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Abstract

Robot hand-to-eye calibration is a necessary process for a robot arm to perceive and
interact with its environment. Past approaches required collecting multiple images using
a calibration board placed at different locations relative to the robot. When the robot or
camera is displaced from its calibrated position, hand–eye calibration must be redone
using the same tedious process. In this research, we developed a novel method that uses a
semi-automatic process to perform hand-to-eye calibration with a stereo camera, generating
a transformation matrix from the world to the camera coordinate frame from a single image.
We use a robot-pointer tool attached to the robot’s end-effector to manually establish a
relationship between the world and the robot coordinate frame. Then, we establish the
relationship between the camera and the robot using a transformation matrix that maps
points observed in the stereo image frame from two-dimensional space to the robot’s three-
dimensional coordinate frame. Our analysis of the stereo calibration showed a reprojection
error of 0.26 pixels. An evaluation metric was developed to test the camera-to-robot
transformation matrix, and the experimental results showed median root mean square
errors of less than 1 mm in the x and y directions and less than 2 mm in the z directions
in the robot coordinate frame. The results show that, with this work, we contribute a
hand-to-eye calibration method that uses three non-collinear points in a single stereo image
to map camera-to-robot coordinate-frame transformations.

Keywords: robotics; computer vision; stereo calibration; hand-eye calibration

1. Introduction
Vision sensors in robotic systems enable robots to perceive and interact with their

environment. Vision-perception-enabled robots have several applications across different
industries. Computer vision is important to deal with a dynamic workspace with many
moving objects and the presence of humans [1]. Various types of computer vision-based
robotic systems have been developed for industries such as gesture recognition [2], health-
care [3,4], manufacturing [5,6], and domestic applications [7]. One of the main applications
of computer vision in manufacturing is the use of a robot arm for operations such as object
sorting [8–10] and welding [11–13]. These types of robot arms are often equipped with
specialised end-effectors for specific applications [6,14,15]. Thus, different sensors such as
SONAR, LIDAR, and vision provide the necessary inputs to the robot arm to perceive its
environment to detect objects and autonomously plan a safe path to interact with them.
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With the advent of Industry 5.0, humans share space with the robots, thereby giving
rise to the use of collaborative robots (Cobots) [16,17]. The development of Cobots revolves
around the principles of making robots easier to set up and program. The ability to set up
the vision sensor for the robot to perceive its environment must be straightforward and
require minimal effort to make robots more user-friendly. An important step in setting
up a vision sensor is to enable the robot to perceive its environment relative to its own
position via so-called hand-to-eye calibration [18]. Therefore, a straightforward, easy-to-
implement robot hand-to-eye calibration method is required to enable the robot to perceive
its environment.

While the applications of the vision-enabled robot arm vary, a common practice
across them is hand–eye calibration. Furthermore, due to the dynamic nature of the work
environment, there is a high risk of robot or camera displacement, requiring a fresh robot
hand–eye calibration. Thus, it is essential to develop a practical robot hand–eye calibration
method that is quick to perform and applicable across a wide range of applications.

1.1. Camera Calibration

A computer vision system in a robotics application helps a robot to perceive its envi-
ronment. A computer vision system often comprises either a monocular [4], stereo [19,20],
or RGB-D (Red, Green, Blue-Depth) [8,21]. An RGB (Red, Green, Blue) monocular camera
lacks depth information; however, a stereo camera rig can be constructed using two monocular
cameras. RGB-D cameras comprise an RGB channel and a Depth channel that generate a
depth map using infrared light [14,22]. A stereo camera is often constructed to ensure that
the image sensors of the left and right cameras remain precisely aligned. The development
of robotic systems relies on a specific type of camera. Furthermore, it is essential to calibrate
these cameras to accurately determine the positions of objects in the real world.

Camera calibration is the process of determining a camera’s intrinsic and extrinsic
parameters [23]. Real-world object points are projected into the camera frame using the
extrinsic parameters, and the points from the camera frame to the image plane are trans-
formed using the intrinsic parameters. Camera calibration involves using known patterns,
such as a chessboard, whose dimensions are known. The corners of the chessboard grid
are treated as object points detected in the image plane, known as image points. The
transformation matrix, known as the projection matrix, is computed by collecting a set of
object and image points [24]. Furthermore, the distortion coefficient vector and rectification
rotation matrix are computed, thereby removing errors due to lens distortion [23]. Once
the optimal projection matrix is found, a point in 3D space can be projected onto a 2D
image plane. However, in monocular camera calibration, depth information cannot be
retrieved. Therefore, a stereo camera is required to obtain the depth of the object point in
the camera frame.

The stereo calibration process involves computing the reprojection matrix that maps
points from 2D image space to 3D camera space [23]. The stereo calibration process also
involves using a calibration pattern such as a chessboard. The object points are identified
in both the left and right images of the stereo pair, and disparity maps are computed using
stereographic and triangulation principles [20,25]. The disparity values of the points help
to find the depth of the points relative to the left camera frame of the stereo camera. A
reprojection error less than one pixel is considered ideal for the application [23]. The stereo
calibration process relies on carefully capturing the chessboard pattern, clearly visible in
both the left and right image planes of the stereo camera. Therefore, stereo calibration is an
essential first step that enables the robots to view objects in their workspace.
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1.2. Robot Hand–Eye Calibration

Robot hand–eye calibration involves developing a transformation matrix that maps
object points from the camera frame to the robot frame [26]. The robot hand–eye calibration
process is divided into two categories: Hand-to-eye and Hand-in-eye. The robot hand-
to-eye approach involves static positioning of both the camera and the robot base. In the
hand-to-eye approach, a relationship is established between the robot arm base and the
camera frame [27]. The robot hand-in-eye approach uses a camera mounted near the robot
arm’s flange. In the hand-in-eye approach, the camera moves with the flange, and the
relationship between the robot flange and the camera frame is established [18,26,28]. Each
camera mounting approach has its benefits, and their calibration processes differ.

Robot hand–eye calibration has been widely studied and remains an active area of
research. The standard apparatus in most techniques involves a camera, a robot arm, and a
calibration pattern [18,26]. The robot hand-in-eye method involves mounting the camera at
the last link of the robot and capturing images of the calibration pattern from different robot
positions and orientations [28]. In a robot hand-in-eye configuration, the transformation
from the camera to the flange is unknown, while those from the world to the camera and
from the flange to the robot base are known. This leads to solving the equation of the
form AX = XB, where X is the unknown computed [26,29]. Dual quaternions have also
been used for hand–eye calibration, providing a simultaneous solution for rotation and
translation using singular value decomposition (SVD) [18]. Another approach to hand–eye
calibration involves measuring the robot’s position in the world frame and determining
the relationship between the camera and the flange [28]. A straightforward method uses a
stereo camera and a point cloud to capture the robot poses relative to the camera. Then
it solves for the 12 unknown parameters of the transformation matrix [27]. Most of these
methods rely on collecting multiple images or data points and use an iterative solution to
compute the hand–eye transformation matrix. Therefore, there remains scope to develop
methods that perform hand–eye calibration with minimal data collection.

The application of a vision system in a dynamic environment poses a risk to a calibrated
hand–eye system. Due to the dynamic nature of the workspace, a displacement of the robot
or camera will require a fresh calibration method [28]. With the current mounting process
for the calibration pattern on the robot flange, additional work is required to unmount and
remount the end-effector. For Cobot applications, a straightforward yet intuitive hand–eye
calibration process is required to make the setup process more user-friendly. Therefore,
in this research, we solve the hand-to-eye calibration problem by leveraging the stereo
calibration depth detection process to compute the camera transformation matrix. Then,
we attach a pointer to the robot gripper to compute displacement vectors that, using only
three non-collinear points [28] and a single set of calibration data, yield the world-to-robot
transformation matrix. Finally, we compute the camera-to-robot transformation matrix that
solves the hand-to-eye calibration problem.

1.3. Contributions

In this paper, we address the problem of robot hand-to-eye transformation for a stereo
camera mounted on a fixed stand facing the workbench and a 6-DoF (Degree of Freedom)
robot arm. Section 2 outlines the stereo calibration and robot hand-to-eye calibration
using a single-shot stereo image. Section 3 provides details of the experimental setup,
computer, software tools, and evaluation metric used to test the developed methods.
Section 4 presents both quantitative and qualitative evaluations to assess the robustness of
the developed hand-to-eye methods. Section 5 provides a detailed discussion about the
methods, the experimental evaluation, and the robustness of the practical implementation.
With that, we make the following contribution to robot hand-to-eye calibration:
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1. A stereo calibration approach to live render the image points that ensures all the image
points are mapped to the camera coordinate frame.

2. An automated single-shot world-to-camera transformation method using the depth
estimation from a stereo camera.

3. A robot hand-to-eye calibration method that uses three non-collinear points from a
single image and depth estimation from a stereo camera to compute the camera-to-
robot transformation matrix.

4. A practical method to evaluate the hand-to-eye calibration process using quantitative
and qualitative evaluation.

2. Materials and Methods
In this section, we present a simple and practical method for robot hand-to-eye cal-

ibration. First, in Section 2.1, we perform stereo calibration for depth detection using a
live rendering of image points to map the image points to the camera coordinate frame,
leading to Contribution 1. Using depth information from the stereo camera, we derived
the world-to-camera transformation matrix leading to Contribution 2 in Section 2.3. We
measured the world coordinate with respect to the robot base using a pointer held by the
robot gripper on a 6-DoF robot. The pointer tool helps identify the transformation from the
world to the robot’s coordinate frame. Finally, in Section 2.5, a transformation matrix was
derived that maps points from camera to robot coordinates, yielding the camera-to-robot
transformation matrix in Contribution 3.

2.1. One-Off Stereo Calibration

Stereo calibration was performed using a chessboard pattern, where 3D points are
mapped to the 2D image plane. This calibration is a one-off process for a new camera and
does not need to be repeated. This chessboard pattern consists of m × n internal grid points
on a rigid planar surface. The internal grid points are the corner points of the black squares
that connect each other on the chessboard. The chessboard was held in front of the stereo
camera so that the grid pattern is clearly visible in both the left and right image planes.
Only images in which the chessboard is clearly visible, without motion blur, and within the
field of view of both image planes at the same time were selected for calibration.

Multiple stereo images were captured by rotating and moving the chessboard to cover
the entire image frames of both cameras of the stereo setup. The intrinsic parameters,
along with the distortion coefficients and the extrinsic parameters, were computed for both
left and right cameras using the methods described in [24,30]. Further, stereo calibration
was performed that computes intrinsic parameters for each camera in the stereo and the
extrinsic parameters between the two cameras [23]. These parameters are essential for
rectifying the image for stereo matching and eliminating lens distortion. Furthermore,
stereo matching was performed using Semi-Global Block Matching (SGBM) [31], which
produces a disparity map. Therefore, the left camera in the stereo pair becomes the camera
frame {C}, and all world points are viewed in this frame.

One of the important results of the stereo calibration process is to obtain the re-
projection matrix Q ∈ R4×4 expressed as

Q =


1 0 0 −cx

0 1 0 −cy

0 0 0 f
0 0 −1

Tx

(cx−c′x)
Tx

, (1)

where

• cx and cy are the principal point’s x and y coordinates in the left image;
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• c′x is the principal point’s x coordinate in the right image;
• f is the focal length of the stereo cameras;
• Tx is the baseline, which is the distance between the left and right camera centres.

The parameters in Equation (1) refer to the position of the optical axis of the camera
given by cx and cy. The focal length f indicates the distance from the lens of the camera
to the image plane, and the baseline Tx is the distance between the two optical axes of the
stereo left and right camera planes.

Any given point at (u, v) in the image plane of the left camera and its corresponding
disparity value d from the disparity map can be used to find the location of the point in the
camera coordinates as 

x̃
ỹ
z̃
w̃

 = Q ·


u
v
d
1

, (2)

where (x, y, z) = ( x̃
w̃ , ỹ

w̃ , z̃
w̃ ) are the coordinates of a point in the camera frame {C}.

2.2. Coordinate System Nomenclature

The coordinate frames established in this method were set using the right-hand rule.
Figure 1 shows the coordinate transformation model. The robot, world, pointer tool,
and camera coordinate frames are represented in curly braces along with their respective
transformation matrices. The following are the definitions of the coordinate frames and
transformations useful to establish the relationship between different frames:

Figure 1. Robot, world, and camera coordinate frames and their transformation.

• {C}: The camera coordinate frame obtained by stereo calibration and located at the
left camera of the stereo camera.

• {W}: The world coordinate frame established at the top left corner of the first object
point of the inner grid of the chessboard.

• {R}: The robot coordinate frame established at the base of the robot.
• {P}: The pointer tool attached to the robot end-effector used for measuring the world

coordinates with respect to the robot frame {R}.
• CTW ∈ R4×4 : A transformation matrix from the world frame {W} to the camera

frame {C}.
• RTW ∈ R4×4 : A transformation matrix from the world frame {W} to the robot frame

{R}.
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• RTC ∈ R4×4 : A transformation matrix from the camera frame {C} to the robot frame
{R}.

2.3. World-to-Camera Transformation

The world to camera transformation matrix CTW ∈ R4×4 was formed using a rotation
matrix CRW ∈ R3×3 and a translation vector CtW ∈ R3 as

CTW =

[
CRW

CtW

0 1

]
. (3)

The rotation matrix CRW and the translation vector CtW can be calculated by finding
out the orientation and the position, respectively, of the world coordinate frame {W} by
using object points from the chessboard in the camera coordinate frame {C}.

The world coordinate frame origin is located at point P1 as shown in Figure 2. Fol-
lowing the right-hand rule convention for coordinate frames, the x⃗ and y⃗ from the origin
point P1 lie on the same plane, while the z⃗ axis is perpendicular upward from the plane.
Therefore, the rotation matrix can be calculated as

CRW =
[

x̂ ŷ ẑ
]
, (4)

where x̂ ∈ R3, ŷ ∈ R3, and ẑ ∈ R3 are the unit vectors in x, y, and z direction of the world
coordinate frame {W}.

Figure 2. World coordinate frame.

Consider that p⃗1, p⃗2, and p⃗3 are the position vectors of P1, P2, and P3 expressed in the
camera coordinate {C}. There is a possibility that the x⃗ and y⃗ vectors of the calibration
board, as shown in Figure 2, may not be perpendicular due to a printing error. There-
fore, we first compute the displacement vectors x⃗ and y⃗′ between points P1-P2 and P1-P3,
respectively, as

x⃗ = p⃗2 − p⃗1 and y⃗′ = p⃗3 − p⃗1. (5)

The unit vectors x̂ and ŷ′ can be calculated as

x̂ =
x⃗

∥x⃗∥ and ŷ′ =
y⃗′

∥y⃗′∥ . (6)
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Further, the unit vector ẑ is calculcated as

ẑ = x̂ × ŷ′. (7)

Finally, we compute the unit vector ŷ as

ŷ = ẑ × x̂. (8)

To develop the rotation matrix in Equation (4), the unit vectors x̂, ŷ, and ẑ can be
expressed as

x̂ = xi î + xj ĵ + xk k̂ , ŷ = yi î + yj ĵ + yk k̂ , and ẑ = zi î + zj ĵ + zk k̂. (9)

Using Equations (4) and (9), we can construct the rotation matrix as

CRW =

xi yi zi

xj yj zj

xk yk zk

. (10)

The translation vector from Equation (3) is expressed as

CtW = p⃗1 = p1x î + p1y ĵ + p1z k̂, (11)

since P1 is origin of the world frame {W}, p⃗1 is expressed in the camera frame {C}. Finally,
the world to camera transformation matrix can be constructed using Equations (3), (10)
and (11) as

CTW =

[
CRW

CtW

0 1

]
=


xi yi zi p1x

xj yj zj p1y

xk yk zk p1z

0 0 0 1

. (12)

Therefore, CTW signifies that any point observed in the world coordinate system {W},
as shown in Figure 2, can be transformed to the camera coordinate system {C}.

2.4. World-to-Robot Transformation

In this research, the world-to-robot transformation matrix RTW was determined by
measuring the positions and orientations of the robot base frame {R} and the world
coordinate frame {W}. Figure 1 shows the robot arm model with robot base coordinate
frame {R}, world coordinate frame {W}, camera coordinate frame {C}, and the pointer
tool coordinate frame {P}. To measure the position of the world coordinate in the robot
frame, a pointer tool mounted on the end-effector with known geometry can be positioned
at the three points P1, P2, and P3, as shown in Figure 2. The coordinates of the three
non-collinear points were measured manually by using the robot controller to position
the pointer tip at each point. From the geometry of the robot, the pointer to the robot
transformation can be calculated as

RTP =R TJ1 . . .Jn TP, (13)
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where J = {Ji | i ∈ {1, . . . , n}} is a set of robot reference frames on the n intermediate
joints, and RTJ1 is the transformation from {J1} to {R}, and so on. The pointer to the robot
base transformation matrix is expressed as

RTP =

[
RRP

RtP

0 1

]
∈ R4×4, (14)

where RRP and RtP are the rotation matrix and translation vector of a transform from
pointer {P} to robot base {R}.

To measure the relationship between robot base {R} and the world coordinate {W},
the translation vector RtP ∈ R3 is measured at points P1, P2, and P3 to generate q⃗1, q⃗2, and q⃗3

from the origin of {R} to these three points. Similar to Equation (5), the displacement
vectors for the world to robot transformation are calculated as

x⃗r = q⃗2 − q⃗1 and y⃗′r = q⃗3 − q⃗1, (15)

where the suffix r is used to differentiate Equation (15) from world to camera transformation
Equation (5). Further, calculating the unit vectors as

x̂r =
x⃗r

∥x⃗r∥
and ŷ′r =

y⃗′r
∥y⃗′r∥

. (16)

Then, using Equation (16) to calculate the unit vector along z-axis as

ẑr = x̂r × ŷ′r. (17)

Finally, calculating ŷr as
ŷr = ẑr × x̂r. (18)

To find the transformation matrix from world to robot, the rotation matrix RRW ∈ R3×3

and translation vector RtW can be developed similarly to Equations (10) and (11) as

RRW =

xri yri zri

xrj yrj zrj

xrk yrk zrk

 and RtW = q⃗1 = q1x î + q1y ĵ + q1z k̂. (19)

Using the values of the rotation matrix and translation vector from Equation (19),
the transformation matrix from world to robot is developed as

RTW =

[
RRW

RtW

0 1

]
=


xri yri zri q1x

xrj yrj zrj q1y

xrk yrk zrk q1z

0 0 0 1

. (20)

2.5. Camera-to-Robot Transformation

The ultimate goal of performing the robot hand-to-eye calibration is to find the position
of the point observed in the camera frame in the robot frame. This is to find the transfor-
mation matrix RTC between the camera frame {C} to the robot frame {R}. From Figure 1,
the transformation matrices can be expressed using transformation composition as

RTW =R TC ·C TW . (21)
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Since RTC is the unknown, post-multiplying by the inverse of CTW on both sides of
Equation (21), we get the following equation:

RTC =R TW · CTW
−1

. (22)

By obtaining RTC, the robot hand-to-eye calibration process is complete.

2.6. Stereo Reprojection

Consider a point P with its image location u = (u, v) in the left stereo image plane and
its corresponding disparity value D[u, v] = d, where D ∈ Ri×j is a disparity map formed

using the stereo images of size (i, j). Constructing a vector v =
(

u v d 1
)T

∈ R4 and
using Equation (2), we get

x̃ = Q · v, (23)

where x̃ =
(

x̃ ỹ z̃ w̃
)T

and xc = x̃/w̃ =
(

xc yc zc 1
)T

∈ R4 are the coordinates of
point P in the camera frame. The same point P in the robot frame {R} can be calculated as

xr =
R TC · xc, (24)

where xr =
(

xr yr zr 1
)T

∈ R4 are the coordinates of the given point in the robot
coordinate frame. Therefore, from Equations (23) and (24), we can transform any point
from the stereo image plane to the robot coordinate frame.

3. Evaluation
In this section, we present the experimental setup, which includes a UR10e robot

from Universal Robots A/S (DK-5260 Odense S, Denmark), a ZED2i stereo camera from
StereoLabs (San Francisco, CA, USA), a calibration board, and a computer with required
software tools to perform the calibration and evaluation. Further, we present the evaluation
method in Section 3.3, which leads to Contribution 4 in Section 1.3.

3.1. Experimental Setup

The experimental setup, as shown in Figure 3, consists of a UR10e robot with a pointer
tool at the end-effector, a calibration board, and a Zed2i stereo camera. Figure 3 also shows
the positions of different frames in correspondence to the experimental model shown in
Figure 1.

3.1.1. Stereo Camera

The Zed2i stereo camera is used for depth detection. The camera was mounted on
the stand and faces downward towards the workbench as shown in Figure 3. The camera
frame {C} was positioned on the left camera lens of the stereo setup inside the stereo
casing. The available resolutions of Zed2i camera are as follows: (672 × 376), (1280 × 720),
(1920 × 1080), and (2208 × 1242). In this research, we used a (672 × 376) resolution for
stereo calibration and maintained this resolution throughout. The depth accuracy of Zed2i
camera was less than 1% up to 3 m [32].
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Figure 3. Experimental setup including the reference frame annotation for camera, world, pointer
tool, and robot.

3.1.2. Calibration Board

The calibration board is a 9 × 7 chessboard of squares measuring 39 mm, with 8 × 6
inner grid points used for calibration. Figure 4 shows a rendering of the 8 × 6 inner grid
points on the chessboard. The first point in Figure 4 in the top left corner is the chessboard
world origin point corresponding to point P1 in Figure 2. The world coordinate frame {W}
is located at point P1. Figure 3 also shows the position of {W} with the coordinate axes x̂,
ŷ, and ẑ represented as red, green, and blue, respectively.

Figure 4. Calibration board of 8 × 6 inner chessboard corners image points rendered with circles and
connecting lines.

3.1.3. Robot Arm

The robot arm used in this research is a UR10e robot arm from Universal Robots as
shown in Figure 3. The robot is connected with the Robotiq gripper 2f 85. The gripper
holds a custom-made 3D-printed pointer tool. The pointer to robot transformation RTP

shown in Equation (13) is developed by considering the base reference frame of the Robotiq
gripper and the pointer reference frame at the tip of the pointer as shown in Figure 3.

The robot transformation up to the robot flange for the UR10e robot [33] can be
achieved using Denavit–Hartenberg [34] parameters, as shown in Table 1.

https://doi.org/10.3390/computers15010053
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Table 1. UR10e Denavit–Hartenberg parameters.

Joint a (Metres) d (Metres) α (Radians)

1 0 0.1807 π/2
2 −0.6127 0 0
3 −0.57155 0 0
4 0 0.17415 π/2
5 0 0.11985 −π/2
6 0 0.11655 0

3.1.4. Pointer Tool

The specifications of the pointer tool are shown in Figure 5, developed using Solid-
Works 2025 CAD (Computer-Aided Design) software. The tool is manufactured using a
Raise3D Pro3 Plus HS 3D printer from Raise 3D (Costa Mesa, CA, USA). The material used
was PLA (Polylactic Acid) with 15% in-fill.

Figure 5. Pointer tool specifications (dimensions are expressed in millimetres).

3.2. Computer and Software

The UR10e robot is operated using a teach pendant controller. A computer with a 12th
Gen Intel N97 (@3.60 GHz), 12 GB RAM, 512 GB SSD, and Kubuntu 22.04 operating system
was used to run image processing tasks and to operate the robot externally.

The code for the image processing task was developed in Python 3.10.12 using the
OpenCV library [35]. ROS2 Humble (Robot Operating System) [36] was used for external
robot control. A URDF (Unified Robot Description Format) file for the robot has been
developed, including the Robotiq gripper and the pointer tool. The Tf2 transform library in
ROS2 is used to compute the transformation RTP as mentioned in Equation (13).

3.3. Evaluation Metric

To evaluate the camera-to-robot point transformation, we select 12 points on the
chessboard following a rectangular pattern, as shown in Figure 6. The purpose of selecting
these points is to cover a wide area of the calibration board. The evaluation process will
compare the calculated robot coordinates obtained from the camera-to-robot transformation
matrix RTC with the actual robot coordinates obtained using the pointing tool. The RMSE
(Root Mean Square Error) will be calculated as

RMSE =

√√√√ 1
N

N

∑
i=1

(ci − ai)2, (25)

https://doi.org/10.3390/computers15010053

https://doi.org/10.3390/computers15010053


Computers 2026, 15, 53 12 of 21

where c is the calculated, and a is the actual robot position for the N = 12 points. Error will
be calculated for each set of coordinates (x̂r, ŷr, ẑr) in the robot frame {R}.

Figure 6. The 12 evaluation points selected that span the area of the chessboard.

For calculated coordinate values, the chessboard corner points are first detected,
as shown in Figure 4. Then, isolating the image plane coordinates (u, v) of the 12 points of
interest from Figure 6. These points from the image plane, along with their disparity values
D[u, v] = d, can be reprojected into the camera frame by using Equation (23). Then, using
Equation (24), the points will be transformed into the robot coordinates.

4. Results
In this section, we present the results obtained by using the methods developed and

testing it on the experimental setup from Section 3.1. The transformation results from
the image plane to the robot coordinate frame are evaluated. A repeatability analysis is
performed on the evaluation metric presented in Section 3.3 along with the ground truth.
Furthermore, a qualitative analysis is performed to evaluate the robot path planning given
the transformations of the image points into the robot coordinate space.

4.1. One-Off Stereo Calibration Results

The one-off stereo calibration process involved live rendering of the chessboard pattern.
The live rendering process was done to ensure that all the areas of the image plane were
covered. It is beneficial to ensure the calibration pattern is visible within the field of view
of both cameras of the stereo setup. Also, it is important to avoid motion-blurred images to
ensure the detection of image points on the calibration board.

Figure 7 shows the live rendering during the data collection stage of the stereo cal-
ibration process. We collected 20 images for stereo calibration. For stereo matching,
the minimum disparity was 0. The minimum disparity ensures the furthest distance we
expect to detect. The disparity factor was 12, a multiple of 16, and the block size for image
matching along the rectified stereo image was 5. With these parameters, we achieved a
reprojection error of 0.26 pixels. There were no further improvements in the reprojection
errors beyond 20 images, and any error below 1 pixel is considered acceptable for repro-
jection. For visual evaluation, we also generate a point cloud of the first image from the
collection of camera calibration images, as shown in Figure 8.
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(a) (b)

(c) (d)

Figure 7. Live rendering of the chessboard pattern during the data collection stage of the calibration
process: (a) Left camera image number 5. (b) Right camera image number 5. (c) Left camera image
number 10. (d) Right camera image number 10.

The stereo calibration process must be performed only once. The camera intrinsic and
extrinsic parameters will remain constant once the stereo calibration is completed. This
means the camera does not need to be mounted on the stand during stereo calibration.
Also, if the camera position is changed after hand-to-eye calibration, there is no need to
perform stereo camera calibration again. Therefore, with this approach, once the stereo
camera calibration is done with a reprojection error of less than 1 pixel, it can be used in
robot hand-to-eye calibration.

Figure 8. Point cloud of the first image from the set of stereo camera calibration images.

4.2. Image-to-Camera-to-Robot Transformation Results

The results of the 12 points of interest, presented in Section 3.3, from the image plane to
the camera coordinates and from the camera coordinates to the robot coordinates are shown
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in Table 2 where (u, v) are the pixel coordinates of the 12 points in the left image frame, d is
the corresponding disparity value, (xc, yc, zc) are the camera coordinates, and (xr, yr, zr)

are the robot coordinates of these points, calculated using Equation (24).

Table 2. Results of projecting image points and disparity values to the camera coordinate frame and
from the camera coordinate to the robot coordinate.

Image Plane Camera Coordinate {C} (mm) Robot Coordinate {R} (mm)
Point u v d xc yc zc xr yr zr

1 257 84 115.94 −56.76 −105.9 490.43 825 −473 13
2 523 85 118 216.03 −102.55 481.86 1055.53 −326.87 13
3 519 275 116.69 214.19 92.69 487.28 1160.55 −491.55 12.85
4 255 270 114.94 −59.12 88.58 494.7 929.18 −637.29 14
5 294 122 116 −18.08 −66.39 490.16 878.99 −485 13.09
6 484 123 117.12 176.99 −64.38 485.46 1043.62 −380.24 11.66
7 481 237 116.69 175.16 52.66 487.28 1105.98 −479.3 13.02
8 293 233 115.25 −19.76 50.03 493.35 941.13 −583.51 13.06
9 331 159 115.62 20.2 −27.17 491.75 932.48 −497.05 11.33

10 445 161 116.75 137.27 −25.48 487.02 1031.55 −434.51 12.4
11 444 198 116.25 136.98 13.24 489.11 1052.44 −467.16 11.35
12 330 197 115.88 19.54 11.91 490.69 953.27 −530.09 13.46

4.3. Robot Hand-to-Eye Quantitative Error Analysis

The actual positions in Table 3 are (xact, yact, zact). The actual position is measured by
moving the tip of the pointer tool to the 12 points on the chessboard shown in Figure 6
and obtaining the position reading from the robot controller. Upon calculating RMSE for
each set of coordinates using Equation (25) and the values from Table 3, the RMSE along
x, y, and z directions are xRMSE = 0.926 mm, yRMSE = 0.859 mm, and zRMSE = 1.305 mm,
respectively.

Table 3. Results of calculated and actual position of the 12 points expressed in millimetres.

Point xr xact yr yact zr zact

1 825 825 −473 −473 13 13
2 1055.53 1055 −326.87 −326 13 12
3 1160.55 1160 −491.55 −491 12.85 13
4 929.18 931 −637.29 −637 14.00 13
5 878.99 878 −485 −484 13.09 13
6 1043.62 1043 −380.24 −380 11.66 13
7 1105.98 1107 −479.3 −478 13.02 14
8 941.13 942 −583.51 −582 13.06 14
9 932.48 934 −497.05 −496 11.33 14

10 1031.55 1032 −434.51 −434 12.40 13
11 1052.44 1052 −467.16 −466 11.35 14
12 953.27 954 −530.09 −530 13.46 14

4.4. Repeatability Analysis

We repeat the experiments to perform a repeatability analysis by evaluating the
12 evaluation points and computing the RMSE for each direction. A total of ten experiments
were performed, including the one shown in Table 3. Figure 9 shows the different positions
and orientations of the chessboard for the additional nine experiments (Experiments 2
to 10). Figure 9a–e show the calibration board placed flat on the workbench. Figure 9f–i
show the calibration board placed inclined to the workbench. This group of experiments
were designed to vary the object’s depth relative to the camera. Figure 9h,i show the
experimental conditions in a lower illumination setting. The two test cases (Experiments
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9 and 10) were selected to evaluate depth estimation under lower illumination. Each of
these experimental cases was selected to address the position and orientation of the stereo
camera within the field of view, as well as the varying depth range achieved by varying the
inclination. The RMSE values for the ten experiments are presented in Table 4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Rectified rendered images of the 8 × 6 image points of the chessboard for the experiments:
(a–i) Experiments 2–9, respectively. (a–e) Board placed flat on the workbench. (f–i) Board placed
inclined to the workbench. (h,i) Lower illumination environment.

Upon calculating the RMSE for the ten experiments for the 12 evaluation points
shown in Table 4, the median values are x̃RMSE = 0.8469 mm, ỹRMSE = 0.6713 mm,
and z̃RMSE = 1.7402 mm.

Table 4. Results of RMSE values of the evaluation experiments in millimetres.

Experiment x y z

1 0.9264 0.8599 1.3050
2 1.1482 0.4955 1.9773
3 0.8722 0.5765 1.6440
4 0.7033 0.9024 1.4881
5 0.8124 0.5425 1.8366
6 0.5610 0.4952 1.5834
7 0.8216 0.9288 1.4217
8 0.6289 0.6662 2.0844
9 0.9675 0.5630 3.1897
10 0.9020 0.6827 4.1996
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Figure 10 shows the distribution of RMSE values of the ten experiments. From the
plot, the interquartile range (IQR) for RMSE values in x and y directions is between 0.5
and 1 mm. The IQR of the RMSE values in the z-direction is between 1.5 and 2.5 mm,
with outliers from Experiments 9 and 10. The outliers are associated with the evaluation
setup of the calibration board in Figure 9h,i. These outliers are due to changes in the
environmental illumination. However, these outliers remain within the depth accuracy
of the ZED2i stereo camera, which is approximately 1% within 3 m [32]. Therefore, for a
depth of approximately 500 mm in each experimental case, an error of 5 mm is acceptable
according to the camera specifications.

Figure 10. Box plot of RMSE for x, y, and z direction in the robot coordinate frame for the 12
evaluation points for 10 experiments.

4.5. Qualitative Evaluation of Robot Position on the Evaluation Metric

A qualitative evaluation is performed of the 12 evaluation points for the 10 experiments
shown in Figure 6. The qualitative evaluation involves three cases as per the three positions
of the chessboard relative to the stereo camera in Figure 11: (a, d, g) horizontal, (b, e, h)
vertical, and (c, f, i) inclined.

Figure 11a–c show the detection of the calibration pattern in the left image of the
stereo camera. The stereo images are projected in the camera frame using Equation (23).
The visualisation is performed using the Open3D Python package [37]. Figure 11d–f show
the point cloud visualisation of the chessboard along with the camera coordinate frame.
Each point in the point cloud can be further transformed to the robot coordinate using
Equation (24).

The 12 evaluation points obtained by transforming from the camera to the robot
coordinate system are used as via points for robot path-following during visual evaluation.
The path following is performed using a ROS2 [36] library called MoveIt2 [38]. The
visualisation was performed in the ROS2 3D visualiser, RViz. After successful planning
and visualisation of the path in RViz, a MoveIt2 programme was developed to execute it.
Figure 11g–i show the pattern formed by sequentially visiting the 12 evaluation points as
shown in Figure 6.

The qualitative evaluation allows the visual inspection of the accuracy of the hand-to-
eye calibration. The evaluation shows that the robot can traverse in its workspace to points
observed in the camera. The tilted board in Figure 11i shows that the robot can access
points that are in an inclined plane to the workbench. This also shows that the robot can
access varying depths at different points. Figure 11 works as a visual representation of
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observing the points in the image frame then reprojecting them in the camera coordinate
frame and ultimately in the robot coordinate frame. Furthermore, an automated practical
workflow is implemented to detect points of interest in the stereo images that the robot
end-effector eventually reaches.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Qualitative evaluation of the hand-to-eye calibration process: (a–c) Rendered image of the
detection of the inner grid points of the chessboard, including the 12 evaluation points. (d–f) Point
cloud visualising the image in the camera coordinate. (g–i) ROS2 implementation of the 12 evaluation
points in the robot coordinate.

5. Discussion
In this section, we discuss the method developed in this research along with its evalua-

tion process. We further compare the approach with other studies on hand–eye calibration.

5.1. Collecting Data Only Once

In this research, we developed a method to establish the relationship between a camera
and a robot by measuring world coordinates using a pointer tool held by the robot’s gripper.
This procedure was performed only once: first identifying the three non-collinear points
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in the world coordinate frame, as shown in Figure 2, and then measuring the same set of
points using the robot pointer tool. The method presented in [28] used 15 robot positions
and captured the images in each position. Compared with the method developed in this
research, the robot is moved to three non-collinear points, and a single stereo image is used
for hand-to-eye calibration.

The advantage of the approach introduced in this research is that it requires no multiple
images of the calibration board or multiple robot positions to solve for the camera-to-robot
transformation matrix using iterative methods. If the robot or camera is moved, a single stereo
image of a board with three non-collinear points is sufficient to determine the world-to-camera
transformation matrix. Furthermore, moving the robot to three non-collinear points P1, P2,
and P3 in Figure 2 is sufficient to find the world-to-robot transformation matrix.

5.2. Robot Hand-to-Eye Error Analysis

The root mean square error was less than 1 mm in x and y direction and less than
2 mm in the z direction of the robot coordinate frame. The results presented in [28] show
that the error in x and y direction was within 1 mm and in z direction was ±3.5 mm. Upon
calculating the median of RMSE values from Table 4, the errors are lower compared to [28].
This type of error is acceptable for most applications that allow a certain tolerance for safe
operation. The results presented in [18,26] are more focused on the rotation and translation
error of the transformation matrix. Since the method in this research is more focused on the
positional accuracy in the robot space, a comparison is made with [28], which uses a similar
evaluation method of selecting random points on the chessboard and calculating error
between the calculated values for the transformation matrix and the manual measurement
from the robot controller.

The hand-to-eye error is subject to the accuracy of depth estimation of the stereo
camera. The experiments are performed for the Zed2i stereo camera. The depth accuracy
of the camera is less than 1% up to 3 m depth [32]. Given that the maximum depth of the
setup in the experiments is approximately 500 mm, according to the camera specification,
the expected depth accuracy is 5 mm. In all the experiments, the RMSE for the z direction
has been within 5 mm. The higher RMSE in the z direction is attributed to the depth
accuracy of the stereo camera. Thus, the camera’s accuracy also plays a vital role in the
robot hand-to-eye calibration process presented in this research.

5.3. Computational Efficiency

The method presented in this research does not use an iterative method to compute the
optimal parameters of the transformation matrix. The computation process is sequential,
where mathematical operations are performed one after the other. The computational
efficiency depends on the types of CPUs used. The three non-collinear points could be
measured by moving the robot to these three points and obtaining their coordinates. In
our experiments, the calibration time is primarily due to manual measurement of the three
points, which takes less than five minutes on a UR10e robot. The remaining computation
time is negligible.

5.4. Generalisation over Other Camera Systems and Robots

The method developed in this research uses a stereo camera, where the one-off stereo
calibration was performed using pre-existing methods [24,30]. Since depth information and
point reprojection from the image plane to the camera frame are the first steps in the robot
hand-to-eye calibration process, any 3D camera that allows reprojection of image points to
camera coordinates will also work. This process may also yield similar results with active
stereo-vision cameras that are factory-calibrated for depth estimation. RGB-D cameras with
depth information can also be used after RGB-D camera calibration. Therefore, as long
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as the depth can be estimated from the camera, the robot hand-to-eye calibration method
introduced in this research is applicable.

The robot arm used in this research is UR10e. The relationship between the camera
frame and the robot base is established for the hand-to-eye transformation. In this research,
the design of the 3D-printed pointer tool was inspired by the layout of a welding torch.
However, other pointing devices can be used to perform the hand-to-eye calibration
methods introduced in this research. Therefore, in principle, a robot arm with reach within
the depth-based camera’s field of view can be calibrated using the hand-to-eye calibration
method presented in this research.

5.5. Future Scope

The method developed in this research was particularly developed for robot hand-to-
eye calibration. The calibration pattern plays a vital role in establishing a standard world-
origin coordinate system for the world-to-camera and world-to-robot mappings. While the
calibration pattern helps in measuring the displacement vectors, in reality, only three non-
collinear points are required for developing the transformation matrix. Therefore, further
work on robot hand-to-eye calibration can be done by considering different calibration
patterns, such as ChArUCo boards [39].

Future work can also be extended to dynamic scenarios in which the positions of the
camera and robot change. Furthermore, the applicability can be tested on robot arms and
on a camera mounted on a mobile robot, provided that the relative position between the
camera and the robot remains unchanged. Further investigation can be conducted under
varying environmental conditions, such as outdoor settings, where different illumination
settings need to be considered.

6. Conclusions
In this research, we developed a novel robot hand-to-eye calibration method using

only three non-collinear points from a single stereo image. We performed stereo calibration
with live rendering to select the best images that exhibit a clearly visible pattern within
the field of view of both cameras in the stereo setup. We achieved a calibration error
of 0.26 pixels, which is sufficient for detailed point clouds and depth estimation. Using
depth information from a stereo camera and a single stereo image pair, we developed a
mapping between the image plane in two dimensions and the robot’s coordinates in three
dimensions. We evaluated our method by experimenting with a robot arm and a stereo
camera. We achieved a median RMSE less than 1 mm in x and y directions and less than
2 mm in z direction.
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Abbreviations
The following abbreviations are used in this manuscript:

Cobot Collaborative Robot
CAD Computer-Aided Design
DoF Degree of Freedom
IQR Interquartile Range
LIDAR Light Detection and Ranging
PLA Polylactic Acid
RGB Red Green Blue
RGB-D Red, Green, Blue, Depth
RMSE Root Mean Square Error
ROS Robot Operating System
SGBM Semi-Global Block Matching
SONAR Sound Navigation and Ranging
URDF Unified Robot Description Format
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