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Introduction: Mangrove ecosystems are increasingly recognised as essential
nature-based solutions for enhancing coastal resilience against sea-level rise and
climate-induced extreme events. However, achieving robust uncertainty
quantification for hydro-morphodynamic models of mangrove systems remains a
critical challenge due to the complexity of physical processes and the high
computational cost of solving Navier—Stokes partial differential equations.
Conventional uncertainty quantification approaches, including Gaussian Process
surrogates and physics-informed neural networks, are limited by their inability to
adequately capture non-Gaussian behaviour, high-dimensional interactions, or to
scale efficiently to large-scale coastal systems.

Methods: To address these limitations, we propose an efficient and scalable
probabilistic framework based on Deep Gaussian Processes, which hierarchically
stack multiple Gaussian Process layers to represent complex, multi-scale, and
non-Gaussian dependencies in hydro-morphodynamic dynamics. The
framework is applied to a high-resolution numerical model of mangrove
systems and trained using a variational inference approach to enable efficient
surrogate modelling and uncertainty propagation.

Results: The proposed Deep Gaussian Process model reduces computational
cost by more than three orders of magnitude (approximately 1.4 minutes
compared to over five days for the full numerical solver), while achieving
substantially improved predictive accuracy relative to standard Gaussian
Process models. Specifically, a fivefold reduction in error is observed, with an
RMSE of 0.0095 m compared to 0.0465 m for conventional Gaussian Processes.
The framework enables reliable propagation of uncertainty across complex,
nonlinear system dynamics.

Discussion: These results demonstrate the potential of Deep Gaussian Processes
to provide accurate and computationally efficient uncertainty quantification for
hydro-morphodynamic modelling of mangrove ecosystems. The proposed
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approach supports evidence-based planning for climate adaptation and
ecosystem-based coastal resilience, offering a practical pathway for integrating
advanced uncertainty quantification into operational decision-making for
sustainable coastal management.

KEYWORDS

deep gaussian process, hydro-morphodynamic, coastal ecosystems, navier Stokes PDE,
surrogate models, uncertainty quantification

1 Introduction

Hydro-morphodynamic systems describe the interactions
between fluid flow, sediment transport, and morphological
evolution across varying spatial and temporal scales (Haun and
Dietrich, 2021; Korpak et al., 2023). Governed by conservation laws
of mass and momentum (Dey, 2014), these systems play a pivotal role
in shaping coastal landscapes, including estuaries and shorelines
(Franzen et al.,, 2021). Within this context, mangrove ecosystems
provide a dynamic illustration of hydro-morphodynamic feedbacks.
Their root networks attenuate flow velocities, promote sediment
deposition, and stabilise shorelines (Mazda et al., 2005). This
natural interaction offers ecological resilience while simultaneously
exposing mangroves to vulnerabilities associated with sea level rise
and anthropogenic disturbances (Gilman et al., 2008). Accurately
modeling these processes requires integrated hydrodynamic,
sediment transport, and ecological representations, often
demanding the use of complex numerical models.

Hydro-morphodynamic modeling has therefore become
increasingly central to the design and evaluation of mangrove-
based protection strategies against climate-induced sea level rise
(Fanous et al., 2023¢c; Chang and Mori, 2021; Kato and Tajima, 2023).

Nonetheless, significant uncertainties arise due to incomplete
knowledge of physical parameters, boundary conditions, and model
approximations (Clare et al., 2022). To improve predictive
reliability and support resilient coastal management, these
uncertainties must be systematically addressed using uncertainty
quantification (UQ) techniques. Yet, comprehensive UQ efforts
typically demand large ensembles of model simulations, which are
computationally prohibitive, particularly in high-resolution or
near-real-time scenarios critical for climate adaptation.

Classical UQ methods such as Monte Carlo (MC) sampling,
sparse grid approximations, and surrogate modeling are widely
used to tackle this issue. Despite their extensive adoption, MC-
based UQ becomes impractical when applied to complex high-
dimensional hydro-morphodynamic models (Villaret et al., 2016).
Even advanced sampling methods like Latin hypercube sampling
(Iman and Conover, 1980) and multilevel MC (Giles, 2008) cannot
fully overcome these challenges, as exemplified by the 240,000
simulations required in (Harris et al., 2018) for the XBeach model.
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To reduce computational costs, surrogate modeling approaches
including Polynomial Chaos (PC) expansions, physics-informed
neural networks (PINNs), and Gaussian process (GP) emulators
have therefore been explored (Li et al., 2021; Raissi et al., 2019;
Donnelly et al., 2022, 2024b, a; Fanous et al., 2025). Among these,
PC expansions offer an analytical representation of uncertainty
propagation by approximating model outputs as polynomials of
uncertain inputs, and are efficient for moderate-dimensional and
smooth systems. However, they struggle with the curse of
dimensionality and fail to capture sharp gradients often observed
in nonlinear coastal processes (Wan and Karniadakis, 2005). While
stochastic hydro-sediment morphodynamic models based on gPC
solvers (Li et al., 2021) have been developed, they largely remain
confined to simplified one-dimensional flows. Alternatively, PINNs
embed physical laws directly into neural network training, enabling
physically consistent learning, but their Bayesian forms (BPINN )
face significant computational bottlenecks due to the size of the
parameter space and posterior sampling requirements (Yang and
Foster, 2022; Fanous et al,, 2023a, b).

Alternatively, PINNs have emerged as powerful tools that embed
physical laws directly into neural network training by penalizing
deviations from governing equations. This enables them to learn
physically consistent solutions while leveraging data-driven flexibility.
Bayesian extensions (BPINNs) (Yang and Foster, 2022) further
enhance these models by introducing probabilistic priors, allowing
for uncertainty estimation and offering improved explainability
through posterior distributions over model parameters and outputs.
This makes BPINNs particularly attractive for scientific and
decision-critical applications, such as coastal protection, where
understanding model confidence and variability is crucial.
Nevertheless, BPINNs face major scalability bottlenecks in large-
scale hydro-morphodynamic models due to the substantial parameter
space and computational costs associated with posterior inference.
Their training requires extensive optimisation and sampling, making
them computationally burdensome, especially when real-time or
high-resolution forecasting is needed (Fanous et al., 2023a, b). As
such, although BPINNs provide valuable capabilities in terms of
explainability and uncertainty quantification, their scalability
limitations in complex, high-dimensional environments motivate
the exploration of more tractable probabilistic surrogate models.
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GP-based emulators remain among the most robust tools for
UQ, providing interpretable probabilistic frameworks that naturally
quantify predictive uncertainties (Oakley and O’Hagan, 2004;
Daneshkhah and Bedford, 2013; Daneshkhah et al., 2017; Batsch
et al., 2019). Nevertheless, classical GPs struggle with scalability in
high-dimensional output spaces, often requiring dimensionality
reduction (DR) techniques (Kennedy and O’Hagan, 2001). Linear
DR methods such as Principal Component Analysis (PCA) and
non-linear techniques like isometric mapping or Kernel PCA have
been employed. However, their deterministic nature and limited
ability to capture uncertainty propagation make them suboptimal
for complex PDE-based surrogate modeling. Recent coastal studies
have further reinforced this limitation. For example, Hossain et al
(Hossain et al., 2022). applied empirical and geospatial modeling
approaches, such as the Coastal Vulnerability Index, AHP models,
and satellite-based shoreline trend analysis, to evaluate risk
exposure along the Indian coastline. While valuable, these
approaches do not explicitly incorporate probabilistic uncertainty
propagation, which limits their application in high-dimensional
UQ contexts.

To overcome these limitations, this study explores the Bayesian
Gaussian Process Latent Variable Model (BGPLVM) (Titsias and
Lawrence, 2010) as a probabilistic DR approach. By mapping high-
dimensional outputs onto a lower-dimensional latent space,
BGPLVM maintains uncertainty treatment while enhancing
computational efficiency. Although previous studies have applied
BGPLVM to elliptic PDE surrogates (Atkinson and Zabaras, 2019),
its potential remains underexplored in coastal hydro-
morphodynamic contexts. BGPLVM offers particular advantages
in capturing spatial correlations and facilitating efficient sampling
within complex model structures. Other recent studies have
introduced hybrid approaches that combine machine learning,
geospatial data, and risk modeling, such as the InVEST-CFRM
model applied to the Sundarbans (Mondal et al., 2025). While these
methods offer valuable insights into flood risk and habitat
vulnerability, they typically lack hierarchical probabilistic
structures necessary for deep uncertainty propagation.

Despite these developments, achieving efficient and scalable UQ
for hydro-morphodynamic systems remains challenging. MC
sampling scales poorly with model complexity, and PC
expansions suffer from exponential growth in polynomial terms
as dimensionality increases. PINNs and their Bayesian variants
(BPINNS), although physically consistent, require costly gradient
evaluations and posterior sampling, limiting their scalability to large
coastal domains. Standard GP surrogates, while fully probabilistic,
assume smooth and stationary mappings that cannot represent the
strongly non-Gaussian, spatially correlated dynamics typical of
coastal morphodynamics. These challenges motivate the
exploration of more tractable probabilistic surrogate models such
as Deep GPs.

Even so, shallow GP models, even when combined with
dimensionality reduction, may still struggle to capture highly non-
linear behaviours and non-Gaussian dynamics typical of hydro-
morphodynamic systems. Therefore, this paper proposes an
advanced framework based on Deep Gaussian Processes (Deep GPs)
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(Damianou, 2015), which hierarchically stack multiple GPs to model
complex, multi-level feature representations. This deep architecture
provides more flexibility to model uncertainty across irregular spatial
domains and strongly non-linear dynamical processes.

Our investigation leverages simulation data from a detailed
numerical model of mangrove hydro-morphodynamics (Fanous
et al,, 2023a) to compare the performance of traditional single-layer
GPs and the proposed Deep GP framework. We systematically
evaluate their capabilities in modeling accuracy, uncertainty
quantification, computational efficiency, and generalisability
across complex domain boundaries. Through this comparative
analysis, we aim to advance UQ methodologies for hydro-
morphodynamic systems, offering direct relevance to sustainable,
nature-based approaches for coastal resilience. Motivated by the
above limitations, this study directly addresses a critical research
gap by integrating scalable probabilistic machine learning with
physically grounded coastal modeling, an approach particularly
suited for high-risk, dynamic coastal ecosystems such as
the Sundarbans.

Building on the identified research gap, this study sets out the
following objectives to guide the analysis and structure of the paper:

1. To develop a scalable Deep GP framework for emulating
high-dimensional hydro-morphodynamic outputs;

2. To perform uncertainty quantification using a variational
inference-based sampling approach; and

3. To evaluate the performance of the Deep GP model relative
to standard GP and full numerical simulation baselines,
with a specific focus on mangrove-driven coastal systems.

The paper is structured as follows: Section 2 introduces the
governing Navier-Stokes equations and presents the GP-based
surrogate modeling approach. Section 3 describes the Deep GP
methodology for learning and predicting high-dimensional outputs.
Section 4 explains how the trained Deep GP model supports UQ
and statistical quantity estimation. Section 5 illustrates the
application of the methodology to a mangrove hydro-
morphodynamic model. Finally, Section 6 summarises key
contributions, study limitations, and future research pathways.

2 Gaussian process-based surrogate
modeling for mangrove hydro-
morphodynamics

This section presents the application of Gaussian Process (GP)
emulators to model the hydro-morphodynamic behaviour of
mangrove ecosystems, addressing the challenges posed by the
system’s high complexity and nonlinear dynamics. We first
outline the governing equations of the hydro-morphodynamic
system, to provide the necessary contextual background and to
define the regression problem formulated in this work.

Hydro-morphodynamic processes are typically described by the
Navier-Stokes (NS) equations for fluid flow, which include both
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continuity and momentum conservation laws (Fanous et al., 2023c¢).
In coastal regions, where water depth is much smaller than
horizontal length scales, the NS equations can be depth averaged,
yielding the Shallow Water Equations (SWEs) and substantially
reducing computational demands. The 2D depth-averaged SWEs
are given as:

an _

at+V~(hu)—0, (1)
ou . __ .
§+u-Vu—vVu+gVT[:O, (2)

where 71 denotes the free surface elevation, u = (u;,u,)
represents the depth-averaged velocity vector in the x and y
directions, respectively, v is the turbulent kinematic eddy
viscosity, g is the gravitational acceleration, and h=n-z,
denotes the local water depth relative to the bed elevation z,.

Equation 1 represents mass conservation, expressing the
balance between temporal changes in surface elevation and
horizontal divergence of flow. Equation 2 describes momentum
conservation, which accounts for advection, diffusion due to
turbulence, and pressure gradients induced by surface
elevation variations.

Morphodynamic evolution, including sediment transport, is
governed by the advection-diffusion equation for depth-averaged
sediment concentration ¢:

%, 2 e L -2 (o )+ 2 (o2)
dt dx ay dx \ "9x/) 9y \ 9y)’

where e, is the sediment turbulent diffusivity, given by e, = v/'/ o,
with v/ the horizontal viscosity and o, the turbulent Schmidt
number. This equation represents the balance between sediment
advection by flow and turbulent diffusion of sediment concentration.

The numerical model incorporating these equations was
comprehensively developed and validated in (Fanous et al,
2023a), showing excellent agreement with the tidal gauge data,
demonstrating sediment retention properties of mangroves, and
highlighting the significant computational expense, with
simulations requiring more than five days for 24-hour periods. As
sediment dynamics are found to be minimal in the region, this study
focuses specifically on modeling water surface elevation as the
quantity of interest.

Given the prohibitive computational demands, we aimed to
develop a surrogate model, approximating the input-output
mapping y = f(x), where x € X" denotes the input variables and y
€ ) the output responses. The surrogate allows rapid estimation of
physical quantities such as surface elevation and flow velocities,
facilitating efficient uncertainty quantification (UQ).

Following a Bayesian modeling approach (Oakley and O’hagan,
2002), we place a Gaussian Process (GP) prior over the unknown
function f( - ). Under the GP prior, the finite collection of function
evaluations F(X) at training inputs X follows a joint multivariate
normal distribution:

F(X) ~ N(0,K(X, X)),
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where K(X,X) is the covariance matrix generated by a kernel
function. A commonly used kernel is the exponentiated quadratic
(RBF) kernel:

k(x;,%;) = exp (—(x; - x;) " B(x; - X)), (3)

where B is a diagonal matrix of positive inverse-squared
lengthscales, controlling the correlation decay across
input dimensions.

To model noisy observations, we assume additive Gaussian

noise:

y=fx)+e& &~ N(0,0°I),

where 67 denotes the noise variance.
Given training data D = (X,Y), the predictive posterior for a

new input x* is also Gaussian:
FNX Y, X" ~ N (s, Zx),
7
where the predictive mean and covariance are:

W = K&, X)[KX,X) + o1y,

o = K(K*, x*) = K(x*, X)[K(X, X) + 61 'K(X, x¥) .

Further details on the derivation of the GP predictive
distribution are provided in Supplementary Material, Section 2
(Equations S1-S8).

In sum, the developed GP surrogate provides a powerful
probabilistic framework to model and predict hydro-morphodynamic
variables efficiently, enabling practical UQ applications in the context of
nature based coastal resilience strategies.

3 Enhancing hydro-morphodynamic
modeling with deep Gaussian
processes

Standard Gaussian Process (GP) models offer effective surrogate
models for complex systems but face scalability challenges with
high-dimensional outputs and non-linear relationships, due to their
cubic computational cost with respect to the number of data points.
To address these limitations, we employ a Deep Gaussian Process
(deep GP) model, which hierarchically composes multiple GP layers
to emulate complex, high-dimensional mappings more flexibly.

The deep GP is defined by recursively nesting GP mappings:

y= {1 (. i) + & (4)

where each f; is drawn from a GP prior, and € denotes
Gaussian noise.

This hierarchical composition allows each layer to successively
capture residual nonlinearities and hidden correlations not
explained by the preceding layer, analogous to feature extraction
in deep neural networks but retaining full Bayesian treatment
of uncertainty.
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FIGURE 1

Graphical representation of a supervised deep GP model with
inducing variables and L hidden layers, where inputs (X) propagate
through latent layers (h)) to predict outputs (Y)

As illustrated in Figure 1, the model consists of observed inputs
X, a sequence of latent layers h;, and the observed outputs Y. Each
latent layer is described by:

h; =f;(h_) +&, & ~N(0,07D),
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In the context of hydro-morphodynamic modeling, these latent
layers can represent compressed but physically meaningful
transformations of key processes, such as evolving flow velocities,
suspended sediment transport, or morphodynamic bed changes
across space and time.

This layered construction enables scalable and flexible modeling
of complex non-linear dependencies across high-dimensional
input-output spaces.

3.1 Bayesian GPLVM for probabilistic
dimension reduction

To efficiently train deep GP models on high-dimensional
hydro-morphodynamic data, it is essential to reduce the output
space while retaining key non-linear dependencies and associated
uncertainties. We employ the Bayesian Gaussian Process Latent
Variable Model (Bayesian GPLVM), which offers a probabilistic
and scalable framework for dimensionality reduction.

The Bayesian GPLVM captures non-linear structures within
data while providing uncertainty quantification through a fully
probabilistic mapping. To manage complex datasets efficiently,
sparse approximations based on inducing variables are employed,
reducing computational demands. In this application, the latent
variables learned via GPLVMs allow us to discover a low-
dimensional but physically consistent representation of complex
hydrodynamic and sedimentary patterns driven by mangrove-root
interactions. Accordingly, the true posterior distribution over latent
variables is intractable. Instead, we approximate it using a
variational posterior, i.e., a simpler, tractable distribution
optimised to be close to the true posterior. This variational
approximation enables scalable Bayesian learning for high-
dimensional problems.

A detailed account of the generative mapping, covariance
structures, prior assumptions, and variational inference
methodology is provided in the Supplementary File, Sections 4-6.

3.2 Training a deep Gaussian process
model

Training a deep GP model involves recursively applying GP
mappings and GPLVM-based dimension reduction across L hidden
layers, proceeding from the observed outputs Y toward the inputs X.

The main training steps are as follows:

1. Initialization: Given observed output data Y, apply GP
regression to:

a. Generate the L™ latent variable h; with dimension qL
b. Approximate the posterior distribution g(h;),

c. Construct the data matrix H; € R for
subsequent layers.
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2. Recursive Inference: Given Hj, apply Bayesian GPLVM to:

a. Generate the (L — 1)™ latent variable h;_, with
dimension q;_i,

b. Approximate the variational posterior q(h;_;)

c. Propagate the reduced data Hj ;.

3. Layer-wise Composition: Repeat this process to generate {h;}%,
and their corresponding variational posterior distributions.

4. optimisation: The model parameters (e.g., kernel
hyperparameters, noise variances) and variational parameters are
optimised by maximising the variational lower bound on the
marginal likelihood p(Y || X).

5. Final Model: The fully trained deep GP model corresponds to the
composition given in Equation 4, enabling prediction and
uncertainty quantification tasks.

In this study, kernel hyperparameters and noise variances were
initialised using the automatic relevance determination (ARD)
kernel and optimised by maximising the evidence lower bound
(ELBO) through a gradient-based optimiser (Adam). The number
of inducing points m was chosen empirically (m < n) to balance
accuracy and computational efficiency, reducing the computational
complexity from o(n*) to O(nm?).

Through this training process, the model learns a hierarchical
mapping from input drivers such as tidal forcings, bed topography,
or vegetation parameters to dynamic hydro-morphodynamic
responses across space and time.

A detailed pseudocode of the variational inference procedure,
including parameter updates for the mean and covariance of the
variational posteriors, is provided in Algorithm 1 and Equations
S12-S18 of the Supplementary Material to ensure reproducibility.

10.3389/fmars.2025.1624244

Full details of the variational inference algorithm and training
procedure are provided in Section 2, particularly Algorithm 1 of
the Supplementary File. For completeness, the Supplementary
Material (Appendices 1-3) also describes the use of the ARD
kernel, the sparse variational formulation with inducing variables,
and the gradient-based optimisation of the ELBO that govern the
training process.

3.3 Prediction with deep Gaussian
processes

To achieve dimensionality reduction before prediction, the
Bayesian GPLVM was employed to map the high-dimensional
model outputs onto a lower-dimensional latent space while
preserving probabilistic uncertainty.

The latent dimensionality g was determined using the optimised
ARD weights, which indicated a single dominant component with
the remaining dimensions contributing negligibly. To ensure that
no key physical information was lost, we verified the reconstruction
quality by comparing the GPLVM-reconstructed hydro-
morphodynamic fields with the original numerical outputs. This
comparison, documented in Section 5 (Figures 2, 3), shows close
agreement between the reconstructed and simulated fields,
confirming that the reduced latent representation retains the
dominant physical behaviour while significantly reducing
computational cost.

Once trained, the deep GP model predicts the output y* for a
new test input y* by recursively propagating uncertainty through
the latent layers. At each layer, the predictive distributions are
computed using the corresponding GP posterior learned
during training.

Leave-One-Out Cross Validation Results
—8— RMSE
0.05 —e— RMSLE
0.04
5 0.03 A
=
w
0.02 A
0.01 1
0.00
T T T T T T
0 5 10 15 20 25
lteration
FIGURE 2
Leave-one-out cross-validation errors (RMSE and RMSLE) for the deep GP across 25 time-steps, highlighting improved accuracy and consistency
over time.
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FIGURE 3
Comparison of deep GP predicted vs actual elevation outputs at 6, 12, and

accuracy of the deep GP emulator across space and time.

F»

numerical model, the middle column presents the corresponding deep GP predictions, and the right column illustrates the absolute differences
(errors) between them. Blue to red color bars in the first two columns indicate elevation values (e.g., low to high elevation), while the error maps use
a red hue to denote magnitude of residuals, with darker shades representing higher discrepancies. The low intensity of residuals confirms the high

18 hours. The left column shows the actual elevation obtained from the

The main predictive steps are:

1. First Layer Prediction:

a. Compute h) = f,(x*) + &,

b. Approximate q(h?) with predictive mean and variance.

2. Recursive Propagation: For each layer i=2,...,L:

a. Compute hi = f;(hi_;) + &,

b. Approximate q(h}) recursively.

3. Final Output Prediction:

a. Use the final latent variable h; to predict y* = f;,;(h}) + &,

b. Derive the predictive mean and variance of y”*.

This uncertainty-aware prediction allows us to estimate future
water elevations, sediment distributions, or morphological changes
under new forcing conditions, while quantifying the associated
confidence intervals.

This recursive prediction framework forms the basis for the
uncertainty propagation methodology presented in Section 4. Full
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derivations for computing the predictive distributions at each layer
can be found in Sections 3-5 of the Supplementary Material
(Appendices 1-3).

4 Uncertainty quantification using
deep Gaussian processes

In this section, we extend the classical uncertainty quantification
(UQ) framework proposed by Oakley and O’Hagan (Oakley and
O’hagan, 2002) to the Deep GP setting. Building on ideas from
(Bilionis et al., 2013; Chatrabgoun et al., 2022), we present a
sampling-based approach to efficiently propagate uncertainty
through the trained deep GP model and estimate statistics of interest.

Specifically, our method generates Monte Carlo realisation from
the variational posterior distributions at each latent layer. These

frontiersin.org
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realisations are then recursively propagated through the deep GP
structure to estimate quantities of interest (Qols), such as the mean
and variance of the model output y.

Algorithm 1 is summarised below.

1: Require: Observed data (X,Y) and a trained deep GP
model (see Algorithm 1 in Supplementary File)

2: Sample n' inputs X’:{xg}g;lfrom the input
distribution z(x) .

3: for j=1toN' Monte Carlo realisations do

4: Propagate x; through the first GP layer to generate
random latent variables d = {hﬂ)h&)}

5: Approximate f(lj)( +) using the posterior predictive
mean of the GP fitted to d(lj) .

6: for 1 =2 toL hidden layers do

()

7,; through the I GP layer to generate

7: Propagate h
av. ‘
8: Approximate f(lj)( +) using the posterior predictive
mean from layer 1.

9: end for

10: Propagate through the final output GP: generate
random outputs d7), = {fﬂl(h(ﬂ)),.4.,f(Lj+)l(h<Ljn),)}4

11: Approximate f(Lj)l( )

+

by the GP posterior
predictive mean.
12 : end for

Algorithm 1. Uncertainty quantification and propagation for deep
GP models.

Once Monte Carlo samples are generated, we can estimate Qols.
For instance, the expectation of the model output y for
realisation j is given by:
EV(Y) = / £ (hy)g(h,;) dhy,

which is approximated numerically using Monte Carlo
integration:

o 1 n . .
EV(Y) = - 37, ().

!
L)

Repeating this process over N’ Monte Carlo realisations
produces a sample {IE"VA)(Y)};\:1 from the distribution of the
model mean E(Y).

Remark 1: It is important to clarify that the Monte Carlo (MC)
integration employed within the proposed framework differs
fundamentally from conventional MC-based UQ approaches. In
traditional settings, each MC sample requires a full evaluation of
the underlying numerical model, which becomes computationally
infeasible for complex hydro-morphodynamic simulations. In
contrast, the present framework utilises samples drawn from the
predictive distribution of the trained Deep GP surrogate. This allows
for rapid generation of realisations {I:Z (")(Y)}jl\ll at negligible cost,
while still capturing model-form (epistemic) and predictive
uncertainties encoded in the surrogate. Consequently, although the
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sampling procedure formally resembles MC integration, the
underlying computational burden is substantially reduced, enabling
scalable UQ for high-dimensional and nonlinear systems.

Similarly, the Monte Carlo samples can be used to approximate
variances, credible intervals, or other summary statistics of Y.

Remark 2: This probabilistic UQ framework is particularly
suitable for hydro-morphodynamic modeling, where uncertainties
in inputs such as tidal forcing, sediment properties, or vegetation
density propagate through complex nonlinear processes to affect
outputs such as water surface elevation, flow velocity, and
morphological evolution. The use of Deep GP models allows for
efficient and uncertainty-aware predictions even in high-
dimensional settings, thereby supporting robust decision-making
for coastal protection and mangrove ecosystem resilience.

The following section applies the proposed Deep GP framework
and the UQ strategy outlined above to the mangrove hydro-
morphodynamic case study, enabling a direct evaluation of predictive
accuracy, uncertainty behaviour, and computational performance.

5 Uncertainty quantification for
hydro-morphodynamic model

This section presents the model evaluation and uncertainty
quantification results obtained by applying the methodology
described in Sections 3 and 4 to the Sundarbans hydro-
morphodynamic domain. We evaluate the proposed UQ
framework in the context of the depth-averaged Navier-Stokes
system introduced in Section 2 and begin by introducing the
study area and its relevance to coastal resilience modelling.

5.1 Study area context

This study focuses on the Indian Sundarbans, the largest
contiguous mangrove forest in the world, located at the
confluence of the Ganges, Brahmaputra, and Meghna rivers. This
region, shared between India and Bangladesh, is critically
endangered due to accelerated sea-level rise, tropical cyclones,
and anthropogenic pressure.

The study domain includes the deltaic islands and tidal
channels of the Indian Sundarbans, extending from Sagar Island
in the west to the Ichhamati-Raimangal estuary in the east. The area
has witnessed considerable shoreline retreat, with net erosion rates
exceeding 5 m/year in some zones (Mondal et al.,, 2025). Tidal
influences, sediment dynamics, and seasonal monsoons dominate
the hydro-morphodynamic processes of this low-lying ecosystem.

Previous studies have shown that changes in bathymetry and
shoreline position directly impact mangrove survival and
regeneration (Hossain et al., 2022). Hence, accurate modeling of
elevation dynamics is essential for assessing future ecosystem
vulnerability under climate change scenarios.

Our primary focus is on the Sundarbans mangrove forest
situated between India and Bangladesh, as detailed in (Fanous
et al., 2023c). The modeled region of interest covers the entire
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FIGURE 4
Model domain covering the Bay of Bengal shelf, with a focus on the Sundarbans mangrove forest located between India and Bangladesh. The inset
highlights regional river systems and urban centers influencing the hydro-morphodynamic environment.

Bay of Bengal shelf, including the Sundarbans mangrove forest
(Figure 4). Employing a spatially varying mesh resolution, we
capture tidal wave dynamics from the Indian Ocean to the
mangroves, varying from 8 km to 1.5 km (Figure 5).

Focusing on the Sundarbans region, which is confronted with
imminent threat of rising sea levels, there is a pressing need for
precise modeling to gain a deep understanding of mangrove
dynamics under various climate change scenarios (Fanous et al.,
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FIGURE 5

Computational mesh over the Bay of Bengal shelf generated using Gmsh, with resolution varying spatially from 8 km offshore to 1.5 km near the

Sundarbans mangrove region.
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2023b). Accurate hydro-morphodynamic modeling is essential for
planning NbS that can sustain mangrove ecosystems under future
climate pressures. The quantification of the uncertainties can help
decision-makers design resilient strategies to protect coastal zones
and communities (Kent et al., 2024). Employing both the
conventional single-layer GP and adopted deep GP models as
surrogates for replacing the previously developed numerical
model (Fanous et al., 2023a), we aim to comprehensively
compare the capabilities of both of these models for accurately
and efficiently predicting the change of elevation over time and
quantifying the uncertainty for such predictions.

5.2 Validation metrics

In this section, we introduce two metrics required to examine the
performance of the fitted GP and deep GP models to the data of the
numerical model. Subsequently, we comprehensively evaluate the
proposed UQ of both methods when applied to hydro-
morphodynamic modeling of the case study discussed above. The
inputs to these models consist of time, while the outputs represent the
elevation across the spatial domain for each timestep. The resulting
dimensions for inputs and outputs are X € R*®** and Y €
R?>48215 | regpectively. This represents 25 aggregated time-steps
across all simulations and 19,285 features (cells) for each timestep.

To validate and assess out-of-sample performance, we employ
the leave-one-out cross-validation (LOOCV) method. In this
approach, the GP-based emulator is trained on 24 time-steps, and
its predictive performance is evaluated on the remaining timestep.
This process is iteratively repeated for all 25 training examples.
Choosing this validation method allows us to examine the model’s
robustness against limited data and across diverse spatial
configurations and complexities. This robust validation approach
ensures that surrogate models maintain predictive accuracy across a
variety of hydro-morphodynamic scenarios, a vital requirement for
real-world application to coastal adaptation planning.

10.3389/fmars.2025.1624244

For accuracy evaluation, we utilize the root mean squared error
(RMSE) and the root mean squared log error (RMSLE), defined by
the following equations:

st =[5,
i=1

RMSLE = li(log (1+y;) -log(1+ }?,-))2
nizi

|~

where 7 is the number of observations, y; is the actual value, and
¥ is the predicted value.

Furthermore, we provide visual illustrations of the performance
of both models across different time-steps to examine the spatial
and temporal prediction capabilities. Finally, we assess uncertainty
quantification (UQ) for both approaches using the methodology
outlined in Section 4.

These analyses validate the predictive performance of the surrogate
models and provide a crucial foundation for evaluating how uncertainty
evolves across time and space in complex coastal systems. The enhanced
understanding of predictive uncertainties contributes toward
establishing more reliable nature-based coastal defenses, directly
supporting climate resilience planning for vulnerable ecosystems such
as the Sundarbans. By quantifying the level of confidence in elevation
and flow predictions under different conditions, our results deliver
actionable insights for decision-makers aiming to implement adaptive,
ecosystem-based management strategies in coastal zones.

5.3 Deep GP training and automatic
feature selection

A deep GP with two hidden layers is used to approximate the
complex mapping f(x) between the inputs and outputs given the
observed data. The covariance function in Equation 3 is used with
different length scales. Using this function, an automatic relevance

les

ard contribution

0 2500 5000 7500

FIGURE 6

Optimised ARD weights obtained after applying the Bayesian GPLVM during deep GP training. The plot shows that most output dimensions
contribute negligibly to the variance, while a few dominant dimensions carry most of the information.
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determination (ARD) is applied, where very small weights of
the dimensions of each latent space are discarded. The length
scales (@) of this covariance function are automatically derived
by training the deep GP model using the Bayesian variational
method discussed in the previous section.

As explained in Algorithm 1 of the Supplementary File, training
of the deep GP model starts by reducing the dimensionality of the
model output using a Bayesian GPLVM. The model is then trained by
optimising the lower bound of p(y | x), given in Equation S13, using
the Bayesian variational method. Figure 6 shows the optimised ARD
weights after the application of the BGPLVM, indicating that most
output dimensions were effectively reduced to near-zero, with one
dominant dimension carrying most of the variance.

After reducing the dimensionality of the outputs, the deep GP
model fits the inputs to the dimensionality reduced outputs. Finally,
the predicted output is constructed from the latent predictions
through a final GP layer. The mean RMSE and RMSLE values are
0.0095 and 0.0052 respectively, which demonstrate substantial
abilities of this model to accurately emulate the numerical model.

These results underline the potential of applying data-efficient
machine learning methods to hydro-morphodynamic modeling
tasks, which are critical for projecting the future stability of
mangrove ecosystems under sea-level rise scenarios. Accurate

10.3389/fmars.2025.1624244

emulation of complex processes is vital for assessing the resilience
of natural coastal defenses.

Figure 2 shows the test RMSE and RMSLE values for each
iteration. As anticipated, the RMSLE values are less than the RMSE,
suggesting that they theoretically provide a more accurate
estimation of the model’s error as it better targets the
underestimation of the prediction. There are some noticeable
variances in the error especially at the beginning of the model.
The variation at the beginning can be explained with the time-
dependent nature of the data, the prediction of the current timestep
depends on the previous timestep. Thus, as there was not enough
data for the earlier time-steps, the resulted error was a bit higher
compared with the subsequent time-steps. Nonetheless, a consistent
performance is evident across the majority of the test cases.

Such consistency across multiple time-steps demonstrates that
the deep GP model is robust enough to support dynamic adaptation
strategies for mangrove-based NbS, where hydrodynamic and
morphological responses evolve over time under climatic stressors.

To have a closer inspection at the performance of the model across
the spatial domain, Figure 3 shows the predicted elevation from the
deep GP versus the actual modeled elevation using the numerical model
and the difference between both at different times. From these figures, it
can be evidently shown the significant accuracy for the deep GP model

DGP Mean of mean

A3
4

1le6

2.4

2.39

2.24
—0.05

2.1 -0.10

2.0 =015

-0.20

0.4 0.6 0.8

X1

10 12

1e6

DGP Mean of variance

1e6

FIGURE 7

results are shown over the spatial domain (x,x5).

UQ results using the deep GP model based on 10,000 samples. Top left: Posterior mean of the predictive mean. Top right: Error in the posterior
mean (numerical approximation error). Bottom left: Posterior mean of the predictive variance. Bottom right: Error in the predictive variance. All
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and its ability to accurately map the inputs to the outputs and to
reconstruct the full dimensional output space from the latent space.

Accurately mapping spatial patterns of elevation change is
especially important for the Sundarbans, where micro-
topographic variations directly control tidal flushing, salinity
intrusion, and seedling establishment, all fundamental processes
for mangrove health and shoreline protection. Thus, ensuring
spatially coherent and uncertainty-quantified predictions is
crucial for long-term climate adaptation strategies.

Using the UQ algorithm presented in Section 4, we estimate the
mean of the predictive mean and the mean of the predictive variance of
the deep GP model, along with their respective approximation errors.
Figure 7 displays these quantities, computed using 10,000 Monte Carlo
samples: the top row shows the mean of the predictive mean (left) and
its associated error (right), while the bottom row presents the mean of
the predictive variance (left) and the corresponding error (right). These
results highlight the effectiveness of the deep GP model in capturing
and propagating uncertainty across the domain. In the context of
climate adaptation planning, reliable quantification of predictive
uncertainty ensures that decision-makers can

account for model confidence when designing protective
infrastructure, selecting conservation zones, or projecting
mangrove migration patterns under sea-level rise.

Spatially, uncertainty is highest near channel bifurcations and
shore-vegetation interfaces, where hydrodynamic gradients and
sediment transport rates exhibit strong variability, and lowest in
deeper or morphodynamically stable regions.

Furthermore, a random point was selected, and its probability
density function (PDF) was plotted and is shown in Figure 8. From
this plot, it can be noticed the tight bounds of the two standard
deviations are very close to the mean of the distribution (dotted
line). This means that there is a low variability in the data and
ensures the robustness of the deep GP model.

10.3389/fmars.2025.1624244

Temporally, uncertainty increases during periods of rapid
change in water levels and decreases when the system approaches
more stable hydrodynamic conditions, as reflected in the variability
patterns shown in Figure 8.

Finally, regarding the run-time of the deep GP model, it took 1
minute and 12 seconds for the model to develop the latent space
from the high dimension output space, 30 seconds to train and test
the model on the latent space, and 1 second to reconstruct the high
dimension output space for a total of 1 minute and 43 seconds. This
is over 3 orders of magnitude faster than the numerical model
which validates the use of emulators to speed up the computation.

Such computational savings are significantly valuable from a
research perspective. Nonetheless, they are also critical for
operational management in coastal areas, where frequent scenario
analyses and rapid decision-making under uncertainty are necessary
to safeguard mangrove ecosystems and their protective functions.

5.4 Comparative evaluation: standard GP
vs deep GP performance

Building on the UQ methodology introduced in Section 4, we
systematically evaluate the predictive uncertainty of the Deep GP
emulator by analysing the predictive medians, interquartile ranges,
and 95% uncertainty bounds across selected spatial transects and
temporal nodes.

We compared the performance of the deep GP model against
the standard GP. The latter used the RBF kernel and same training/
testing procedure. The mean RMSE and RMSLE for the GP model
were 0.0465

and 0.0466 respectively. This shows, when compared to the
deep GP, that the latter was 5 times more accurate than the standard
GP model. Figure 9 shows the performance of the GP model on
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PDF of the model prediction at a selected spatial location for the deep GP. The black dashed line indicates the predictive mean, while the shaded
blue region represents the 99% confidence interval. The narrow spread illustrates the model's low predictive variance and strong robustness at

Frontiers in Marine Science

12

frontiersin.org


https://doi.org/10.3389/fmars.2025.1624244
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Fanous et al. 10.3389/fmars.2025.1624244

Leave-One-Out Cross Validation Results
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FIGURE 9
Leave-one-out cross-validation errors (RMSE and RMSLE) for the GP model across 25 timesteps, highlighting improved accuracy and consistency
over time.
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Comparison of GP-predicted vs actual model outputs and corresponding differences at 6, 12, and 18 hours, analogous to the deep GP results shown
in Figure 3.
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UQ results using the GP model based on 10,000 samples. Top left: Posterior mean of the predictive mean. Top right: Error in the posterior mean
(numerical approximation error). Bottom left: Posterior mean of the predictive variance. Bottom right: Error in the predictive variance. All results are
shown over the spatial domain (x4, x2).

different training and testing validation sets. A similar comparison
can be made for each of the validation sets, where the earlier time-
steps had a much larger error compared to those for the deep GP.
This shows the capabilities of the deep GP in modeling outputs
without having a large number of data from previous time-steps.
This allows for flexibility in the model and the ability to explore
complex outputs accurately.

This level of flexibility is essential when dealing with coastal and
estuarine environments like the Sundarbans, where temporal dynamics
such as tides, sediment transport, and vegetation responses evolve
continuously and need to be captured accurately to inform sustainable
management of mangrove-based protection strategies.

Moving on, we plot the same data at times 6, 12, and 18 hours
for elevation and its predicted output by the GP in Figure 10

From these figures, although the GP model is accurate, the
errors are exacerbated compared to the deep GP errors as the
maximum error for GP reached 0.3m compared to the 1¢™® by the
deep GP which is a 5 order of magnitude improvement.

Such large discrepancies, even though moderate in traditional
engineering applications, can significantly misrepresent the subtle
yet crucial morphological changes occurring in vulnerable
mangrove regions. A few centimeters of elevation error may
dramatically affect predictions of tidal inundation patterns,
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seedling survival, and erosion control potential, highlighting the
critical need for advanced UQ methods like the deep GP in
NbS planning.

Regarding the UQ analysis, the mean of the predictive mean,
the mean of the predictive variance, and their corresponding
approximation errors were computed using the deep GP
methodology introduced in Section 4. The top row of Figure 11
presents the posterior mean of the predictive mean (left) and the
associated numerical error (right). The bottom row displays the
posterior mean of the predictive variance (left) along with its
corresponding error (right), all computed using 10,000 Monte
Carlo samples.

It can be noticed that the performance of both models is quite
similar, however, there are slight better improvements on the mean
of the variance where the GP model had a large area of variance
compared to the GP. These results confirm the ability of deep
learning architectures to tackle complex predictive tasks and
provide an accurate measure of uncertainty.

From an environmental perspective, tighter variance control in
predictions is crucial for designing adaptive management policies,
as it reduces the risk of over- or under-estimating the effectiveness
of mangrove-rooted barriers in storm surge mitigation, sediment
retention, and shoreline stability.
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FIGURE 12
PDF of the model prediction at a selected spatial location for the standard GP model. Similar to Figure 8 for the deep GP, the black dashed line
indicates the predictive mean and the shaded blue region shows the 99% confidence interval. Compared to the deep GP, the GP model exhibits
slightly wider uncertainty bounds, indicating higher predictive variance and less robustness at the same location.

Similarly, the PDF of a random point is shown in Figure 12. In
comparison to PDF plot of the deep GP model in Figure 8, the PDF
of the GP shows a higher degree in variability.

Finally, regarding the run-time of the GP model, the model took
just 16 seconds to run the training and testing procedure which is, as
expected, faster than the deep GP model. This difference in the
computation time between both models is due to the more complex
operations run by the deep GP as it constructs a latent space and has
more layers, thus more parameters, to optimise. Nonetheless, the run-
time of the deep GP is still substantially better than the numerical
model, and the accuracy of the deep GP is much better than the GP.

The modest additional computational effort required for the
deep GP is a worthwhile tradeoff, considering the significant
improvements in uncertainty control, especially for NbS
applications where minimising errors and uncertainty can lead to
more resilient and sustainable coastal adaptation solutions.

The advantages of the Deep GP framework arise from its
hierarchical structure, which allows the model to represent multi-
scale nonlinearities and non-Gaussian dependencies more
effectively than standard GPs or shallow surrogate models. Each
layer captures residual structure unexplained by the previous layer,
enabling the emulator to learn complex hydro-morphodynamic
interactions such as shoreline-vegetation feedbacks and spatial
gradients in flow and sediment transport. In contrast to deep
neural networks or PINNs, Deep GPs retain a fully Bayesian
formulation that naturally propagates uncertainty through the
model, providing calibrated predictive intervals while avoiding the
risk of overconfident extrapolation.

Compared with other advanced surrogate approaches, such as
PINNS (Raissi et al., 2019), Bayesian PINNs (Yang and Foster, 2022),
and polynomial chaos expansions (Wan and Karniadakis, 2005; Li
et al., 2021), the Deep GP demonstrates more favourable trade-offs
between accuracy, robustness, and computational cost. PINN-based
methods can embed physical constraints but often suffer from
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optimisation difficulties and scalability limitations in large coastal
domains (Fanous et al., 2023a, b), whereas polynomial chaos methods
become inefficient in the presence of strong nonlinearities and high-
dimensional parameter spaces. The Deep GP, by contrast, remains
tractable through sparse variational inference (Titsias and Lawrence,
2010) and generalises well across spatial domains. Although the
present study focuses on one mangrove system, the underlying
drivers, vegetation-flow interactions, sediment feedbacks, and
channel complexity, are shared across many mangrove ecosystems
(Mazda et al., 2005; Gilman et al., 2008). This suggests the framework
is likely to be transferable to other sites, provided site-specific forcings
and boundary conditions are incorporated during training.

6 Conclusions and future works
6.1 Major findings

This study presents a novel methodology for efficiently
implementing UQ in complex hydro- morphodynamic models
using deep GPs. The framework demonstrates substantial
improvements over traditional surrogate models by offering both
higher predictive accuracy and drastically reduced computational
cost. It successfully captures the intricate, nonlinear interactions
inherent in spatio-temporal coastal processes and produces robust
UQ outputs. Deep GPs consistently outperform standard GP
models, especially when modeling high-dimensional outputs
across large spatial domains. The integration of Bayesian GPLVM
enables automatic dimensionality reduction, leading to better
computational scalability and generalisability. These capabilities
are particularly relevant in the context of NbS for coastal
resilience, such as mangrove protection systems.

Beyond methodological contributions, the Deep GP framework
also offers practical value for coastal management and NbS planning.
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The ability to rapidly generate uncertainty-aware predictions enables
decision-makers to assess confidence levels in projected water
elevations, identify zones of elevated risk, and prioritise areas where
mangrove restoration or protective interventions may have the
greatest impact. Spatial maps of predictive variance can guide
surveillance and monitoring efforts by highlighting regions where
additional data would most reduce uncertainty. Furthermore,
temporal UQ outputs allow coastal planners to evaluate scenario
robustness under extreme hydrodynamic conditions, supporting
adaptive management strategies such as early-warning thresholds,
optimisation of restoration layouts, and design of resilient buffer
zones. These examples demonstrate how the proposed UQ
framework can directly inform operational decisions in climate-
exposed coastal regions.

6.2 Research limitations

While the proposed deep GP approach is efficient and accurate,
several limitations persist. The surrogate model requires retraining
when major changes in initial or boundary conditions occur, which
can involve additional computation and setup time. Moreover, deep
GPs rely on variational inference as exact Bayesian solutions are
analytically intractable, introducing possible approximation errors.
Another critical issue is the lack of inherent physical interpretability
in deep GPs; without embedded physical constraints, the model
may generate predictions that are statistically sound but physically
implausible. This limits their direct applicability in high-stakes
decision-making unless complemented by domain-specific
knowledge or hybrid methods.

A further limitation relates to the volume and diversity of
training data required for capturing the full range of hydro-
morphodynamic variability. Although the present Deep GP
model performs well with the available simulation ensemble, its
performance may degrade in settings where the training data do not
sufficiently cover rare or extreme events, or where the parameter
space is substantially broader. In such cases, the model may under-
represent tail behaviour or exhibit wider predictive uncertainty,
particularly in highly nonlinear regions of the state space. These
constraints reflect a general challenge shared by most surrogate
models, including PINNs, Bayesian PINNs, and polynomial
chaos expansions.

6.3 Recommendations for future research

Future research should focus on strengthening the robustness
and generalisability of the proposed Deep GP framework. First, the
performance of the surrogate remains sensitive to the volume and
diversity of the training data. Targeted sampling of rare or extreme
conditions, along with adaptive enrichment of the training set,
would help ensure reliable performance under rapid hydrodynamic
transitions or climate-induced extremes. In addition, evaluating the
model across mangrove and estuarine systems with differing
geomorphological and ecological characteristics would provide
insight into its universality and transferability.
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Another promising direction is the hybridisation of Deep GPs
with physics-informed modelling. Embedding conservation laws
directly into the kernel design or variational objective could
improve physical fidelity, particularly for long-term predictions or
scenarios where observational constraints are limited. Such
extensions would enhance model robustness compared with
conventional surrogates, especially for multiscale PDE-based
systems where numerical solvers are computationally expensive
and shallow GP models struggle to capture the required dynamics.

Finally, the integration of online or transfer learning techniques
represents an important opportunity for applications in
dynamically evolving coastal systems. These approaches would
enable rapid surrogate updates as new data become available,
supporting real-time forecasting and operational decision-making
in climate-resilient coastal management.

Supplemental data

The Supplementary Material for this article contains detailed
mathematical derivations, variational inference formulations,
training algorithms, and additional explanations supporting the
methodology described in Sections 2-4 of the main manuscript. It is
provided as a separate file and is available online at the
journal website.

Readers are referred to the Supplementary Material for full
technical details on the Bayesian GPLVM training, Deep GP model
optimisation, and predictive uncertainty quantification procedures.
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