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Abstract

The integration of robust optimisation techniques and data envelopment analysis
(DEA) models results in a methodology called robust DEA. This methodology aims
to tackle uncertain data and ensure robust and reliable efficiency measures. In ap-
plying robust optimisation approaches, the selection of the uncertainty set plays a
pivotal role since it determines the trade-off between achieving optimal objective
and ensuring a high probability of constraint feasibility, a concept well-known as
the price of robustness. This trade-off can be adjusted using a robust parameter
based on managers’ risk preferences. Similar to robust optimisation, robust DEA
aims to protect the deterministic DEA models against data uncertainty within a
user-specified uncertainty set, providing a probability bound on constraint feasibil-
ity. Despite recent advancements in robust optimisation approaches, robust DEA
models are still in their early stages of development, accentuating the need for
further research, especially in the application of new types of uncertainty sets. To
address the identified research gap, this study aims to develop two novel robust
DEA models considering recently introduced uncertainty sets—namely, variable
budgeted and order statistic uncertainty sets—to improve the flexibility and gen-
erality of the existing robust DEA models. We discuss in depth how the existing
robust DEA models under budgeted uncertainty sets represent a special case of the
proposed robust DEA models in this paper when the robust parameter is appropri-
ately selected. Finally, we present a case study on EU banks to illustrate the efficacy
and applicability of the proposed models, which show a robust evaluation strategy
for management in uncertain environments.
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1 Introduction

Data envelopment analysis (DEA) is a non-parametric frontier analysis method
widely used to assess the performance of decision-making units (DMUs) that use
multiple inputs to produce multiple outputs. Within the DEA framework, envelop-
ment and multiplier models are two various approaches for evaluating the efficiency
of DMUs, with envelopment models constructing an efficient frontier from observed
data and multiplier models considering the relationship between inputs and outputs
by applying their weights (Cooper et al. 2007). Given that DEA heavily relies on data,
the precision and robustness of efficiency measurements are significantly affected by
the quality of the data (Hatami-Marbini and Arabmaldar 2021). The original CCR
(Charnes et al. 1978) and BCC (Banker et al. 1984) models, along with their subse-
quent developments, have been widely applied to evaluate relative efficiency across
various real-world problems such as healthcare, education, banking, and manufactur-
ing. These models commonly assume deterministic input and output data, thus over-
looking uncertainties inherent in practical applications. The DEA literature provides
substantial evidence of the critical role of uncertainty in performance assessment
applications (see e.g., Hatami-Marbini & Arabmaldar; 2021; Olesen and Petersen
2016; Zhu 2003). Therefore, neglecting uncertainty can lead to doubts about the
application of the DEA method for performance benchmarking, as decision-makers
may question the accuracy of DEA’s efficiency estimates. This issue is particularly
pronounced in situations marked by high levels of uncertainty due to frequent and
substantial disruptions such as in financial markets (Zervopoulos et al. 2023). Such
conditions make it difficult to accurately and reliably assess performance and make
informed managerial decisions to enhance the efficiency of underperforming units.
Consequently, enhancing the robustness of classical DEA models to handle signifi-
cant data uncertainty is essential. Addressing uncertainty has long been a core focus
in DEA applications, leading to extensive research aimed at developing solutions
within the uncertain DEA framework. Key approaches include chance-constrained
and stochastic DEA (Olesen and Petersen 1995, 2016), bootstrap DEA (Pham et al.
2023; Simar and Wilson 1998), imprecise and interval DEA (Despotis and Smirlis
2002; Mostafaee and Saljooghi 2010; Akbarian 2020; Toloo et al. 2021), fuzzy DEA
(Hatami-Marbini et al. 2011; Hatami-Marbini 2019), and robust DEA (Shokouhi et
al. 2010; Hatami-Marbini et al. 2022a, b; Arabmaldar et al. 2023).

It should be noted that robust DEA, while sharing the common goal of tackling
data uncertainty with other methodologies, such as the statistical-based robust non-
parametric estimation techniques (Daraio and Simar 2007) and the chance-con-
strained DEA approach (Olesen and Petersen 2016), differs significantly. Robust
DEA immunises against data uncertainty through the use of uncertainty sets, offering
flexibility and robustness without relying on predefined probabilistic assumptions,
unlike stochastic production models (e.g., Chambers and Quiggin 2000; Olesen and
Petersen 2016; Li et al. 2024), which assume specific error distributions. This distinc-
tion is particularly significant in DEA applications with small sample sizes, where
the use of stochastic assumptions may be problematic due to limited empirical sup-
port (Olesen and Petersen 2016; Sengupta 1992). Moreover, robust DEA integrates
robust optimisation techniques with classical DEA models to deal effectively with

@ Springer



Robust data envelopment analysis models for efficiency evaluation...

data uncertainty, all while maintaining similar axiomatic assumptions (Arabmaldar
et al. 2023, 2024).

Robust DEA, which is the main methodological framework in this study, has
emerged as a leading approach in recent literature for addressing uncertain data in
DEA (Arabmaldar et al. 2024; Li et al. 2024; Hatami-Marbini et al. 2022a, b). Robust
DEA has several advantages, making it highly suitable for tackling uncertainty in
measuring efficiency. Unlike chance-constrained DEA models (Olesen and Petersen
1995), robust DEA does not require precise distribution functions of uncertain
parameters, which are often unknown and must be estimated from historical data that
may be biased or unavailable. Furthermore, robust DEA does not rely on probability
distributions and statistical properties of input and output data, which are frequently
missing in uncertain situations but are necessary for methods such as bootstrap DEA
(e.g., Daraio and Simar 2007). In robust DEA, results are not sensitive to the precise
identification of lower and upper bounds of relative efficiencies, which is necessary
in interval DEA models (Despotis and Smirlis 2002). Moreover, in contrast to fuzzy
DEA (Emrouznejad et al. 2014; Hatami-Marbini et al. 2011), robust DEA is widely
applicable to real-world situations without needing standardised rules for assuming
membership functions of inputs and outputs, which can be complex. Since robust
DEA employs robust optimisation techniques to cope with uncertainty, it is crucial
and valuable to discuss and review the main robust optimisation approaches in this
study.

1.1 Robust optimisation

Robust optimisation is one of the most popular techniques in the field of optimisa-
tion, gaining increasing attention in recent years. Robust optimisation aims to find
an optimal (and robust) solution that optimises the objective function value along
with exhibiting the least sensitivity to possible perturbations (e.g., Ben-Tal and
Nemirovski 2000; Bertsimas and Sim 2004). It often suggests a deterministic robust
counterpart problem while ensuring feasibility across all possible realisations within
a predefined uncertainty set. Robust optimisation is particularly useful when defining
uncertainty through probability distributions is impracticable. For a comprehensive
overview of robust optimisation, readers are referred to Ben-Tal et al. (2009).
Selecting the uncertainty set is a crucial factor in effectively applying the robust
optimisation approach. The uncertainty set in robust optimisation determines the
trade-off between two competing objectives: (i) achieving the optimal objective func-
tion value, and (i7) ensuring constraint feasibility with a high probability. This trade-
off is often referred to as the price of robustness (PoR) by Bertsimas and Sim (2004).
The balance between these objectives depends on two key features of the selected
uncertainty set (Ben-Tal et al. 2010; Gregory et al. 2011). First, the size of the uncer-
tainty set is vital and is typically determined by managers based on their level of
conservatism. A smaller uncertainty set commonly leads to an improved objective
function value but reduces the probability of constraint feasibility, demonstrating that
an improvement in one aspect often results in a decline in the other. Second, the
geometric flexibility of the uncertainty set plays a crucial role (Dehghani Filabadi
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and Mahmoudzadeh 2022; Zhang and Gupta 2023). Improving both the objective
function value and constraint feasibility against data perturbation can be achieved
if the uncertainty set includes regions with higher probabilities of uncertain situa-
tions while excluding those that are exceedingly improbable. Therefore, a more geo-
metrically flexible uncertainty set, shaped to encompass high-probability regions,
can bring about this balance. In summary, the primary goal of robust optimisation is
to find ways to reduce the PoR.

Here, we provide a brief overview of popular uncertainty sets widely used in the
robust optimisation literature. The interval uncertainty set, also known as the box
uncertainty set, was discussed by Soyster (1973). This set furnishes substantial pro-
tection, though it is often considered conservative, as it identifies the optimal solution
under the worst-case scenario of the unknown parameters. The ellipsoidal uncer-
tainty set, introduced by Ben-Tal and Nemirovski (1998), is based on the standard
deviation formula and results in a quadratic form. This set provides a more refined
approach compared to the interval set, accounting for correlations between uncertain-
ties. The budgeted uncertainty set, proposed by Bertsimas and Sim (2004), is the first
polyhedral uncertainty set. It effectively balances protection and conservativeness in
robust optimisation models by imposing a budget constraint on the sum of all random
variables, ensuring they do not all take the extreme value of 1. The demand uncer-
tainty set is based on the generalised central limit theorem (Bandi et al. 2015; Bandi
and Gupta 2020). The discrete uncertainty set consists of a finite collection of distinct
scenarios, each representing a potential realisation of uncertain parameters (Goerigk
et al. 2022; Goerigk and Khosravi 2023).

Bertsimas and Sim (2004)'s approach has been extensively used for various opera-
tional research problems due to its ability to address over-conservatism in robust
optimisation. However, despite its popularity, this approach is criticised for its inher-
ent hidden conservatism, which can potentially limit practical applicability and effi-
ciency (Poss 2013). To impede this issue, Poss (2013, 2014) introduced variable
budgeted uncertainty as a more flexible generalisation that reduces the PoR and bal-
ances protection with practical performance by being less conservative. Goerigk et
al. (2022) expanded upon the concept of two-stage robust optimisation problems by
introducing the notion of two-stage budgeted uncertainty, considering both discrete
and continuous cases. Their model involves an initial decision stage, an adversarial
scenario selection, and a final decision stage. They also added an extra adversarial
stage, resulting in min—max-min—-max problems and extending the model to general
multi-stage scenarios. Of late, Zhang and Gupta (2023) proposed a new uncertainty
set by placing constraints on the order statistics of random variables and employ-
ing the probability integral transformation for robust linear optimisation models.
They utilised quantiles of random variables to represent uncertainties and adapted
the assignment problem framework to develop a tractable formulation for the order
statistic uncertainty set. They also showed that this set generalises the interval, bud-
geted, and demand uncertainty sets.

Beyond the aforementioned linear and quadratic uncertainty sets, various data-
driven approaches for designing uncertainty sets have also been explored (e.g., Bert-
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simas et al. 2018). Having outlined these robust optimisation concepts, we will now
turn to a detailed overview of robust DEA in the next subsection.

1.2 Robust optimisation in DEA

Robust DEA is a conservative approach developed to deal with uncertainties in input
and/or output data of DMUs. Similar to robust optimisation models, robust DEA aims
to protect the input and output parameters against uncertainty within a user-specified
uncertainty set, providing a probability bound on constraint feasibility and leading to
a more reliable performance assessment. Recently, robust DEA has rapidly evolved,
with many models based on the methodologies of Bertsimas and Sim (2004) and
Ben-Tal and Nemirovski (2000) to handle uncertain data in DEA.

Robust DEA in the multiplier form was first introduced by Sadjadi and Omrani
(2008), who assumed that output data contained inherent uncertainties and applied
the robust optimisation approaches developed by Ben-Tal and Nemirovski (2000) and
Bertsimas and Sim (2004) to measure the robust efficiency of the DMUs. Following
this, a well-cited work by Shokouhi et al. (2010, 2014) presented a robust optimisa-
tion-based DEA method for a multiplier model, based on Bertsimas and Sim (2004),
that addressed data uncertainties more effectively than the interval DEA approach
and with lower complexity than the fuzzy DEA approach. Since these initial models,
both theoretical and practical advancements in robust DEA have emerged.

Arabmaldar et al. (2017) and Toloo and Mensah (2019) developed relaxed robust
[multiplier] DEA models using the budgeted uncertainty set under constant returns to
scale (CRS) and variable returns to scale (VRS) technologies, respectively, to reduce
the computational burden of the model proposed by Sadjadi and Omrani (2008).

Focusing on envelopment forms with budgeted uncertainty sets, Hatami-Marbini
and Arabmaldar (2021) extended robust DEA to estimate Farrell’s cost efficiency,
incorporating endogenous uncertainty in input and/or output data along with exog-
enous uncertainty in input prices, while Salahi et al. (2021) aimed to find robust
common weights under norm-1. Toloo et al. (2022) proposed a robust fractional DEA
model using a budgeted uncertainty set and employed linearised models to explore
duality relations from both pessimistic and optimistic perspectives on the data. They
demonstrated that the primal worst form of the multiplier model is equivalent to the
dual best form of the envelopment model.

A generalised robust DEA model was developed by Arabmaldar et al. (2023),
using robust optimisation with a budgeted uncertainty set. This model incorporates
the directional distance function approach along with predefined direction vectors.
Li et al. (2024) extended a robust two-stage multiplier DEA model based on a bud-
geted uncertainty set to analyse bank efficiency, where the impact of the structure and
uncertainty of nonperforming loans on bank performance is considered. Arabmaldar
et al. (2024) is among the latest developments, first proposing a novel robust DEA
model focused on the multiplier form with variable budgeted uncertainty, which is
less conservative than existing models, and then presenting a method for determin-
ing probabilistic bounds for constraint violations of uncertain parameters. A detailed
discussion of the study’s contributions is provided in the following section.
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1.3 Research gap and contributions

Despite recent advancements in robust optimisation approaches, robust DEA models
remain relatively underdeveloped and require further research, particularly through
the application of alternative uncertainty sets, which are the cornerstone of the robust
optimisation framework. While robust DEA effectively addresses uncertainty, it often
suffers from over-conservatism due to the use of traditional uncertainty sets, such as
interval, ellipsoidal, and budgeted sets, which are frequently overlooked in the litera-
ture. Although various choices for uncertainty sets exist, this research mainly focuses
on comparing the proposed robust DEA models with existing ones that use budgeted
uncertainty sets, as introduced by Bertsimas and Sim (2004), due to their prominence
in the literature.

While Arabmaldar et al. (2024) focused on the multiplier form of deterministic
DEA, the envelopment form proposed in the present study is equally important, as
it directly models production frontiers and holds significant practical relevance for
efficiency measurement. This study contributes to the literature by developing two
robust DEA models in the envelopment form, incorporating both recently developed
variable budgeted and order statistic-based uncertainty sets, thereby improving the
flexibility and generality of existing approaches as well as assessing the impact of
sample size on shaping the robustness of results obtained from DEA. More precisely,
the study introduces robust DEA models based on variable budgeted and order sta-
tistic uncertainty sets to address the over-conservatism often observed in traditional
robust DEA models that use budgeted uncertainty sets. The development of these
new models involves three key steps: (i) constructing uncertainty sets for input and
output data, (ii) formulating the robust counterpart of the deterministic model to
compute robust efficiency scores under varying uncertainty sets, and (iii) specifying
probability bounds for constraint violations of uncertain parameters. It is important to
point out that these new models do not directly compute the probability of constraint
violations. Instead, they rely on the structure of the uncertainty sets to implicitly
control the level of protection against data uncertainty. This approach aligns with the
principles of robust optimisation, where the focus is on ensuring constraint feasibility
under worst-case scenarios within a predefined uncertainty set, rather than explicitly
estimating probabilistic outcomes.

The proposed models in this study are evaluated for their theoretical merits,
including tractability and flexibility, and are complemented by an empirical analysis
using data from the European banking sector. This empirical investigation assesses
the performance of banking institutions under various input and output uncertainty
scenarios, providing insights into their practical relevance. Moreover, it explores the
impact of sample size on the robustness and efficiency scores produced by both exist-
ing and newly developed robust DEA models, highlighting the advantages of the
proposed approach in improving decision-making under uncertainty.

1.4 Structure

The remainder of the paper is structured as follows: Section 2 provides an overview
of the basic and robust DEA models, including specific notations and extensions of
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robust DEA model properties. Section 3 delineates the mathematical details of two
new robust DEA models with variable budgeted uncertainty and order statistic uncer-
tainty sets, complemented by a simplified numerical example to clarify their practi-
cal application. Section 4 demonstrates the validity, applicability, and effectiveness
of these models, using a real-life dataset from the European banking sector. Finally,
Section 5 presents concluding remarks and future research directions.

2 Preliminaries

This section presents a brief overview of two existing DEA models that lay the
groundwork for the new developments of robust DEA introduced in this paper. The
first subsection reviews the envelopment form of the traditional DEA model under
the CRS assumption. The second subsection introduces the existing robust DEA
models proposed by Hatami-Marbini and Arabmaldar (2021) and Salahi et al. (2021).

2.1 DEA models

DEA models are non-parametric estimators in frontier analysis used to mea-
sure the relative efficiencies of homogeneous DMUs that utilise mul-
tiple inputs to produce multiple outputs. Consider n DMUs denoted by
DMU;;j € J={1,...,n}, where each DMU consumes m semi-positive inputs
zj=(...,zy,...);0€I={1,...,m} to produce s semi-positive outputs
Yy;=(-sYrj,---);r € R={1,...,s}. The production possibility set (PPS), or
technology T, can be defined as T = {(«, y)|y can be produced from x}. Fol-
lowing standard DEA literature (Cooper et al. 2007; Kerstens et al. 2022), the con-
struction of this set is based on a set of foundational assumptions imposed on the
observed input—output data: (19) inclusion of all observations, (20) input and output
monotonicity (free disposability), (21) convexity, and (22) ray unboundedness. These
assumptions ensure that the reference technology is both economically interpretable
and theoretically consistent with production principles.

Following Farrell’s idea of measuring technical efficiency based on the relative
distance between a DMU and the efficient frontier, the input-oriented technical effi-
ciency of a given DMU, is calculated using the following linear programming prob-
lem (Charnes et al. 1978):

SR = min 0,
Ajibo
s.t.
dxi < @ob,,
jen o D
Z;]yj)\j Zyov
JE
>\j >0,7 €J,

where A = (..., \;,...),j €J is the nonnegative intensity decision variable. While
this envelopment DEA model represents a formulation under the assumption of
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CRS, including the convexity constraint jesAj =1 converts it to a VRS DEA
model. It is evident that since (A, = 1,\; = 0;5 # 0,0, = 1) is a feasible solution
of model (1), the model is both feasible and bounded (5 “** € (0,1]). Furthermore,
if (65¢*, \;) is the optimal solution of model (1), then A} < 6S“#*, and conse-
quently A} < 1. This confirms that the required condition for developing a feasible
robust DEA model is satisfied, namely, the non-negativity of all decision variables
corresponding to each uncertain parameter.

Let us introduce model (2), which is equivalent reformulation to the CCR model
(1). This model is obtained by explicitly incorporating the reference unit o into the
convex combination and rearranging the constraints accordingly. Such a transfor-
mation is standard in the DEA literature (see e.g., Hatami-Marbini and Arabmaldar
2021; Toloo et al. 2022), and does not alter the feasible region and the optimal value
of 9SR. Therefore, both models (1) and (2) yield the same efficiency score. This
equivalence is important because all uncertainties in the constraints are on the right-
hand side of the CCR model (1), and this arrangement will be necessary for the fol-
lowing discussions in this paper.

0SCE = min 6,
Xjh00
S.t.
Yo o xiAj+ (Ao —b6,)x, <0,
jeJ(j#0) 2
Z yj)\j+()\0_1)y020a
JEJ(jF0)
)\j >0,7€d.

2.2 Robust DEA models and their extensions

In classic DEA models, input and output data are assumed to be deterministic. How-
ever, real-world data often involve imprecision, such as bounded, ordinal, or ratio-
bounded data, introducing uncertainty. Various techniques have been developed in
the DEA literature to address these uncertainties. This section reviews the robust
counterpart of the deterministic DEA model (2), as initially introduced by Hatami-
Marbini and Arabmaldar (2021) and Salahi et al. (2021) in the robust DEA literature.
This robust DEA model is based on the budgeted uncertainty set developed by Bert-
simas and Sim (2004)'.

Consider the ™ input constraint and the " output constraint in model
(2). Let JF = {j|lz;; >0} and JY = {j|y,; > 0} be the index sets associ-
ated with uncertain inputs Z;; and uncertain outputs y,;. It should be noted that
J¥, JY CJ. The cardinalities of these sets are denoted as |J7| and |JY|, respec-
tively. The objective is to determine an efficiency measure for the DMUs that not
only achieves the highest possible value but also ensures the feasibility of the
input and output constraints with a specified probability, which can be expressed

h

'Note that, for simplicity, the input (output) constraint index i (r) is occasionally omitted throughout this
paper.
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by the chance constraints Prob (Z jes ATy < 90@0) >p;,Viel and

Prob (Z]EJ AjYrj > ﬂm) > pr, Vr € R, respectively.

Assume that the random variables Z;; and y,; follow an unknown but symmetric
distribution” . These variables can vary within the ranges [z;; — Zi;, xi; + 7] and
[Yrj — Urj» Yrj + Urj], where Z;; and ¥,; represent the maximum perturbations of
inputs and outputs, respectively. The variables 7;; and y,.; are transformed into Z”; and
Zm’ defined as Z; = |Z;; — x45] /2,5 and Zm |Yr; — Yrj| /Yr;, which lie Wlthln
theinterval [0, 1]. The vectors of these variables are denotedas Z7 = (Z5,...,Z T| 5| )

and Z¥ = (ZY,..., fo‘ Y] ). Henceforth, whenever random variables are mentioned,

we mean the random variables Z;; and ij.

We emphasise that our proposed robust DEA models are firmly anchored in the
foundational axioms of DEA, as laid out in the literature (e.g., Arabmaldar et al. 2023).
In particular, the robust technology set 7% = {(Z,¥) |y can be produced from Z}
constructed in this study satisfies the following axioms:

(A1) Inclusion of observations: (Z;,7;) € T forallj = 1,...,n.
(A2) Monotonicity (Free disposability): If (z,7) € T and 3’ > 7,3y’ < ¥, then
@.y) e

(A3) Convexity: If (z,9),(@,y) €Tk, then for all puc[0,1],
p(@9) +(1—p) @,7)eTm

(A4) Ray unboundedness: If (7,%) € T%, then for all > 0, (u, uy) € T*.

These axioms shape the structure of the robust technology set and ensure that the
incorporation of uncertainty—through various uncertainty sets—is built upon a rig-
orous theoretical foundation in DEA.

The general robust DEA model, which ensures the feasibility of the input con-
straint ¢ and the output constraint » for any realisation of Z7 and ZY within the
uncertainty sets U; and U,., can be formulated as follows:

gFobust — ming,

s.t.
Z )\j(L‘ij + ()\o — 90) Tio + Bi (/\*,UZ-) <0, Viel,

jEJ(j#0) 3)
Z Ajyrj‘i’(/\ )yu) /Br( ) ) 207 VTER,

JEJI(j#0)

A >0, Vjied,

2 A symmetric distribution is one in which the values are distributed evenly around the central point, such
that deviations from the nominal value are equally likely in both positive and negative directions. In
robust optimisation, this assumption is a common simplification (e.g., Ben-Tal et al. 2009; Bertsimas et
al. 2011), as it enables tractable formulations while still capturing the essential aspects of uncertainty.
Although it may not accurately reflect all real-world situations, especially where data exhibit skewness, it
provides a practical compromise between model realism and mathematical solvability, particularly when
detailed distributional information is unavailable.

3 Henceforth, any reference to random variables pertains to Zf] and ij.
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where Bi (N, U;) = Juax 2 jere(izo) 1Al Z5Ti5 + [ Ao — bol 25,70 and
Br (X", U,) = max > ierv(izo) [Ail 205Uri + 1 X0 — 1| 22,Yo, Which are known as

protection functions. These functions correspond to the uncertain input ¢ and uncer-
tain output  of DMUj;, respectively, and are defined to protect the input and output
constraints against data uncertainty, thereby ensuring the feasibility of the constraints.
It should be noted that the protection functions have their own objective functions,
constraints, parameters, and decision variables. However, some decision variables
from the outer model (3) are treated as constants in the inner problems. Specifically,
the optimal objective values of the protection functions become part of the constraints
in model (3). In other words, within the protection functions |A;| (Vj €J,j # o),
[Ao — 6], and |\, — 1|, which are decision variables for model (3), are considered
constant parameters, while 27, and 2/, are treated as decision variables.

It is worth noting that the uncertainty set remains the cornerstone of the robust
optimisation approach. In model (3), U; and U, can represent various uncertainty
sets, commonly used in the robust optimisation literature, including but not limited to
interval, budgeted, and ellipsoidal uncertainty sets. It is important to note that within
the robust optimisation framework, and without loss of generality, the uncertainty
sets in the models are assumed to be constraint-wise*.

Following Bertsimas and Sim (2004), the total perturbations of z;; and zi’j for
all inputs and outputs are given by jege Zij and > jeg zfj, respectively. These
are constrained by the level of the uncertainty parameters I'” = (I'7,...,I'% ) and
Y =(TY,...,TY), viz. Zjle zf; <T7 and 37, ;v 2/, < T'Y, which vary within
the interval [0, n]. To adjust the level of conservatism in a robust solution, the param-
eters I'? € [0, |JF|] and TY € [0, |JY|], known as the robust parameters or the bud-
gets of uncertainty, represent the maximum number of uncertain parameters allowed
in the model’s constraints. In view of this, the budgeted uncertainty sets can be

expressed as follows:

B (pwy _ o |m © A / ; T\ ,
UZ (TF) = {Zij|@i5 = wij + 25;745,0 < 25 < 1, Z 2y STYVie LV e JT}, )
jeJr
U (TY) = {GrjlTrj = yrj + 25005, 0 < 22, <1, Y 2% <TYVre RVj € J}
jegy

The uncertainty sets, Z (I'*) and U (T'¥), defined in (4), can first be used within
the robust DEA model (3). In other words, we have the protection functions
Bi(A*,UB('*)) and B,.(X*,UP(I'Y)) for the input and output constraints, respec-
tively. Then, the linearised robust counterpart of model (3) using these protection

4This is because a joint uncertainty set I{ across constraints can always be reformulated into a constraint-
wise format (see Sect. 1.2.1 in Ben-Tal et al. 2009). As a result, for simplicity, the constraint index i(r)
will be omitted, focusing instead on a representative constraint wherever needed.
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functions, based on Bertsimas and Sim (2004)'s approach, can be formulated as
follows>:

B .
0, =minb,

s.t.

S+ Y g +T7p" < a,b,,
jeJ JEJTE

doyAi— D a T >y,
JjeJ jeJ}

qo+p" 2% (0 —No), o€ J,
ai +p' > y;\;, Vi€l j#o,
ag+p’' 29, (1-X), o€Jy,
qj,p* >0, VjeJ!,

qj,p’ >0, VjelJt,

A >0, Vjed,

where  p” =(pf,...,pp,),pY = (p{,...,pPY), qj =(q7}, - dmj): and
q? = (qll’j, . q‘gj) are variables used to measure the robustness of model (5) when the
level of uncertainty budgeting is varied by an infinitesimally small amount. The terms
Zje e qj + I'“p”and — > jegy q‘g — I'Yp¥Y demonstrate the worst-case deviations
of the uncertain inputs and outputs from their nominal values for the budgeted uncer-
tainty and are included in the robust model (5) to immunise the model against the vio-
lation of the input and output constraints, respectively. Furthermore, the pre-defined
robust parameters I'* and I'Y indicate the maximum number of uncertain inputs and
outputs, respectively, that are protected against perturbations. As proved by Hatami-
Marbini and Arabmaldar (2021), the optimal objective function value of model (5),
6B+ is greater than or equal to that of model (1) or (2), §SR*,

The following proposition provides an equivalent formulation of 3;(A*,U* (T'*))
and 3, (X*,UY(I'Y)), which will be essential for developing new robust DEA models
in this paper.

Proposition 1 The protection functions 3;(X*,U*(T'")) and B,.(X*,UY(TY)) can be
equivalently expressed as follows:

" Y iese (o) NiTig + (OF = [[F]) Aoz Tz + }
Bi(\*, U (D7) = max JEST (j#0) i Tis i i { i}
BN U () {S7U{a7}|S7C Iz, | 57|=[ 7] are I\ 57} { [Ao = bo| Zio + (I — [IF]) [No — o] Zio (6)
1 QY (i )\@\ +(Fy—[Fy]))\ '.u@\ v+
(A, UY(TY)) = max Z]GS,‘(j#O/)\ Jdrg T T T afIrail
BT {s;fu{azf}\s:*gJ:a|s;f\=[r:f1,a’/eJ;v\s;f}{ Ao = 1 Gro + (T¥ = [T¥]) [ Ao — 1 Fro

5 For more details, see Hatami-Marbini and Arabmaldar (2021) and Salahi et al. (2021).
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Proof See Appendix.

Bertsimas and Sim (2004) discussed that when only a subset of the uncertain
parameters is allowed to change, a bound for the robust counterpart model is essen-
tial to ascertain that the robust solution remains feasible with high probability. They
demonstrated that the probability of constraint violation, prob(}_; a;;&; > b;) is

bounded above by P = exp(—%) where |J;| denotes the cardinality of the set of

uncertain parameters associated with the ™ constraint. Here, we adopt the bounds
proposed by Bertsimas and Sim (2004) for the existing robust DEA model (5) under
the budgeted uncertainty set. Since, in the ™ and " constraints of model (5), a fixed
number I'* = T'Y =T of input and output data are allowed to deviate from their
deterministic values, the constraint feasibility of this model is guaranteed with the
probability bound for both input and output constraint sets as follows®

. . - . I?
pB = PIOb(Z )\Jflqu S 90177;0) or Prob (Z Ajy7j Z y'r()) 2 CXp(—W) (7)
jeJ jeJ e

3 Proposed robust DEA models

The motivation for this study arises from the observation that, despite the widespread
adoption of Bertsimas and Sim (2004)'s approach among scholars, there is a hidden
over-conservatism in robust optimisation problems, particularly when the uncertainty
sets are polyhedral (Thiele 2010; Liu et al. 2016). More precisely, in some cases, the
decision variables become overly conservative in response to the uncertain param-
eters, leading to solutions that are more conservative than originally intended by the
decision-maker. Therefore, greater care is needed when interpreting the budget of
uncertainty as the maximum number of parameters that can vary.

The first and foremost objective of robust optimisation and, consequently, robust
DEA is to balance the trade-off between the optimality of the objective function value
and the probability of constraint feasibility, namely, the PoR. This objective can be
more effectively achieved by incorporating more flexible uncertainty sets into deter-
ministic models. To extend the existing robust DEA models in alignment with robust
optimisation approaches, we propose two new robust DEA models in this section.
These models utilise two different uncertainty sets, which can be viewed as gener-
alisations of the budgeted uncertainty set. Section 3.1 presents a novel robust DEA
model that incorporates the variable budgeted uncertainty set, as proposed by Poss
(2013, 2014). Unlike the traditional budgeted uncertainty set introduced by Bertsi-
mas and Sim (2004), the variable budgeted uncertainty set does not constrain the
amount of uncertainty to a pre-specified number. Instead, it employs a non-negative
function defined within the feasibility region of decision variables, providing greater
flexibility in handling data uncertainty. Furthermore, Section 3.2 proposes a new

*

©Note that & i
technological coefficients

represents a vector of decision variables at optimality, and a; i = [51 Gree s an, j] is the
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robust DEA model employing the recently developed order statistic uncertainty set
by Zhang and Gupta (2023). The order statistic uncertainty set has greater geomet-
ric flexibility compared to the budgeted uncertainty set and is considered to include
interval, budgeted, and demand uncertainty sets as special cases within the robust
optimisation model. To complement the theoretical development, Section 3.3 pres-
ents a simple illustrative numerical example that demonstrates the proposed robust
DEA models under different uncertainty sets, highlighting their practical implications
and the trade-off between robustness and performance.

3.1 Robust DEA with variable budgeted uncertainty

Assume that the true values of uncertain input and output data are introduced as
Tij = Xij + ijfij (Viel,VjeJ?), and Uri = Yrj + Zgj@}j (Vr e R,Vj €JY),
respectively. It is also assumed that 3 I 25 <" (A)and 30 g 2 <Y (N),
where v* () and ¥ (A) are given non-negative functions defined on the decision
variable A, which is in vector form, that limit the amount of uncertainty. By adopting
the variable budgeted uncertainty proposed by Poss (2013, 2014) as a generalisa-
tion of the budgeted uncertainty defined by Bertsimas and Sim (2004), the following
variable budgeted uncertainty sets can be obtained for the uncertain input and output
data:

UYBN) = (@) s = wij + 255855,0 < 25 <1, 25 <97 (N), Vi €1,V €J7}, (@)

jeJe

UPN) = {@0) Trj = yrg + 2005, 0 < 205 <1, Y 20 < 4% (), Vr €R,Vj €Y}
JeJY

UYE (X) andUY B (X) are multi-functions of the decision variable A and act as alter-
natives to the uncertainty sets U (T'*) and UZ (T'Y), which are bounded by I'” and
T'Y, respectively. In other words, given the decision variable A, the uncertainty sets
UYE (X) and UY B (X) include all feasible values for the uncertain input and output
parameters, respectively. Furthermore, if v* (A) and ¥ () are set constantly equal
to I'* and T'Y, then it is evident that 2/ (X) and UY B (X) coincide with UZ (T'*)
and UP (TY), respectively, for any A. In general, utilising 2/ (X) and Y P (X)
helps to avoid the issue of over-conservatism that can arise when decision-variable
vectors A contain few components in each constraint. This approach suggests a new
framework that is less conservative compared to /2 (') and U2 (TY).

As discussed by Poss (2013, 2014), it is necessary that the functions v* () and
7Y (X), which are involved in defining 4" (X) and U"” (X), to be affine func-
tions of A so as to satisfy the probability bounds proposed by Bertsimas and Sim
(2004). Following Poss (2013, 2014), we consider the case where 7* (A) and
7% (A) are affine functions of A, specified as 7" (X) =75 + > c gz 'y;”)\j and

YWA) =+ jeg? ﬁ)\j, respectively. Consequently, the robust counterpart of
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model (1), based on the uncertainty sets &4} Z (X) and ¢ B (\) defined in (8), is as
follows:

901/3 = min 6
s.t.
> Nzt (Ao — 00) i + B (N UYP (V) <0, Viel,
J€J(j#0) )
— Y A= Qo= Do+ B (A UYP (X)) <0, VreR,
JEJ(j#0)
A >0, Vjed

The following theorem shows how to solve model (9) as a mixed-integer linear pro-
gramming when v* (X) and v¥ () are appropriately selected.

Theorem 1 The robust counterpart of model (2) based on the variable budgeted
uncertainty set is equivalent to the following robust DEA model.:

QXB = min
s.t.
S Ay 0726+ XA+ X ] < b Vi,
jeJ JEJF JEJYF

"y Y, .Y y'
D Ay =Pl = Dl = D 4l 2y, VrER,
jeJ jeJy jeJy

pY 4 ql > Ny, Vi€ LY € JEj# o,
P4 > (0o — Ao) ioy Vi€ o€ JF,

wd, —pf > —max (#;) (1= X)), ¥i € 1,V] € J, (10)
Y +al > Nigj, VT € R E TG #o,

pr+q > (1= Xo)Jro, VreRoeJY,

—p = —max(3,) (1= X)), VreRjel,

pf/,qu,,pﬁl,qm,w”,w >0, Viel¥NreRVjelJr VjelJ?
A < hi, Vi€,

)\-<h97 Vy e J,

hjy,hfe{(),l}, Vj € J,

A >0, Vel

Proof See Appendix.
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To demonstrate that the proposed robust DEA model (10) adheres to the properties
of traditional DEA models, we present the following theorem.

Theorem 2 (i) Model (10) is always feasible, and (ii) 0 < 0YP* < 1.
Proof See Appendix.

The following theorem, which is important for gaining insights into the proposed
approach, compares the optimal objective values between the traditional robust DEA
model (5) and the proposed robust DEA model (10).

Theorem 3 The optimal objective function value of model (10) is greater than or
equal to that of model (5), i.e., 0YP* > 65+,

Proof See Appendix.

Finally, to discuss the probability bound for the constraints in the proposed
robust DEA model (10), we apply the probabilistic bounds proposed by Bert-
simas and Sim (2004) alongside the robust DEA model (5) to derive the same
bound. Let A* be the intensity vectors that satisfy the robust input and output con-
straints in model (10) for &Y B (X) and ¢4 B (). 1t is trivial that if [|A*|| < T, then
Prob(} ;¢ ; Aj¥ij > 0oTi0) = 0. In addition, if || A™|| > T' such that A" satisfies the
robust constraint Y~ ; \;Tij < 0,T;0, for Ti; € UY' B (X), then according to Propo-
sition 2 and Theorem 2 in Bertsimas and Sim (2004), we can easily verify the follow-
ing probabilistic bound:

FQ
jeJ jeJ

The above inequality shows that 24P (X) and UY P (X\) allow decision-makers
to ensure the same or an even higher level of protection for the feasibility of con-
straints in robust counterpart models. This means that by utilising these uncertainty
sets, decision-makers can achieve a more reliable and resilient solution, effectively
immunising against variations and uncertainties in the data. As a result, the proposed
robust DEA model not only maintains feasibility under adverse conditions but may
also provide better performance guarantees compared to existing approaches, thereby
enhancing the robustness of the decision-making process.

3.2 Robust DEA with the order statistic uncertainty set
We here build on the order statistic uncertainty set proposed by Zhang and Gupta
(2023) to develop a new robust DEA model aimed at reducing the cost associated with

uncertainty. The relationship between this model, the proposed robust DEA model
(10), and the robust DEA model (5) with the budgeted uncertainty set is explored.
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For simplicity, we omit the constraint indices for the input and output constraints and
focus on an arbitrary constraint.

Suppose the random variables 27 and zjy are continuous and independently dis-
tributed in the range [0,1], each following an arbitrary continuous distribution
with an unknown cumulative distribution function £’ and F]y , respectively. Let

Up = F(27),Vj € J* and U} = F{(z]),Vj € JY be the random variables, where
each Uy and U;/ is uniformly distributed over [0,1]. Here, Uay,---,U(j=|) denotes
the order statistics of U}’ (and similarly Uy, ..., U vy for U ]y ), which represents
the rearranged sequence of U (U}) with U, being the kth smallest value. Unlike
the original random variables U and U Jy , the order statistic Uy has a Beta distribu-
tion with parameters (k, |J*| + 1 — k). Let I; (k,|J*| + 1 — k) denote the cumula-
tive distribution function for Beta (k,|J*| + 1 — k) distribution, and let Q% be the
quantile function defined as Q¢ = inf {7 : I, (k,|J®| + 1 — k) = t}. The order sta-
tistic uncertainty set can thus be defined as follows (Zhang and Gupta 2023, p. 1026):

UOS () = {n-ﬂ Fr (7)) = UP,Vj €77, and Uf, < QU ke J } (12)

UOS (e) = {ny| FY (2Y) = UY,Vj €Y, and Ul < QY Wk e }

where Q") is the upper limit for Ufy(Ufyy)  such  that

Prob(Uf;, < Q,(lea’“)) =1—¢epande = (e1,€2,...,€))), where g; € [0,1].

As discussed by Zhang and Gupta (2023), the order statistic uncertainty set
(12) is intractable for obtaining robust counterpart models.” To deal with this dif-
ficulty in reformulating protection functions associated with the order statis-
tic uncertainty set, Zhang and Gupta (2023) proposed an assignment formulation
that provides a tractable solution for these problems. In this study, we adopt the
same method to develop a suitable formulation associate with the order statistic
uncertainty sets in the DEA context. We therefore propose the following proposi-
tion to provide a tractable formulation for input and output protection functions,
ie., Bi(A*,UP% (€)) and B, (A", U7 (g)). Let p?k(p?k) be the quantile of order

,(61_6’”") for 27(2f), ie., pf, =inf{X:FF(A) > Q,(Cl_s’“)},Vj, ke (pf =

J N7

mf{X: FY (A) > QY "M}, Vi, k €7,).

Proposition 2 For a fixed ), the optimal objective value for B;(X*,UL° (€)) and
Br(N,UP% (€)), corresponding to input and output constraints, are equal to the
optimal objective values for the following linear optimisation problems, respectively:

"The reasons for the intractability are as follows: (i) the uncertainty set /95 (g) is defined using con-
straints on the cumulative distribution functions of variable z;” (z;“’), rather than being directly based on
the random variable 25 (z;J), (ii) there are | J®| (| J¥])! permutations of Fy () (F]y (A)) for all possible
outcomes of U%, (Ug”k) ), which makes reformulating /3; ()\* , Z/{Z.O s (e)) challenging; and (iii) the non-

(k)
convexity of the order statistic uncertainty set /©S (e) (for more details see (Zhang and Gupta 2023).
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mf]ix Z Zij | Al (Z P?mfk) + Zio [ Ao — 0ol (Z pik”ﬁk)

JEJT(j#£0) keJ keJ

s.t

S ol =1, VjeJr, (13)
k

S onf=1, VkeJ,

J

77;61@207 Vj,kejm

max > Gig N1 o) + G o — 11 (Z pzwzk>

jeJ(j#0) keJ keJ

s.t

Do =1 VieJ, (14)
k

ank =1, VkeJy,
J

N =0, Vi keJv.

Proof The proof is omitted, as it follows a similar method to that used in Zhang and
Gupta (2023).

Hereafter, we denote the protection functions defined in (13) and (14) as
Bi( N, ULS (p®)) and B, (N*, U5 (p¥)), respectively. Now, by incorporating the
defined uncertainty set /97 (¢) into the DEA model (3), we obtain the following
robust counterpart model:

9(?3 = miné,
s.t.

> Nmij+ (Vo — 00) mio + B (AU (7)) <0, Vi€l
JE€J(j#0) (15)

> A+ Ao = Dyro — Br (AU (pY)) 20, VreR,
JEJ(j#0)

Aj >0, Vjeld

The following theorem presents the robust formulation of the DEA model (2)
incorporating uncertain input and output data defined by the uncertainty sets U7 (&)
and U9 (e).

Theorem 4 Model (15) is equivalent to the following linear programming problem:
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905 = min6,

ZxUA + > (W + O) < wiohe, Vi€l

jeJ JEJF
Zyrj)\j_ Z ( gj—i_@gj)zyrov Vr €R,
jeJ jeJy
5 Dl = i Nj pijr, Vi kel j# o, Viel, (16)

Wo + DL > o (0o — No) pio, 0 € JF Vi€
+ DY > Gri Nj prijk, Vi k€JY,j#0,Vr €R,
y —i—@y > Gro (1= Xo) pro, 0 € JY,Vr ER,

ro =
%j’ ¢ij, freein sign Viel; VjeJ?,
y m’ freein sign Vr €R; VjeJ!,

Ty

/\jZO, Vjeld.

Proof See Appendix.

The following theorem demonstrates that the proposed robust DEA model (16)
preserves the fundamental properties of traditional DEA models.

Theorem 5 (i) Model (16) is always feasible, and (ii) 0 < 095* < 1.
Proof See Appendix.

An interesting result from the above theorem is that the proposed robust DEA
model (16) not only maintains the core properties of traditional DEA models but also
improves their applicability by effectively addressing the uncertainty inherent in both
input and output data.

The following theorem demonstrates that the existing robust DEA model (5),
which utilises the budgeted uncertainty set with the robust parameter I, is equivalent
to the proposed robust DEA model (16), which employs the order statistic uncertainty
set, given that the values of p;;, are appropriately selected.

Theorem 6 The existing robust DEA model (5) is equivalent to the proposed robust
DEA model (16) when the values of pj, are chosen as follows:

pr={ T, k=1 L), vj e,
1, kellJ®|— | " +1,|J%], VjeJ~.

Proof See Appendix.
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Let us now follow the probabilistic bound suggested in Zhang and Gupta (2023)
and propose the following probability bound for constraint violation in the robust
DEA model (16):

] 11,
pOS = Prob(z AjZij < 0oFi0) > B + 7 [J*|!det [A] or

jed
- L1 (17)
Prob(z NjUrj = Uro) > 3t 5 |JY]! det [A],
JjeJ
where A is the |J| x |.J| matrix with (4, j)'" element defined as:
—e)d L .
Aij = Q) /G—i+1)! j—i+1>0, (18)
0 j—i1+1<0.

As observed from the above and in line with the definition of uncertainty sets (12),
the probabilistic guarantee for the order statistic uncertainty set can be identified by
the upper limit of the cumulative distribution functions of random variables le_ei).

)

Note that to achieve a high probabilistic guarantee, one must use larger lefei val-

ues, which can be attained by selecting a smaller ¢;.

In this section, we develop two new robust DEA models based variable budgeted
uncertainty and order statistic uncertainty sets, both of which represent different gen-
eralisations of the traditional budgeted uncertainty set. To conclude this section, we
provide a discussion on the specific situations in which it is most suitable to use
one of the uncertainties sets and their associated robust DEA models. The budgeted
uncertainty set is often most favourable when a fixed and predictable approach to
managing overall risk is required (Bertsimas and Brown 2009). Its key advantages
include simplicity and computational efficiency, making it particularly well-suited
for scenarios where uniform management of total uncertainty across all parameters
is necessary. This uncertainty set is ideal in environments where the uncertainty is
relatively stable and can be anticipated, allowing for a straightforward application.

On the other hand, the variable budgeted uncertainty set is more appropriate for
dynamic environments where uncertainties are not static and may fluctuate over time
(Poss 2013, 2014). This uncertainty set allows for different levels of conservatism
across scenarios, providing flexibility that the traditional budgeted uncertainty set
cannot provide. As a result, it is more suited for situations where the decision-making
context demands a higher degree of adaptability and a tailored approach to risk man-
agement (Poss 2013, 2014). Therefore, the variable budgeted uncertainty set aligns
with the DEA framework by offering a flexible and practical method to deal with
uncertainty in input and output data, while maintaining the interpretability and appli-
cability of the models. Furthermore, the order statistic uncertainty set is particularly
valuable in situations where the decision-making process is heavily influenced by
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extreme values® among the uncertainties. This uncertainty set is designed to prioritise
and manage the extreme risks, making it the preferred choice in contexts that require
robust management of tail risks (Bertsimas and Brown 2009). Thereby, the order
statistic uncertainty set is well-suited to the DEA context as it captures prioritised
uncertainty levels by considering specific quantiles of data distributions. This uncer-
tainty enables robust efficiency evaluations by effectively addressing worst-case or
targeted variations in inputs and outputs.

In the end, the selection of the appropriate uncertainty set and associated robust
DEA model depends on the specific characteristics of the uncertainties involved and
the decision-maker’s priorities. Factors such as the need for predictability, flexibility,
computational efficiency, and the management of extreme risks should guide this
choice.

3.3 Illlustrative numerical example

To further clarify the practical application of the proposed robust DEA models, we
now present a simple numerical example. This example provides an intermediate step
between the theoretical development and the comprehensive real-world case study,
enabling readers to better understand how the models function on a small, controlled
dataset and how uncertainty affects efficiency assessment. Consider five DMUs, each
using two inputs to produce a single output. The nominal input—output data are pre-
sented in Table 1.

To demonstrate the effect of uncertainty, we assume that each input and output is
subject to uncertainty at 5% of its nominal value. We then evaluate the performance
of each DMU using the deterministic DEA model, along with the three robust DEA
models proposed in this study under the budgeted, variable budgeted, and order sta-
tistic uncertainty sets.

Fig. 1 shows the efficiency scores obtained under these three different model set-
tings. As observed, incorporating robustness generally leads to higher efficiency
scores, reflecting the added caution imposed by accounting for uncertainty. The
degree of the efficiency change depends on both the DMU and the uncertainty set
employed, which demonstrates the varying degrees of robustness and conservatism
introduced by each set. For instance, DMUS5 shows a noticeable shift in efficiency
across all robust models, with the largest impact under the variable budgeted set. In
contrast, DMU2 and DMUS3 retain full efficiency (score of 1) even when uncertainty
is introduced, suggesting that these units are robustly efficient.

Table 1 Data for the numerical DMUs Input 1 Input 2 Output 1

example DMUI1 B 2 2
DMU2 1 4 4
DMU3 4 1 6
DMU4 3 2 1
DMUS5 4 6 8

8 Extreme values refer to the most extreme possible outcomes that the uncertain parameters (random vari-
ables z;" and zé./) can assume within a specified uncertainty set.
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Fig. 1 Deterministic and robust efficiency scores for different uncertainty sets

Table2 PoR (%) under different  ppy Budgeted Variable budgeted Order statistic
uncertainty sets DMUI  9.52 9.52 1132

DMU2 0.00 0.00 0.00

DMU3 0.00 0.00 0.00

DMU4 9.51 9.51 11.31

DMUS 9.53 11.91 11.32

To quantitatively assess the impact of uncertainty on efficiency scores, Table 2
reports the PoR for each DMU under the three uncertainty sets: budgeted, vari-
able budgeted, and order statistic. The PoR is calculated as the percentage
deviation of (ch)e r(cl)Bust efficiency score from its deterministic counterpart, i.e.,
PoRgu) = Ma(# x 100%, Vo € {1,2,...,n}, where Hf,D) and 0((,“) represent
the efficiency score of DMU, under the deterministic model and the model with
the uncertainty set, respectively. A lower PoR indicates reduced sensitivity of the
efficiency score to uncertainty and therefore reflects greater robustness and stability
of the model. Here, robustness refers to the ability of a model to maintain consistent
efficiency scores in the presence of data uncertainty.

As shown in Table 2, DMU2 and DMU3 maintain the PoR of 0.00% across all
three uncertainty sets, confirming their strong and consistent performance even when
inputs and outputs are subject to uncertainty. This suggests that these DMUs lie firmly
on the efficient frontier and remain unaffected by the uncertainty levels. In contrast,
DMUS5 exhibits the highest sensitivity to uncertainty, with efficiency increases of
11.91% under the variable budgeted model and 11.32% under the order statistic
uncertainty set. The lowest PoR for DMUS is observed under the budgeted model
(9.53%), suggesting that this setting introduces the least deviation from its determin-
istic score and therefore offers a more stable and appropriate robustness adjustment
for this DMU. Likewise, DMU1 and DMU4 experience moderate but consistent
changes in efficiency. Both show the PoR values of 9.51-9.52% under budgeted and
variable budgeted sets, which increase to 11.32% under the order statistic model.
This pattern reflects the more conservative nature of the order statistic approach.
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Overall, the results highlight the trade-off between performance and robustness,
demonstrating how the choice of uncertainty model affects efficiency scores and
guides the identification of settings with more robust performance under uncertainty.

4 Case study

Uncertainty plays a critical role in the performance assessment of banking institu-
tions when using DEA. In practical bank evaluation, data uncertainty can lead to
inaccurate and fragile results when relying on traditional DEA models. Given the
complex and dynamic nature of the banking sector, the accuracy of efficiency evalua-
tions can be significantly impacted by uncertainties in input and output data. Address-
ing these uncertainties is essential for obtaining reliable and robust performance
measures, which are crucial for informed decision-making and strategic planning in
the banking industry.

In this section, we extend this line of research by using three real-world datasets
derived from Zervopoulos et al. (2023). These samples consist of 50, 80, and 100
banks based in the European Union. The selection of input and output variables is
motivated by the need to capture the key factors that contribute to a bank’s efficiency,
as per the intermediation approach (Sealey and Lindley 1977), which views banks as
entities that use purchased funds to generate assets (Ayadi et al. 2016). The inputs
selected for the analysis include three inputs— (1) Deposits & short-term funding;
(z2) Equity; and (x3) Fixed assets —and two outputs— (y;) Gross loans; and (y2)
Other earning assets. These variables are chosen because they reflect the core opera-
tions of a bank, though it is recognised that certain indicators may not directly capture
overall performance in every context. For instance, fixed assets, typically considered
stable over a year, might present uncertainty in the form of depreciation, market value
fluctuations, or regulatory changes affecting the bank’s operational capacity. The out-
puts—gross loans and other earning assets—are linked to the bank’s revenue genera-
tion capacity, thus influencing its financial performance. These variables are assumed
to reflect uncertainty due to factors such as market volatility, changes in regulatory
requirements, and economic shifts that can affect both input and output. Descriptive
statistics for the input and output measures are provided in Table 3, which details the
variables used across the three samples.

4.1 Set-up

Each uncertainty set can be adjusted using a scaling parameter. We set the uncertainty
level for all the input and output data (Z;; and 3,.;) at 1%, 5%, and 10% of the nomi-
nal value to capture a range of potential variations and assess the robustness of our
results under different levels of uncertainty (Hatami-Marbini and Arabmaldar 2021;
Toloo et al. 2022)°. These levels are chosen to reflect varying degrees of confidence
in the data, allowing us to evaluate how sensitive the performance measures are to
changes in the accuracy of input and output values. In addition, we set the probabil-

°For example, with a 5% uncertainty level, a nominal value of 300 varies within an interval of [295, 315].
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Table 3 Descriptive statistics of inputs and outputs (in thousand USD) for three samples

Descriptive Input 1(x1) Input 2(x2) Input 3(z3) Output 1(y1) Output 2(y2)
statistics Deposits & Equity Fixed assets  Gross loans Other earning
Short-term assets
funding
Sample size: 50
Mean 20,983,682.62 1,502,051.78 128,065.61 20,018,731.27  10,324,543.59
Min 26,892.34 3,181.62 162.74 2,977.02 4,770.21
Max 322,973,827.28 18,062,174.57 1,714,310.00 323,764,206.81  134,002,711.32
SD 64,139,219.71  3,804,040.20 387,995.41  64,439,147.23  29,939,498.33
Sample size: 80
Mean 14,586,792.70 1,065,451.81 98,156.43 13,768,655.28 7,302,286.86
Min 26,892.30 3,181.63 162.66 2,977.04 4,770.24
Max 322,973,827.30  18,062,174.56  1,714,310.03  323,764,206.83  134,002,711.32
SD 51,359,518.20  3,062,081.60 324,484.44  51,594,069.12  24,094,636.20
Sample size: 100
Mean 14,658,123.33 1,097,496.34 147,073.36  14,133,661.50 7,202,571.52
Min 26,892.29 3,181.61 162.75 2,977.02 4,770.19
Max 322,973,827.31  18,062,174.59  3,383,799.11  323,764,206.77 134,002,711.31
SD 48,031,165.74 483,785.42  49,287,487.14  22,404,410.84

ity of constraint violation for both inputs and outputs to less than 1%, reflecting a
reasonable level of risk tolerance for decision-makers. Let us consider the following

uncertainty sets:

® Budgeted uncertainty: To model data uncertainty for budgeted case, an appropri-

ate level of uncertainty budget I" can be selected based on the following equation;
() =1+ Q71— ¢e)y/n, where ) shows the cumulative distribution of the
standard Gaussian variable, n is the number of uncertain inputs and outputs in
each constraint, and ¢ denotes the violation probability of the constraints (Bert-
simas and Sim 2004). For this case study, with sample sizes of 50, 80, and 100
banks, and a violation probability of input/output constraint sets at less than 1%,
the required levels of the budget of uncertainty I" are at least 17.40, 21.75, and
24.26, respectively. These values ensure that the model is robust against approxi-
mately 34%, 27%, and 24% of the uncertain data achieving their worst-case val-
ues.

Variable budgeted uncertainty: Under variable budgeted uncertainty, we use
the cardinality of the robust optimal solution (|[A*| = Z?Zl A7) rather than

the number of uncertain data, n, in each constraint. First, the optimal solution
values for A* are obtained using the robust DEA model (5) for a given uncer-
tain parameter I' and for each input and/or output constraint. In this study, for
sample sizes of 50, 80, and 100, and with a violation probability of input/out-
put constraints below 1%, the values of ||A*|| fall within the ranges [0.0017,
12.6023], [0.0007, 12.2696], and [0.0007, 60.7252], respectively. The maximum
value of ||[A*|| is then used to estimate the affine functions v* (A) and ¥ ().
We estimate the best over-approximating affine functions v* (A) and ¥ (A) by
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max |8 (T') — 4" (X) (4¥ (X))] to ensure that v* (A) andy? (A) are an upper ap-
proximate of I'(¢). This approach guarantees that 2" () and UBY () yields
the probabilistic bounds equivalent to U (I'?) and U (T'¥), respectively. In this
study, the over-approximating I'(¢) is estimated using a linear function. In other
words, for each value of n, we compute I'(¢) = S.(n) and then derive the affine
functions y7(A) and ¥ () that overestimate .. It should be noted that analysts
may use alternative affine functions considered more appropriate for their specific
problems or adjust them based on experimental results.

® Order statistic uncertainty: The proposed robust model (16) with the order statis-
tic uncertainty set requires the quantiles p;;, as input parameters. In practical situ-
ations where historical data is unavailable, experts may select these parameters
based on institutional knowledge and experience (Zhang and Gupta 2023). For
this study, to ensure a fair comparison with the budgeted and variable budgeted
uncertainty sets, we use Theorem 1 to identify the quantiles p;. In doing so, we
set ' — [I'*] and T'Y — [T'Y] for input and output constraints. For sample sizes
of 50, 80, and 100, and with a violation probability of input/output constraints
of less than 1%, the quantiles p;;, are selected to be at least 0.40, 0.75, and 0.26,
respectively. While Theorem 1 suggests that the robust models (5) and (16) yield
equivalent results, the lack of historical data and the simplified calculations indi-
cate that the results are approximately the same.

To deepen the discussion of these uncertainty sets within a banking context, we elab-
orate on how each framework captures distinct types of operational risk and informs
managerial decision-making. In the banking sector, budgeted uncertainty represents
situations where only a limited number of input and output parameters are expected
to deviate from their nominal values, subject to a predefined deviation budget. This
is particularly realistic in diversified loan portfolios, where adverse events may affect
only certain borrower segments (e.g., small businesses in a particular region) without
causing system-wide disruption. The budgeted model captures this partial deviation
scenario by allowing a bounded number of coefficients to change, thereby enhancing
robustness without being excessively conservative. This ensures that banks maintain
performance under typical volatility without unnecessarily restricting lending or cap-
ital flows. Variable budgeted uncertainty builds on this by allowing the uncertainty
budget itself to vary in response to external indicators such as macroeconomic condi-
tions, variations in credit risk assessments, and real-time stress-testing feedback. For
example, a bank may tighten the uncertainty budget when facing early warnings from
market stress tests or regulatory alerts. This dynamic adjustment enables banks to
tailor their robustness levels to prevailing conditions, supporting agile responses and
more efficient capital deployment. In contrast, order statistic uncertainty models the
impact of extreme deviations, focusing on the largest observed disruptions across the
input—output space. In banking, this reflects rare but high-impact scenarios such as
widespread defaults during financial crises or sudden liquidity shortages from mass
customer withdrawals. By concentrating on these worst-case deviations, the model
prioritises resilience against tail risks. While more conservative, this framework is
well-suited for stress-testing, contingency planning, and regulatory capital adequacy
assessments.
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Beyond the mathematical modelling, the level of conservatism embedded in each
robust optimisation approach carries significant implications for banking operations.
A low level of conservatism—characterised by tight uncertainty budgets—enables
banks to remain competitive by maximising lending volumes and returns, but it also
exposes them to higher risk in volatile environments. Conversely, high conservatism
increases capital buffers and reduces exposure to uncertainty but may result in lower
profitability, reduced market share, and underutilised resources.

For example, a bank using the order statistic model may choose to hold excess
capital to guard against worst-case loss scenarios, while a bank relying on the bud-
geted model may opt to reallocate capital based on the most probable disruptions.
The ability to adjust conservatism in line with the institution’s risk appetite, strategic
goals, and regulatory requirements is essential. The robust DEA models presented in
this study offer decision-makers structured tools to navigate these trade-offs, enhanc-
ing the transparency, accountability, and stability of performance assessments under
uncertainty.

In the next step, we utilise the CPLEX and Gurobi solvers within the GAMS
environment to execute the models efficiently and obtain results in polynomial time.
These solvers are renowned for their robustness and capability in handling large-
scale optimisation problems, allowing us to solve the models effectively and manage
computational complexity.

4.2 Empirical results

Table 4 reports the descriptive statistics of efficiency scores for different levels of per-
turbations for three different sample sizes!®. Notably, a 0% perturbation corresponds
to the deterministic case, which is identical for all robust DEA models, regardless
of the uncertainty sets used. As observed in Table 4, for each robust DEA model,
increasing the level of perturbations leads to higher robust efficiency scores. Com-
parison reveals that the proposed robust DEA model with the order statistic uncer-
tainty set, model (16), demonstrates smaller changes compared to the robust DEA
models with budgeted and variable budgeted uncertainty sets, models (5) and (10),
respectively. For example, with a sample size of 100 and 10% data uncertainty, the
mean efficiency scores for the robust DEA models are as follows: 0.6020 for model
(5), 0.6676 for model (10), and 0.5563 for model (16). These results indicate that the
proposed robust DEA model with the order statistic uncertainty set is more robust
compared to the models with budgeted and variable budgeted uncertainty sets'!. This
occurs due to the greater geometric flexibility of the order statistic uncertainty set
compared to budgeted and variable budgeted uncertainty sets.

As shown in Table 4 and consistent with Theorem 3, the efficiency scores obtained
from the robust DEA model (10) with the variable budgeted uncertainty set are higher

197t should be noted that in the reporting of tables and figures, we also use the names of the uncertainty sets
to better illustrate the impact of each uncertainty set on the robust DEA models.

'Detailed results using the existing robust DEA model (5) and the proposed robust DEA models (10)
and (16), for varying levels of perturbations across all three sample sizes are provided in Supplementary
Materials.
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than those from the robust DEA model (5) with the budgeted uncertainty set. Further-
more, in accordance with Theorem 6, Table 4 indicates that the efficiency scores for
the robust DEA model (5) with budgeted and robust model (16) with order statistic
uncertainty set are approximately the same.

The kernel density curves of efficiencies for the existing robust DEA models (5)
and the proposed robust DEA models (10) and (16) are shown in Fig. 2, illustrating
the distribution of efficiencies across different perturbation levels and sample sizes of
50, 80, and 100. The curves demonstrate increased convergence with larger sample
sizes, with the most notable convergence occurring between the density curves of the
existing robust DEA model (5) with the budgeted uncertainty set and the proposed
robust DEA model (16) with the order statistic uncertainty set. In particular, the most
significant convergence is observed for the proposed robust DEA model (16) with the
order statistic uncertainty set when the sample size is 100 and the perturbation level
is 10%. In addition to the findings described above, Fig. 2 shows that for all three
uncertainty sets, as the level of perturbations increases from deterministic (0%) to
10%, the distribution of efficiencies becomes smoother.

The three robust DEA methods may give different ranks to each unit. We utilise a
non-parametric statistical test to validate the fitness between them, and the correla-
tion with each other. To assess potential shifts in efficiency rankings across banks
under robust DEA models with budgeted, variable budgeted, and order statistic sets,
we conduct Spearman rank correlation analysis for three various sample sizes of 50,
80, and 100, as presented in Table 5. The analysis reveals a strong and statistically
significant correlation between the estimates from the existing robust DEA model
(5) and the proposed robust DEA models (10) and (16), with correlation coefficients
ranging from 0.9677 to 1. Notably, the correlation between the existing robust DEA
model (5) and the proposed robust DEA models (10) and (16) increases with larger
sample sizes. This empirical evidence, along with the convergence of efficiency den-
sities illustrated in Fig. 2, supports the consistency and reliability of the alternative
robust DEA models, particularly the robust DEA model with the order statistic uncer-
tainty set.

The previous analyses demonstrate that data uncertainty has a significant impact
on the outcomes of efficiency assessments. We utilise the concept of the PoR to eval-
uate how well banks can handle data uncertainty. Fig. 3 displays the average and stan-
dard deviation of the PoR for three robust DEA models across different sample sizes
and levels of data perturbation. It is evident that both the average and standard devia-
tion of the PoR increase with higher levels of data perturbation for all three robust
DEA models. Therefore, decision-makers should consider data uncertainty to avoid
making overly aggressive decisions when assessing organisational performance.
Among the models, the robust DEA model (10) with variable budgeted uncertainty
is more sensitive to data uncertainty, exhibiting a higher PoR as data perturbation
levels increase. In contrast, the robust DEA model (16) with the order statistic uncer-
tainty set provides more robust efficiency levels across all DMUs, making it a more
consistent benchmark for efficiency comparison and better at accommodating data
fluctuations.

To further analyse inefficiency and the PoR, we employ K-means clustering pro-
posed by Jain (2010) to examine the performance of European banks with a sample
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Fig. 2 Kernel density curves for robust efficiency scores (0%, 1%, 5%, 10%)

size of 100, utilising results from the robust DEA model (5) with budgeted uncer-
tainty and the proposed robust DEA models (10) and (16) with variable budgeted and
order statistic uncertainty sets, respectively. Inefficiency, defined as "1-efficiency", is
used to align with the PoR, where lower values are preferable. The banks are classi-
fied into three clusters based on average inefficiency and the average PoR for deter-
ministic and uncertain scenarios (1%, 5%, and 10%).

Fig. 4 illustrates the clustering distribution of the 100 European banks. The banks
are divided into three clusters: cluster 1 (At-risk), cluster 2 (Moderate), and cluster
3 (Excellent), with each cluster defined by its centre and marked with a red circle,
diamond, and triangle, respectively. The banks in cluster 3 demonstrate lower inef-
ficiency and PoR, indicating superior (excellent) performance relative to the group
average. As detailed in Supplementary Materials, banks in cluster 3 are efficient in
both deterministic and uncertain conditions.

By analysing these clusters, bank managers and data analysts can gain valuable
insights into the relative performance of different banks under uncertainty. This
approach helps identify which banks are performing efficiently and which are lag-
ging, providing a clear picture of how well banks handle data perturbations. The
"Excellent" cluster, characterised by low inefficiency and a favourable PoR, can
serve as a benchmark for best practices and high performance in managing uncer-
tainty in both inputs and outputs.

These banks demonstrate effective resource management and operational effi-
ciency despite data fluctuations, setting a standard that others can aim to emulate.
For banks in the “Moderate” cluster, there is potential for improvement by focus-
ing on optimising their resource allocation. This may involve reducing inputs while
maintaining outputs, thus enhancing their efficiency and moving closer to the per-
formance of the “Excellent” cluster. Banks in the “At-Risk” cluster face more sig-
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Fig.3 The PoR for different level of data perturbations and samples

nificant challenges and may require more comprehensive interventions. These banks
should prioritise reducing inefficiencies by significantly improving their resource
utilisation. This could involve re-evaluating and re-allocating resources, enhancing
operational processes, and addressing major inefficiencies to boost performance. The
goal is to reduce inputs without compromising outputs, thereby improving efficiency
and robustness under uncertainty. Overall, this clustering approach provides a frame-
work for understanding performance variability under data uncertainty. By targeting
strategies to optimise resource usage and manage uncertainties, banks can improve
their efficiency, better handle data perturbations, and achieve more stable and robust
performance outcomes.

4.3 Managerial implications

In the banking sector, where the conversion of multiple financial inputs into outputs
is complex, benchmarking methods such as DEA are frequently employed to assess
performance (Fukuyama et al. 2023; Tzeremes 2015). However, traditional DEA
models often overlook data uncertainty—an inherent challenge in banking due to
market volatility, regulatory changes, and other unpredictable factors (Zervopoulos et
al. 2023). As a result, these deterministic DEA models may be less effective in captur-
ing the true performance of banks under uncertain conditions.

Our study develops robust DEA models and compares them with existing robust
DEA approaches, using empirical data from European banks. The findings highlight
that incorporating uncertainty into efficiency measurements can indeed be costly for
banks. In particular, our results show that the costs associated with robustness vary
based on uncertainty levels (1%, 5%, and 10%) and sample sizes (50, 80, and 100).
This variation offers managers the flexibility to choose the appropriate robust DEA
model based on their risk tolerance and expertise, allowing for more informed deci-
sion-making in an unpredictable environment. The study’s findings highlight that the
proposed robust DEA models represent a substantial enhancement over traditional
and existing robust DEA approaches. By accounting for various types of uncertainty
and different sample sizes, we demonstrate that these models provide a more reliable
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Fig. 4 Clustering distribution positions of the banks

and resilient assessment of efficiency. While our empirical study focuses on a spe-
cific financial institution, the robust DEA approach is adaptable to various banking
contexts, including online banking and branch networks. Given the complexities of
the banking industry—such as regulatory changes, market volatility, and economic
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disruptions—handling data uncertainty and developing robust DEA models to align
with real-world conditions is crucial. The proposed model enables bank managers to
evaluate performance under varying levels of conservatism, revealing how different
banking regions or branches respond to varying uncertainties. These insights enable
managers to develop effective strategies that enhance decision-making and improve
bank performance in the face of unpredictable events, such as financial crises, interest
rate fluctuations, and economic downturns.

The findings indicate that only a few banks—such as Abbey National Treasury Ser-
vices Plc, ABC International Bank Plc, Airbus Group Bank GmbH, Aletti & C. Banca di
Investimento Mobiliare SpA-Banca Aletti & C. SpA, Alior Bank Spotka Akcyjna, Ameri-
can Express Austria Bank GmbH, AXA Bank Europe SA/NV, Banca Aletti & C. Spa, and
Banca Mediolanum SpA—maintain robust efficiency under both deterministic and uncer-
tain conditions. These institutions exemplify best practices in managing operational and
environmental uncertainties, demonstrating resilience and adaptability in a volatile sector.
Policymakers should take note of these examples and prioritise addressing operational
uncertainties in their strategies. By improving service quality, banks can attract a larger cus-
tomer base and increase transaction volumes. Furthermore, effective management practices
that tackle unforeseen events and operational challenges, such as fluctuations in transaction
volumes and customer wait times, are crucial for sustaining high performance.

In conclusion, the study highlights the importance of incorporating uncertainty
considerations into efficiency assessments. The robust DEA models developed in this
paper provide a valuable framework for evaluating bank performance in a more realis-
tic and comprehensive manner. For banks and policymakers alike, understanding and
applying these models can lead to more informed decisions, improved service quality,
and enhanced overall performance in the face of an unpredictable financial landscape.

5 Conclusion

DEA models are widely used to evaluate performance but often neglect data uncer-
tainties that are prevalent in real-world environments, such as financial institutions
and hospitals. This oversight can lead to unreliable outcomes when minor data fluc-
tuations occur. To address this challenge, robust optimisation has been incorporated
into DEA models to improve their reliability under uncertain conditions. This paper
introduces two new robust DEA models—using order statistic and variable budgeted
uncertainty sets—to extend existing robust DEA models and reduce inefficiencies
in the presence of uncertainties in both inputs and outputs. It discusses how existing
robust DEA models under budgeted uncertainty sets represent a special case of the
proposed models when the robust parameter is appropriately selected. The budgeted
uncertainty set is superior for stable environments, offering simplicity and compu-
tational efficiency, while the variable budgeted uncertainty set is suited for dynamic
contexts with fluctuating uncertainties. The order statistic uncertainty set is particu-
larly valuable for managing extreme risk factors. The decision to use one uncertainty
set over another depends on the nature of the uncertainties involved and the specific
priorities in risk management. This choice allows for tailoring performance assess-
ments and risk management strategies according to specific needs and risk profiles.

@ Springer



A. Arabmaldar, A. Hatami-Marbini

Future research could explore several avenues to further improve robust DEA
models. Key areas include investigating performance factors that significantly impact
robustness in both deterministic and uncertain situations, extending empirical analysis
to larger datasets to understand the role of data uncertainty in big-data analytics (Khe-
zrimotlagh et al. 2019), and applying various uncertainty sets to other DEA methods,
such as the Malmquist and Luenberger productivity indices, to analyse productivity
changes over time. A promising direction for future research is to extend the proposed
model using a directional distance function (DDF), as demonstrated by Arabmaldar et
al. (2023) for budgeted uncertainty sets, to further enhance its modelling flexibility. In
addition, studies could focus on developing robust network and dynamic network DEA
models using diverse uncertainty sets, improving their applicability in complex and
uncertain environments. We also acknowledge the importance of data-driven methods
for defining uncertainty sets in robust optimisation, as highlighted in Bertsimas et al.
(2018). The application of data-driven techniques to define uncertainty sets directly
from empirical distributions could further enhance the practical relevance of robust
DEA models, particularly in data-rich environments where leveraging historical pat-
terns can support more informed and adaptive decision-making.

Appendix: Proofs

Proof of Proposition 1 According to the defined uncertainty sets in (4) and the inner
optimisation problem in model (3) based on U” (I'*) and B (T'"Y), we have the fol-

lowing problems for the i*® input and ~** output constraints:

Z'th
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Without loss of generality, let us focus on the input constraint. Examining (8)

closely reveals that the optimal solution of model (A1) for the input constraint is
Z* = (z;f”j*,zf; ) ,Vj € J¥. At optimality, the variables zfj and zfo* are equal to 1 to
satisfy the integer part of I'?, denoted by [I'7], while the fractional part 'Y — [I'¥] is
distributed between zfj* and 2%, to maximise the objective function of (A1). This is
equivalent to selecting a subset of {S¥ U {7 }|SF C J7F,|S7| = [T?],af € JP\SF}
with the corresponding objective function (6). (]

Proof of Theorem 1 The protection functions 3; (A", Z (X)) and B, (X", UY B (X))

in model (9), which correspond to their input and output constraints, can be repre-
sented by the following optimisation problems, respectively:

max Z |)\]‘ Zizji'ij + |)\o - 90| Z;vro.fz'o
JEJF(j#0)
s.t.
> ah<Ar (), (A2)
jeJz
<1, VjeJs,
z >0, VjelJ?,
max Z A ygjgrj + Ao = 1] 225 0ro
JEJ (j#0)

s.t

S <), a
jeJy

2, <1, VjieJ,

szj >0, VjelJy.

Consider the dual models of (A2) and (A3) as follows:

minp! 7 A+ > qf
JETT j#o
s.t.
’ ’ N 3 . A4
pi a4 =Nl 2y, Vi€l i#o, (A4)
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minpf ¥ () + D al
JEJE o
s.t.
Py +ql, > Ao = 1 Jro, o€ JY,

(AS5)

where p* (p¥') and qg‘; (qff;) are the dual variables associated with the first

and second sets of constraints in models (A2) and (A3), respectively. Since
Njz0 > 0,(0, —Xo) >0, and (1 —X,) >0, the absolute signs in models (A4)
and (A5) can be removed. As a result, the input constraint sets in model (9) can be
expressed as follows:

ZAjmj + P AE (A) + Z q;’“’] < bozi0, Viel,
jeJ JEJIT jFo

pf: + qu: > Nk, VieINjeJrj#o, A6
P74l > (0o — Xo) Zio, VieIl,oe€JF,
p? L qf >0, VielVjeJ?,

A, >0, Vied

Likewise, the output constraint sets in model (9) can be reformulated with the fol-
lowing set of constraints:

Z)‘ijj =i (A) — Z qgj > Yro, VrE€R
jeJ JeIr j#o
P+ a2 Ny Ve € R € T £ o "
PV ate = (1= Ao) o, Vr € R0 € JY,
pY.q’ >0, VreRVYjeJy,
A >0, Vjeld
The bilinear terms p¥ 7% (A) =p¥ (4& + dies vf)\j) and  p¥ Y (N)
=V (¥ + jeq Vi )\j) inmodels (A6) and (A7), respectively, should be linearised.
In doing so, we introduce the variable alteration w;; = pf,)\j and w? ;= py,Aj, and
then apply the approach proposed by Poss (2013, Proposition 1, page 86), as formu-
lated below:
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D oNw +pF %+ D> i+ Y qf < boxio, Vi€l
jet jegs jegs

plm,-f—qZ,ZA]fU, VZEI,Vjle7.]§AO7
pf, +qgﬁo, 2 (0o — o) Zio, Vi€l o€ Jf,

wl —pd > M, (1-;), VielVjeJ?, (A8)
Aj < Mhi, Yjed,

P gl wl >0, YielVje s
hi € {0,1}", VjeJ,
/\jZO, VjEJ,

and

S Ny =l = > Al = Y 4 2y, VrER,

jeJ jeJY jeJy

Y 4% > N, Vr € Rj €Y #o,

P!+ > (1= o) o, ¥r€R0€JY,

w! —pY > —M,(1-);), VreRVjelJ, (A9)
Nj < MJhY, Vi€,

p%l,qff;—,wffj, >0, VYreR,jeJ!,

hY e {0,1}", VjeJ,

A >0, Vjed

where M, and M, are sufficiently large constants. Since each p;f, and pi’l must sat-

isfy p?’ + qu/ > \;jZ;; and p¥ + quJI > Aj¥rj, it is sufficient for M, and M, to be

as large as max(%,;) (Vi € I) and max(y,.;) (Vr € R), respectively. Moreover, since
J J

constraints (A8) and (A9) do not impose any additional restrictions on p;”, and p%l, we
can choose M, and M, equal to max(%;;) (Vi € I) and max(y,.,;) (Vr € R), respec-
J J

tively. The auxiliary binary variables, h%, h¥ € {0,1}", are introduced in models (A8)
and (A9) to ensure that \; < Mh7,¢f € Buy (0) and \; < MjhY, qf € Bay (0),
where By, (0) and By (0) represent the balls centred at the origin with radius A
and M, respectively, that are sufficiently large to maintain the feasibility of model
(A8) and (A9)'?. In other words, the optimal values of A} for models (A8) and (A9)
fall within the boundaries defined by By (0) and By, (0). Simply put, any optimal

values of A7 (Vj € J) that lie within By, (0) and By, (0) are considered feasible

121t should be noted that the concept of the budgeted uncertainty set was initially proposed for binary
decision variables and later extended to bounded real or integer variables (Poss 2013, Sect. 5, Theorem 2).
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(see Poss 2013 for further details). Given that A ., ,  4) <1, itis assumed that
M;, = M,, = 1. Rewriting constraints (A6)—(A9) completes the proof. O

Proof of Theorem 2 Assume \, =0(Vj € J7,j # 0),0V8 =1, p =p¥ =
wf; =w!; = qf =q¢*; =0(Vi € I,Vr € R,Vj € J7), and h? = h¥ = 1(Vj € .J).
This feasible solution completes the proof of the first part of the theorem.

To prove that 9;/3* <1, we first consider the feasible solution described
in (i). For model (10), which is a minimisation model, the objective func-
tion value 6Y5* is at most 1. Next, we show that 0Y5* >0 by contra-
diction. Assume 0YPU* =0 and the input constraints are converted to
S Nz AR+ Y Yiws + Y qf’j/ < oo, Vi € I.Giventhenon-negative
j€T jeJE jeJE
assumptionforthedata, thisimplies \; = pf/: wi; = qu/ =0, (Vy € JF,Vi € I).This
leads to a contradiction because the second constraint, 3 A;yr;—p¥ 76— > v w;

JjeJ jeJy
- > qffj > Yro, V7 € R, requires \; to be non-zero. Thus, combining these results,

VISEAS

we have 0 < Y BU* < 1. O

Proof of Theorem 3 Consider the following equations (a) and (b) that corresponds to
the input constraints in models (5) and (10), respectively:

ZjEJ Ajzij + Zje]f q;’:] +I'fpf

Do Nwg+ Y +TIp < Oowio = 0, > : Vi€, (a)
jeJ jeJe Tio
Zijij +pi 7%+ Z viwi + Z ai; < bowio, Vi€ I =
jeJ jETE jeJe
S ies Nilni FPE R+ Y jese VT + e e 0
9, > =< - IEN 0 W I e, (b)

Lio

where 6, is a decision variable. We consider the following two cases to complete the
proof:

Case (1): if v¥ (X) = T'? and 7Y (A) = I'Y, then the numerators in inequalities (a)
and (b) coincide, resulting in 5* = 9Y B*,

Case(ii): Since ¥ (A) and 7Y () are the best over-approximating affine functions
of I'? and T'Y, respectively, we have 6} B* > 95~ O

Proof of Theorem 4 By considering the protection functions in (15), Proposition 2,
and the dual formulation of models (13) and (14), we obtain the following models:
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mianEJ;( HIES @fj)
S.t.

5+ Ph > Tij |\l ol Vi k€ JT G F# o, (A10)
fo+@fozfi0|>\o*90|pfm o€ J?.

min} e sy (Yr; + Or;)

s.t. ALD

I grj (Nl oY Vi k€T # o,
£o+¢5?ozxr0|)‘0_l‘p¥a7 OGJ;}'

It is straightforward to verify that the new robust DEA model (16) can be derived
by applying strong duality and substituting models (A10) and (A11) into the input
and output constraints (15). O

Proof of Theorem 5 Assume A, =1,A\; =0(Vj € J,j#0),0, =11 =
o1 =0(Vie IV, ke JP) ,w}fj = oY, =0(Vr € R,Vj,k e JY). This feasible
solution completes the proof of the first part of the theorem.

(ii) First, we prove that #9%* < 1. Given the feasible solution presented

in (i) and considering model (16) as a minimisation problem, the objec-
tive function value #9°* is less than or equal to 1. Then, to show that
695* > 0, we proceed by contradiction. Assume 69°* =0, which changes the
input constraints of model (16) t0 3 ;¢ ; wijAj + ;¢ o (Vi + @) < 0,0 € I, or
D jege (b + @) < =37 yxiiAj, Vi € 1. By summing up the third and fourth
constraints in model (16), we arrive at Ejle( 5+ D5) = = X es TigAjpijk
leading to > ;o (1f; + @§;) = 0, which, as per the first constraint, is not feasible.

]

Proof of Theorem 6 Without loss of generality, we consider the input constraint and
assume that there is only one constraint for both the budgeted uncertainty set and the
order statistic uncertainty set, thereby removing the 7 index.

Considering the robust counterpart DEA models (3) with the protection functions
Bi(A*,UB(T*)) and B,.(A*,UB(TY)) and (15), we need to prove that the optimal
objective values S(A*,UP% (")) and B(A*,U%(g)) are equal. Since model (13)
is the linear relaxation of the maximum weight assignment problem, which is known
to have an integer optimal solution, for each j € J*, there exists a unique k € J*
such that 07, = 1. If nf; = 1, then Z;; |A;| and [\, — 6, are paired with pji. As a
result, based on B(\*, LB (T'")) introduced in Proposition 1, and 3, (\*,US% (p®))
in Proposition 2, we have the following three cases:

If1 <k <|J*|— |T*| — 1, then Z;; |A\;| and |\, — 6,] are paired with 0,

If k = |J*| — ||, then &;; |\;| and |\, — 6,] are paired with I'" — |I'" |,

If |J*] — |T%] +1 < k < |J*|, then Z;; |\;| and |\, — 0,| are paired with 1,
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HCIICC, for all -i‘il |)\1| ,@1‘2 |>\2| g ,551‘(]” |)\|Jm‘

, we know that |I'”| of these
terms are paired with 1, one term is paired with I'* — |I'* |, and the remaining terms
are paired with 0. Therefore, model is equivalent to model (6), and their optimal
objective values are the same, i.e., B(\*,UPS(T®))=B(\*,U(p®)). Thus, the
proof is complete. 0
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