the Conference on Digital Government Research,
Porto Alegre, Brazil, 9-12 June 2025; Volume 1.

Nass, M.; Alégroth, E.; Feldt, R. Improving web element localization by using a large language model. Softw. Testing, Verif. Reliab.
2024, 34, €1893. [CrossRef]

Le, N.K;; Bui, Q.M.; Nguyen, M.N.; Nguyen, H.; Vo, T.; Luu, S.T.; Nomura, S.; Nguyen, M.L. Automated Web Application Testing:
End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs. arXiv 2025, arXiv:2506.02529.

Li, T,; Cui, C.; Huang, R.; Towey, D.; Ma, L. Large Language Models for Automated Web-Form-Test Generation: An Empirical
Study. arXiv 2024, arXiv:2405.09965. [CrossRef]

Wang, S.; Wang, S.; Fan, Y.; Li, X.; Liu, Y. Leveraging large vision-language model for better automatic web GUI testing. In
Proceedings of the 2024 IEEE International Conference on Software Maintenance and Evolution (ICSME), Flagstaff, AZ, USA,
6-11 October 2024; pp. 125-137.

Garousi, V.; Joy, N.; Keles, A.B. Al-powered test automation tools: A systematic review and empirical evaluation. arXiv 2024,
arXiv:2409.00411. [CrossRef]

Khankhoje, R. Al-Based test automation for intelligent chatbot systems. Int. J. Sci. Res. (IJSR) 2023, 12, 1302-1309. [CrossRef]
Chapman, C.; Stolee, K.T. Exploring regular expression usage and context in Python. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, Saarbriicken, Germany, 18-20 July 2016; pp. 282-293.

ISO/IEC 25010:2011; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and Software Quality Models. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.
org/standard/35733.html (accessed on 15 September 2025).

Buse, R.L.; Weimer, W.R. Learning a metric for software readability. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Atlanta, GA, USA, 9-14 November 2008; pp. 100-109.

Bondi, A.B. Characteristics of scalability and their impact on performance. In Proceedings of the 2nd International Workshop on
Software and Performance, Ottawa, ON, Canada, 17-20 September 2000; pp. 195-203.

Android Developers. UI/Application Exerciser Monkey. 2025. Available online: https://developer.android.com/studio/test/
other-testing-tools/monkey (accessed on 25 September 2025).

OpenAl. GPT-4-Turbo Pricing and Token Usage Documentation. 2025. Available online: https://openai.com/pricing (accessed
on 2 November 2025).

Claude API Pricing. Available online: https://www.claude.com/pricing#api (accessed on 10 November 2025).

xAI API Models and Pricing. Available online: https://docs.x.ai/docs/models (accessed on 10 November 2025).

The OWASP Foundation. OWASP AppSensor Project. 2014. Available online: https://owasp.org/www-project-appsensor/
(accessed on 5 November 2025).

Rennhard, M.; Kushnir, M.; Favre, O.; Esposito, D.; Zahnd, V. Automating the detection of access control vulnerabilities in web
applications. SN Comput. Sci. 2022, 3, 376. [CrossRef]

Pichiyan, V.; Muthulingam, S.; Sathar, G.; Nalajala, S.; Ch, A.; Das, M.N. Web scraping using natural language processing:
Exploiting unstructured text for data extraction and analysis. Procedia Comput. Sci. 2023, 230, 193-202. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/stvr.1893
http://dx.doi.org/10.1145/3735553
http://dx.doi.org/10.48550/arXiv.2409.00411
http://dx.doi.org/10.21275/SR231216065308
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://openai.com/pricing
https://www.claude.com/pricing#api
https://docs.x.ai/docs/models
https://owasp.org/www-project-appsensor/
http://dx.doi.org/10.1007/s42979-022-01271-1
http://dx.doi.org/10.1016/j.procs.2023.12.074

	Introduction
	Related Work
	Manual Testing
	ML and DL Based Testing
	LLM-Based Testing

	Methodology
	Step 1: HTML Extraction
	Step 2: Test Script Generation
	Step 3: Script Cleaning and Optimisation
	Step 4: Test Execution and Reporting

	Experimental Setup
	Tools and Technologies
	Testing Strategy
	Test Subjects
	Evaluation Metrics

	Results and Discussion
	Evaluation Methodology and Expert Rubric
	Model Comparision
	Computational Complexity Analysis
	Comparison with State-of-the-Art Approaches
	Discussion
	Threats to Validity

	Conclusions and Future Work
	Expert Survey Questionnaire
	Survey Questions
	Expert Scoring Rubric

	References

