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Abstract
The integration of robust optimisation techniques and data envelopment analysis 
(DEA) models results in a methodology called robust DEA. This methodology aims 
to tackle uncertain data and ensure robust and reliable efficiency measures. In ap-
plying robust optimisation approaches, the selection of the uncertainty set plays a 
pivotal role since it determines the trade-off between achieving optimal objective 
and ensuring a high probability of constraint feasibility, a concept well-known as 
the price of robustness. This trade-off can be adjusted using a robust parameter 
based on managers’ risk preferences. Similar to robust optimisation, robust DEA 
aims to protect the deterministic DEA models against data uncertainty within a 
user-specified uncertainty set, providing a probability bound on constraint feasibil-
ity. Despite recent advancements in robust optimisation approaches, robust DEA 
models are still in their early stages of development, accentuating the need for 
further research, especially in the application of new types of uncertainty sets. To 
address the identified research gap, this study aims to develop two novel robust 
DEA models considering recently introduced uncertainty sets—namely, variable 
budgeted and order statistic uncertainty sets—to improve the flexibility and gen-
erality of the existing robust DEA models. We discuss in depth how the existing 
robust DEA models under budgeted uncertainty sets represent a special case of the 
proposed robust DEA models in this paper when the robust parameter is appropri-
ately selected. Finally, we present a case study on EU banks to illustrate the efficacy 
and applicability of the proposed models, which show a robust evaluation strategy 
for management in uncertain environments.
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1  Introduction

Data envelopment analysis (DEA) is a non-parametric frontier analysis method 
widely used to assess the performance of decision-making units (DMUs) that use 
multiple inputs to produce multiple outputs. Within the DEA framework, envelop-
ment and multiplier models are two various approaches for evaluating the efficiency 
of DMUs, with envelopment models constructing an efficient frontier from observed 
data and multiplier models considering the relationship between inputs and outputs 
by applying their weights (Cooper et al. 2007). Given that DEA heavily relies on data, 
the precision and robustness of efficiency measurements are significantly affected by 
the quality of the data (Hatami-Marbini and Arabmaldar 2021). The original CCR 
(Charnes et al. 1978) and BCC (Banker et al. 1984) models, along with their subse-
quent developments, have been widely applied to evaluate relative efficiency across 
various real-world problems such as healthcare, education, banking, and manufactur-
ing. These models commonly assume deterministic input and output data, thus over-
looking uncertainties inherent in practical applications. The DEA literature provides 
substantial evidence of the critical role of uncertainty in performance assessment 
applications (see e.g., Hatami-Marbini & Arabmaldar; 2021; Olesen and Petersen 
2016; Zhu 2003). Therefore, neglecting uncertainty can lead to doubts about the 
application of the DEA method for performance benchmarking, as decision-makers 
may question the accuracy of DEA’s efficiency estimates. This issue is particularly 
pronounced in situations marked by high levels of uncertainty due to frequent and 
substantial disruptions such as in financial markets (Zervopoulos et al. 2023). Such 
conditions make it difficult to accurately and reliably assess performance and make 
informed managerial decisions to enhance the efficiency of underperforming units. 
Consequently, enhancing the robustness of classical DEA models to handle signifi-
cant data uncertainty is essential. Addressing uncertainty has long been a core focus 
in DEA applications, leading to extensive research aimed at developing solutions 
within the uncertain DEA framework. Key approaches include chance-constrained 
and stochastic DEA (Olesen and Petersen 1995, 2016), bootstrap DEA (Pham et al. 
2023; Simar and Wilson 1998), imprecise and interval DEA (Despotis and Smirlis 
2002; Mostafaee and Saljooghi 2010; Akbarian 2020; Toloo et al. 2021), fuzzy DEA 
(Hatami-Marbini et al. 2011; Hatami-Marbini 2019), and robust DEA (Shokouhi et 
al. 2010; Hatami-Marbini et al. 2022a, b; Arabmaldar et al. 2023).

It should be noted that robust DEA, while sharing the common goal of tackling 
data uncertainty with other methodologies, such as the statistical-based robust non-
parametric estimation techniques (Daraio and Simar 2007) and the chance-con-
strained DEA approach (Olesen and Petersen 2016), differs significantly. Robust 
DEA immunises against data uncertainty through the use of uncertainty sets, offering 
flexibility and robustness without relying on predefined probabilistic assumptions, 
unlike stochastic production models (e.g., Chambers and Quiggin 2000; Olesen and 
Petersen 2016; Li et al. 2024), which assume specific error distributions. This distinc-
tion is particularly significant in DEA applications with small sample sizes, where 
the use of stochastic assumptions may be problematic due to limited empirical sup-
port (Olesen and Petersen 2016; Sengupta 1992). Moreover, robust DEA integrates 
robust optimisation techniques with classical DEA models to deal effectively with 
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data uncertainty, all while maintaining similar axiomatic assumptions (Arabmaldar 
et al. 2023, 2024).

Robust DEA, which is the main methodological framework in this study, has 
emerged as a leading approach in recent literature for addressing uncertain data in 
DEA (Arabmaldar et al. 2024; Li et al. 2024; Hatami-Marbini et al. 2022a, b). Robust 
DEA has several advantages, making it highly suitable for tackling uncertainty in 
measuring efficiency. Unlike chance-constrained DEA models (Olesen and Petersen 
1995), robust DEA does not require precise distribution functions of uncertain 
parameters, which are often unknown and must be estimated from historical data that 
may be biased or unavailable. Furthermore, robust DEA does not rely on probability 
distributions and statistical properties of input and output data, which are frequently 
missing in uncertain situations but are necessary for methods such as bootstrap DEA 
(e.g., Daraio and Simar 2007). In robust DEA, results are not sensitive to the precise 
identification of lower and upper bounds of relative efficiencies, which is necessary 
in interval DEA models (Despotis and Smirlis 2002). Moreover, in contrast to fuzzy 
DEA (Emrouznejad et al. 2014; Hatami-Marbini et al. 2011), robust DEA is widely 
applicable to real-world situations without needing standardised rules for assuming 
membership functions of inputs and outputs, which can be complex. Since robust 
DEA employs robust optimisation techniques to cope with uncertainty, it is crucial 
and valuable to discuss and review the main robust optimisation approaches in this 
study.

1.1  Robust optimisation

Robust optimisation is one of the most popular techniques in the field of optimisa-
tion, gaining increasing attention in recent years. Robust optimisation aims to find 
an optimal (and robust) solution that optimises the objective function value along 
with exhibiting the least sensitivity to possible perturbations (e.g., Ben-Tal and 
Nemirovski 2000; Bertsimas and Sim 2004). It often suggests a deterministic robust 
counterpart problem while ensuring feasibility across all possible realisations within 
a predefined uncertainty set. Robust optimisation is particularly useful when defining 
uncertainty through probability distributions is impracticable. For a comprehensive 
overview of robust optimisation, readers are referred to Ben-Tal et al. (2009).

Selecting the uncertainty set is a crucial factor in effectively applying the robust 
optimisation approach. The uncertainty set in robust optimisation determines the 
trade-off between two competing objectives: (i) achieving the optimal objective func-
tion value, and (ii) ensuring constraint feasibility with a high probability. This trade-
off is often referred to as the price of robustness (PoR) by Bertsimas and Sim (2004). 
The balance between these objectives depends on two key features of the selected 
uncertainty set (Ben-Tal et al. 2010; Gregory et al. 2011). First, the size of the uncer-
tainty set is vital and is typically determined by managers based on their level of 
conservatism. A smaller uncertainty set commonly leads to an improved objective 
function value but reduces the probability of constraint feasibility, demonstrating that 
an improvement in one aspect often results in a decline in the other. Second, the 
geometric flexibility of the uncertainty set plays a crucial role (Dehghani Filabadi 
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and Mahmoudzadeh 2022; Zhang and Gupta 2023). Improving both the objective 
function value and constraint feasibility against data perturbation can be achieved 
if the uncertainty set includes regions with higher probabilities of uncertain situa-
tions while excluding those that are exceedingly improbable. Therefore, a more geo-
metrically flexible uncertainty set, shaped to encompass high-probability regions, 
can bring about this balance. In summary, the primary goal of robust optimisation is 
to find ways to reduce the PoR.

Here, we provide a brief overview of popular uncertainty sets widely used in the 
robust optimisation literature. The interval uncertainty set, also known as the box 
uncertainty set, was discussed by Soyster (1973). This set furnishes substantial pro-
tection, though it is often considered conservative, as it identifies the optimal solution 
under the worst-case scenario of the unknown parameters. The ellipsoidal uncer-
tainty set, introduced by Ben-Tal and Nemirovski (1998), is based on the standard 
deviation formula and results in a quadratic form. This set provides a more refined 
approach compared to the interval set, accounting for correlations between uncertain-
ties. The budgeted uncertainty set, proposed by Bertsimas and Sim (2004), is the first 
polyhedral uncertainty set. It effectively balances protection and conservativeness in 
robust optimisation models by imposing a budget constraint on the sum of all random 
variables, ensuring they do not all take the extreme value of 1. The demand uncer-
tainty set is based on the generalised central limit theorem (Bandi et al. 2015; Bandi 
and Gupta 2020). The discrete uncertainty set consists of a finite collection of distinct 
scenarios, each representing a potential realisation of uncertain parameters (Goerigk 
et al. 2022; Goerigk and Khosravi 2023).

Bertsimas and Sim (2004)'s approach has been extensively used for various opera-
tional research problems due to its ability to address over-conservatism in robust 
optimisation. However, despite its popularity, this approach is criticised for its inher-
ent hidden conservatism, which can potentially limit practical applicability and effi-
ciency (Poss 2013). To impede this issue, Poss (2013, 2014) introduced variable 
budgeted uncertainty as a more flexible generalisation that reduces the PoR and bal-
ances protection with practical performance by being less conservative. Goerigk et 
al. (2022) expanded upon the concept of two-stage robust optimisation problems by 
introducing the notion of two-stage budgeted uncertainty, considering both discrete 
and continuous cases. Their model involves an initial decision stage, an adversarial 
scenario selection, and a final decision stage. They also added an extra adversarial 
stage, resulting in min–max-min–max problems and extending the model to general 
multi-stage scenarios. Of late, Zhang and Gupta (2023) proposed a new uncertainty 
set by placing constraints on the order statistics of random variables and employ-
ing the probability integral transformation for robust linear optimisation models. 
They utilised quantiles of random variables to represent uncertainties and adapted 
the assignment problem framework to develop a tractable formulation for the order 
statistic uncertainty set. They also showed that this set generalises the interval, bud-
geted, and demand uncertainty sets.

Beyond the aforementioned linear and quadratic uncertainty sets, various data-
driven approaches for designing uncertainty sets have also been explored (e.g., Bert-
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simas et al. 2018). Having outlined these robust optimisation concepts, we will now 
turn to a detailed overview of robust DEA in the next subsection.

1.2  Robust optimisation in DEA

Robust DEA is a conservative approach developed to deal with uncertainties in input 
and/or output data of DMUs. Similar to robust optimisation models, robust DEA aims 
to protect the input and output parameters against uncertainty within a user-specified 
uncertainty set, providing a probability bound on constraint feasibility and leading to 
a more reliable performance assessment. Recently, robust DEA has rapidly evolved, 
with many models based on the methodologies of Bertsimas and Sim (2004) and 
Ben-Tal and Nemirovski (2000) to handle uncertain data in DEA.

Robust DEA in the multiplier form was first introduced by Sadjadi and Omrani 
(2008), who assumed that output data contained inherent uncertainties and applied 
the robust optimisation approaches developed by Ben-Tal and Nemirovski (2000) and 
Bertsimas and Sim (2004) to measure the robust efficiency of the DMUs. Following 
this, a well-cited work by Shokouhi et al. (2010, 2014) presented a robust optimisa-
tion-based DEA method for a multiplier model, based on Bertsimas and Sim (2004), 
that addressed data uncertainties more effectively than the interval DEA approach 
and with lower complexity than the fuzzy DEA approach. Since these initial models, 
both theoretical and practical advancements in robust DEA have emerged.

Arabmaldar et al. (2017) and Toloo and Mensah (2019) developed relaxed robust 
[multiplier] DEA models using the budgeted uncertainty set under constant returns to 
scale (CRS) and variable returns to scale (VRS) technologies, respectively, to reduce 
the computational burden of the model proposed by Sadjadi and Omrani (2008).

Focusing on envelopment forms with budgeted uncertainty sets, Hatami-Marbini 
and Arabmaldar (2021) extended robust DEA to estimate Farrell’s cost efficiency, 
incorporating endogenous uncertainty in input and/or output data along with exog-
enous uncertainty in input prices, while Salahi et al. (2021) aimed to find robust 
common weights under norm-1. Toloo et al. (2022) proposed a robust fractional DEA 
model using a budgeted uncertainty set and employed linearised models to explore 
duality relations from both pessimistic and optimistic perspectives on the data. They 
demonstrated that the primal worst form of the multiplier model is equivalent to the 
dual best form of the envelopment model.

A generalised robust DEA model was developed by Arabmaldar et al. (2023), 
using robust optimisation with a budgeted uncertainty set. This model incorporates 
the directional distance function approach along with predefined direction vectors. 
Li et al. (2024) extended a robust two-stage multiplier DEA model based on a bud-
geted uncertainty set to analyse bank efficiency, where the impact of the structure and 
uncertainty of nonperforming loans on bank performance is considered. Arabmaldar 
et al. (2024) is among the latest developments, first proposing a novel robust DEA 
model focused on the multiplier form with variable budgeted uncertainty, which is 
less conservative than existing models, and then presenting a method for determin-
ing probabilistic bounds for constraint violations of uncertain parameters. A detailed 
discussion of the study’s contributions is provided in the following section.
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1.3  Research gap and contributions

Despite recent advancements in robust optimisation approaches, robust DEA models 
remain relatively underdeveloped and require further research, particularly through 
the application of alternative uncertainty sets, which are the cornerstone of the robust 
optimisation framework. While robust DEA effectively addresses uncertainty, it often 
suffers from over-conservatism due to the use of traditional uncertainty sets, such as 
interval, ellipsoidal, and budgeted sets, which are frequently overlooked in the litera-
ture. Although various choices for uncertainty sets exist, this research mainly focuses 
on comparing the proposed robust DEA models with existing ones that use budgeted 
uncertainty sets, as introduced by Bertsimas and Sim (2004), due to their prominence 
in the literature.

While Arabmaldar et al. (2024) focused on the multiplier form of deterministic 
DEA, the envelopment form proposed in the present study is equally important, as 
it directly models production frontiers and holds significant practical relevance for 
efficiency measurement. This study contributes to the literature by developing two 
robust DEA models in the envelopment form, incorporating both recently developed 
variable budgeted and order statistic-based uncertainty sets, thereby improving the 
flexibility and generality of existing approaches as well as assessing the impact of 
sample size on shaping the robustness of results obtained from DEA. More precisely, 
the study introduces robust DEA models based on variable budgeted and order sta-
tistic uncertainty sets to address the over-conservatism often observed in traditional 
robust DEA models that use budgeted uncertainty sets. The development of these 
new models involves three key steps: (i) constructing uncertainty sets for input and 
output data, (ii) formulating the robust counterpart of the deterministic model to 
compute robust efficiency scores under varying uncertainty sets, and (iii) specifying 
probability bounds for constraint violations of uncertain parameters. It is important to 
point out that these new models do not directly compute the probability of constraint 
violations. Instead, they rely on the structure of the uncertainty sets to implicitly 
control the level of protection against data uncertainty. This approach aligns with the 
principles of robust optimisation, where the focus is on ensuring constraint feasibility 
under worst-case scenarios within a predefined uncertainty set, rather than explicitly 
estimating probabilistic outcomes.

The proposed models in this study are evaluated for their theoretical merits, 
including tractability and flexibility, and are complemented by an empirical analysis 
using data from the European banking sector. This empirical investigation assesses 
the performance of banking institutions under various input and output uncertainty 
scenarios, providing insights into their practical relevance. Moreover, it explores the 
impact of sample size on the robustness and efficiency scores produced by both exist-
ing and newly developed robust DEA models, highlighting the advantages of the 
proposed approach in improving decision-making under uncertainty.

1.4  Structure

The remainder of the paper is structured as follows: Section 2 provides an overview 
of the basic and robust DEA models, including specific notations and extensions of 
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robust DEA model properties. Section 3 delineates the mathematical details of two 
new robust DEA models with variable budgeted uncertainty and order statistic uncer-
tainty sets, complemented by a simplified numerical example to clarify their practi-
cal application. Section 4 demonstrates the validity, applicability, and effectiveness 
of these models, using a real-life dataset from the European banking sector. Finally, 
Section 5 presents concluding remarks and future research directions.

2  Preliminaries

This section presents a brief overview of two existing DEA models that lay the 
groundwork for the new developments of robust DEA introduced in this paper. The 
first subsection reviews the envelopment form of the traditional DEA model under 
the CRS assumption. The second subsection introduces the existing robust DEA 
models proposed by Hatami-Marbini and Arabmaldar (2021) and Salahi et al. (2021).

2.1  DEA models

DEA models are non-parametric estimators in frontier analysis used to mea-
sure the relative efficiencies of homogeneous DMUs that utilise mul-
tiple inputs to produce multiple outputs. Consider n DMUs denoted by 
DMUj ; j ∈ J = {1, . . . , n}, where each DMU consumes m semi-positive inputs 
xj = (. . . , xij , . . . ) ; i ∈ I = {1, . . . , m} to produce s semi-positive outputs 
yj = (. . . , yrj , . . . ) ; r ∈ R = {1, . . . , s}. The production possibility set (PPS), or 
technology T , can be defined as T = {(x, y)|y can be produced from x}. Fol-
lowing standard DEA literature (Cooper et al. 2007; Kerstens et al. 2022), the con-
struction of this set is based on a set of foundational assumptions imposed on the 
observed input–output data: (19) inclusion of all observations, (20) input and output 
monotonicity (free disposability), (21) convexity, and (22) ray unboundedness. These 
assumptions ensure that the reference technology is both economically interpretable 
and theoretically consistent with production principles.

Following Farrell’s idea of measuring technical efficiency based on the relative 
distance between a DMU and the efficient frontier, the input-oriented technical effi-
ciency of a given DMUo is calculated using the following linear programming prob-
lem (Charnes et al. 1978):

	

θCCR
o = min

λj ,θo

θo

s.t.∑
j∈J

xjλj ≤ xoθo,
∑
j∈J

yjλj ≥ yo,

λj ≥ 0, j ∈J,

� (1)

where λ = (. . . , λj , . . . ), j ∈J  is the nonnegative intensity decision variable. While 
this envelopment DEA model represents a formulation under the assumption of 
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CRS, including the convexity constraint 
∑

j∈J λj = 1 converts it to a VRS DEA 
model. It is evident that since (λo = 1, λj = 0; j ̸= o, θo = 1) is a feasible solution 
of model (1), the model is both feasible and bounded (θCCR∗

o ∈ (0,1]). Furthermore, 
if 

(
θCCR∗

o , λ∗
o

)
 is the optimal solution of model (1), then λ∗

o ≤ θCCR∗
o , and conse-

quently λ∗
o ≤ 1. This confirms that the required condition for developing a feasible 

robust DEA model is satisfied, namely, the non-negativity of all decision variables 
corresponding to each uncertain parameter. 

Let us introduce model (2), which is equivalent reformulation to the CCR model 
(1). This model is obtained by explicitly incorporating the reference unit o into the 
convex combination and rearranging the constraints accordingly. Such a transfor-
mation is standard in the DEA literature (see e.g., Hatami-Marbini and Arabmaldar 
2021; Toloo et al. 2022), and does not alter the feasible region and the optimal value 
of θCCR

o . Therefore, both models (1) and (2) yield the same efficiency score. This 
equivalence is important because all uncertainties in the constraints are on the right-
hand side of the CCR model (1), and this arrangement will be necessary for the fol-
lowing discussions in this paper.

	

θCCR
o = min

λj ,θo

θo

s.t.∑
j∈J(j ̸=o)

xjλj + (λo − θo) xo ≤ 0,
∑

j∈J(j ̸=o)
yjλj + (λo − 1) yo ≥ 0,

λj ≥ 0, j ∈J.

� (2)

2.2  Robust DEA models and their extensions

In classic DEA models, input and output data are assumed to be deterministic. How-
ever, real-world data often involve imprecision, such as bounded, ordinal, or ratio-
bounded data, introducing uncertainty. Various techniques have been developed in 
the DEA literature to address these uncertainties. This section reviews the robust 
counterpart of the deterministic DEA model (2), as initially introduced by Hatami-
Marbini and Arabmaldar (2021) and Salahi et al. (2021) in the robust DEA literature. 
This robust DEA model is based on the budgeted uncertainty set developed by Bert-
simas and Sim (2004)1.

Consider the ith input constraint and the rth output constraint in model 
(2). Let Jx

i = {j|x̃ij ≥ 0} and Jy
r = {j|ỹrj ≥ 0} be the index sets associ-

ated with uncertain inputs x̃ij  and uncertain outputs ỹrj . It should be noted that 
Jx

i , Jy
r ⊆J . The cardinalities of these sets are denoted as |Jx

i | and |Jy
r |, respec-

tively. The objective is to determine an efficiency measure for the DMUs that not 
only achieves the highest possible value but also ensures the feasibility of the 
input and output constraints with a specified probability, which can be expressed 

1 Note that, for simplicity, the input (output) constraint index i (r) is occasionally omitted throughout this 
paper.
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by the chance constraints Prob
(∑

j∈J λj x̃ij ≤ θox̃io

)
≥ pi, ∀i ∈I  and 

Prob
(∑

j∈J λj ỹrj ≥ ỹro

)
≥ pr, ∀r ∈R, respectively.

Assume that the random variables x̃ij  and ỹrj  follow an unknown but symmetric 
distribution2, 3. These variables can vary within the ranges [xij − x̂ij , xij + x̂ij ] and 
[yrj − ŷrj , yrj + ŷrj ], where x̂ij  and ŷrj  represent the maximum perturbations of 
inputs and outputs, respectively. The variables ̃xij  and ̃yrj  are transformed into Zx

ij  and 
Zy

rj , defined as Zx
ij = |x̃ij − xij | /x̂ij  and Zy

rj = |ỹrj − yrj | /ŷrj , which lie within 
the interval [0, 1]. The vectors of these variables are denoted as Zx

i = (Zx
i1, . . . , Zx

i|Jx
i |) 

and Zy
r = (Zy

r1, . . . , Zy
r|Jy

r |). Henceforth, whenever random variables are mentioned, 
we mean the random variables Zx

ij  and Zy
rj .

We emphasise that our proposed robust DEA models are firmly anchored in the 
foundational axioms of DEA, as laid out in the literature (e.g., Arabmaldar et al. 2023). 
In particular, the robust technology set T R = {(x̃, ỹ) |ỹ can be produced from x̃} 
constructed in this study satisfies the following axioms: 

(Λ1) Inclusion of observations: (x̃j , ỹj) ∈ T R for allj = 1, . . . , n. 
(Λ2) Monotonicity (Free disposability): If (x̃, ỹ) ∈ T R and x̃′ ≥ x̃, ỹ′ ≤ ỹ, then 

(x̃′, ỹ′) ∈ T R. 
(Λ3) Convexity: If (x̃, ỹ) , (x̃′, ỹ′) ∈ T R, then for all µ ∈ [0,1], 

µ (x̃, ỹ) + (1 − µ) (x̃′, ỹ′) ∈ T R.
(Λ4) Ray unboundedness: If (x̃, ỹ) ∈ T R, then for all µ > 0, (µx̃, µỹ) ∈ T R.
These axioms shape the structure of the robust technology set and ensure that the 

incorporation of uncertainty—through various uncertainty sets—is built upon a rig-
orous theoretical foundation in DEA.

The general robust DEA model, which ensures the feasibility of the input con-
straint i and the output constraint r for any realisation of Zx

i  and Zy
r  within the 

uncertainty sets Ui and Ur, can be formulated as follows:

	

θRobust
o = min θo

s.t.∑
j∈J(j ̸=o)

λjxij + (λo − θo) xio + βi (λ∗, Ui) ≤ 0, ∀i ∈I,
∑

j∈J(j ̸=o)
λjyrj + (λo − 1) yro − βr (λ∗, Ur) ≥ 0, ∀r ∈R,

λj ≥ 0, ∀j ∈J,

� (3)

2 A symmetric distribution is one in which the values are distributed evenly around the central point, such 
that deviations from the nominal value are equally likely in both positive and negative directions. In 
robust optimisation, this assumption is a common simplification (e.g., Ben-Tal et al. 2009; Bertsimas et 
al. 2011), as it enables tractable formulations while still capturing the essential aspects of uncertainty. 
Although it may not accurately reflect all real-world situations, especially where data exhibit skewness, it 
provides a practical compromise between model realism and mathematical solvability, particularly when 
detailed distributional information is unavailable.

3 Henceforth, any reference to random variables pertains to Zx
ij  and Zy

rj .  
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where βi (λ∗, Ui) = max
Zx

i
∈Ui

∑
j∈Jx(j ̸=o) |λj | zx

ij x̂ij + |λo − θo| zx
iox̂o and 

βr (λ∗, Ur) = max
Zy

r ∈Ur

∑
j∈Jy(j ̸=o) |λj | zy

rj ŷrj + |λo − 1| zy
roŷo, which are known as 

protection functions. These functions correspond to the uncertain input i and uncer-
tain output r of DMUj , respectively, and are defined to protect the input and output 
constraints against data uncertainty, thereby ensuring the feasibility of the constraints. 
It should be noted that the protection functions have their own objective functions, 
constraints, parameters, and decision variables. However, some decision variables 
from the outer model (3) are treated as constants in the inner problems. Specifically, 
the optimal objective values of the protection functions become part of the constraints 
in model (3). In other words, within the protection functions |λj | (∀j ∈J, j ̸= o), 
|λo − θo|, and |λo − 1|, which are decision variables for model (3), are considered 
constant parameters, while zx

ij  and zy
rj  are treated as decision variables.

It is worth noting that the uncertainty set remains the cornerstone of the robust 
optimisation approach. In model (3), Ui and Ur can represent various uncertainty 
sets, commonly used in the robust optimisation literature, including but not limited to 
interval, budgeted, and ellipsoidal uncertainty sets. It is important to note that within 
the robust optimisation framework, and without loss of generality, the uncertainty 
sets in the models are assumed to be constraint-wise4.

Following Bertsimas and Sim (2004), the total perturbations of zx
ij  and zy

rj  for 
all inputs and outputs are given by 

∑
j∈Jx zx

ij  and 
∑

j∈Jy zy
rj , respectively. These 

are constrained by the level of the uncertainty parameters Γx = (Γx
1 , . . . , Γx

m) and 
Γy = (Γy

1, . . . , Γy
s), viz. 

∑
j∈Jx

i
zx

ij ≤ Γx
i  and 

∑
j∈Jy

r
zy

rj ≤ Γy
r , which vary within 

the interval [0, n]. To adjust the level of conservatism in a robust solution, the param-
eters Γx

i ∈ [0, |Jx
i |] and Γy

r ∈ [0, |Jy
r |], known as the robust parameters or the bud-

gets of uncertainty, represent the maximum number of uncertain parameters allowed 
in the model’s constraints. In view of this, the budgeted uncertainty sets can be 
expressed as follows:

UB
i (Γx

i ) = {x̃ij |x̃ij = xij + zx
ij x̂ij , 0 ≤ zx

ij ≤ 1,
∑

j∈Jx
i

zx
ij ≤ Γx

i , ∀i ∈ I, ∀j ∈ Jx
i },� (4)

	
UB

r (Γy
r) = {ỹrj |ỹrj = yrj + zy

rj ŷrj , 0 ≤ zy
rj ≤ 1,

∑
j∈Jy

r

zy
rj ≤ Γy

r , ∀r ∈ R, ∀j ∈ Jy
r }.

The uncertainty sets, UB (Γx) and UB(Γy), defined in (4), can first be used within 
the robust DEA model (3). In other words, we have the protection functions 
βi(λ∗, UB(Γx)) and βr(λ∗, UB(Γy)) for the input and output constraints, respec-
tively. Then, the linearised robust counterpart of model (3) using these protection 

4 This is because a joint uncertainty set U  across constraints can always be reformulated into a constraint-
wise format (see Sect. 1.2.1 in Ben-Tal et al. 2009). As a result, for simplicity, the constraint index i(r) 
will be omitted, focusing instead on a representative constraint wherever needed.
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functions, based on Bertsimas and Sim (2004)'s approach, can be formulated as 
follows5:

	

θB
o = min θo

s.t.∑
j∈J

xjλj +
∑

j∈Jx
i

qx
j + Γxpx ≤ xoθo,

∑
j∈J

yjλj −
∑

j∈Jy
r

qy
j − Γypy ≥ yo,

qx
j + px ≥ x̂jλj , ∀j ∈Jx

i , j ̸= o,

qx
o + px ≥ x̂o (θo − λo) , o ∈ Jx

i ,

qy
j + py ≥ ŷjλj , ∀j ∈ Jy

r , j ̸= o,

qy
o + py ≥ ŷo (1 − λo) , o ∈Jy

r ,

qx
j , px ≥ 0, ∀j ∈Jx

i ,

qy
j , py ≥ 0, ∀j ∈Jy

r ,

λj ≥ 0, ∀j ∈J,

� (5)

where px =(px
1 , . . . , px

m), py = (py
1, . . . , py

s), qx
j =(qx

1j , .., qx
mj), and 

qy
j = (qy

1j , .., qy
sj) are variables used to measure the robustness of model (5) when the 

level of uncertainty budgeting is varied by an infinitesimally small amount. The terms ∑
j∈Jx

i
qx

j + Γxpx and −
∑

j∈Jy
r

qy
j − Γypy demonstrate the worst-case deviations 

of the uncertain inputs and outputs from their nominal values for the budgeted uncer-
tainty and are included in the robust model (5) to immunise the model against the vio-
lation of the input and output constraints, respectively. Furthermore, the pre-defined 
robust parameters Γx and Γy  indicate the maximum number of uncertain inputs and 
outputs, respectively, that are protected against perturbations. As proved by Hatami-
Marbini and Arabmaldar (2021), the optimal objective function value of model (5), 
θB∗

o , is greater than or equal to that of model (1) or (2), θCCR∗
o .

The following proposition provides an equivalent formulation of βi(λ∗, Ux(Γx)) 
and βr(λ∗, Uy(Γy)), which will be essential for developing new robust DEA models 
in this paper. 

Proposition 1  The protection functions βi(λ∗, Ux(Γx)) and βr(λ∗, Uy(Γy)) can be 
equivalently expressed as follows:

βi(λ∗, Ux(Γx)) = max
{Sx

i ∪{αx
i }|Sx

i ⊆Jx
i ,|Sx

i |=[Γx
i ],αx

i ∈Jx
i \Sx

i }

{ ∑
j∈Sx

i
(j ̸=o) λj x̂ij + (Γx

i − [Γx
i ]) λαx

i
x̂iαx

i
+

|λo − θo| x̂io + (Γx
i − [Γx

i ]) |λo − θo| x̂io

}
,� (6)

	
βr(λ∗, Uy(Γy)) = max

{Sy
r ∪{αy

r }|Sy
r ⊆Jy

r ,|Sy
r |=[Γy

r ],αy
r ∈Jy

r \Sy
r }

{ ∑
j∈Sy

r (j ̸=o) λj ŷrj + (Γy
r − [Γy

r ]) λαy
r
ŷrαy

r
+

|λo − 1| ŷro + (Γy
r − [Γy

r ]) |λo − 1| ŷro

}

 

5 For more details, see Hatami-Marbini and Arabmaldar (2021) and Salahi et al. (2021).
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Proof  See Appendix.

Bertsimas and Sim (2004) discussed that when only a subset of the uncertain 
parameters is allowed to change, a bound for the robust counterpart model is essen-
tial to ascertain that the robust solution remains feasible with high probability. They 
demonstrated that the probability of constraint violation, prob(

∑
j ãijx∗

j > bi) is 

bounded above by P = exp(− Γ2

2|Ji| ) where |Ji| denotes the cardinality of the set of 
uncertain parameters associated with the ith constraint. Here, we adopt the bounds 
proposed by Bertsimas and Sim (2004) for the existing robust DEA model (5) under 
the budgeted uncertainty set. Since, in the ith and rth constraints of model (5), a fixed 
number Γx = Γy = Γ of input and output data are allowed to deviate from their 
deterministic values, the constraint feasibility of this model is guaranteed with the 
probability bound for both input and output constraint sets as follows6

	
pB = Prob(

∑
j∈J

λj x̃ij ≤ θox̃io) or Prob (
∑
j∈J

λj ỹrj ≥ ỹro) ≥ exp(− Γ2

2 |Jx
i | |Jy

r |
).� (7)

3  Proposed robust DEA models

The motivation for this study arises from the observation that, despite the widespread 
adoption of Bertsimas and Sim (2004)'s approach among scholars, there is a hidden 
over-conservatism in robust optimisation problems, particularly when the uncertainty 
sets are polyhedral (Thiele 2010; Liu et al. 2016). More precisely, in some cases, the 
decision variables become overly conservative in response to the uncertain param-
eters, leading to solutions that are more conservative than originally intended by the 
decision-maker. Therefore, greater care is needed when interpreting the budget of 
uncertainty as the maximum number of parameters that can vary.

The first and foremost objective of robust optimisation and, consequently, robust 
DEA is to balance the trade-off between the optimality of the objective function value 
and the probability of constraint feasibility, namely, the PoR. This objective can be 
more effectively achieved by incorporating more flexible uncertainty sets into deter-
ministic models. To extend the existing robust DEA models in alignment with robust 
optimisation approaches, we propose two new robust DEA models in this section. 
These models utilise two different uncertainty sets, which can be viewed as gener-
alisations of the budgeted uncertainty set. Section 3.1 presents a novel robust DEA 
model that incorporates the variable budgeted uncertainty set, as proposed by Poss 
(2013, 2014). Unlike the traditional budgeted uncertainty set introduced by Bertsi-
mas and Sim (2004), the variable budgeted uncertainty set does not constrain the 
amount of uncertainty to a pre-specified number. Instead, it employs a non-negative 
function defined within the feasibility region of decision variables, providing greater 
flexibility in handling data uncertainty. Furthermore, Section 3.2 proposes a new 

6 Note that x∗
j  represents a vector of decision variables at optimality, and ãij = [ã1j , . . . , ãnj ] is the 

technological coefficients
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robust DEA model employing the recently developed order statistic uncertainty set 
by Zhang and Gupta (2023). The order statistic uncertainty set has greater geomet-
ric flexibility compared to the budgeted uncertainty set and is considered to include 
interval, budgeted, and demand uncertainty sets as special cases within the robust 
optimisation model. To complement the theoretical development, Section 3.3 pres-
ents a simple illustrative numerical example that demonstrates the proposed robust 
DEA models under different uncertainty sets, highlighting their practical implications 
and the trade-off between robustness and performance.

3.1  Robust DEA with variable budgeted uncertainty

Assume that the true values of uncertain input and output data are introduced as 
x̃ij = xij + zx

ij x̂ij (∀i ∈I, ∀j ∈Jx
i ) , and ỹrj = yrj + zy

rj ŷrj (∀r ∈R, ∀j ∈Jy
r ), 

respectively. It is also assumed that 
∑

j∈Jx
i

zx
ij ≤ γx (λ) , and 

∑
j∈Jy

r
zy

rj ≤ γy (λ), 
where γx (λ) and γy (λ) are given non-negative functions defined on the decision 
variable λ, which is in vector form, that limit the amount of uncertainty. By adopting 
the variable budgeted uncertainty proposed by Poss (2013, 2014) as a generalisa-
tion of the budgeted uncertainty defined by Bertsimas and Sim (2004), the following 
variable budgeted uncertainty sets can be obtained for the uncertain input and output 
data:

UV B
i (λ) = {(x̃i) |x̃ij = xij + zx

ij x̂ij , 0 ≤ zx
ij ≤ 1,

∑
j∈Jx

i

zx
ij ≤ γx (λ) , ∀i ∈I, ∀j ∈Jx

i },� (8)

	
UV B

r (λ) = {(ỹr) |ỹrj = yrj + zy
rj ŷrj , 0 ≤ zy

rj ≤ 1,
∑

j∈Jy
r

zy
rj ≤ γy (λ) , ∀r ∈R, ∀j ∈Jy

r }.

UV B
i (λ) and UV B

r (λ) are multi-functions of the decision variable λ and act as alter-
natives to the uncertainty sets UB

i (Γx) and UB
r (Γy), which are bounded by Γx and 

Γy , respectively. In other words, given the decision variable λ, the uncertainty sets 
UV B

i (λ) and UV B
r (λ) include all feasible values for the uncertain input and output 

parameters, respectively. Furthermore, if γx (λ) and γy (λ) are set constantly equal 
to Γx and Γy , then it is evident that UV B

i (λ) and UV B
r (λ) coincide with UB

i (Γx) 
and UB

r (Γy), respectively, for any λ. In general, utilising UV B
i (λ) and UV B

r (λ) 
helps to avoid the issue of over-conservatism that can arise when decision-variable 
vectors λ contain few components in each constraint. This approach suggests a new 
framework that is less conservative compared to UB

i (Γx) and UB
r (Γy).

As discussed by Poss (2013, 2014), it is necessary that the functions γx (λ) and 
γy (λ), which are involved in defining Uγx (λ) and Uγy (λ), to be affine func-
tions of λ so as to satisfy the probability bounds proposed by Bertsimas and Sim 
(2004). Following Poss (2013, 2014), we consider the case where γx (λ) and 
γy (λ) are affine functions of λ, specified as γx (λ) = γx

0 +
∑

j∈Jx
i

γx
j λ

j
 and 

γy (λ) = γy
0 +

∑
j∈Jy

r
γy

j λj , respectively. Consequently, the robust counterpart of 
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model (1), based on the uncertainty sets UV B
i (λ) and UV B

r (λ) defined in (8), is as 
follows:

	

θVB
o = min θ0

s.t. ∑
j∈J(j ̸=o)

λjxij + (λo − θ0) xio + βi

(
λ∗, UV B

i (λ)
)

≤ 0, ∀i ∈ I,

−
∑

j∈J(j ̸=o)

λjyrj − (λo − 1) yro + βr

(
λ∗, UV B

r (λ)
)

≤ 0, ∀r ∈R,

λj ≥ 0, ∀j ∈J.

� (9)

The following theorem shows how to solve model (9) as a mixed-integer linear pro-
gramming when γx (λ) and γy (λ) are appropriately selected.

Theorem 1  The robust counterpart of model (2) based on the variable budgeted 
uncertainty set is equivalent to the following robust DEA model:

	

θV B
o = min θ0

s.t.∑
j∈J

λjxij + px′

i γx
0 +

∑
j∈Jx

i

γx
j wx

ij +
∑

j∈Jx
i

qx′

ij ≤ θ0xio, ∀i ∈ I,

∑
j∈J

λjyrj − py′

r γy
0 −

∑
j∈Jy

r

γy
j wy

rj −
∑

j∈Jy
r

qy′

rj ≥ yro, ∀r ∈ R,

px′

i + qx′

ij ≥ λj x̂ij , ∀i ∈ I, ∀j ∈ Jx
i , j ̸= o,

px′

i + qx′

io ≥ (θ0 − λo) x̂io, ∀i ∈ I, o ∈ Jx
i ,

wx
ij − px′

i ≥ − max
j

(x̂ij) (1 − λj) , ∀i ∈ I, ∀j ∈ J,

py′

r + qy′

rj ≥ λj ŷrj , ∀r ∈ R, ∀j ∈ Jy
r , j ̸= o,

py′

r + qy′

ro ≥ (1 − λo) ŷro, ∀r ∈ R, o ∈ Jy
r ,

wy
rj − py′

r ≥ − max
j

(ŷrj) (1 − λj) , ∀r ∈ R, j ∈ J,

px′

i , qx′

ij , py′

r , qy′

rj , wx
ij , wy

rj ≥ 0, ∀i ∈ I, ∀r ∈ R, ∀j ∈ Jx
i , ∀j ∈ Jy

r ,

λj ≤ hx
j , ∀j ∈ J,

λj ≤ hy
j , ∀j ∈ J,

hy
j , hx

j ∈ {0, 1}n
, ∀j ∈ J,

λj ≥ 0, ∀j ∈ J.

� (10)

Proof  See Appendix.
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To demonstrate that the proposed robust DEA model (10) adheres to the properties 
of traditional DEA models, we present the following theorem.

Theorem 2  (i) Model (10) is always feasible, and (ii) 0 < θVB∗
o ≤ 1 . 

Proof  See Appendix.

The following theorem, which is important for gaining insights into the proposed 
approach, compares the optimal objective values between the traditional robust DEA 
model (5) and the proposed robust DEA model (10).

Theorem 3  The optimal objective function value of model (10) is greater than or 
equal to that of model (5), i.e., θVB∗

o ≥ θB∗
o .

Proof  See Appendix.

Finally, to discuss the probability bound for the constraints in the proposed 
robust DEA model (10), we apply the probabilistic bounds proposed by Bert-
simas and Sim (2004) alongside the robust DEA model (5) to derive the same 
bound. Let λ∗ be the intensity vectors that satisfy the robust input and output con-
straints in model (10) for UV B

i (λ) and UV B
r (λ). It is trivial that if ∥λ∗∥ ≤ Γ, then 

Prob(
∑

j∈J λj x̃ij > θox̃io) = 0. In addition, if ∥λ∗∥ > Γ such that λ∗ satisfies the 
robust constraint 

∑
j∈J λj x̃ij ≤ θox̃io, for x̃ij ∈ UV B

i (λ), then according to Propo-
sition 2 and Theorem 2 in Bertsimas and Sim (2004), we can easily verify the follow-
ing probabilistic bound:

P V B = Prob(
∑
j∈J

λj x̃ij > θox̃io) or Prob(
∑
j∈J

λj ỹrj ≥ ỹro) ≥ exp(− Γ2

2|| λ ||∗ )� (11)

The above inequality shows that UV B
i (λ) and UV B

r (λ) allow decision-makers 
to ensure the same or an even higher level of protection for the feasibility of con-
straints in robust counterpart models. This means that by utilising these uncertainty 
sets, decision-makers can achieve a more reliable and resilient solution, effectively 
immunising against variations and uncertainties in the data. As a result, the proposed 
robust DEA model not only maintains feasibility under adverse conditions but may 
also provide better performance guarantees compared to existing approaches, thereby 
enhancing the robustness of the decision-making process.

3.2  Robust DEA with the order statistic uncertainty set

We here build on the order statistic uncertainty set proposed by Zhang and Gupta 
(2023) to develop a new robust DEA model aimed at reducing the cost associated with 
uncertainty. The relationship between this model, the proposed robust DEA model 
(10), and the robust DEA model (5) with the budgeted uncertainty set is explored. 
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For simplicity, we omit the constraint indices for the input and output constraints and 
focus on an arbitrary constraint.

Suppose the random variables zx
j  and zy

j  are continuous and independently dis-
tributed in the range [0,1], each following an arbitrary continuous distribution 
with an unknown cumulative distribution function F x

j  and F y
j , respectively. Let 

Ux
j = F x

j (zx
j ), ∀j ∈ Jx and Uy

j = F y
j (zy

j ), ∀j ∈ Jy be the random variables, where 
each Ux

j  and Uy
j  is uniformly distributed over [0,1]. Here, U(1), . . . , U(|Jx|) denotes 

the order statistics of Ux
j  (and similarly U(1), . . . , U(|Jy|) for Uy

j ), which represents 
the rearranged sequence of Ux

j (Uy
j ) with U(k) being the kth smallest value. Unlike 

the original random variables Ux
j  and Uy

j , the order statistic U(k) has a Beta distribu-
tion with parameters (k, |Jx| + 1 − k). Let It (k, |Jx| + 1 − k) denote the cumula-
tive distribution function for Beta (k, |Jx| + 1 − k) distribution, and let Qt

k be the 
quantile function defined as Qt

k = inf {τ : Iτ (k, |Jx| + 1 − k) = t}. The order sta-
tistic uncertainty set can thus be defined as follows (Zhang and Gupta 2023, p. 1026):

	
UOS

i (ε) =
{

ηx| F x
j

(
zx

j

)
= Ux

j , ∀j ∈Jx, and Ux
(k) ≤ Q

(1−εk)
k , ∀k ∈J

}
,�(12)

	
UOS

r (ε) =
{

ηy| F y
j

(
zy

j

)
= Uy

j , ∀j ∈Jy, and Uy
(k) ≤ Q

(1−εk)
k , ∀k ∈J

}
,

where Q
(1−εk)
k  is the upper limit for Ux

(k)(U
y
(k)) such that 

Prob(Ux
(k) ≤ Q

(1−εk)
k ) = 1 − εk and ε =

(
ε1, ε2, . . . , ε|J|

)
, where εj ∈ [0, 1].

As discussed by Zhang and Gupta (2023), the order statistic uncertainty set 
(12) is intractable for obtaining robust counterpart models.7 To deal with this dif-
ficulty in reformulating protection functions associated with the order statis-
tic uncertainty set, Zhang and Gupta (2023) proposed an assignment formulation 
that provides a tractable solution for these problems. In this study, we adopt the 
same method to develop a suitable formulation associate with the order statistic 
uncertainty sets in the DEA context. We therefore propose the following proposi-
tion to provide a tractable formulation for input and output protection functions, 
i.e., βi(λ∗, UOS

i (ε)) and βr(λ∗, UOS
r (ε)). Let ρx

jk(ρy
jk) be the quantile of order 

Q
(1−εk)
k  for zx

j (zy
j ), i.e., ρx

jk =inf{λ : F x
j (λ) ≥ Q

(1−εk)
k }, ∀j, k ∈Jx(ρy

jk =

inf{λ : F y
j (λ) ≥ Q

(1−εk)
k }, ∀j, k ∈Jy). 

Proposition 2  For a fixed λ, the optimal objective value for βi(λ∗, UOS
i (ε)) and 

βr(λ∗, UOS
r (ε)), corresponding to input and output constraints, are equal to the 

optimal objective values for the following linear optimisation problems, respectively:

7 The reasons for the intractability are as follows: (i) the uncertainty set UOS(ε) is defined using con-
straints on the cumulative distribution functions of variable zx

j (zy
j ), rather than being directly based on 

the random variable zx
j (zy

j ); (ii) there are |Jx| (|Jy |)! permutations of F x
j (λ) (F y

j (λ)) for all possible 

outcomes of Ux
(k)(Ux

(k)), which makes reformulating βi

(
λ∗, UOS

i (ε)
)

 challenging; and (iii) the non-
convexity of the order statistic uncertainty set UOS(ε) (for more details see (Zhang and Gupta 2023). 
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max
η

∑
j∈J(j ̸=o)

x̂ij |λj | .(
∑
k∈J

ρx
jkηx

jk) + x̂io |λo − θo| .

(∑
k∈J

ρx
okηx

ok

)

s.t.∑
k

ηx
jk = 1, ∀j ∈Jx,

∑
j

ηx
jk = 1, ∀k ∈Jx,

ηx
jk ≥ 0, ∀j, k ∈Jx.

� (13)

	

max
η

∑
j∈J(j ̸=o)

ŷij |λj | .(
∑
k∈J

ρy
jkηy

jk) + ŷio |λo − 1| .

(∑
k∈J

ρy
okηy

ok

)

s.t.∑
k

ηy
jk = 1, ∀j ∈Jy,

∑
j

ηy
jk = 1, ∀k ∈Jy,

ηy
jk ≥ 0, ∀j, k ∈Jy.

� (14)

Proof  The proof is omitted, as it follows a similar method to that used in Zhang and 
Gupta (2023).

Hereafter, we denote the protection functions defined in (13) and (14) as 
βi(λ∗, UOS

i (ρx)) and βr(λ∗, UOS
r (ρy)), respectively. Now, by incorporating the 

defined uncertainty set UOS(ε) into the DEA model (3), we obtain the following 
robust counterpart model:

	

θOS
o = min θo

s.t.∑
j∈J(j ̸=o)

λjxij + (λo − θo) xio + βi

(
λ∗, UOS

i (ρx)
)

≤ 0, ∀i ∈I,

∑
j∈J(j ̸=o)

λjyrj + (λo − 1) yro − βr

(
λ∗, UOS

r (ρy)
)

≥ 0, ∀r ∈R,

λj ≥ 0, ∀j ∈J.

� (15)

 
The following theorem presents the robust formulation of the DEA model (2) 

incorporating uncertain input and output data defined by the uncertainty sets UOS
i (ε) 

and UOS
r (ε) .

Theorem 4  Model (15) is equivalent to the following linear programming problem:
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θOS
o = min θo

s.t.∑
j∈J

xijλj +
∑

j∈Jx
i

(ψx
ij + Φx

ij) ≤ xioθo, ∀i ∈I,

∑
j∈J

yrjλj −
∑

j∈Jy
r

(ψy
rj + Φy

rj) ≥ yro, ∀r ∈R,

ψx
ij + Φx

ik ≥ x̂ij λj ρijk, ∀j, k ∈Jx
i , j ̸= o, ∀i ∈I,

ψx
io + Φx

io ≥ x̂io (θo − λo) ρio, o ∈ Jx
i , ∀i ∈I,

ψy
rj + Φy

rk ≥ ŷrj λj ρrjk, ∀j, k ∈Jy
r , j ̸= o, ∀r ∈R,

ψy
ro + Φy

ro ≥ ŷro (1 − λo) ρro, o ∈ Jy
r , ∀r ∈R,

ψx
ij , Φx

ij , free in sign ∀i ∈I; ∀j ∈Jx
i ,

ψy
rj , Φy

rj , free in sign ∀r ∈R; ∀j ∈Jy
i ,

λj ≥ 0, ∀j ∈J.

� (16)

Proof  See Appendix.

The following theorem demonstrates that the proposed robust DEA model (16) 
preserves the fundamental properties of traditional DEA models.

Theorem 5  (i) Model (16) is always feasible, and (ii) 0 < θOS∗
o ≤ 1 .

Proof  See Appendix.

An interesting result from the above theorem is that the proposed robust DEA 
model (16) not only maintains the core properties of traditional DEA models but also 
improves their applicability by effectively addressing the uncertainty inherent in both 
input and output data.

The following theorem demonstrates that the existing robust DEA model (5), 
which utilises the budgeted uncertainty set with the robust parameter Γ, is equivalent 
to the proposed robust DEA model (16), which employs the order statistic uncertainty 
set, given that the values of ρjk are appropriately selected.

Theorem 6  The existing robust DEA model (5) is equivalent to the proposed robust 
DEA model (16) when the values of ρjk  are chosen as follows:

	

ρjk =





0, k ∈ [1, |Jx| − ⌊Γ x⌋ − 1] , ∀j ∈Jx,

Γ x − ⌊Γ x⌋ , k = |Jx| − ⌊Γ x⌋ , ∀j ∈Jx,

1, k ∈ [|Jx| − ⌊Γ x⌋ + 1, |Jx|] , ∀j ∈Jx.

Proof  See Appendix.
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Let us now follow the probabilistic bound suggested in Zhang and Gupta (2023) 
and propose the following probability bound for constraint violation in the robust 
DEA model (16):

	

pOS = Prob(
∑
j∈J

λj x̃ij ≤ θox̃io) ≥ 1
2

+ 1
2

. |Jx|! det [∆] or

Prob(
∑
j∈J

λj ỹrj ≥ ỹro) ≥ 1
2

+ 1
2

. |Jy|! det [∆] ,
� (17)

where ∆ is the |J | × |J | matrix with (i, j)th element defined as:

	
∆ij =

{
(Q(1−εi)

i )
j−i+1

/(j − i + 1)! j − i + 1 ≥ 0,
0 j − i + 1 < 0.

� (18)

 
As observed from the above and in line with the definition of uncertainty sets (12), 

the probabilistic guarantee for the order statistic uncertainty set can be identified by 
the upper limit of the cumulative distribution functions of random variables Q(1−εi)

i . 
Note that to achieve a high probabilistic guarantee, one must use larger Q(1−εi)

i  val-
ues, which can be attained by selecting a smaller εi.

In this section, we develop two new robust DEA models based variable budgeted 
uncertainty and order statistic uncertainty sets, both of which represent different gen-
eralisations of the traditional budgeted uncertainty set. To conclude this section, we 
provide a discussion on the specific situations in which it is most suitable to use 
one of the uncertainties sets and their associated robust DEA models. The budgeted 
uncertainty set is often most favourable when a fixed and predictable approach to 
managing overall risk is required (Bertsimas and Brown 2009). Its key advantages 
include simplicity and computational efficiency, making it particularly well-suited 
for scenarios where uniform management of total uncertainty across all parameters 
is necessary. This uncertainty set is ideal in environments where the uncertainty is 
relatively stable and can be anticipated, allowing for a straightforward application.

On the other hand, the variable budgeted uncertainty set is more appropriate for 
dynamic environments where uncertainties are not static and may fluctuate over time 
(Poss 2013, 2014). This uncertainty set allows for different levels of conservatism 
across scenarios, providing flexibility that the traditional budgeted uncertainty set 
cannot provide. As a result, it is more suited for situations where the decision-making 
context demands a higher degree of adaptability and a tailored approach to risk man-
agement (Poss 2013, 2014). Therefore, the variable budgeted uncertainty set aligns 
with the DEA framework by offering a flexible and practical method to deal with 
uncertainty in input and output data, while maintaining the interpretability and appli-
cability of the models. Furthermore, the order statistic uncertainty set is particularly 
valuable in situations where the decision-making process is heavily influenced by 
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extreme values8 among the uncertainties. This uncertainty set is designed to prioritise 
and manage the extreme risks, making it the preferred choice in contexts that require 
robust management of tail risks (Bertsimas and Brown 2009). Thereby, the order 
statistic uncertainty set is well-suited to the DEA context as it captures prioritised 
uncertainty levels by considering specific quantiles of data distributions. This uncer-
tainty enables robust efficiency evaluations by effectively addressing worst-case or 
targeted variations in inputs and outputs.

In the end, the selection of the appropriate uncertainty set and associated robust 
DEA model depends on the specific characteristics of the uncertainties involved and 
the decision-maker’s priorities. Factors such as the need for predictability, flexibility, 
computational efficiency, and the management of extreme risks should guide this 
choice.

3.3  Illustrative numerical example

To further clarify the practical application of the proposed robust DEA models, we 
now present a simple numerical example. This example provides an intermediate step 
between the theoretical development and the comprehensive real-world case study, 
enabling readers to better understand how the models function on a small, controlled 
dataset and how uncertainty affects efficiency assessment. Consider five DMUs, each 
using two inputs to produce a single output. The nominal input–output data are pre-
sented in Table 1.

To demonstrate the effect of uncertainty, we assume that each input and output is 
subject to uncertainty at 5% of its nominal value. We then evaluate the performance 
of each DMU using the deterministic DEA model, along with the three robust DEA 
models proposed in this study under the budgeted, variable budgeted, and order sta-
tistic uncertainty sets.

Fig. 1 shows the efficiency scores obtained under these three different model set-
tings. As observed, incorporating robustness generally leads to higher efficiency 
scores, reflecting the added caution imposed by accounting for uncertainty. The 
degree of the efficiency change depends on both the DMU and the uncertainty set 
employed, which demonstrates the varying degrees of robustness and conservatism 
introduced by each set. For instance, DMU5 shows a noticeable shift in efficiency 
across all robust models, with the largest impact under the variable budgeted set. In 
contrast, DMU2 and DMU3 retain full efficiency (score of 1) even when uncertainty 
is introduced, suggesting that these units are robustly efficient.

8 Extreme values refer to the most extreme possible outcomes that the uncertain parameters (random vari-
ables zx

j  and zy
j ) can assume within a specified uncertainty set.

DMUs Input 1 Input 2 Output 1
DMU1 2 2 2
DMU2 1 4 4
DMU3 4 1 6
DMU4 3 2 1
DMU5 4 6 8

Table 1  Data for the numerical 
example
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To quantitatively assess the impact of uncertainty on efficiency scores, Table 2 
reports the PoR for each DMU under the three uncertainty sets: budgeted, vari-
able budgeted, and order statistic. The PoR is calculated as the percentage 
deviation of the robust efficiency score from its deterministic counterpart, i.e., 
PoR(U)

o = |θ(D)
o −θ(U)

o |
θ

(D)
o

× 100%, ∀o ∈ {1,2, . . . , n}, where θ(D)
o  and θ(U)

o  represent 

the efficiency score of DMUo under the deterministic model and the model with 
the uncertainty set, respectively. A lower PoR indicates reduced sensitivity of the 
efficiency score to uncertainty and therefore reflects greater robustness and stability 
of the model. Here, robustness refers to the ability of a model to maintain consistent 
efficiency scores in the presence of data uncertainty.

As shown in Table 2, DMU2 and DMU3 maintain the PoR of 0.00% across all 
three uncertainty sets, confirming their strong and consistent performance even when 
inputs and outputs are subject to uncertainty. This suggests that these DMUs lie firmly 
on the efficient frontier and remain unaffected by the uncertainty levels. In contrast, 
DMU5 exhibits the highest sensitivity to uncertainty, with efficiency increases of 
11.91% under the variable budgeted model and 11.32% under the order statistic 
uncertainty set. The lowest PoR for DMU5 is observed under the budgeted model 
(9.53%), suggesting that this setting introduces the least deviation from its determin-
istic score and therefore offers a more stable and appropriate robustness adjustment 
for this DMU. Likewise, DMU1 and DMU4 experience moderate but consistent 
changes in efficiency. Both show the PoR values of 9.51–9.52% under budgeted and 
variable budgeted sets, which increase to 11.32% under the order statistic model. 
This pattern reflects the more conservative nature of the order statistic approach.

DMU Budgeted Variable budgeted Order statistic
DMU1 9.52 9.52 11.32
DMU2 0.00 0.00 0.00
DMU3 0.00 0.00 0.00
DMU4 9.51 9.51 11.31
DMU5 9.53 11.91 11.32

Table 2  PoR (%) under different 
uncertainty sets
 

Fig. 1  Deterministic and robust efficiency scores for different uncertainty sets
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Overall, the results highlight the trade-off between performance and robustness, 
demonstrating how the choice of uncertainty model affects efficiency scores and 
guides the identification of settings with more robust performance under uncertainty.

4  Case study

Uncertainty plays a critical role in the performance assessment of banking institu-
tions when using DEA. In practical bank evaluation, data uncertainty can lead to 
inaccurate and fragile results when relying on traditional DEA models. Given the 
complex and dynamic nature of the banking sector, the accuracy of efficiency evalua-
tions can be significantly impacted by uncertainties in input and output data. Address-
ing these uncertainties is essential for obtaining reliable and robust performance 
measures, which are crucial for informed decision-making and strategic planning in 
the banking industry.

In this section, we extend this line of research by using three real-world datasets 
derived from Zervopoulos et al. (2023). These samples consist of 50, 80, and 100 
banks based in the European Union. The selection of input and output variables is 
motivated by the need to capture the key factors that contribute to a bank’s efficiency, 
as per the intermediation approach (Sealey and Lindley 1977), which views banks as 
entities that use purchased funds to generate assets (Ayadi et al. 2016). The inputs 
selected for the analysis include three inputs— (x1) Deposits & short-term funding; 
(x2) Equity; and (x3) Fixed assets —and two outputs— (y1) Gross loans; and (y2) 
Other earning assets. These variables are chosen because they reflect the core opera-
tions of a bank, though it is recognised that certain indicators may not directly capture 
overall performance in every context. For instance, fixed assets, typically considered 
stable over a year, might present uncertainty in the form of depreciation, market value 
fluctuations, or regulatory changes affecting the bank’s operational capacity. The out-
puts—gross loans and other earning assets—are linked to the bank’s revenue genera-
tion capacity, thus influencing its financial performance. These variables are assumed 
to reflect uncertainty due to factors such as market volatility, changes in regulatory 
requirements, and economic shifts that can affect both input and output. Descriptive 
statistics for the input and output measures are provided in Table 3, which details the 
variables used across the three samples.

4.1  Set-up

Each uncertainty set can be adjusted using a scaling parameter. We set the uncertainty 
level for all the input and output data (x̂ij  and ŷrj) at 1%, 5%, and 10% of the nomi-
nal value to capture a range of potential variations and assess the robustness of our 
results under different levels of uncertainty (Hatami-Marbini and Arabmaldar 2021; 
Toloo et al. 2022)9. These levels are chosen to reflect varying degrees of confidence 
in the data, allowing us to evaluate how sensitive the performance measures are to 
changes in the accuracy of input and output values. In addition, we set the probabil-

9 For example, with a 5% uncertainty level, a nominal value of 300 varies within an interval of [295, 315].
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ity of constraint violation for both inputs and outputs to less than 1%, reflecting a 
reasonable level of risk tolerance for decision-makers. Let us consider the following 
uncertainty sets:

	● Budgeted uncertainty: To model data uncertainty for budgeted case, an appropri-
ate level of uncertainty budget Γ can be selected based on the following equation; 
Γ(ε) = 1 + Ω−1(1 − ε)

√
n, where Ω shows the cumulative distribution of the 

standard Gaussian variable, n is the number of uncertain inputs and outputs in 
each constraint, and ε denotes the violation probability of the constraints (Bert-
simas and Sim 2004). For this case study, with sample sizes of 50, 80, and 100 
banks, and a violation probability of input/output constraint sets at less than 1%, 
the required levels of the budget of uncertainty Γ are at least 17.40, 21.75, and 
24.26, respectively. These values ensure that the model is robust against approxi-
mately 34%, 27%, and 24% of the uncertain data achieving their worst-case val-
ues.

	● Variable budgeted uncertainty: Under variable budgeted uncertainty, we use 
the cardinality of the robust optimal solution (∥λ∗∥ =

∑n
j=1 λ∗

j ) rather than 
the number of uncertain data, n, in each constraint. First, the optimal solution 
values for λ∗ are obtained using the robust DEA model (5) for a given uncer-
tain parameter Γ and for each input and/or output constraint. In this study, for 
sample sizes of 50, 80, and 100, and with a violation probability of input/out-
put constraints below 1%, the values of ∥λ∗∥ fall within the ranges [0.0017, 
12.6023], [0.0007, 12.2696], and [0.0007, 60.7252], respectively. The maximum 
value of ∥λ∗∥ is then used to estimate the affine functions γx (λ) and γy (λ). 
We estimate the best over-approximating affine functions γx (λ) and γy (λ) by 

Table 3  Descriptive statistics of inputs and outputs (in thousand USD) for three samples
Descriptive 
statistics

Input 1(x1) Input 2(x2) Input 3(x3) Output 1(y1) Output 2(y2)
Deposits & 
Short-term 
funding

Equity Fixed assets Gross loans Other earning
assets

Sample size: 50
Mean 20,983,682.62 1,502,051.78 128,065.61 20,018,731.27 10,324,543.59
Min 26,892.34 3,181.62 162.74 2,977.02 4,770.21
Max 322,973,827.28 18,062,174.57 1,714,310.00 323,764,206.81 134,002,711.32
SD 64,139,219.71 3,804,040.20 387,995.41 64,439,147.23 29,939,498.33
Sample size: 80
Mean 14,586,792.70 1,065,451.81 98,156.43 13,768,655.28 7,302,286.86
Min 26,892.30 3,181.63 162.66 2,977.04 4,770.24
Max 322,973,827.30 18,062,174.56 1,714,310.03 323,764,206.83 134,002,711.32
SD 51,359,518.20 3,062,081.60 324,484.44 51,594,069.12 24,094,636.20
Sample size: 100
Mean 14,658,123.33 1,097,496.34 147,073.36 14,133,661.50 7,202,571.52
Min 26,892.29 3,181.61 162.75 2,977.02 4,770.19
Max 322,973,827.31 18,062,174.59 3,383,799.11 323,764,206.77 134,002,711.31
SD 48,031,165.74 483,785.42 49,287,487.14 22,404,410.84
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max |β (Γ) − γx (λ) (γy (λ))| to ensure that γx (λ) andγy (λ) are an upper ap-
proximate of Γ(ε). This approach guarantees that UBV

i (λ) and UBV
r (λ) yields 

the probabilistic bounds equivalent to UB
i (Γx

i ) and UB
r (Γy

r), respectively. In this 
study, the over-approximating Γ(ε) is estimated using a linear function. In other 
words, for each value of n, we compute Γ(ε) = βε(n) and then derive the affine 
functions γx

ε (λ) and γy
ε (λ) that overestimate βε. It should be noted that analysts 

may use alternative affine functions considered more appropriate for their specific 
problems or adjust them based on experimental results. 

	● Order statistic uncertainty: The proposed robust model (16) with the order statis-
tic uncertainty set requires the quantiles ρjk as input parameters. In practical situ-
ations where historical data is unavailable, experts may select these parameters 
based on institutional knowledge and experience (Zhang and Gupta 2023). For 
this study, to ensure a fair comparison with the budgeted and variable budgeted 
uncertainty sets, we use Theorem 1 to identify the quantiles ρjk. In doing so, we 
set Γx − [Γx] and Γy − [Γy] for input and output constraints. For sample sizes 
of 50, 80, and 100, and with a violation probability of input/output constraints 
of less than 1%, the quantiles ρjk are selected to be at least 0.40, 0.75, and 0.26, 
respectively. While Theorem 1 suggests that the robust models (5) and (16) yield 
equivalent results, the lack of historical data and the simplified calculations indi-
cate that the results are approximately the same.

To deepen the discussion of these uncertainty sets within a banking context, we elab-
orate on how each framework captures distinct types of operational risk and informs 
managerial decision-making. In the banking sector, budgeted uncertainty represents 
situations where only a limited number of input and output parameters are expected 
to deviate from their nominal values, subject to a predefined deviation budget. This 
is particularly realistic in diversified loan portfolios, where adverse events may affect 
only certain borrower segments (e.g., small businesses in a particular region) without 
causing system-wide disruption. The budgeted model captures this partial deviation 
scenario by allowing a bounded number of coefficients to change, thereby enhancing 
robustness without being excessively conservative. This ensures that banks maintain 
performance under typical volatility without unnecessarily restricting lending or cap-
ital flows. Variable budgeted uncertainty builds on this by allowing the uncertainty 
budget itself to vary in response to external indicators such as macroeconomic condi-
tions, variations in credit risk assessments, and real-time stress-testing feedback. For 
example, a bank may tighten the uncertainty budget when facing early warnings from 
market stress tests or regulatory alerts. This dynamic adjustment enables banks to 
tailor their robustness levels to prevailing conditions, supporting agile responses and 
more efficient capital deployment. In contrast, order statistic uncertainty models the 
impact of extreme deviations, focusing on the largest observed disruptions across the 
input–output space. In banking, this reflects rare but high-impact scenarios such as 
widespread defaults during financial crises or sudden liquidity shortages from mass 
customer withdrawals. By concentrating on these worst-case deviations, the model 
prioritises resilience against tail risks. While more conservative, this framework is 
well-suited for stress-testing, contingency planning, and regulatory capital adequacy 
assessments.
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Beyond the mathematical modelling, the level of conservatism embedded in each 
robust optimisation approach carries significant implications for banking operations. 
A low level of conservatism—characterised by tight uncertainty budgets—enables 
banks to remain competitive by maximising lending volumes and returns, but it also 
exposes them to higher risk in volatile environments. Conversely, high conservatism 
increases capital buffers and reduces exposure to uncertainty but may result in lower 
profitability, reduced market share, and underutilised resources.

For example, a bank using the order statistic model may choose to hold excess 
capital to guard against worst-case loss scenarios, while a bank relying on the bud-
geted model may opt to reallocate capital based on the most probable disruptions. 
The ability to adjust conservatism in line with the institution’s risk appetite, strategic 
goals, and regulatory requirements is essential. The robust DEA models presented in 
this study offer decision-makers structured tools to navigate these trade-offs, enhanc-
ing the transparency, accountability, and stability of performance assessments under 
uncertainty.

In the next step, we utilise the CPLEX and Gurobi solvers within the GAMS 
environment to execute the models efficiently and obtain results in polynomial time. 
These solvers are renowned for their robustness and capability in handling large-
scale optimisation problems, allowing us to solve the models effectively and manage 
computational complexity.

4.2  Empirical results

Table 4 reports the descriptive statistics of efficiency scores for different levels of per-
turbations for three different sample sizes10. Notably, a 0% perturbation corresponds 
to the deterministic case, which is identical for all robust DEA models, regardless 
of the uncertainty sets used. As observed in Table 4, for each robust DEA model, 
increasing the level of perturbations leads to higher robust efficiency scores. Com-
parison reveals that the proposed robust DEA model with the order statistic uncer-
tainty set, model (16), demonstrates smaller changes compared to the robust DEA 
models with budgeted and variable budgeted uncertainty sets, models (5) and (10), 
respectively. For example, with a sample size of 100 and 10% data uncertainty, the 
mean efficiency scores for the robust DEA models are as follows: 0.6020 for model 
(5), 0.6676 for model (10), and 0.5563 for model (16). These results indicate that the 
proposed robust DEA model with the order statistic uncertainty set is more robust 
compared to the models with budgeted and variable budgeted uncertainty sets11. This 
occurs due to the greater geometric flexibility of the order statistic uncertainty set 
compared to budgeted and variable budgeted uncertainty sets.

As shown in Table 4 and consistent with Theorem 3, the efficiency scores obtained 
from the robust DEA model (10) with the variable budgeted uncertainty set are higher 

10 It should be noted that in the reporting of tables and figures, we also use the names of the uncertainty sets 
to better illustrate the impact of each uncertainty set on the robust DEA models.
11 Detailed results using the existing robust DEA model (5) and the proposed robust DEA models (10) 
and (16), for varying levels of perturbations across all three sample sizes are provided in Supplementary 
Materials.
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than those from the robust DEA model (5) with the budgeted uncertainty set. Further-
more, in accordance with Theorem 6, Table 4 indicates that the efficiency scores for 
the robust DEA model (5) with budgeted and robust model (16) with order statistic 
uncertainty set are approximately the same.

The kernel density curves of efficiencies for the existing robust DEA models (5) 
and the proposed robust DEA models (10) and (16) are shown in Fig. 2, illustrating 
the distribution of efficiencies across different perturbation levels and sample sizes of 
50, 80, and 100. The curves demonstrate increased convergence with larger sample 
sizes, with the most notable convergence occurring between the density curves of the 
existing robust DEA model (5) with the budgeted uncertainty set and the proposed 
robust DEA model (16) with the order statistic uncertainty set. In particular, the most 
significant convergence is observed for the proposed robust DEA model (16) with the 
order statistic uncertainty set when the sample size is 100 and the perturbation level 
is 10%. In addition to the findings described above, Fig. 2 shows that for all three 
uncertainty sets, as the level of perturbations increases from deterministic (0%) to 
10%, the distribution of efficiencies becomes smoother.

The three robust DEA methods may give different ranks to each unit. We utilise a 
non-parametric statistical test to validate the fitness between them, and the correla-
tion with each other. To assess potential shifts in efficiency rankings across banks 
under robust DEA models with budgeted, variable budgeted, and order statistic sets, 
we conduct Spearman rank correlation analysis for three various sample sizes of 50, 
80, and 100, as presented in Table 5. The analysis reveals a strong and statistically 
significant correlation between the estimates from the existing robust DEA model 
(5) and the proposed robust DEA models (10) and (16), with correlation coefficients 
ranging from 0.9677 to 1. Notably, the correlation between the existing robust DEA 
model (5) and the proposed robust DEA models (10) and (16) increases with larger 
sample sizes. This empirical evidence, along with the convergence of efficiency den-
sities illustrated in Fig. 2, supports the consistency and reliability of the alternative 
robust DEA models, particularly the robust DEA model with the order statistic uncer-
tainty set.

The previous analyses demonstrate that data uncertainty has a significant impact 
on the outcomes of efficiency assessments. We utilise the concept of the PoR to eval-
uate how well banks can handle data uncertainty. Fig. 3 displays the average and stan-
dard deviation of the PoR for three robust DEA models across different sample sizes 
and levels of data perturbation. It is evident that both the average and standard devia-
tion of the PoR increase with higher levels of data perturbation for all three robust 
DEA models. Therefore, decision-makers should consider data uncertainty to avoid 
making overly aggressive decisions when assessing organisational performance. 
Among the models, the robust DEA model (10) with variable budgeted uncertainty 
is more sensitive to data uncertainty, exhibiting a higher PoR as data perturbation 
levels increase. In contrast, the robust DEA model (16) with the order statistic uncer-
tainty set provides more robust efficiency levels across all DMUs, making it a more 
consistent benchmark for efficiency comparison and better at accommodating data 
fluctuations.

To further analyse inefficiency and the PoR, we employ K-means clustering pro-
posed by Jain (2010) to examine the performance of European banks with a sample 
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size of 100, utilising results from the robust DEA model (5) with budgeted uncer-
tainty and the proposed robust DEA models (10) and (16) with variable budgeted and 
order statistic uncertainty sets, respectively. Inefficiency, defined as "1-efficiency", is 
used to align with the PoR, where lower values are preferable. The banks are classi-
fied into three clusters based on average inefficiency and the average PoR for deter-
ministic and uncertain scenarios (1%, 5%, and 10%).

Fig. 4 illustrates the clustering distribution of the 100 European banks. The banks 
are divided into three clusters: cluster 1 (At-risk), cluster 2 (Moderate), and cluster 
3 (Excellent), with each cluster defined by its centre and marked with a red circle, 
diamond, and triangle, respectively. The banks in cluster 3 demonstrate lower inef-
ficiency and PoR, indicating superior (excellent) performance relative to the group 
average. As detailed in Supplementary Materials, banks in cluster 3 are efficient in 
both deterministic and uncertain conditions.

By analysing these clusters, bank managers and data analysts can gain valuable 
insights into the relative performance of different banks under uncertainty. This 
approach helps identify which banks are performing efficiently and which are lag-
ging, providing a clear picture of how well banks handle data perturbations. The 
"Excellent" cluster, characterised by low inefficiency and a favourable PoR, can 
serve as a benchmark for best practices and high performance in managing uncer-
tainty in both inputs and outputs.

These banks demonstrate effective resource management and operational effi-
ciency despite data fluctuations, setting a standard that others can aim to emulate. 
For banks in the “Moderate” cluster, there is potential for improvement by focus-
ing on optimising their resource allocation. This may involve reducing inputs while 
maintaining outputs, thus enhancing their efficiency and moving closer to the per-
formance of the “Excellent” cluster. Banks in the “At-Risk” cluster face more sig-

Fig. 2  Kernel density curves for robust efficiency scores (0%, 1%, 5%, 10%)
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nificant challenges and may require more comprehensive interventions. These banks 
should prioritise reducing inefficiencies by significantly improving their resource 
utilisation. This could involve re-evaluating and re-allocating resources, enhancing 
operational processes, and addressing major inefficiencies to boost performance. The 
goal is to reduce inputs without compromising outputs, thereby improving efficiency 
and robustness under uncertainty. Overall, this clustering approach provides a frame-
work for understanding performance variability under data uncertainty. By targeting 
strategies to optimise resource usage and manage uncertainties, banks can improve 
their efficiency, better handle data perturbations, and achieve more stable and robust 
performance outcomes.

4.3  Managerial implications

In the banking sector, where the conversion of multiple financial inputs into outputs 
is complex, benchmarking methods such as DEA are frequently employed to assess 
performance (Fukuyama et al. 2023; Tzeremes 2015). However, traditional DEA 
models often overlook data uncertainty—an inherent challenge in banking due to 
market volatility, regulatory changes, and other unpredictable factors (Zervopoulos et 
al. 2023). As a result, these deterministic DEA models may be less effective in captur-
ing the true performance of banks under uncertain conditions.

Our study develops robust DEA models and compares them with existing robust 
DEA approaches, using empirical data from European banks. The findings highlight 
that incorporating uncertainty into efficiency measurements can indeed be costly for 
banks. In particular, our results show that the costs associated with robustness vary 
based on uncertainty levels (1%, 5%, and 10%) and sample sizes (50, 80, and 100). 
This variation offers managers the flexibility to choose the appropriate robust DEA 
model based on their risk tolerance and expertise, allowing for more informed deci-
sion-making in an unpredictable environment. The study’s findings highlight that the 
proposed robust DEA models represent a substantial enhancement over traditional 
and existing robust DEA approaches. By accounting for various types of uncertainty 
and different sample sizes, we demonstrate that these models provide a more reliable 

Fig. 3  The PoR for different level of data perturbations and samples
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and resilient assessment of efficiency. While our empirical study focuses on a spe-
cific financial institution, the robust DEA approach is adaptable to various banking 
contexts, including online banking and branch networks. Given the complexities of 
the banking industry—such as regulatory changes, market volatility, and economic 
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Fig. 4  Clustering distribution positions of the banks
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disruptions—handling data uncertainty and developing robust DEA models to align 
with real-world conditions is crucial. The proposed model enables bank managers to 
evaluate performance under varying levels of conservatism, revealing how different 
banking regions or branches respond to varying uncertainties. These insights enable 
managers to develop effective strategies that enhance decision-making and improve 
bank performance in the face of unpredictable events, such as financial crises, interest 
rate fluctuations, and economic downturns.

The findings indicate that only a few banks—such as Abbey National Treasury Ser-
vices Plc, ABC International Bank Plc, Airbus Group Bank GmbH, Aletti & C. Banca di 
Investimento Mobiliare SpA-Banca Aletti & C. SpA, Alior Bank Spółka Akcyjna, Ameri-
can Express Austria Bank GmbH, AXA Bank Europe SA/NV, Banca Aletti & C. Spa, and 
Banca Mediolanum SpA—maintain robust efficiency under both deterministic and uncer-
tain conditions. These institutions exemplify best practices in managing operational and 
environmental uncertainties, demonstrating resilience and adaptability in a volatile sector. 
Policymakers should take note of these examples and prioritise addressing operational 
uncertainties in their strategies. By improving service quality, banks can attract a larger cus-
tomer base and increase transaction volumes. Furthermore, effective management practices 
that tackle unforeseen events and operational challenges, such as fluctuations in transaction 
volumes and customer wait times, are crucial for sustaining high performance.

In conclusion, the study highlights the importance of incorporating uncertainty 
considerations into efficiency assessments. The robust DEA models developed in this 
paper provide a valuable framework for evaluating bank performance in a more realis-
tic and comprehensive manner. For banks and policymakers alike, understanding and 
applying these models can lead to more informed decisions, improved service quality, 
and enhanced overall performance in the face of an unpredictable financial landscape.

5  Conclusion

DEA models are widely used to evaluate performance but often neglect data uncer-
tainties that are prevalent in real-world environments, such as financial institutions 
and hospitals. This oversight can lead to unreliable outcomes when minor data fluc-
tuations occur. To address this challenge, robust optimisation has been incorporated 
into DEA models to improve their reliability under uncertain conditions. This paper 
introduces two new robust DEA models—using order statistic and variable budgeted 
uncertainty sets—to extend existing robust DEA models and reduce inefficiencies 
in the presence of uncertainties in both inputs and outputs. It discusses how existing 
robust DEA models under budgeted uncertainty sets represent a special case of the 
proposed models when the robust parameter is appropriately selected. The budgeted 
uncertainty set is superior for stable environments, offering simplicity and compu-
tational efficiency, while the variable budgeted uncertainty set is suited for dynamic 
contexts with fluctuating uncertainties. The order statistic uncertainty set is particu-
larly valuable for managing extreme risk factors. The decision to use one uncertainty 
set over another depends on the nature of the uncertainties involved and the specific 
priorities in risk management. This choice allows for tailoring performance assess-
ments and risk management strategies according to specific needs and risk profiles. 
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Future research could explore several avenues to further improve robust DEA 
models. Key areas include investigating performance factors that significantly impact 
robustness in both deterministic and uncertain situations, extending empirical analysis 
to larger datasets to understand the role of data uncertainty in big-data analytics (Khe-
zrimotlagh et al. 2019), and applying various uncertainty sets to other DEA methods, 
such as the Malmquist and Luenberger productivity indices, to analyse productivity 
changes over time. A promising direction for future research is to extend the proposed 
model using a directional distance function (DDF), as demonstrated by Arabmaldar et 
al. (2023) for budgeted uncertainty sets, to further enhance its modelling flexibility. In 
addition, studies could focus on developing robust network and dynamic network DEA 
models using diverse uncertainty sets, improving their applicability in complex and 
uncertain environments. We also acknowledge the importance of data-driven methods 
for defining uncertainty sets in robust optimisation, as highlighted in Bertsimas et al. 
(2018). The application of data-driven techniques to define uncertainty sets directly 
from empirical distributions could further enhance the practical relevance of robust 
DEA models, particularly in data-rich environments where leveraging historical pat-
terns can support more informed and adaptive decision-making.

Appendix: Proofs

Proof of Proposition 1  According to the defined uncertainty sets in (4) and the inner 
optimisation problem in model (3) based on UB (Γx) and UB(Γy), we have the fol-
lowing problems for the ith input and rth output constraints:

	

ith input constraint

max
∑

j∈Jx
i

,j ̸=o

x̂ij |λj | zx
ij + x̂o |λo − θo| zx

io

s.t.∑
j∈jx

i

zx
ij ≤ Γx

i ,

0 ≤ zx
ij ≤ 1, ∀j ∈ Jx

i .

 

	

rth Output constraint

max
∑

j∈Jy
r ,j ̸=o

ŷrj |λj | zy
rj + ŷo |λo − 1| zy

ro

s.t.∑
j∈jy

r

zy
rj ≤ Γy

r ,

0 ≤ zy
rj ≤ 1, ∀j ∈ Jy

r .

� (A1)
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Without loss of generality, let us focus on the input constraint. Examining (8) 

closely reveals that the optimal solution of model (A1) for the input constraint is 
Z∗ =

(
zx∗

ij , zx∗

io

)
, ∀j ∈ Jx

i . At optimality, the variables zx∗

ij  and zx∗

io  are equal to 1 to 
satisfy the integer part of Γx

i , denoted by [Γx
i ], while the fractional part Γx

i − [Γx
i ] is 

distributed between zx∗

ij  and zx∗

io  to maximise the objective function of (A1). This is 
equivalent to selecting a subset of {Sx

i ∪ {αx
i }|Sx

i ⊆ Jx
i , |Sx

i | = [Γx
i ] , αx

i ∈ Jx
i \Sx

i } 
with the corresponding objective function (6). � □

Proof of Theorem 1  The protection functions βi(λ∗, UV B
i (λ)) and βr

(
λ∗, UV B

r (λ)
)
 

in model (9), which correspond to their input and output constraints, can be repre-
sented by the following optimisation problems, respectively:

	

max
∑

j∈Jx
i

(j ̸=o)

|λj | zx
ij x̂ij + |λo − θo| zx

iox̂io

s.t.∑
j∈Jx

i

zx
ij ≤ γx

i (λ) ,

zx
ij ≤ 1, ∀j ∈ Jx

i ,

zx
ij ≥ 0, ∀j ∈ Jx

i ,

� (A2)

	

max
∑

j∈Jy
r (j ̸=o)

|λj | yy
rj ŷrj + |λo − 1| zy

roŷro

s.t.∑
j∈Jy

r

zy
rj ≤ γy

r (λ) ,

zy
rj ≤ 1, ∀j ∈ Jy

r ,

zy
rj ≥ 0, ∀j ∈ Jy

r .

� (A3)

Consider the dual models of (A2) and (A3) as follows:

	

min px′

i γx
i (λ) +

∑
j∈Jx

i
,j ̸=o

qx′

ij

s.t.

px′

i + qx′

ij ≥ |λj | x̂ij , ∀j ∈ Jx
i , j ̸= o,

px′

i + qx′

io ≥ |λo − θo| x̂io, o ∈ Jx
i ,

px′

i , qx′

ij ≥ 0, ∀j ∈ Jx
i ,

� (A4)
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min py′

r γy
r (λ) +

∑
j∈Jx

i
,j ̸=o

qy′

rj

s.t.

py′

r + qy′

rj ≥ |λj | ŷrj , ∀j ∈ Jy
r , j ̸= o,

py′

r + qy′

ro ≥ |λo − 1| ŷro, o ∈ Jy
r ,

py′

r , qy′

rj ≥ 0, ∀j ∈ Jy
r ,

� (A5)

where px′

i (py′

r ) and qx′

ij  (qy′

rj) are the dual variables associated with the first 
and second sets of constraints in models (A2) and (A3), respectively. Since 
λj ̸=0 ≥ 0, (θo − λo) ≥ 0, and (1 − λo) ≥ 0, the absolute signs in models (A4) 
and (A5) can be removed. As a result, the input constraint sets in model (9) can be 
expressed as follows:

	

∑
j∈J

λjxij + px′

i γx
i (λ) +

∑
j∈Jx

i
,j ̸=o

qx′

ij ≤ θoxio, ∀i ∈ I,

px′

i + qx′

ij ≥ λj x̂ij , ∀i ∈ I, ∀j ∈ Jx
i , j ̸= o,

px′

i + qx′

io ≥ (θo − λo) x̂io, ∀i ∈ I, o ∈ Jx
i ,

px′

i , qx′

ij ≥ 0, ∀i ∈ I, ∀j ∈ Jx
i ,

λj ≥ 0, ∀j ∈ J.

� (A6)

Likewise, the output constraint sets in model (9) can be reformulated with the fol-
lowing set of constraints:

	

∑
j∈J

λjyrj − py′

r γy
r (λ) −

∑
j∈Jx

i
,j ̸=o

qy′

rj ≥ yro, ∀r ∈ R

py′

r + qy′

rj ≥ λj ŷrj , ∀r ∈ R, ∀j ∈ Jy
r , j ̸= o,

py′

r + qy′

ro ≥ (1 − λo) ŷro, ∀r ∈ R, o ∈ Jy
r ,

py′

r , qy′

rj ≥ 0, ∀r ∈ R, ∀j ∈ Jy
r ,

λj ≥ 0, ∀j ∈ J.

� (A7)

 The bilinear terms px′

i γx
i (λ) =px′

i (γx
0 +

∑
j∈Jx

i
γx

j λ
j
) and py′

r γy
r (λ)

= py′

r (γy
0 +

∑
j∈Jy

r
γy

j λ
j
) in models (A6) and (A7), respectively, should be linearised. 

In doing so, we introduce the variable alteration wx
ij = px′

i λj  and wy
rj = py′

r λj , and 
then apply the approach proposed by Poss (2013, Proposition 1, page 86), as formu-
lated below:
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∑
j∈J

λjxij + px′

i γx
0 +

∑
j∈Jx

i

γx
j wx

ij +
∑

j∈Jx
i

qx′

ij ≤ θ0xio, ∀i ∈ I,

px′

i + qx′

ij ≥ λj x̂ij , ∀i ∈ I, ∀j ∈ Jx
i , j ̸= o,

px′

i + qx′

io ≥ (θo − λo) x̂io, ∀i ∈ I, o ∈ Jx
i ,

wx
ij − px′

i ≥ −Mx (1 − λj) , ∀i ∈ I, ∀j ∈ Jx
i ,

λj ≤ M ′
xhx

j , ∀j ∈ J,

px′

i , qx′

ij , wx
ij ≥ 0, ∀i ∈ I, ∀j ∈ Jx

i ,

hx
j ∈ {0, 1}n

, ∀j ∈ J,

λj ≥ 0, ∀j ∈ J,

� (A8)

and

	

∑
j∈J

λjyrj − py′

r γy
0 −

∑
j∈Jy

r

γy
j wy

rj −
∑

j∈Jy
r

qy′

rj ≥ yro, ∀r ∈ R,

py′

r + qy′

rj ≥ λj ŷrj , ∀r ∈ R, ∀j ∈ Jy
r , j ̸= o,

py′

r + qy′

ro ≥ (1 − λo) ŷro, ∀r ∈ R, o ∈ Jy
r ,

wy
rj − py′

r ≥ −My (1 − λj) , ∀r ∈ R, ∀j ∈ Jy
r ,

λj ≤ M ′
yhy

j , ∀j ∈ J,

py′

r , qy′

rj , wy
rj , ≥ 0, ∀r ∈ R, j ∈ Jy

r ,

hy
j ∈ {0, 1}n

, ∀j ∈ J,

λj ≥ 0, ∀j ∈ J,

� (A9)

where Mx and My are sufficiently large constants. Since each px′

i  and py′

r  must sat-
isfy px′

i + qx′

ij ≥ λj x̂ij  and py′

r + qy′

rj ≥ λj ŷrj , it is sufficient for Mx and My to be 
as large as max

j
(x̂ij) (∀i ∈ I) and max

j
(ŷrj) (∀r ∈ R), respectively. Moreover, since 

constraints (A8) and (A9) do not impose any additional restrictions on px′

i  and py′

r , we 
can choose Mx and My equal to max

j
(x̂ij) (∀i ∈ I) and max

j
(ŷrj) (∀r ∈ R), respec-

tively. The auxiliary binary variables, hx
j , hy

j ∈ {0,1}n, are introduced in models (A8) 
and (A9) to ensure that λj ≤ M ′

xhx
j , qx

i ∈ BM ′
x

(0) and λj ≤ M ′
yhy

j , qy
r ∈ BM ′

y
(0), 

where BM ′
x

(0) and BM ′
y
(0) represent the balls centred at the origin with radius M ′

x 
and M ′

y, respectively, that are sufficiently large to maintain the feasibility of model 
(A8) and (A9)12. In other words, the optimal values of λ∗

j  for models (A8) and (A9) 
fall within the boundaries defined by BM ′

x
(0) and BM ′

y
(0). Simply put, any optimal 

values of λ∗
j (∀j ∈ J) that lie within BM ′

x
(0) and BM ′

y
(0) are considered feasible 

12 It should be noted that the concept of the budgeted uncertainty set was initially proposed for binary 
decision variables and later extended to bounded real or integer variables (Poss 2013, Sect. 5, Theorem 2).
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(see Poss 2013 for further details). Given that λ∗
(o∈{1,2,...,n}) ≤ 1, it is assumed that 

M ′
x = M ′

y = 1. Rewriting constraints (A6)–(A9) completes the proof. � □

Proof of Theorem 2  Assume λo =0 (∀j ∈ Jx
i , j ̸= o) , θV B

o = 1, px′

i = py′

r =
wx

ij = wy
rj = qx′

ij = qy′

rj = 0 (∀i ∈ I, ∀r ∈ R, ∀j ∈ Jx
i ), and hx

j = hy
j = 1(∀j ∈ J). 

This feasible solution completes the proof of the first part of the theorem.

To prove that θV B∗
o ≤ 1, we first consider the feasible solution described 

in (i). For model (10), which is a minimisation model, the objective func-
tion value θV B∗

o  is at most 1. Next, we show that θV B∗
o > 0 by contra-

diction. Assume θV BU∗
o = 0 and the input constraints are converted to ∑

j∈J

λjxij + px′

i γx
0 +

∑
j∈Jx

i

γx
j wx

ij +
∑

j∈Jx
i

qx′

ij ≤ θ0xio, ∀i ∈ I . Given the non-negative 

assumption for the data, this implies λj = px′

i = wx
ij = qx′

ij = 0, (∀j ∈ Jx
i , ∀i ∈ I). This 

leads to a contradiction because the second constraint, 
∑
j∈J

λjyrj−py′

r γy
0 −

∑
j∈Jy

r

γy
j wy

rj

−
∑

j∈Jy
r

qy′

rj ≥ yro, ∀r ∈ R, requires λj  to be non-zero. Thus, combining these results, 

we have 0 < θV BU∗
o ≤ 1. � □

Proof of Theorem 3  Consider the following equations (a) and (b) that corresponds to 
the input constraints in models (5) and (10), respectively:

	

∑
j∈J

λjxij +
∑

j∈Jx
i

qx
ij + Γx

i px
i ≤ θoxio ⇒ θo ≥

∑
j∈J λjxij +

∑
j∈Jx

i
qx

ij + Γx
i px

i

xio
, ∀i ∈ I, (a)

∑
j∈J

λjxij + px′

i γx
0 +

∑
j∈Jx

i

γx
j wx

ij +
∑

j∈Jx
i

qx′

ij ≤ θ0xio, ∀i ∈ I ⇒

	
θo ≥

∑
j∈J λjyrj + px′

i γx
0 +

∑
j∈Jx

i
γx

j wx
ij +

∑
j∈Jx

i
qx′

ij

xio
, ∀i ∈ I, (b)

where θo is a decision variable. We consider the following two cases to complete the 
proof:

Case (i): if γx
i (λ) = Γx

i  and γy
r (λ) = Γy

r , then the numerators in inequalities (a) 
and (b) coincide, resulting in θB∗

0 = θV B∗
0 .

Case(ii): Since γx
i (λ) and γy

r (λ) are the best over-approximating affine functions 
of Γx

i  and Γy
r , respectively, we have θV B∗

0 > θB∗
0 . � □

Proof of Theorem 4  By considering the protection functions in (15), Proposition 2, 
and the dual formulation of models (13) and (14), we obtain the following models:
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min
∑

j∈Jx
i

(ψx
ij + Φx

ij)
s.t.
ψx

ij + Φx
ik ≥ x̂ij |λj | ρx

ijk, ∀j, k ∈ Jx
i , j ̸= o,

ψx
io + Φx

io ≥ x̂io |λo − θo| ρx
io, o ∈ Jx

i .

� (A10)

	

min
∑

j∈Jy
r
(ψy

rj + Φy
rj)

s.t.
ψy

rj + Φy
rk ≥ ŷrj |λj | ρy

rjk, ∀j, k ∈ Jy
r , j ̸= o,

ψy
ro + Φy

ro ≥ x̂ro |λo − 1| ρy
ro, o ∈ Jy

r .

� (A11)

It is straightforward to verify that the new robust DEA model (16) can be derived 
by applying strong duality and substituting models (A10) and (A11) into the input 
and output constraints (15). � □

Proof of Theorem 5  Assume λo =1, λj = 0 (∀j ∈ J, j ̸= o) , θo = 1, ψx
ij =

Φx
ik = 0 (∀i ∈ I, ∀j, k ∈ Jx

i ) , ψy
rj = Φy

rk = 0(∀r ∈ R, ∀j, k ∈ Jy
r ). This feasible 

solution completes the proof of the first part of the theorem.  

(ii) First, we prove that θOS∗
o ≤ 1. Given the feasible solution presented 

in (i) and considering model (16) as a minimisation problem, the objec-
tive function value θOS∗

o  is less than or equal to 1. Then, to show that 
θOS∗

o > 0, we proceed by contradiction. Assume θOS∗
o = 0, which changes the 

input constraints of model (16) to 
∑

j∈J xijλj +
∑

j∈Jx
i

(ψx
ij + Φx

ij) ≤ 0, i ∈ I , or ∑
j∈Jx

i
(ψx

ij + Φx
ij) ≤ −

∑
j∈J xijλj , ∀i ∈ I . By summing up the third and fourth 

constraints in model (16), we arrive at 
∑

j∈Jx
i

(ψx
ij + Φx

ij) ≥ −
∑

j∈J x̂ijλjρijk 
leading to 

∑
j∈Jx

i
(ψx

ij + Φx
ij) = 0, which, as per the first constraint, is not feasible. 

� □

Proof of Theorem 6  Without loss of generality, we consider the input constraint and 
assume that there is only one constraint for both the budgeted uncertainty set and the 
order statistic uncertainty set, thereby removing the i index.

Considering the robust counterpart DEA models (3) with the protection functions 
βi(λ∗, UB(Γx)) and βr(λ∗, UB(Γy)) and (15), we need to prove that the optimal 
objective values β(λ∗, UBS(Γx)) and β(λ∗, UOS(ε)) are equal. Since model (13) 
is the linear relaxation of the maximum weight assignment problem, which is known 
to have an integer optimal solution, for each j ∈ Jx, there exists a unique k ∈ Jx 
such that ηx

jk = 1. If ηx
jk = 1, then x̂ij |λj | and |λo − θo| are paired with ρjk. As a 

result, based on β(λ∗, UBS(Γx)) introduced in Proposition 1, and βr(λ∗, UOS
r (ρx)) 

in Proposition 2, we have the following three cases:
If 1 ≤ k ≤ |Jx| − ⌊Γx⌋ − 1, then x̂ij |λj | and |λo − θo| are paired with 0,
If k = |Jx| − ⌊Γx⌋, then x̂ij |λj | and |λo − θo| are paired with Γx − ⌊Γx⌋,
If |Jx| − ⌊Γx⌋ + 1 ≤ k ≤ |Jx|, then x̂ij |λj | and |λo − θo| are paired with 1,
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Hence, for all x̂i1 |λ1| , x̂i2 |λ2| , . . . , x̂i|Jx|
∣∣λ|Jx|

∣∣, we know that ⌊Γx⌋ of these 
terms are paired with 1, one term is paired with Γx − ⌊Γx⌋, and the remaining terms 
are paired with 0. Therefore, model is equivalent to model (6), and their optimal 
objective values are the same, i.e., β(λ∗, UBS(Γx))=β(λ∗, UOS(ρx)). Thus, the 
proof is complete. � □
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