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Abstract

To enhance the efficiency, scalability, and cross-survey applicability of stellar parameter inference in large spec-
troscopic datasets, we present a modular, parallelized Python framework with automated error estimation, built on the
LAMOST Atmospheric Parameter Pipeline (LASP) originally implemented in IDL. Rather than a direct code
translation, this framework refactors LASP with two complementary modules: LASP-CurveFit, a new imple-
mentation of the LASP fitting procedure that runs on a CPU, preserving legacy logic while improving data I/O and
multithreaded execution efficiency; and LASP-Adam-GPU, a GPU-accelerated method that introduces grouped
optimization by constructing a joint residual function over multiple observed and model spectra, enabling high-
throughput parameter inference across tens of millions of spectra. Applied to 10 million LAMOST spectra, the
framework reduces runtime from 84 to 48 hr on the same CPU platform and to 7 hr on an NVIDIA A100 GPU, while
producing results consistent with those from the original pipeline. The inferred errors agree well with the parameter
variations from repeat observations of the same target (excluding radial velocities), while the official empirical errors
used in LASP are more conservative. When applied to DESI DR1, our effective temperatures and surface gravities
agree better with APOGEE than those from the DESI pipeline, particularly for cool giants, while the latter performs
slightly better in radial velocity and metallicity. These results suggest that the framework delivers reliable accuracy,
efficiency, and transferability, offering a practical approach to parameter inference in large spectroscopic surveys. The
code and DESI-based catalog are available via DOI: 10.12149/101679 and DOI: 10.12149/101675, respectively.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Astronomy software (1855); Funda-
mental parameters of stars (555); GPU computing (1969); Radial velocity (1332); Surveys (1671)

1. Introduction

In recent years, the rapid development of large-scale spec-
troscopic surveys—such as the Radial Velocity Experiment
(M. Steinmetz et al. 2006), the Large Sky Area Multi-object
Fiber Spectroscopic Telescope (LAMOST; X.-Q. Cui et al.
2012; G. Zhao et al. 2012; A.-L. Luo et al. 2015), the Galactic
Archaeology with HERMES (GALAH; G. M. De Silva et al.
2015), the Sloan Digital Sky Survey (SDSS; B. Yanny et al.
2009; S. R. Majewski et al. 2017; A. Almeida et al. 2023), the
Dark Energy Spectroscopic Instrument (DESI; DESI Colla-
boration et al. 2025), the Gaia Radial Velocity Spectrometer
(Gaia Collaboration et al. 2023; A. Recio-Blanco et al. 2023),
the 4.2 m William Herschel Telescope Enhanced Area Velo-
city Explorer (S. Jin et al. 2024), the Multi-Object Optical and
Near-infrared Spectrograph (M. Cirasuolo et al. 2020), the
upcoming 4 m Multi-object Spectroscopic Telescope (R. S. de
Jong et al. 2022), and the Chinese Space Station Telescope
(CSST; Y. Gong et al. 2019; CSST Collaboration et al. 2025)
—has provided, or is expected to provide, an unprecedented
observational foundation for studies of stellar physics and
Galactic structure.

These datasets enable the measurement of key stellar para-
meters, such as radial velocity (RV), effective temperature
(Teff), surface gravity ( glog ), metallicity ([Fe/H]), and dozens
of elemental abundances. To efficiently and reliably infer these
parameters, various automated pipelines have been developed,
including the APOGEE Atmospheric Parameter and Chemical
Abundance Pipeline (ASPCAP; A. E. García Pérez et al.
2016), the Cannon for GALAH DR1/DR2 (M. Ness et al.
2015; S. L. Martell et al. 2017; S. Buder et al. 2018), the Payne
for GALAH DR4 (Y.-S. Ting et al. 2019; S. Buder et al 2025),
the General Stellar Parametriser from spectroscopy in Gaia
DR3 (A. Recio-Blanco et al. 2023), the RVS and SP pipelines
in DESI (A. P. Cooper et al. 2023; S. E. Koposov et al.
2024, 2025), and the LAMOST Atmospheric Parameter
Pipeline (LASP; A.-L. Luo et al. 2015). These pipelines have
become essential tools for large-scale stellar parameter esti-
mation, offering robust and automated solutions across diverse
spectroscopic surveys.
However, with increasing sample sizes and expanding

parameter dimensionality, existing pipelines still leave room
for improvement in terms of computational efficiency and
joint-modeling capabilities. Most do not systematically exploit
GPU acceleration, making it challenging to process tens of
millions of spectra efficiently. Moreover, except for the Payne
(Y.-S. Ting et al. 2019) and its extension TransformerPayne
(T. Różański et al. 2025), atmospheric parameters and
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elemental abundances are often modeled independently, lim-
iting the ability to capture interparameter correlations in high-
dimensional spaces.
These limitations are particularly evident in the modular

design of LASP. In the current LAMOST low-resolution sur-
vey, RV, Teff, glog , and [Fe/H] for AFGK-type stars are
inferred using LASP, which incorporates the University of
Lyon Spectroscopic analysis Software (ULySS6), implemented
in IDL and optimized via the MPFit algorithm
(C. B. Markwardt 2009) (hereafter LASP-MPFit). In contrast,
projected rotational velocity (v isin ) and α-element abundance
([α/M]) are inferred using two separate Python-based modules
developed by F. Zuo et al. (2024) and W. Hou (2025, personal
communication), which rely on LASP-MPFit outputs as strong
priors. This modular separation prevents fully coupled multi-
parameter inference, which not only propagates prior errors
across sequential modules but also limits the framework’s
capacity to enforce joint constraints and capture parameter
correlations, thereby potentially compromising both its accur-
acy and extensibility. Additionally, the IDL-based implemen-
tation is increasingly difficult to maintain and limits flexibility
for adaptation to other surveys. Such architectural and
methodological fragmentation is not unique to LASP; similar
inconsistencies frequently arise when integrating stellar
parameters derived from different survey pipelines. Differ-
ences in algorithmic design and modeling assumptions across
surveys can introduce hard-to-quantify deviations in the
resulting stellar parameters, complicating their cross-survey
integration. Therefore, developing an efficient and readily
implementable inference framework for high-dimensional
joint optimization, with the flexibility to adapt to different
surveys, will facilitate consistent analysis and integrated
modeling of multisurvey data.
Motivated by these challenges, we develop a new Python-

based architecture for LASP7 (hereafter PyLASP) that supports
efficient inference, multitask joint modeling, and cross-survey
compatibility. The framework incorporates two optimization
strategies: LASP-CurveFit, a CPU-based implementation of
the Levenberg–Marquardt algorithm (K. W. Vugrin et al.
2007), and LASP-Adam-GPU, a GPU-accelerated method
based on the Adam optimizer (D. P. Kingma & J. Ba 2014).
LASP-CurveFit preserves the logic of LASP-MPFit while
restructuring the codebase for improved I/O and multi-
threading performance using Python. LASP-Adam-GPU per-
forms grouped optimization by minimizing a joint residual
function over multiple spectra in each group, using the
PyTorch library (A. Paszke et al. 2019) to support scalable
and parallel inference for large datasets and high-dimensional
parameter spaces. Thanks to the flexibility of Python and its
extensive scientific ecosystem, this framework is easily
extensible and transferable across surveys such as DESI and
CSST. Given that LASP-MPFit forms the foundation for other
parameter modules in LAMOST, its IDL-based implementa-
tion has certain limitations in computational efficiency and
scalability. We therefore prioritize the reimplementation of
this module, which serves as the baseline method for
performance and consistency evaluation in subsequent experi-
ments. Other modules, such as v isin and [α/M], adopt
different modeling strategies and are not yet included in the

current framework. Their integration will be explored in future
work as part of a unified framework for high-dimensional
abundance inference.
This paper is organized as follows. In Section 2, we intro-

duce the overall structure of PyLASP. Section 3 describes the
datasets used to evaluate the performance of LASP-CurveFit
and LASP-Adam-GPU. In Section 4, we present results on
inference efficiency, robustness, error modeling, and general-
ization to DESI DR1. Section 5 provides an overall summary
of this work.

2. Methodology

To support large-scale stellar parameter inference, we
develop LASP-CurveFit and LASP-Adam-GPU based on
LASP-MPFit. LASP-MPFit is designed to infer RV, Teff, glog ,
and [Fe/H] for AFGK-type stars in the LAMOST survey
(Y. Wu et al. 2011a, 2014; A.-L. Luo et al. 2015), using
version 3.2 of the ELODIE library (Y. Wu et al. 2011b) and
the ULySS package implemented in IDL (M. Koleva et al.
2009a, 2009b; Y. Wu et al. 2011b). LASP-CurveFit is
designed for CPU environments, with a restructured parameter
inference procedure that improves I/O efficiency and multi-
threading performance. In contrast, LASP-Adam-GPU intro-
duces further optimization across multiple modules—such as
data loading, spectral generation, and wavelength resampling
—and adopts a grouped optimization strategy that minimizes
the rms residual across multiple spectra, thereby enhancing
inference throughput and enabling future extensions to multi-
element abundance inference.

2.1. LASP-CurveFit

LASP-CurveFit is primarily designed for efficient stellar
parameter inference from individual spectra and is scalable to
large spectroscopic datasets through parallelization with the
joblib library (G. Varoquaux et al. 2024). Spectral data are
read from FITS files using the Astropy library (The Astropy
Collaboration et al. 2022) and organized into dictionary-based
structures to facilitate rapid access during parameter inference.
The core components of LASP-CurveFit include modules

for χ2 computation, wavelength resampling, resolution
degradation, and correction of shape differences between
model and observed spectra. These modules retain logical
consistency with LASP-MPFit. The main modifications are as
follows: (1) Since LAMOST spectra are in relative flux, the
observed spectra are median-normalized before fitting to
standardize the flux scale and improve numerical stability, and
to maintain consistency with LASP-Adam-GPU. This also
facilitates potential future comparison of χ2 values across
spectra. (2) All computations are implemented using the
NumPy library (C. R. Harris et al. 2020) and SciPy library
(P. Virtanen et al. 2020). (3) The optimization step replaces the
MPFit algorithm (C. B. Markwardt 2009) with scipy.
optimize.curve_fit, which provides covariance-based
error estimates for stellar parameters (K. W. Vugrin et al.
2007), thereby eliminating the need for the empirical error
correction previously required in LASP-MPjFit.

2.2. LASP-Adam-GPU

LASP-Adam-GPU is designed for efficient and scalable
stellar parameter inference from large spectroscopic datasets.
The current implementation targets the inference of

6 http://ulyss.univ-lyon1.fr/
7 https://github.com/LiangJunC/PyLASP

2

The Astrophysical Journal, 996:97 (17pp), 2026 January 1 Liang et al.

http://ulyss.univ-lyon1.fr/
https://github.com/LiangJunC/PyLASP


atmospheric parameters (Teff, glog , and [Fe/H]) and RV,
leveraging GPU-based parallel optimization to enable high-
throughput processing.
The framework consists of nine sequential stages: (1) defi-

nition of input spectral data formats; (2) generation of model
spectra for arbitrary atmospheric parameters; (3)–(5) spectral
processing to ensure consistency with observed spectra in
wavelength, resolution, and continuum shape; (6) identifica-
tion of bad pixels; (7) spectral comparison between processed
models and observations; (8) iterative optimization of para-
meters, with repeated execution of steps (2)–(7) until conv-
ergence criteria are met; and (9) error estimation for the final
parameters. The entire workflow is implemented with GPU
parallelization to maximize computational efficiency. Details
of each stage are described below.

1. Storing batch data. Spectroscopic data are read using the
Astropy library and serialized into PyTorch tensor files
(.pt), each containing 20,000 spectra. These files sup-
port efficient memory access during inference. In each
optimization cycle, up to N < 20,000 spectra are loaded
as a group and jointly processed on the GPU for parallel
inference of Teff, glog , [Fe/H], and RV.

2. Generating N model spectra for each group. For any set
of N stellar atmospheric parameters θ1, θ2,…, θN
( T g, log , Fe Hi eff [ ]/= ), we use PyTorch to generate a
group of N model spectra:
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where Fi is the ith model spectrum; Tj denotes the jth
column of F, corresponding to the flux values at the jth
wavelength pixel across all N spectra; and q is the number
of flux points in the model spectrum. The functions f1
through f5 are used to generate spectra over different Teff
regimes—Teff� 4000 K, 4000< Teff� 4550 K, 4550<
Teff� 7000 K, 7000< Teff� 9000 K, and Teff > 9000 K,
respectively—and satisfy
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where f1(θ1),…, f5(θN) are model spectra generated using
the ELODIE spectral emulator in ULySS.8

3. Resampling to the LAMOST linear wavelength grid. We
adopt a flux-conserving interpolation method (for a dis-
cussion of flux conservation, see A. C. Carnall 2017) to
resample the model spectrum F (Equation (1)), originally
defined on a linearly spaced wavelength grid λ11,
λ12,…, λ1q with a step size of Δλ1, onto the LAMOST

wavelength grid:

e e, , ,p21 2
p21 2= … =

where λ2i(i = 1,…, p) denotes the logarithmically spaced
wavelength sequence of LAMOST (base e), with a step
size of Δλ2, and p is the number of flux points in the
observed spectrum. The entire resampling procedure
consists of four steps:
a. Constructing the wavelength integration nodes. First,
construct the wavelength integration nodes for the
model spectrum F as
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and the corresponding wavelength integration nodes
for LAMOST:
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b. Computing the integrated flux of the model spectrum.
The model spectrum F is cumulatively integrated
column-wise over its wavelength integration nodes to
obtain
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c. Computing the integrated flux at LAMOST integra-
tion nodes. The integrated flux of F (Equation (2)) is
linearly interpolated onto the LAMOST wavelength
integration nodes to yield
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d. Computing the resampled flux on the LAMOST linear
wavelength grid. The fluxes at 21, 22, …, p2 are
obtained by differencing the integrated values from
Equation (3). The N model spectra obtained through
batch resampling are denoted as
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and Fi denotes the resampled model spectrum
corresponding to the original F i (Equation (1)).

4. Convolving model spectra with a Gaussian broadening
kernel to match the resolution of the observed spectra.
To match the resolution of the LAMOST spectra, we
convolve the resampled model spectra F (Equation (4))
using torch.nn.functional.conv1d in batches:
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where G(μi, σi) is a Gaussian kernel of shape
1× (2 · ⌈|μi|+ 5σi⌉ + 1), and Fi denotes the spectrum8 http://ulyss.univ-lyon1.fr/uly_tgm_eval.html
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obtained by convolving F i with this kernel. The kernel
parameters μi and σi are specific to each spectrum and
are introduced to accommodate varying resolution and
RV offsets across the LAMOST spectra. In particular, μi

is used to model the RV of the ith observed spectrum
(R. P. Van Der Marel & M. Franx 1993; M. Koleva et al.
2009b; Y. Wu et al. 2011a, 2011b; P. Prugniel et al.
2011; M. Koleva & A. Vazdekis 2012; A.-L. Luo et al.
2015; M. Cappellari 2016; K. Sharma et al. 2016;
N. Kumar et al. 2025), and σi encompasses both the
instrumental broadening and the effects of rotation
(A.-L. Luo et al. 2015). In the subsequent optimization
process, all kernel parameters (a total of 2N) are jointly
inferred with the stellar atmospheric parameters (a total
of 3N).

5. Correcting shape differences between model and
LAMOST spectra. To correct the shape differences
between the model spectra F″ (Equation (5)) and the
LAMOST spectra—which arise from flux calibration,
Galactic extinction, and other effects that alter the spectral
shape (A.-L. Luo et al. 2015)—we apply a multiplicative
correction factor P(x)bi to each Fi , yielding
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where ⊙ denotes the Hadamard product. Li is the ith
LAMOST spectrum (a 1× p row vector), and wi is a
weighting factor applied to Li to reduce the flux differ-
ences among the N LAMOST spectra (see Section 3.3 for
details). The matrix P x p 51( ) ×R contains the values of
Legendre basis functions of degrees 0 through 50, eval-
uated at evenly spaced nodes,

x
j

p
j p1

2 1
, 1, , ,j

( )
= + = …

using scipy.special.eval_legendre. The coef-
ficient vector bi

51 1×R is obtained by solving
Equation (6) using weighted least squares (C. L. Lawson
& R. J. Hanson 1995).

6. Masking outlier pixels. Based on the flux residuals
between the observed and model spectra,

L
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i
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we use a masking vector Ai to mitigate the impact of
anomalous pixels on parameter inference. Like LASP-
MPFit, LASP-Adam-GPU supports two masking strate-
gies: No Clean and Clean. The No Clean strategy masks
only predefined problematic regions (e.g., the Na D
absorption lines), while the Clean strategy incorporates
the clipping algorithm9 that iteratively identifies and
masks outlier pixels through a three-step filtering pro-
cess. To enable large-scale spectroscopic inference, we
reimplement the Clean strategy from LASP-MPFit using

PyTorch. While preserving the original masking logic,
this implementation is restructured to support efficient
spectrum-wise parallel execution across N spectra,
making it suitable for GPU-accelerated workflows. It
consists of the following three steps:
a. Compute the primary outlier mask B i. For the jth
pixel of the ith spectrum, if

f G k ,i j i j, shift , i· ·>

then B i, j = 0; otherwise B i, j = 1. Here, i is the
standard deviation of ε i computed from the unmasked
pixels, and G F Fmax ,i j i j i j, , , 1(| |= F Fi j i j, , 1| |)+ is
the flux gradient at pixel j, used to assess whether ε i, j
can be attributed to minor wavelength shifts. The factor
fshift controls the comparison scale between the residual
and the flux gradient. Following ULySS conventions,
fshift is set to 0.5 in the first iteration and reduced to
0.2 in subsequent iterations to implement a progressive
filtering strategy. The threshold k starts from 3 and is
relaxed to k∈ {4, 5, 7} if the outlier fraction exceeds
3%. This step targets sharp outliers that cannot be
explained by the model, such as sky residuals, obser-
vational defects, or cosmic rays.

b. Compute the adjacent outlier mask C i. For each
pixel j already marked as an outlier in B i, its
neighboring pixels j j j1, 1{ }+ are exam-
ined. If

f G 2 ,i j i j, shift , i· ·>

then C 0i j, = ; otherwise C 1i j, = . This step aims to
eliminate secondary outliers that are adjacent to pri-
mary outliers but exhibit slightly smaller residuals,
helping to suppress small-scale structures such as
residual sky features.

c. Compute the neighborhood outlier mask D i. For
pixels j identified as an outlier in B i or Ci, their
neighbors j j j1, 1{ }+ are checked. If

f G
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,
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i j i j

i j i j

i j i j

, ,

, ,

, shift , i

·

·

>

>

then D 0i j, = ; otherwise D 1i j, = . Here,
i
is the

standard deviation of ε i computed from the
unmasked pixels. This step is repeated until the mask
converges, i.e., Di = Di+1, with a maximum of 20
iterations. This step further eliminates boundary pix-
els near primary outliers, allowing effective removal
of continuous spectral anomalies that cannot be fitted
by the model.

After the above three steps, the final mask matrix for the N
spectra is defined as

A

A
A
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B C D
B C D

B C D
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N N N N
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7. Constructing the objective function. To quantify the
discrepancy between the N LAMOST spectra and the
corresponding model spectra F″, we define the objective9 http://ulyss.univ-lyon1.fr/uly_fit.html
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function as

pN
A A

1
, 9

i

N
i i i i

T
1
( )( ) ( )=

=
L

where εi and Ai are defined by Equations (7) and (8),
respectively, representing the flux residuals and the pixel
masking vector for the ith spectrum. To mitigate poten-
tial numerical instabilities introduced by wavelength
resampling and multiplicative correction near the spec-
trum edges, edge pixels are excluded from the objective
function by default.

8. Minimizing the objective function. We adopt the Adam
optimizer (D. P. Kingma & J. Ba 2014) to minimize the
objective function defined in Equation (9), using the
initial parameter values provided by the correlation
function interpolation (CFI) method (B. Du et al. 2012),
which is consistent with the initialization strategy used in
LASP-MPFit. To avoid distortion of the optimization
trajectory caused by differences in parameter scales, we
follow the variable rescaling strategy proposed by
J. Nocedal & S. J. Wright (2006) and normalize all free
parameters to the range [−1, 1]. The learning rate is set
to 0.1, with all other Adam parameters left at their
default values. The optimization is considered converged
when any of the following three criteria is satisfied: (1) a
maximum of 5000 iterations is reached; (2) the change in
loss over 50 consecutive steps is less than 10−5; or (3)
the loss increases monotonically over 50 consecutive
steps. This configuration of the learning rate and conv-
ergence threshold is designed to balance convergence
stability and computational efficiency, and is examined
in detail in Section 4.2.2. Upon convergence, the
resulting 5N parameters are taken as the minimizer of
Equation (9). To ensure consistent mask handling across
N spectra, the Clean strategy updates Ai (Equation (8))
every 30 steps based on residuals, allowing up to 11
mask updates during the optimization.

9. Estimating parameter errors. Once the minimizer of
Equation (9) is obtained, we estimate the parameter
errors by computing the Jacobian matrix Ji of the residual
vector εi (Equation (7)) at the solution point, using cen-
tral finite differences. The covariance matrix Σi is then
approximated via linear error propagation (K. W. Vugrin
et al. 2007; M. Drosg 2009) as J Ji p i

T
i5

1i i
T

( )= , where
p − 5 is the number of degrees of freedom. Parameter
errors are given by the square roots of the diagonal
elements of Σi, and computed in parallel for all N spectra
using PyTorch.

Beyond the current implementation, the modular archi-
tecture of LASP-Adam-GPU enables the possibility of future
extension to the joint modeling of multidimensional elemental
abundances. Such extensions could follow two main paths: (1)
integrating an abundance module into the optimization loop
via a multitask scheme to simultaneously infer multiple para-
meters—a strategy that has been widely adopted in deep
learning tasks such as computer vision, natural language pro-
cessing, and speech recognition (R. Collobert &
J. Weston 2008; J.-T. Huang et al. 2013; I. Kokkinos 2017;
R. Cipolla et al. 2018)—or (2) incorporating a high-dimen-
sional spectral emulator, inspired by the Payne (Y.-S. Ting
et al. 2019), trained on theoretical spectra to model all target

parameters in a unified manner. Once developed, the new
modules can be directly applied to different spectroscopic
surveys, with resolution matching and related adjustments
handled dynamically during inference—without retraining.

3. Data

LASP-MPFit performs parameter inference for low-resolu-
tion AFGK-type stellar spectra from LAMOST using a spec-
tral emulator constructed from the ELODIE spectral library
(A.-L. Luo et al. 2015). To evaluate the consistency between
the Python and IDL versions of LASP, we use a crossmatched
dataset of common stars observed by both LAMOST DR10
and APOGEE DR16 as the test sample.

3.1. ELODIE Library

The ELODIE library (J. Moultaka et al. 2004; P. Prugniel &
C. Soubiran 2004; P. Prugniel et al. 2007) is based on echelle
spectra taken with the eponymous spectrograph attached to the
1.93 m telescope of Observatoire de Haute-Provence. It con-
tains 1962 spectra of 1388 stars, covering the wavelength
range 3900–6800Å at a resolving power of R ≈ 42,000. Ver-
sion 3.2 of the library spans a wide range of atmospheric
parameters: Teff from 3100 K to 59,000 K, glog from 0.0 to
5.0 dex, and [Fe/H] from −2.8 to +1.0 dex (Y. Wu et al.
2011a; A.-L. Luo et al. 2015).
To improve interpolation performance near the edges and

sparsely populated regions of parameter space, ELODIE
incorporates a set of “semiempirical” spectra constructed by
combining observed and synthetic spectra (Y. Wu et al.
2011b). This enhances the emulator’s extrapolation capability.
The spectral emulator used in LASP is built on the ELODIE
spectra degraded to a resolution of R ≈ 10,000 (Y. Wu et al.
2011a), and uses separate high-order polynomial regression
models for three stellar temperature classes, following the
ULySS convention (M. Koleva et al. 2009b): hot
(Teff� 7000 K), warm (4000< Teff� 9000 K), and cold
(Teff� 4550 K). Each model maps three atmospheric para-
meters to 14,501 flux points. The hot, warm, and cold models
contain 19, 26, and 25 nonzero polynomial coefficients,
respectively.

3.2. Survey Data and Reference Labels

3.2.1. The Low-resolution Spectra of LAMOST DR10

LAMOST is a Schmidt telescope located at the Xinglong
Observatory northeast of Beijing, China. It is capable of
simultaneously obtaining 4000 low-resolution (R ∼ 1800)
spectra in a single exposure, covering the wavelength range of
3700–9000Å, with blue and red arms that overlap in the
5700–5900Å region (X.-Q. Cui et al. 2012; G. Zhao et al.
2012; A.-L. Luo et al. 2015).
In the 10th data release (DR10 v1.0),10 a total of 11,817,430

low-resolution spectra were released, of which 11,473,644
were classified as stellar spectra. The remainder include
263,444 galaxy spectra and 80,342 quasar spectra. LASP-
MPFit has been applied to 7,478,650 AFGK-type stellar
spectra in DR10 v1.0, yielding inferred values of Teff, glog ,
[Fe/H], and RV.

10 https://www.lamost.org/dr10/v1.0/
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3.2.2. APOGEE Labels

APOGEE is one of the programs in SDSS-III
(S. R. Majewski et al. 2017) and SDSS-IV (M. R. Blanton
et al. 2017). It employs a high-resolution (R ∼ 22,500) near-
infrared spectrograph covering the wavelength range
1.51–1.70 μm, targeting primarily red giant stars in the Milky
Way, as well as stars in the Large Magellanic Cloud, nearby
dwarf galaxies, and a substantial number of cool dwarfs
(FGKM types) (V. V. Smith et al. 2021).
In its 16th data release (DR16), APOGEE provided RV,

atmospheric parameters, and up to 26 elemental abundances
for approximately 430,000 stars (H. Jönsson et al. 2020). RV is
determined via cross correlation, and ASPCAP derives stellar
parameters with FERRE using precomputed, MARCS-based
synthetic spectral grids that are compressed with principal
component analysis (PCA); interpolation is performed in PCA
coefficient space, with radial basis functions bridging gaps in
these grids. The pipeline first determines the global
parameters—Teff, glog , overall metallicity [M/H], [α/M], [C/
M], and [N/M]—together with microturbulent velocity and
v isin for dwarfs and macroturbulent velocity for giants; then,
holding these fixed, it infers individual elemental abundances
from element-specific spectral windows. Additionally, APO-
GEE employs independent external methods to calibrate the
spectroscopic measurements: Teff is calibrated using the
infrared flux method; glog for giants is calibrated using
asteroseismic data from Kepler field stars, while dwarf stars
use asteroseismic values for warmer stars and isochrone-
derived calibrations for cooler stars; and elemental abundances
are calibrated through zero-point shifts to ensure solar neigh-
borhood stars with solar [M/H] have mean [X/M] = 0. Owing
to its high precision and stability, the APOGEE catalog has
been widely used as a training reference for label transfer
methods (J. Li et al. 2021; J. Liang et al. 2022; C. Wang et al.
2022). In this study, we adopt Teff, glog , [Fe/H], and RV from
APOGEE DR16 as external references to evaluate the con-
sistency between the Python and IDL versions of LASP.

3.3. Data Preprocessing

We crossmatch the LAMOST DR10 AFGK-type stellar
parameter catalog with APOGEE DR16, and select LAMOST
spectra that have both APOGEE labels and CFI initial values,
yielding a sample of 177,848 spectra. The restriction to spectra
with CFI initialization is intended to systematically assess the
sensitivity of PyLASP to different starting conditions (see
Section 4.2.2). Before applying LASP-Adam-GPU for parameter
inference, the following preprocessing steps are performed:

1. Wavelength system conversion. To ensure consistency in
the wavelength reference system between LAMOST
spectra and the ELODIE spectral library, we convert the
LAMOST vacuum wavelengths to air wavelengths prior
to parameter inference. Since LASP-MPFit performs
spectral fitting in the wavelength range 4200–5700Å
during the first stage,11 the conversion is applied only
within this range. Each spectrum is truncated to its 1327
flux points within this range (the maximum number of

pixels), and saved together with the corresponding
wavelengths, the CFI initial values, the wavelength
ranges before and after resampling (see step 3 in
Section 2.2), and the polynomial coefficients used for
generating the model spectra, in a single .pt file.

2. Setting spectral weighting factors. The fluxes of different
LAMOST spectra exhibit differences in scale, which
may affect the parameter-inference accuracy of LASP-
Adam-GPU. To alleviate this, we assign each spectrum
an empirical weight factor wi (used in Equation (7)),
defined as the median (0.5 quantile) of the flux values.
This factor depends only on survey data quality, is fixed
during optimization, and is not treated as a free para-
meter. We find that this setting performs well on
LAMOST data in this work because it reduces intergroup
numerical differences in LASP-Adam-GPU and decrea-
ses cases where unstable weight factors cause normalized
flux values to become very large or near-zero. In prac-
tice, once the weight factor is well behaved (i.e., not
near-zero or excessively large), the specific choice
between 0.5 and 0.75 quantiles plays a secondary role for
the inferred parameters; we therefore treat q as a fixed
value rather than a tunable hyperparameter. However,
when applying LASP-Adam-GPU to DESI spectra, the
0.5 quantile can cause the normalized flux of some
spectra to become very large, whereas using the 0.75
quantile yields better results. Therefore, we recommend
testing different quantiles (e.g., 0.5, 0.75) when adapting
the method to other spectroscopic surveys.

4. Experiments

This section first introduces the efficiency-related para-
meters12 in the Python and IDL versions of LASP, and eval-
uates the inference efficiency of each version using 10-million-
scale spectroscopic datasets. After identifying the optimal
efficiency configurations, we perform parameter inference on
177,848 LAMOST stellar spectra and compare the results from
LASP-CurveFit and LASP-Adam-GPU with those from
LASP-MPFit, focusing on the consistency of Teff, glog , [Fe/
H], and RV, as well as on the sources of discrepancies. We
further assess the robustness of the Python implementation by
testing different initial parameter settings. In addition, we
compare the model-propagated errors from LASP-Adam-GPU
with the empirical errors adopted in the official LASP-MPFit,
which are estimated based on repeat observations and reduced
χ2, to quantify the differences between the two error models.
Finally, we apply LASP-CurveFit and LASP-Adam-GPU to a
DESI DR1 dataset to further evaluate their cross-survey
applicability and performance.

4.1. Setting Efficiency Parameters and Evaluating Inference
Efficiency

To determine the optimal efficiency settings for large-scale
processing, we randomly select 10,000 spectra from the
177,848 LAMOST stellar spectra, and test the efficiency
parameters of LASP-MPFit, LASP-CurveFit, LASP-Adam-
CPU, and LASP-Adam-GPU across four computing platforms.

11 LASP uses a two-stage inference (A.-L. Luo et al. 2015): Teff, glog ,
[Fe/H], and RV are first inferred from the original spectrum, then reinferred
after continuum correction. The final values are adopted if both inferences
agree within a set threshold.

12 There are two efficiency parameters: the number of parallel processes
(n_jobs) used in LASP-MPFit and LASP-CurveFit, and the number of
spectra processed per group (N) in LASP-Adam-CPU and LASP-Adam-GPU,
as defined in Equation (9).
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The tested parameters include the number of parallel processes
(n_jobs) for CPU-based methods and the number of spectra
simultaneously processed by the objective function (N) for
Adam-based methods (see Table 1). All tests are conducted
under the No Clean strategy.
As shown in Figure 1, the inference time for LASP-MPFit

and LASP-CurveFit decreases significantly with increasing
n_jobs, stabilizing once n_jobs approaches half of the
physical core count. On the same hardware, LASP-CurveFit
achieves approximately 1.7 times the efficiency of LASP-
MPFit even at n_jobs=1, and consistently outperforms it
under all levels of parallelism, demonstrating the benefits of
reconstruction-based optimization. For LASP-Adam, inference
speed improves rapidly with increasing N. LASP-Adam-GPU
reaches performance saturation around n_jobs≈2000, and on
an RTX 4060 achieves a speedup of 191 times at N=2500
compared to N=1, highlighting its strong parallel processing
capability. LASP-Adam-CPU also benefits from increased N,
performing optimally in the range N ∈ [100, 700] on a Ryzen 9
CPU and N ∈ [20, 500] on a Xeon platform, but remains sig-
nificantly slower than the GPU version. Based on the shortest
inference time across all configurations, we identify the opti-
mal efficiency settings and provide recommended ranges for
future use (see Table 2).
Using these optimal settings, we extrapolate the total time

required to process 10 million spectra. On a laptop with a

Ryzen 9 7945HX CPU and an RTX 4060 GPU, LASP-Adam-
GPU completes the task in approximately 26 hr, outperforming
LASP-CurveFit (48 hr) and LASP-MPFit (84 hr). LASP-
Adam-CPU is the slowest, requiring 134 hr and is therefore not
suitable for large-scale inference tasks. On high-performance
platforms, LASP-Adam-GPU achieves excellent scalability: it
completes 10 million spectra in about 8 hr on an RTX 3090
and 7 hr on an NVIDIA A100. Under the Clean strategy,
inference time increases slightly due to the additional iterations
required to dynamically mask outliers. For example, LASP-
CurveFit (Ryzen 9) requires 63 hr, while LASP-Adam-GPU
takes 76, 23, and 19 hr on RTX 4060, RTX 3090, and A100,
respectively.
In summary, LASP-Adam-GPU is highly suitable for large-

scale stellar parameter inference. LASP-CurveFit offers an
efficient CPU-based alternative, while LASP-Adam-CPU is
not recommended due to its limited performance scalability.

4.2. Evaluating Parameter Consistency and Robustness

4.2.1. Comparison with the Baseline Method

We evaluate the consistency between the parameters infer-
red by PyLASP and the baseline method LASP-MPFit,
focusing on the performance of LASP-CurveFit and LASP-
Adam-GPU. To ensure a valid comparison, we exclude the

Table 1
Configuration Ranges of Efficiency-related Parameters for LASP Modules on Different Devices

Devicea LASP-MPFit LASP-CurveFit LASP-Adam-CPU LASP-Adam-GPU
n_jobsb Nc

Ryzen 9 7945HX [1, 32] [1, 32] d d d
d d d

1 10 ,
100 100 , 1000

{ (
) ( )}

= d d d d1 5000, 10{ ( )}=

Xeon Silver 4214 ...d [1, 48] d d d
d d d

1 10 ,
100 100 , 1000

{ (
) ( )}

= ...

RTX 3090 ... ... ... d d d d1 10,000, 10{ | ( | | )}=
A100 ... ... ... d d d d1 10,000, 10{ | ( | | )}=

Notes.
a Device: Ryzen 9 7945HX with RTX 4060 is a 16-core/32-thread AMD laptop processor; Xeon Silver 4214 is a 24-core/48-thread Intel server processor; and RTX
3090 and A100 are NVIDIA GPUs for desktop and data center applications, respectively.
b n_jobs represents the number of CPU multiprocessing processes.
c N represents the number of spectra in Equation (9).
d “...” indicates configurations not tested: LASP-MPFit requires licensed IDL software installed only on specific platforms, LASP-Adam-GPU was benchmarked
exclusively on dedicated GPU accelerators (RTX 4060, RTX 3090, and A100), and CPU-optimized modules were evaluated on Xeon blade servers lacking high-
performance GPUs.
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Figure 1. Comparison of the computational efficiency of different LASP versions across hardware platforms. The left panel shows the runtime of LASP-MPFit and
LASP-CurveFit for processing 10,000 spectra under various efficiency parameter settings. The middle and right panels present the runtime of LASP-Adam on CPU
and GPU platforms, respectively. The solid line indicates the IDL-based implementation, while dashed lines correspond to the Python-based version; line colors
distinguish different hardware platforms. RTX 4060 refers to a mobile GPU integrated into a laptop with a Ryzen 9 7945HX processor. For clarity, the “LASP”
prefix has been omitted from all legend labels in the figure.
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following cases in which parameter inference fails: (1) those
with negative multiplicative shape correction factors (see Step
5 in Section 2.2),13 (2) those where the optimization does not
converge within the maximum number of iterations, and (3)
those for which the CFI-provided initial values fall outside the
parameter space allowed by the ELODIE library. The number
of valid samples after filtering is listed in Table 3.
As shown in Figure 2, the parameter offsets between the

Python and IDL versions of LASP are close to zero across all
four parameters: RV, Teff, glog , and [Fe/H]. Under both the
No Clean and Clean strategies, the standard deviations of the
parameter differences between LASP-CurveFit and LASP-
MPFit are 0.04/0.04 km s−1, 4/5 K, 0.005/0.005 dex, and
0.003/0.003 dex, respectively. In comparison, LASP-Adam-
GPU exhibits slightly larger discrepancies: 0.37/1.12 km s−1,
10/24 K, 0.01/0.03 dex, and 0.006/0.02 dex. These differ-
ences primarily stem from two sources. First, the current
version of LASP-Adam-GPU prioritizes computational effi-
ciency and scalability, and does not yet implement the same
failure detection mechanisms used in LASP-CurveFit and
LASP-MPFit (e.g., masking spectra with anomalous multi-
plicative corrections). Second, under the Clean strategy,
LASP-Adam-GPU employs a uniform early-stopping criterion
for all spectra in a group, rather than dynamically determining
convergence on a per-spectrum basis. Future versions will
improve accuracy by refining failure detection and control
strategies.
To determine which method yields more reliable parameter

estimates in cases of significant disagreement, we identify

spectra where any of the four parameters differs by more than
5σ between the Python and IDL versions of LASP. This
subset, accounting for no more than 0.35% of the total sample
(see Table 3), is compared against APOGEE reference labels
(Figure 3) to evaluate which version is closer to the external
standard. Most of these outliers are associated with low-quality
LAMOST spectra (Figure 4). For Teff under the No Clean
strategy, LASP-CurveFit exhibits a deviation distribution more
consistent with APOGEE than LASP-MPFit: the proportion of
samples with Δ(Teff) ∈ [−500, 500]K is approximately 18%
higher for LASP-CurveFit, while that with |Δ(Teff)|> 1000 K
is about 32% lower, indicating enhanced robustness to outliers.
The underlying cause of this phenomenon remains unclear, but
it may be related to the scale-adjusting effect of median-based
normalization, differences in optimizer convergence behavior,
or the numerical stability of operations such as matrix inver-
sion during parameter inference. Under the Clean strategy, the
deviation distributions of LASP-CurveFit and LASP-MPFit
relative to APOGEE become comparable, suggesting that
Clean effectively improves robustness. By contrast, LASP-
Adam-GPU shows slightly worse agreement with APOGEE in
the Δ(Teff) = 1000–3000 K range. This is likely due to the
absence of failure detection mechanisms and the use of a fixed
early-stopping criterion for all spectra within a group, which
may limit optimization depth for complex cases.
In summary, PyLASP achieves parameter consistency with

LASP-MPFit for approximately 99.65% of the sample. LASP-
CurveFit exhibits higher parameter accuracy for low-quality
spectra, whereas LASP-Adam-GPU, by design, trades off
some accuracy for computational efficiency. Given that the
Clean strategy has minimal impact on the parameter con-
sistency between LASP-CurveFit and LASP-MPFit, we spec-
ulate that introducing a dynamic per-spectrum Clean early-

Table 2
Recommendation and Optimal Efficiency Parameters for LASP Modules across Devices

Device n_jobs N

LASP-MPFit LASP-CurveFit LASP-Adam-CPU LASP-Adam-GPU

RecRangea OptValb RecRangea OptValb RecRangea OptValb RecRangea OptValb

Ryzen 9 7945HX [10, 32] 21 [10, 32] 17 [100, 700] 100 [1000, 2500] 2500
Xeon Silver 4214 ... ... [24, 48] 47 [20, 500] 60 ... ...
RTX 3090 ... ... ... ... ... ... [2000, 10,000] 10,000
A100 ... ... ... ... ... ... [2000, 10,000] 10,000

Notes.
a RecRange (recommended range): the recommended range of the efficiency parameters; “...” indicates that the configuration is not applicable.
b OptVal (optimal value): the optimal value of the efficiency parameters determined in this study.

Table 3
Sample Count Statistics of Common Targets between the Python and IDL Versions of LASP

Stellar Parameters No Clean (versus LASP-MPFit) Clean (versus LASP-MPFit)

LASP-CurveFit LASP-Adam-GPU LASP-CurveFit LASP-Adam-GPU

Matcheda Outlierb Matcheda Outlierb Matcheda Outlierb Matcheda Outlierb

RV 171,713 32 172,246 78 171,618 234 172,238 60
Teff 171,713 63 172,246 205 171,618 27 172,238 113

glog 171,713 88 172,246 294 171,618 417 172,238 601
[Fe/H] 171,713 73 172,246 277 171,618 228 172,238 465

Notes.
a Number of matched samples for which both PyLASP and LASP-MPFit successfully infer the parameter, before outlier removal.
b Number of outliers, defined as matched samples where the parameter difference between PyLASP and LASP-MPFit exceeds 5 standard deviations.

13 LASP-CurveFit treats negative multiplicative correction factors as failed
fits by default. Note that both LASP-MPFit and LASP-CurveFit can dyna-
mically adjust the order of the Legendre polynomial to reduce such failures.
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stopping strategy within LASP-Adam-GPU could substantially
reduce the dispersion in parameter differences relative to
LASP-MPFit, potentially restoring the consistency level
observed under the No Clean condition.

4.2.2. Sensitivity to Initial Values

To evaluate the sensitivity of PyLASP implementations to
initialization, we compare two approaches to 177,848 spectra:
(1) a fixed initialization of T g, log , Fe H 5000 K,eff( [ ]) (/ =
3 dex, 0.5 dex), simulating a worst-case scenario with no
prior information, and (2) the use of CFI-derived initial values.
As shown in Figure 5, LASP-CurveFit is insensitive to the
choice of initial values: Under the No Clean strategy, only
0.09%, 0.11%, 0.10%, and 0.11% of samples show differences
exceeding 1 km s−1 in RV, 100 K in Teff, 0.1 dex in glog ,
and 0.1 dex in [Fe/H], respectively. The corresponding
fractions under the Clean strategy are 0.13%, 0.10%, 0.17%,

and 0.08%. Most of these discrepancies are associated with
low-quality spectra with signal-to-noise ratios (S/N) below
20. In contrast, LASP-Adam-GPU is more sensitive to initi-
alization for the three atmospheric parameters at Teff > 8000
K: under the No Clean strategy, 76%, 80%, and 78% of
samples in this temperature range exhibit differences
exceeding 100 K in Teff, 0.1 dex in glog , and 0.1 dex in [Fe/
H], respectively; under the Clean strategy, the corresponding
values decrease to 65%, 68%, and 66%. These deviations
appear to be independent of S/N. At Teff � 8000 K, LASP-
Adam-GPU shows robustness comparable to that of LASP-
CurveFit, with low sensitivity to initialization under both
masking strategies.
To investigate the causes of this behavior, we analyze the

problem from two perspectives:

1. Impact of optimizer learning rate and convergence
threshold. To evaluate the impact of optimizer config-
urations on the inferred parameters under different
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Figure 2. Comparison of RV (column 1), Teff (column 2), glog (column 3), and [Fe/H] (column 4), inferred using LASP-CurveFit, LASP-Adam-GPU, and LASP-
MPFit under both the No Clean and Clean strategies. From top to bottom, the four rows correspond to LASP-CurveFit versus LASP-MPFit (No Clean), LASP-
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The “LASP” prefix has been omitted in all figure labels for clarity.
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initialization strategies, we randomly select 10,000
spectra and evaluate the consistency of LASP-Adam-
GPU results against those from LASP-CurveFit (using
CFI initialization), under a range of learning rates (1, 0.1,
0.01, 10−3, and 10−4) and two convergence criteria
(requiring the loss to vary by less than 10−7 or 10−5 over
50 consecutive iterations). As shown in Figure 6, second
and final panels (corresponding to fixed initialization),
the consistency of Teff between LASP-Adam-GPU and
LASP-CurveFit improves with stricter convergence
thresholds (e.g., 10−7) at a fixed learning rate, and with
smaller learning rates when the convergence threshold is
held constant (for learning rates below 0.1). However,
these improvements come with a substantial computa-
tional cost: for instance, with a learning rate of 10−4 and
a threshold of 10−7, the runtime is approximately 14
times longer than that for a learning rate of 0.1; even at a
10−5 threshold, the factor remains as high as 4. Inap-
propriate learning rate settings can lead to specific

clustering patterns in the inferred Tlog eff with LASP-
Adam-GPU: when the learning rate is too small, poten-
tially incomplete convergence within the 5000-iteration
limit set in Section 2.2 causes values to stagnate near the
initialization point (e.g., Tlog 3.7eff ); conversely,
excessively large learning rates may cause the optimizer
to overshoot the optimal region, with updates stepping
beyond reasonable ranges and resulting in clustering near

Tlog 4.5eff . At a learning rate of 0.1, a small accu-
mulation near Tlog 3.95eff is also observed. Similar
trends are observed under CFI initialization (first and
third panels): stricter convergence improves consistency,
while clustering due to inappropriate learning rate set-
tings (except 0.1) persists. Therefore, we infer that the
clustering at Tlog 3.95eff likely reflects inappropriate
initialization rather than the learning rate or convergence
threshold, whereas clustering at other locations is attri-
butable to learning rate settings. Balancing computa-
tional efficiency and parameter consistency, the
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configuration with a learning rate of 0.1 and a conv-
ergence threshold of 10−5 yields the best overall
performance: in the first two panels, where LASP-Adam-
GPU is initialized with CFI and fixed values, respec-
tively, the fraction of spectra for which the Teff difference
between LASP-Adam-GPU and LASP-CurveFit exceeds
100 K is 0.1% and 1.9%—the lowest among all learning
rate configurations at this convergence threshold. We
therefore recommend this configuration as the default for
LASP-Adam-GPU.

2. Connection between initialization bias and emulator
structure. To assess whether the stability of LASP-
Adam-GPU is affected by the piecewise structure of the
spectral emulator (Step 2 in Section 2.2), we test an
alternative fixed initialization of T g, log , Fe Heff( [ ])/ =
7500 K, 3 dex, 0.5 dex( ). As shown in Figure 7, simi-
lar to the behavior observed in Figure 6, inappropriate
learning rates cause Tlog eff values inferred by LASP-
Adam-GPU to cluster near the initialization or around
3.7 and 4.5, indicating that such clustering arises pri-
marily from the learning rate rather than from the initi-
alization strategy. Importantly, under the alternative
initialization with a learning rate of 0.1, the previously
observed clustering near the emulator’s piecewise
boundary at Tlog 3.95eff (in the second and final
panels of Figure 6) is notably suppressed in Figure 7.
This result indicates that LASP-Adam-GPU exhibits
directional sensitivity to the initial Teff: optimization
from lower to higher temperatures tends to be less stable,
whereas the reverse direction is relatively robust. This
may reflect the local gradient discontinuities along the

Teff axis, introduced by the emulator’s piecewise design,
which can interfere with the optimizer’s update
trajectory.

In summary, LASP-CurveFit and LASP-Adam-GPU exhibit
distinct behaviors with respect to initialization sensitivity.
LASP-CurveFit yields stable results across the entire para-
meter space and is therefore suitable for scientific applications
that demand high robustness. For LASP-Adam-GPU, CFI-
based initialization is preferred when available; if such initi-
alization is not accessible, we recommend adopting (7500 K,
3 dex, −0.5 dex) as the default initial guess to improve infer-
ence accuracy in high-temperature regions.

4.3. Error Analysis

To evaluate the error estimation capability of PyLASP in
stellar parameter inference, we examine the consistency
between model errors estimated by the first-stage LASP-
Adam-GPU and the corresponding repeat-observation errors of
the same targets, and compare it with that between the official
two-stage empirical errors from LAMOST and their respective
repeat-observation errors. The model errors are derived from
error propagation theory, which estimates how spectral noise
propagates from pixel space to parameter space. In contrast,
repeat-observation errors are computed from the dispersion
among multiple independent observations of the same target,
under the assumption of stable stellar properties and similar
observing conditions. Since both types of errors reflect the
influence of spectral noise, the repeat-observation errors serve
as an empirical reference for evaluating the reliability of model
errors. If the error model is reasonable, the two should be
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statistically consistent and exhibit similar trends with respect
to S/N. For this analysis, we select 25,878 spectra from a total
of 177,848 that have at least two repeat observations, S/N in
the g band (S/N_g) greater than zero, and less than 10%
variation in S/N_g across epochs, to ensure robust error
assessment.
As shown in Figure 8, the model-based errors from LASP-

Adam-GPU for Teff, glog , and [Fe/H] are statistically con-
sistent with the corresponding repeat-observation errors,

suggesting that the model provides reasonable error estimates.
At S/N_g < 20, these model errors are generally larger than
the official LAMOST empirical errors, while at S/N_g > 20,
they become smaller. This indicates that LASP-Adam-GPU
provides an S/N-sensitive error response and better captures
noise-driven variability than the official empirical formula. In
contrast, the behavior of RV errors deviates notably. LASP-
Adam-GPU consistently underestimates RV errors relative to
repeat observations, which in turn lie below the official
empirical values. A similar phenomenon is observed in the
DESI RVS catalog. We speculate that this discrepancy mainly
arises from the fact that the model does not include systematic
effects such as wavelength calibration residuals and instru-
mental response variations in the error propagation process,
and these factors have a more significant impact on RV
measurements. Since repeat observations can partially reflect
such systematic errors, while the model errors are solely
derived from the propagation of spectral noise, the estimated
results from the two approaches exhibit a systematic deviation
of approximately 1.5 km s−1 in the RV dimension. These
results suggest that, with the exception of RV, the model errors
estimated by LASP-Adam-GPU are generally consistent with
the repeat-observation errors, and are more reasonable in the
low-S/N regime.

4.4. Application to DESI

DESI is a state-of-the-art, highly multiplexed spectroscopic
facility mounted on the Mayall 4 m telescope at the Kitt Peak
National Observatory (J. H. Silber et al. 2023; T. N. Miller
et al. 2024; C. Poppett et al. 2024). In addition to its cosmo-
logical program, DESI conducts the Milky Way Survey
(MWS) during bright-time conditions to obtain extensive
spectroscopy of Galactic stellar populations. These stellar
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spectra span 3600–9800Å, with spectral resolution increasing
from R ∼ 2000 at 3600Å to R ∼ 5000 at 9800Å. For the MWS
program, these spectra are analyzed by two independent
pipelines for stellar parameter inference (S. E. Koposov et al.
2025): the RVS pipeline uses RVSpecFit with neural network
emulators trained on PHOENIX spectra to infer RV, Teff, glog ,
[Fe/H], and [α/Fe], while the SP pipeline employs FERRE
based on Kurucz models to infer Teff, glog , [Fe/H], and the
abundances of 10 individual elements.
To assess the applicability of PyLASP to other spectro-

scopic surveys, we apply it to the MWS in DESI DR1, com-
prising 6,369,99114 spectra used to infer RV, Teff, glog , and
[Fe/H]. The PyLASP inference is performed over the wave-
length range 4200–5700Å, sampled in base-10 logarithmic
wavelength space with a step size of 0.0001. The initial values
for atmospheric parameter optimization are set to (7500 K,
3 dex, −0.5 dex), and LASP-Adam-GPU is configured with a
default learning rate of 0.1 and a convergence threshold of
10−5. Under the No Clean strategy, LASP-CurveFit and
LASP-Adam-GPU complete the inference in 35 and 8 hr,
respectively; with the Clean strategy, the runtimes increase to
43 and 14 hr. The APOGEE stellar parameter catalog is
adopted as the reference benchmark,15 and the parameters
inferred by PyLASP and by DESI’s two official pipelines
(RVS and SP) are independently compared against it.
As shown in Figure 9, the Clean strategy in PyLASP

improves the consistency of Teff, glog , and [Fe/H] over the No
Clean strategy, indicating effective removal of bad pixels in
DESI spectra. Compared to the RVS and SP pipelines,
PyLASP shows better agreement with APOGEE for Teff and

glog , while the DESI pipelines yield better consistency in RV
and [Fe/H]. Notably, PyLASP exhibits a systematic under-
estimation of [Fe/H] in the low-S/N regime (S/N_B < 50).
This bias may arise from the limited wavelength coverage of
the ELODIE spectra, which does not extend to the blue end of
DESI spectra where many metal lines are located. In contrast,
the broader wavelength range used in DESI’s RVS and SP
pipelines may provide greater robustness in this region. We
further note that, beyond the systematic [Fe/H] bias, other
outliers relative to APOGEE are mainly concentrated at low
S/N_B for LASP-CurveFit, whereas a smaller subset of out-
liers is also exhibited at high S/N_B for LASP-Adam-GPU. In
these high S/N_B cases, roughly one-third of the affected
spectra contain negative or zero flux, while another portion

exhibits pronounced absorption or emission features. These
parameter anomalies in LASP-Adam-GPU results at high S/
N_B, relative to APOGEE, are mainly attributable to two
factors. First, LASP-Adam-GPU, unlike LASP-CurveFit, lacks
explicit failure detection mechanisms for parameter inference
—for instance, it still treats results as valid even when the
multiplicative correction factors P(x)bi are nonpositive, indi-
cating that anomalous spectral features in the observed spectra
cause an abnormal pseudocontinuum, which destabilizes the
objective function (Equation (9)) and results in unreliable
parameter inferences. Second, LASP-Adam-GPU applies a
fixed, intergroup Clean strategy rather than adapting the
iterative process to individual spectra. As a result, anomalous
spectral features within spectra of the same group may not be
fully masked, potentially leading to unreliable parameter
inferences. These limitations will be addressed in future ver-
sions of PyLASP. Additionally, implementation details such as
the order of Legendre polynomials and the resampling step
size used in PyLASP may also contribute to differences in RV.
A more detailed analysis will be provided in S. Li et al. (2025,
in preparation).

4.5. Future Improvements

To further improve the efficiency, robustness, and reliability
of parameter inference in PyLASP, we propose the following
three directions for future development:

1. Enhancing curvature awareness in the optimizer. Com-
pared to LASP-CurveFit, LASP-Adam-GPU generally
requires more iterations to converge, primarily because
the Adam optimizer relies solely on first-order gradients
and lacks sensitivity to the curvature of the objective
function. In contrast, LASP-CurveFit captures local
curvature through an approximate Hessian, enabling
faster convergence with fewer iterations. To reduce the
number of iterations and improve optimization effi-
ciency, we plan to incorporate curvature information into
LASP-Adam-GPU using second-order central differ-
ences to approximate the Hessian. This approach can be
designed to take advantage of parallel computation,
balancing speed and accuracy. In addition, symbolic
differentiation or learned derivative models may be
employed to further reduce the cost of gradient
evaluation.

2. Improving the adaptiveness of the Clean strategy. Cur-
rently, LASP-Adam-GPU applies a fixed iteration sche-
dule for outlier pixel rejection across all spectra in a
group, without adjusting for individual spectral quality.
This uniform scheme limits the ability to detect outliers
in low-quality spectra and may contribute to
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14 The full MWS catalog contains 6,372,607 spectra; we exclude 2608 labeled
as BAD and eight as NON based on the OBJTYPE field.
15 APOGEE provides higher spectral resolution (R ∼ 22,500 versus
R ∼ 2000–5000 for DESI), reduced interstellar extinction in the H band, and
well-established external calibrations of stellar parameters.
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discrepancies with LASP-MPFit under the Clean strat-
egy. To enhance robustness, future versions will imple-
ment adaptive Clean control based on spectrum-specific

properties, such as S/N or fitting residuals, allowing for
dynamic adjustment within groups and improving con-
sistency with the LASP-MPFit Clean implementation.
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Figure 9. Comparison of inferred parameters with APOGEE DR16 labels. From top to bottom, the six rows correspond to comparisons between APOGEE DR16 and
(1) the DESI RVS pipeline, (2) the DESI SP pipeline, (3) LASP-CurveFit with the No Clean strategy, (4) LASP-CurveFit with the Clean strategy, (5) LASP-Adam-
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3. Refining parameter validation for catalog outputs. Due
to limited spectral quality, certain targets may exhibit
abnormal emission lines or unflagged bad pixels not
recorded in the official FITS files, which can compro-
mise parameter reliability. Although the Clean strategy
helps mitigate the effects of such artifacts, significant
discrepancies between results from the Clean and No
Clean modes often indicate unreliable parameters. We
therefore propose the use of robust statistical metrics
(e.g., sigma clipping) to implement a parameter con-
sistency check, identify and exclude unreliable results,
and prioritize Clean-mode parameters in the final cata-
log. This screening mechanism will improve the scien-
tific utility and reliability of the recommended catalog.

5. Conclusions

Based on the original IDL version of LASP, we have
developed a Python-based implementation tailored for large-
scale stellar spectral analysis. The new framework incorpo-
rates two optimization strategies—LASP-CurveFit and LASP-
Adam-GPU—within a modular architecture, and we system-
atically evaluate its performance in terms of inference effi-
ciency, parameter consistency, error modeling, and cross-
survey applicability. The PyLASP code and DESI-based cat-
alog are available via DOI: 10.12149/101679 and DOI:
10.12149/101675, respectively.16 The main conclusions are as
follows:

1. Improved efficiency in parameter inference. On the same
notebook platform, the runtime efficiency of LASP-
Adam-GPU and LASP-CurveFit reaches 3.23 and 1.75
times that of LASP-MPFit, respectively. In addition,
LASP-Adam-GPU enables fast parameter inference for
tens of millions of stellar spectra on high-performance
GPUs, completing 10 million spectra in 8 and 7 hr on the
RTX 3090 and A100, respectively. These results
demonstrate the framework’s strong parallel scalability
and computational efficiency.

2. Consistent parameter estimates with the IDL version.
The Python and IDL versions yield highly consistent
parameter estimates, with discrepancies observed in
fewer than 0.35% of cases. Further analysis indicates that
abnormal flux patterns are the primary cause of outliers
(Figure 4); applying the Clean strategy significantly
reduces such inconsistencies. Comparison with APO-
GEE labels shows that the Python version achieves better
agreement under the No Clean strategy, while LASP-
Adam-GPU performs slightly worse under the Clean
mode, possibly due to the use of a fixed number of Clean
iterations without spectral-quality-aware adaptation.

3. Different sensitivity to initialization. LASP-CurveFit is
robust to initial values. In contrast, due to the piecewise
structure of the spectral emulator in the Teff dimension,
LASP-Adam-GPU shows increased sensitivity to the
initial temperature when Teff > 8000 K. To improve the
inference accuracy of LASP-Adam-GPU in the high-
temperature regime, we recommend using the initial
values provided by the CFI when available. If CFI

initialization is not accessible, we suggest adopting
(7500 K, 3 dex, −0.5 dex) as the default initial guess.

4. Model-based errors are consistent with repeat observa-
tions. The atmospheric parameter errors estimated by
PyLASP are highly consistent with the random errors
calculated from multiple observations of the same target,
and outperform the empirical correction scheme based on
fitted functions. The tendency of RV errors to be smaller
than the corresponding repeat-observation errors is also
observed in the DESI data, indicating this bias may be
widespread and deserves further investigation.

5. Reliable performance across different surveys. When
applied to DESI DR1 data, PyLASP produces Teff and

glog values that agree well with APOGEE labels. For
[Fe/H], performance is slightly worse than the DESI
RVS and SP pipelines in low-S/N regions, likely due to
the limited wavelength coverage of the ELODIE-based
templates. RV precision is also slightly lower, possibly
due to the impact of spectral sampling resolution.

6. Recommended use cases and application conditions.
PyLASP, built on the ELODIE library, targets optical
spectra with R < 10,000 and wavelength coverage
3900–6800Å, provided the targets’ atmospheric para-
meters lie within Teff = 3100–59,000 K, glog 0 5 dex–= ,
and [Fe/H] = −2.8–1 dex. Within this domain, the fra-
mework adaptively matches observational resolution
without retraining the spectral emulator. If the resolution,
wavelength range, or parameter domain exceeds ELO-
DIE’s coverage, extend the framework by replacing the
model-spectrum generation module and adjusting the
wavelength sampling. For applications, LASP-CurveFit
with the Clean strategy is preferred for small-scale to
medium-scale datasets (�100,000) or low-quality spectra,
owing to its robustness to initialization and effective
handling of anomalous flux features; LASP-Adam-GPU is
recommended for large-scale analyses (>100,000) or joint
optimization in high-dimensional parameter spaces, being
better suited to multivariate optimization when the number
of free parameters ranges from a few dozen to tens of
thousands, where CurveFit may become inefficient.

In summary, PyLASP significantly improves the efficiency
of large-scale spectral parameter inference and demonstrates
reliable performance in terms of parameter accuracy, error
modeling, and cross-survey applicability. These developments
establish a robust computational foundation for extending
LASP to high-dimensional label inference, chemical abun-
dance modeling, and automated analysis pipelines in upcom-
ing large-scale spectroscopic surveys.
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