
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Rochelle Diane Seitz,
College of William & Mary, United States

REVIEWED BY

Shaohua Lei,
Nanjing Hydraulic Research Institute, China
Constanza Ricaurte-Villota,
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Introduction: Mangrove ecosystems are increasingly recognised as essential

nature-based solutions for enhancing coastal resilience against sea-level rise and

climate-induced extreme events. However, achieving robust uncertainty

quantification for hydro-morphodynamic models of mangrove systems remains a

critical challenge due to the complexity of physical processes and the high

computational cost of solving Navier–Stokes partial differential equations.

Conventional uncertainty quantification approaches, including Gaussian Process

surrogates and physics-informed neural networks, are limited by their inability to

adequately capture non-Gaussian behaviour, high-dimensional interactions, or to

scale efficiently to large-scale coastal systems.

Methods: To address these limitations, we propose an efficient and scalable

probabilistic framework based on Deep Gaussian Processes, which hierarchically

stack multiple Gaussian Process layers to represent complex, multi-scale, and

non-Gaussian dependencies in hydro-morphodynamic dynamics. The

framework is applied to a high-resolution numerical model of mangrove

systems and trained using a variational inference approach to enable efficient

surrogate modelling and uncertainty propagation.

Results: The proposed Deep Gaussian Process model reduces computational

cost by more than three orders of magnitude (approximately 1.4 minutes

compared to over five days for the full numerical solver), while achieving

substantially improved predictive accuracy relative to standard Gaussian

Process models. Specifically, a fivefold reduction in error is observed, with an

RMSE of 0.0095 m compared to 0.0465 m for conventional Gaussian Processes.

The framework enables reliable propagation of uncertainty across complex,

nonlinear system dynamics.

Discussion: These results demonstrate the potential of Deep Gaussian Processes

to provide accurate and computationally efficient uncertainty quantification for

hydro-morphodynamic modelling of mangrove ecosystems. The proposed
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approach supports evidence-based planning for climate adaptation and

ecosystem-based coastal resilience, offering a practical pathway for integrating

advanced uncertainty quantification into operational decision-making for

sustainable coastal management.
KEYWORDS

deep gaussian process, hydro-morphodynamic, coastal ecosystems, navier Stokes PDE,
surrogate models, uncertainty quantification
1 Introduction

Hydro-morphodynamic systems describe the interactions

between fluid flow, sediment transport, and morphological

evolution across varying spatial and temporal scales (Haun and

Dietrich, 2021; Korpak et al., 2023). Governed by conservation laws

of mass and momentum (Dey, 2014), these systems play a pivotal role

in shaping coastal landscapes, including estuaries and shorelines

(Franzen et al., 2021). Within this context, mangrove ecosystems

provide a dynamic illustration of hydro-morphodynamic feedbacks.

Their root networks attenuate flow velocities, promote sediment

deposition, and stabilise shorelines (Mazda et al., 2005). This

natural interaction offers ecological resilience while simultaneously

exposing mangroves to vulnerabilities associated with sea level rise

and anthropogenic disturbances (Gilman et al., 2008). Accurately

modeling these processes requires integrated hydrodynamic,

sediment transport, and ecological representations, often

demanding the use of complex numerical models.

Hydro-morphodynamic modeling has therefore become

increasingly central to the design and evaluation of mangrove-

based protection strategies against climate-induced sea level rise

(Fanous et al., 2023c; Chang and Mori, 2021; Kato and Tajima, 2023).

Nonetheless, significant uncertainties arise due to incomplete

knowledge of physical parameters, boundary conditions, and model

approximations (Clare et al., 2022). To improve predictive

reliability and support resilient coastal management, these

uncertainties must be systematically addressed using uncertainty

quantification (UQ) techniques. Yet, comprehensive UQ efforts

typically demand large ensembles of model simulations, which are

computationally prohibitive, particularly in high-resolution or

near-real-time scenarios critical for climate adaptation.

Classical UQ methods such as Monte Carlo (MC) sampling,

sparse grid approximations, and surrogate modeling are widely

used to tackle this issue. Despite their extensive adoption, MC-

based UQ becomes impractical when applied to complex high-

dimensional hydro-morphodynamic models (Villaret et al., 2016).

Even advanced sampling methods like Latin hypercube sampling

(Iman and Conover, 1980) and multilevel MC (Giles, 2008) cannot

fully overcome these challenges, as exemplified by the 240,000

simulations required in (Harris et al., 2018) for the XBeach model.
02
To reduce computational costs, surrogate modeling approaches

including Polynomial Chaos (PC) expansions, physics-informed

neural networks (PINNs), and Gaussian process (GP) emulators

have therefore been explored (Li et al., 2021; Raissi et al., 2019;

Donnelly et al., 2022, 2024b, a; Fanous et al., 2025). Among these,

PC expansions offer an analytical representation of uncertainty

propagation by approximating model outputs as polynomials of

uncertain inputs, and are efficient for moderate-dimensional and

smooth systems. However, they struggle with the curse of

dimensionality and fail to capture sharp gradients often observed

in nonlinear coastal processes (Wan and Karniadakis, 2005). While

stochastic hydro-sediment morphodynamic models based on gPC

solvers (Li et al., 2021) have been developed, they largely remain

confined to simplified one-dimensional flows. Alternatively, PINNs

embed physical laws directly into neural network training, enabling

physically consistent learning, but their Bayesian forms (BPINNs)

face significant computational bottlenecks due to the size of the

parameter space and posterior sampling requirements (Yang and

Foster, 2022; Fanous et al., 2023a, b).

Alternatively, PINNs have emerged as powerful tools that embed

physical laws directly into neural network training by penalizing

deviations from governing equations. This enables them to learn

physically consistent solutions while leveraging data-driven flexibility.

Bayesian extensions (BPINNs) (Yang and Foster, 2022) further

enhance these models by introducing probabilistic priors, allowing

for uncertainty estimation and offering improved explainability

through posterior distributions over model parameters and outputs.

This makes BPINNs particularly attractive for scientific and

decision-critical applications, such as coastal protection, where

understanding model confidence and variability is crucial.

Nevertheless, BPINNs face major scalability bottlenecks in large-

scale hydro-morphodynamic models due to the substantial parameter

space and computational costs associated with posterior inference.

Their training requires extensive optimisation and sampling, making

them computationally burdensome, especially when real-time or

high-resolution forecasting is needed (Fanous et al., 2023a, b). As

such, although BPINNs provide valuable capabilities in terms of

explainability and uncertainty quantification, their scalability

limitations in complex, high-dimensional environments motivate

the exploration of more tractable probabilistic surrogate models.
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GP-based emulators remain among the most robust tools for

UQ, providing interpretable probabilistic frameworks that naturally

quantify predictive uncertainties (Oakley and O’Hagan, 2004;

Daneshkhah and Bedford, 2013; Daneshkhah et al., 2017; Batsch

et al., 2019). Nevertheless, classical GPs struggle with scalability in

high-dimensional output spaces, often requiring dimensionality

reduction (DR) techniques (Kennedy and O’Hagan, 2001). Linear

DR methods such as Principal Component Analysis (PCA) and

non-linear techniques like isometric mapping or Kernel PCA have

been employed. However, their deterministic nature and limited

ability to capture uncertainty propagation make them suboptimal

for complex PDE-based surrogate modeling. Recent coastal studies

have further reinforced this limitation. For example, Hossain et al

(Hossain et al., 2022). applied empirical and geospatial modeling

approaches, such as the Coastal Vulnerability Index, AHP models,

and satellite-based shoreline trend analysis, to evaluate risk

exposure along the Indian coastline. While valuable, these

approaches do not explicitly incorporate probabilistic uncertainty

propagation, which limits their application in high-dimensional

UQ contexts.

To overcome these limitations, this study explores the Bayesian

Gaussian Process Latent Variable Model (BGPLVM) (Titsias and

Lawrence, 2010) as a probabilistic DR approach. By mapping high-

dimensional outputs onto a lower-dimensional latent space,

BGPLVM maintains uncertainty treatment while enhancing

computational efficiency. Although previous studies have applied

BGPLVM to elliptic PDE surrogates (Atkinson and Zabaras, 2019),

its potential remains underexplored in coastal hydro-

morphodynamic contexts. BGPLVM offers particular advantages

in capturing spatial correlations and facilitating efficient sampling

within complex model structures. Other recent studies have

introduced hybrid approaches that combine machine learning,

geospatial data, and risk modeling, such as the InVEST-CFRM

model applied to the Sundarbans (Mondal et al., 2025). While these

methods offer valuable insights into flood risk and habitat

vulnerability, they typically lack hierarchical probabilistic

structures necessary for deep uncertainty propagation.

Despite these developments, achieving efficient and scalable UQ

for hydro-morphodynamic systems remains challenging. MC

sampling scales poorly with model complexity, and PC

expansions suffer from exponential growth in polynomial terms

as dimensionality increases. PINNs and their Bayesian variants

(BPINNs), although physically consistent, require costly gradient

evaluations and posterior sampling, limiting their scalability to large

coastal domains. Standard GP surrogates, while fully probabilistic,

assume smooth and stationary mappings that cannot represent the

strongly non-Gaussian, spatially correlated dynamics typical of

coastal morphodynamics. These challenges motivate the

exploration of more tractable probabilistic surrogate models such

as Deep GPs.

Even so, shallow GP models, even when combined with

dimensionality reduction, may still struggle to capture highly non-

linear behaviours and non-Gaussian dynamics typical of hydro-

morphodynamic systems. Therefore, this paper proposes an

advanced framework based on Deep Gaussian Processes (Deep GPs)
Frontiers in Marine Science 03
(Damianou, 2015), which hierarchically stack multiple GPs to model

complex, multi-level feature representations. This deep architecture

provides more flexibility to model uncertainty across irregular spatial

domains and strongly non-linear dynamical processes.

Our investigation leverages simulation data from a detailed

numerical model of mangrove hydro-morphodynamics (Fanous

et al., 2023a) to compare the performance of traditional single-layer

GPs and the proposed Deep GP framework. We systematically

evaluate their capabilities in modeling accuracy, uncertainty

quantification, computational efficiency, and generalisability

across complex domain boundaries. Through this comparative

analysis, we aim to advance UQ methodologies for hydro-

morphodynamic systems, offering direct relevance to sustainable,

nature-based approaches for coastal resilience. Motivated by the

above limitations, this study directly addresses a critical research

gap by integrating scalable probabilistic machine learning with

physically grounded coastal modeling, an approach particularly

suited for high-risk, dynamic coastal ecosystems such as

the Sundarbans.

Building on the identified research gap, this study sets out the

following objectives to guide the analysis and structure of the paper:
1. To develop a scalable Deep GP framework for emulating

high-dimensional hydro-morphodynamic outputs;

2. To perform uncertainty quantification using a variational

inference-based sampling approach; and

3. To evaluate the performance of the Deep GP model relative

to standard GP and full numerical simulation baselines,

with a specific focus on mangrove-driven coastal systems.
The paper is structured as follows: Section 2 introduces the

governing Navier–Stokes equations and presents the GP-based

surrogate modeling approach. Section 3 describes the Deep GP

methodology for learning and predicting high-dimensional outputs.

Section 4 explains how the trained Deep GP model supports UQ

and statistical quantity estimation. Section 5 illustrates the

application of the methodology to a mangrove hydro-

morphodynamic model. Finally, Section 6 summarises key

contributions, study limitations, and future research pathways.
2 Gaussian process-based surrogate
modeling for mangrove hydro-
morphodynamics

This section presents the application of Gaussian Process (GP)

emulators to model the hydro-morphodynamic behaviour of

mangrove ecosystems, addressing the challenges posed by the

system’s high complexity and nonlinear dynamics. We first

outline the governing equations of the hydro-morphodynamic

system, to provide the necessary contextual background and to

define the regression problem formulated in this work.

Hydro-morphodynamic processes are typically described by the

Navier–Stokes (NS) equations for fluid flow, which include both
frontiersin.org
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continuity and momentum conservation laws (Fanous et al., 2023c).

In coastal regions, where water depth is much smaller than

horizontal length scales, the NS equations can be depth averaged,

yielding the Shallow Water Equations (SWEs) and substantially

reducing computational demands. The 2D depth-averaged SWEs

are given as:

∂h
∂ t

+ ∇ · (h�u) = 0, (1)

∂ �u
∂ t

+ �u · ∇�u − n∇2�u + g∇h = 0, (2)

where h denotes the free surface elevation, �u = (�u1, �u2)

represents the depth-averaged velocity vector in the x and y

directions, respectively, v is the turbulent kinematic eddy

viscosity, g is the gravitational acceleration, and h = h − zb
denotes the local water depth relative to the bed elevation zb.

Equation 1 represents mass conservation, expressing the

balance between temporal changes in surface elevation and

horizontal divergence of flow. Equation 2 describes momentum

conservation, which accounts for advection, diffusion due to

turbulence, and pressure gradients induced by surface

elevation variations.

Morphodynamic evolution, including sediment transport, is

governed by the advection–diffusion equation for depth-averaged

sediment concentration c:

∂ c
∂ t

+
∂

∂ x
(u1c) +

∂

∂ y
(u2c) =

∂

∂ x
es
∂ c
∂ x

� �
+

∂

∂ y
es
∂ c
∂ y

� �
,

where es is the sediment turbulent diffusivity, given by es = vhs =ss,

with vhs the horizontal viscosity and ss the turbulent Schmidt

number. This equation represents the balance between sediment

advection by flow and turbulent diffusion of sediment concentration.

The numerical model incorporating these equations was

comprehensively developed and validated in (Fanous et al.,

2023a), showing excellent agreement with the tidal gauge data,

demonstrating sediment retention properties of mangroves, and

highlighting the significant computational expense, with

simulations requiring more than five days for 24-hour periods. As

sediment dynamics are found to be minimal in the region, this study

focuses specifically on modeling water surface elevation as the

quantity of interest.

Given the prohibitive computational demands, we aimed to

develop a surrogate model, approximating the input–output

mapping y = f(x), where x ∈ X denotes the input variables and y

∈ Y the output responses. The surrogate allows rapid estimation of

physical quantities such as surface elevation and flow velocities,

facilitating efficient uncertainty quantification (UQ).

Following a Bayesian modeling approach (Oakley and O’hagan,

2002), we place a Gaussian Process (GP) prior over the unknown

function f( · ). Under the GP prior, the finite collection of function

evaluations F (X) at training inputs X follows a joint multivariate

normal distribution:

F (X) ∼ N (0, K(X, X)),
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where K(X, X) is the covariance matrix generated by a kernel

function. A commonly used kernel is the exponentiated quadratic

(RBF) kernel:

k(xi, xj) = exp  −(xi − xj)
TB(xi − xj)

� �
, (3)

where B is a diagonal matrix of positive inverse-squared

lengthscales, controll ing the correlation decay across

input dimensions.

To model noisy observations, we assume additive Gaussian

noise:

y = f(x) + e, e ∼ N (0,s2I),

where s 2 denotes the noise variance.

Given training data D = (X, Y), the predictive posterior for a

new input x* is also Gaussian:

f* ∥X, Y, x* ∼ N (m
f * ,Sf *),

where the predictive mean and covariance are:

m
f * = K(x*, X)½K(X, X) + s2I�−1Y,

S
f * = K(K*, x*) − K(x*, X)½K(X, X) + s 2I�−1K(X, x*) :

Further details on the derivation of the GP predictive

distribution are provided in Supplementary Material, Section 2

(Equations S1–S8).

In sum, the developed GP surrogate provides a powerful

probabilistic framework to model and predict hydro-morphodynamic

variables efficiently, enabling practical UQ applications in the context of

nature based coastal resilience strategies.
3 Enhancing hydro-morphodynamic
modeling with deep Gaussian
processes

Standard Gaussian Process (GP) models offer effective surrogate

models for complex systems but face scalability challenges with

high-dimensional outputs and non-linear relationships, due to their

cubic computational cost with respect to the number of data points.

To address these limitations, we employ a Deep Gaussian Process

(deep GP) model, which hierarchically composes multiple GP layers

to emulate complex, high-dimensional mappings more flexibly.

The deep GP is defined by recursively nesting GP mappings:

y = fL(fL−1(… f 1(x))) + e, (4)

where each f i is drawn from a GP prior, and e denotes

Gaussian noise.

This hierarchical composition allows each layer to successively

capture residual nonlinearities and hidden correlations not

explained by the preceding layer, analogous to feature extraction

in deep neural networks but retaining full Bayesian treatment

of uncertainty.
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As illustrated in Figure 1, the model consists of observed inputs

X, a sequence of latent layers hi, and the observed outputs Y. Each

latent layer is described by:

hi = f i(hi−1) + ei, ei ∼ N (0,s 2
i I), i = 2,…, L + 1:
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In the context of hydro-morphodynamic modeling, these latent

layers can represent compressed but physically meaningful

transformations of key processes, such as evolving flow velocities,

suspended sediment transport, or morphodynamic bed changes

across space and time.

This layered construction enables scalable and flexible modeling

of complex non-linear dependencies across high-dimensional

input–output spaces.
3.1 Bayesian GPLVM for probabilistic
dimension reduction

To efficiently train deep GP models on high-dimensional

hydro-morphodynamic data, it is essential to reduce the output

space while retaining key non-linear dependencies and associated

uncertainties. We employ the Bayesian Gaussian Process Latent

Variable Model (Bayesian GPLVM), which offers a probabilistic

and scalable framework for dimensionality reduction.

The Bayesian GPLVM captures non-linear structures within

data while providing uncertainty quantification through a fully

probabilistic mapping. To manage complex datasets efficiently,

sparse approximations based on inducing variables are employed,

reducing computational demands. In this application, the latent

variables learned via GPLVMs allow us to discover a low-

dimensional but physically consistent representation of complex

hydrodynamic and sedimentary patterns driven by mangrove-root

interactions. Accordingly, the true posterior distribution over latent

variables is intractable. Instead, we approximate it using a

variational posterior, i.e., a simpler, tractable distribution

optimised to be close to the true posterior. This variational

approximation enables scalable Bayesian learning for high-

dimensional problems.

A detailed account of the generative mapping, covariance

structures, prior assumptions, and variational inference

methodology is provided in the Supplementary File, Sections 4–6.
3.2 Training a deep Gaussian process
model

Training a deep GP model involves recursively applying GP

mappings and GPLVM-based dimension reduction across L hidden

layers, proceeding from the observed outputs Y toward the inputs X.

The main training steps are as follows:
1. Initialization: Given observed output data Y, apply GP

regression to:

a. Generate the Lth latent variable hL with dimension qL,

b. Approximate the posterior distribution q(hL),

c. Construct the data matrix HL ∈ Rn�qL for

subsequent layers.
FIGURE 1

Graphical representation of a supervised deep GP model with
inducing variables and L hidden layers, where inputs (X) propagate
through latent layers (hi) to predict outputs (Y).
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2. Recursive Inference: Given HL, apply Bayesian GPLVM to:

a. Generate the (L − 1)th latent variable hL−1 with

dimension qL−1,

b. Approximate the variational posterior q(hL−1)

c. Propagate the reduced data HL−1.

3. Layer-wise Composition: Repeat this process to generate   hif gLi=1
and their corresponding variational posterior distributions.

4 . opt imisat ion: The model parameters (e .g . , kernel

hyperparameters, noise variances) and variational parameters are

optimised by maximising the variational lower bound on the

marginal likelihood p(Y ∥X).
5. Final Model: The fully trained deep GP model corresponds to the

composition given in Equation 4, enabling prediction and

uncertainty quantification tasks.

In this study, kernel hyperparameters and noise variances were

initialised using the automatic relevance determination (ARD)

kernel and optimised by maximising the evidence lower bound

(ELBO) through a gradient-based optimiser (Adam). The number

of inducing points m was chosen empirically (m ≪ n) to balance

accuracy and computational efficiency, reducing the computational

complexity from O(n3) to O(nm2).

Through this training process, the model learns a hierarchical

mapping from input drivers such as tidal forcings, bed topography,

or vegetation parameters to dynamic hydro-morphodynamic

responses across space and time.

A detailed pseudocode of the variational inference procedure,

including parameter updates for the mean and covariance of the

variational posteriors, is provided in Algorithm 1 and Equations

S12–S18 of the Supplementary Material to ensure reproducibility.
Frontiers in Marine Science 06
Full details of the variational inference algorithm and training

procedure are provided in Section 2, particularly Algorithm 1 of

the Supplementary File. For completeness, the Supplementary

Material (Appendices 1–3) also describes the use of the ARD

kernel, the sparse variational formulation with inducing variables,

and the gradient-based optimisation of the ELBO that govern the

training process.
3.3 Prediction with deep Gaussian
processes

To achieve dimensionality reduction before prediction, the

Bayesian GPLVM was employed to map the high-dimensional

model outputs onto a lower-dimensional latent space while

preserving probabilistic uncertainty.

The latent dimensionality qwas determined using the optimised

ARD weights, which indicated a single dominant component with

the remaining dimensions contributing negligibly. To ensure that

no key physical information was lost, we verified the reconstruction

quality by comparing the GPLVM-reconstructed hydro-

morphodynamic fields with the original numerical outputs. This

comparison, documented in Section 5 (Figures 2, 3), shows close

agreement between the reconstructed and simulated fields,

confirming that the reduced latent representation retains the

dominant physical behaviour while significantly reducing

computational cost.

Once trained, the deep GP model predicts the output y* for a

new test input y* by recursively propagating uncertainty through

the latent layers. At each layer, the predictive distributions are

computed using the corresponding GP posterior learned

during training.
FIGURE 2

Leave-one-out cross-validation errors (RMSE and RMSLE) for the deep GP across 25 time-steps, highlighting improved accuracy and consistency
over time.
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The main predictive steps are:

1. First Layer Prediction:

a. Compute h*1 = f1(x*) + e1,
b. Approximate q(h*1 ) with predictive mean and variance.

2. Recursive Propagation: For each layer   i = 2,…, L:

a. Compute h�1 = f i(h
�
1−1) + ei,

b. Approximate   q(h�1) recursively.
3. Final Output Prediction:

a. Use the final latent variable h�1 to predict y* = fL+1(h
�
1) + eL+1,

b. Derive the predictive mean and variance of y*.

This uncertainty-aware prediction allows us to estimate future

water elevations, sediment distributions, or morphological changes

under new forcing conditions, while quantifying the associated

confidence intervals.

This recursive prediction framework forms the basis for the

uncertainty propagation methodology presented in Section 4. Full
Frontiers in Marine Science 07
derivations for computing the predictive distributions at each layer

can be found in Sections 3–5 of the Supplementary Material

(Appendices 1–3).
4 Uncertainty quantification using
deep Gaussian processes

In this section, we extend the classical uncertainty quantification

(UQ) framework proposed by Oakley and O’Hagan (Oakley and

O’hagan, 2002) to the Deep GP setting. Building on ideas from

(Bilionis et al., 2013; Chatrabgoun et al., 2022), we present a

sampling-based approach to efficiently propagate uncertainty

through the trained deep GP model and estimate statistics of interest.

Specifically, our method generates Monte Carlo realisation from

the variational posterior distributions at each latent layer. These
FIGURE 3

Comparison of deep GP predicted vs actual elevation outputs at 6, 12, and 18 hours. The left column shows the actual elevation obtained from the
numerical model, the middle column presents the corresponding deep GP predictions, and the right column illustrates the absolute differences
(errors) between them. Blue to red color bars in the first two columns indicate elevation values (e.g., low to high elevation), while the error maps use
a red hue to denote magnitude of residuals, with darker shades representing higher discrepancies. The low intensity of residuals confirms the high
accuracy of the deep GP emulator across space and time.
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realisations are then recursively propagated through the deep GP

structure to estimate quantities of interest (QoIs), such as the mean

and variance of the model output y.

Algorithm 1 is summarised below.
Fron
1: Require: Observed data (X,Y) and a trained deep GP

model (see Algorithm 1 in Supplementary File)

2: Sample n′ inputs X0 = x0if gn0
i=1from the input

distribution p(x).

3: for j = 1 to N′ Monte Carlo realisations do

4: Propagate x0i through the first GP layer to generate

random latent variables d(j)1 = h(j)11 ,…, h
(j)
1n0

n o
.

5: Approximate f (j)l ( · ) using the posterior predictive

mean of the GP fitted to d(j)l .

6: for l = 2 to L hidden layers do

7: Propagate h(j)(l−1)i through the lth GP layer to generate

d(j)l .

8: Approximate f (j)l ( · ) using the posterior predictive

mean from layer l.

9: end for

10: Propagate through the final output GP: generate

random outputs d(j)L+1 = f (j)L+1(h
(j)
L1 ),…, f

(j)
L+1(h

(j)
Ln0 )

n o
.

11: Approximate f (j)L+1( · )   by the GP posterior

predictive mean.

12: end for
Algorithm 1. Uncertainty quantification and propagation for deep
GP models.

Once Monte Carlo samples are generated, we can estimate QoIs.

For instance, the expectation of the model output y for

realisation j is given by:
E(j)(Y) =

Z
f (j)L+1(hL)q(hL) dhL,

which is approximated numerically using Monte Carlo

integration:

Ê (j)(Y) =
1
n0o

n0

i=1
f (j)L+1(h

(j)
Li ) :

Repeating this process over N′ Monte Carlo realisations

produces a sample Ê (j)(Y)
� �N 0

j=1 from the distribution of the

model mean E(Y).

Remark 1: It is important to clarify that the Monte Carlo (MC)

integration employed within the proposed framework differs

fundamentally from conventional MC-based UQ approaches. In

traditional settings, each MC sample requires a full evaluation of

the underlying numerical model, which becomes computationally

infeasible for complex hydro-morphodynamic simulations. In

contrast, the present framework utilises samples drawn from the

predictive distribution of the trained Deep GP surrogate. This allows

for rapid generation of realisations Ê (j)(Y)
� �N 0

j=1 at negligible cost,

while still capturing model-form (epistemic) and predictive

uncertainties encoded in the surrogate. Consequently, although the
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sampling procedure formally resembles MC integration, the

underlying computational burden is substantially reduced, enabling

scalable UQ for high-dimensional and nonlinear systems.

Similarly, the Monte Carlo samples can be used to approximate

variances, credible intervals, or other summary statistics of Y.

Remark 2: This probabilistic UQ framework is particularly

suitable for hydro-morphodynamic modeling, where uncertainties

in inputs such as tidal forcing, sediment properties, or vegetation

density propagate through complex nonlinear processes to affect

outputs such as water surface elevation, flow velocity, and

morphological evolution. The use of Deep GP models allows for

efficient and uncertainty-aware predictions even in high-

dimensional settings, thereby supporting robust decision-making

for coastal protection and mangrove ecosystem resilience.

The following section applies the proposed Deep GP framework

and the UQ strategy outlined above to the mangrove hydro-

morphodynamic case study, enabling a direct evaluation of predictive

accuracy, uncertainty behaviour, and computational performance.
5 Uncertainty quantification for
hydro-morphodynamic model

This section presents the model evaluation and uncertainty

quantification results obtained by applying the methodology

described in Sections 3 and 4 to the Sundarbans hydro-

morphodynamic domain. We evaluate the proposed UQ

framework in the context of the depth-averaged Navier–Stokes

system introduced in Section 2 and begin by introducing the

study area and its relevance to coastal resilience modelling.
5.1 Study area context

This study focuses on the Indian Sundarbans, the largest

contiguous mangrove forest in the world, located at the

confluence of the Ganges, Brahmaputra, and Meghna rivers. This

region, shared between India and Bangladesh, is critically

endangered due to accelerated sea-level rise, tropical cyclones,

and anthropogenic pressure.

The study domain includes the deltaic islands and tidal

channels of the Indian Sundarbans, extending from Sagar Island

in the west to the Ichhamati-Raimangal estuary in the east. The area

has witnessed considerable shoreline retreat, with net erosion rates

exceeding 5 m/year in some zones (Mondal et al., 2025). Tidal

influences, sediment dynamics, and seasonal monsoons dominate

the hydro-morphodynamic processes of this low-lying ecosystem.

Previous studies have shown that changes in bathymetry and

shoreline position directly impact mangrove survival and

regeneration (Hossain et al., 2022). Hence, accurate modeling of

elevation dynamics is essential for assessing future ecosystem

vulnerability under climate change scenarios.

Our primary focus is on the Sundarbans mangrove forest

situated between India and Bangladesh, as detailed in (Fanous

et al., 2023c). The modeled region of interest covers the entire
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Bay of Bengal shelf, including the Sundarbans mangrove forest

(Figure 4). Employing a spatially varying mesh resolution, we

capture tidal wave dynamics from the Indian Ocean to the

mangroves, varying from 8 km to 1.5 km (Figure 5).
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Focusing on the Sundarbans region, which is confronted with

imminent threat of rising sea levels, there is a pressing need for

precise modeling to gain a deep understanding of mangrove

dynamics under various climate change scenarios (Fanous et al.,
FIGURE 5

Computational mesh over the Bay of Bengal shelf generated using Gmsh, with resolution varying spatially from 8 km offshore to 1.5 km near the
Sundarbans mangrove region.
FIGURE 4

Model domain covering the Bay of Bengal shelf, with a focus on the Sundarbans mangrove forest located between India and Bangladesh. The inset
highlights regional river systems and urban centers influencing the hydro-morphodynamic environment.
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2023b). Accurate hydro-morphodynamic modeling is essential for

planning NbS that can sustain mangrove ecosystems under future

climate pressures. The quantification of the uncertainties can help

decision-makers design resilient strategies to protect coastal zones

and communities (Kent et al., 2024). Employing both the

conventional single-layer GP and adopted deep GP models as

surrogates for replacing the previously developed numerical

model (Fanous et al., 2023a), we aim to comprehensively

compare the capabilities of both of these models for accurately

and efficiently predicting the change of elevation over time and

quantifying the uncertainty for such predictions.
5.2 Validation metrics

In this section, we introduce two metrics required to examine the

performance of the fitted GP and deep GP models to the data of the

numerical model. Subsequently, we comprehensively evaluate the

proposed UQ of both methods when applied to hydro-

morphodynamic modeling of the case study discussed above. The

inputs to these models consist of time, while the outputs represent the

elevation across the spatial domain for each timestep. The resulting

dimensions for inputs and outputs are X ∈ R25�24 and Y ∈
R25�482,125, respectively. This represents 25 aggregated time-steps

across all simulations and 19,285 features (cells) for each timestep.

To validate and assess out-of-sample performance, we employ

the leave-one-out cross-validation (LOOCV) method. In this

approach, the GP-based emulator is trained on 24 time-steps, and

its predictive performance is evaluated on the remaining timestep.

This process is iteratively repeated for all 25 training examples.

Choosing this validation method allows us to examine the model’s

robustness against limited data and across diverse spatial

configurations and complexities. This robust validation approach

ensures that surrogate models maintain predictive accuracy across a

variety of hydro-morphodynamic scenarios, a vital requirement for

real-world application to coastal adaptation planning.
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For accuracy evaluation, we utilize the root mean squared error

(RMSE) and the root mean squared log error (RMSLE), defined by

the following equations:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

RMSLE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(log (1 + yi) − log (1 + ŷ i))

2

s

where n is the number of observations, yi is the actual value, and

ŷ i is the predicted value.

Furthermore, we provide visual illustrations of the performance

of both models across different time-steps to examine the spatial

and temporal prediction capabilities. Finally, we assess uncertainty

quantification (UQ) for both approaches using the methodology

outlined in Section 4.

These analyses validate the predictive performance of the surrogate

models and provide a crucial foundation for evaluating how uncertainty

evolves across time and space in complex coastal systems. The enhanced

understanding of predictive uncertainties contributes toward

establishing more reliable nature-based coastal defenses, directly

supporting climate resilience planning for vulnerable ecosystems such

as the Sundarbans. By quantifying the level of confidence in elevation

and flow predictions under different conditions, our results deliver

actionable insights for decision-makers aiming to implement adaptive,

ecosystem-based management strategies in coastal zones.
5.3 Deep GP training and automatic
feature selection

A deep GP with two hidden layers is used to approximate the

complex mapping f(x) between the inputs and outputs given the

observed data. The covariance function in Equation 3 is used with

different length scales. Using this function, an automatic relevance
FIGURE 6

Optimised ARD weights obtained after applying the Bayesian GPLVM during deep GP training. The plot shows that most output dimensions
contribute negligibly to the variance, while a few dominant dimensions carry most of the information.
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determination (ARD) is applied, where very small weights of

the dimensions of each latent space are discarded. The length

scales (wk) of this covariance function are automatically derived

by training the deep GP model using the Bayesian variational

method discussed in the previous section.

As explained in Algorithm 1 of the Supplementary File, training

of the deep GP model starts by reducing the dimensionality of the

model output using a Bayesian GPLVM. The model is then trained by

optimising the lower bound of p(y j x), given in Equation S13, using

the Bayesian variational method. Figure 6 shows the optimised ARD

weights after the application of the BGPLVM, indicating that most

output dimensions were effectively reduced to near-zero, with one

dominant dimension carrying most of the variance.

After reducing the dimensionality of the outputs, the deep GP

model fits the inputs to the dimensionality reduced outputs. Finally,

the predicted output is constructed from the latent predictions

through a final GP layer. The mean RMSE and RMSLE values are

0.0095 and 0.0052 respectively, which demonstrate substantial

abilities of this model to accurately emulate the numerical model.

These results underline the potential of applying data-efficient

machine learning methods to hydro-morphodynamic modeling

tasks, which are critical for projecting the future stability of

mangrove ecosystems under sea-level rise scenarios. Accurate
Frontiers in Marine Science 11
emulation of complex processes is vital for assessing the resilience

of natural coastal defenses.

Figure 2 shows the test RMSE and RMSLE values for each

iteration. As anticipated, the RMSLE values are less than the RMSE,

suggesting that they theoretically provide a more accurate

estimation of the model’s error as it better targets the

underestimation of the prediction. There are some noticeable

variances in the error especially at the beginning of the model.

The variation at the beginning can be explained with the time-

dependent nature of the data, the prediction of the current timestep

depends on the previous timestep. Thus, as there was not enough

data for the earlier time-steps, the resulted error was a bit higher

compared with the subsequent time-steps. Nonetheless, a consistent

performance is evident across the majority of the test cases.

Such consistency across multiple time-steps demonstrates that

the deep GP model is robust enough to support dynamic adaptation

strategies for mangrove-based NbS, where hydrodynamic and

morphological responses evolve over time under climatic stressors.

To have a closer inspection at the performance of the model across

the spatial domain, Figure 3 shows the predicted elevation from the

deep GP versus the actual modeled elevation using the numerical model

and the difference between both at different times. From these figures, it

can be evidently shown the significant accuracy for the deep GP model
FIGURE 7

UQ results using the deep GP model based on 10,000 samples. Top left: Posterior mean of the predictive mean. Top right: Error in the posterior
mean (numerical approximation error). Bottom left: Posterior mean of the predictive variance. Bottom right: Error in the predictive variance. All
results are shown over the spatial domain (x1,x2).
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and its ability to accurately map the inputs to the outputs and to

reconstruct the full dimensional output space from the latent space.

Accurately mapping spatial patterns of elevation change is

especially important for the Sundarbans, where micro-

topographic variations directly control tidal flushing, salinity

intrusion, and seedling establishment, all fundamental processes

for mangrove health and shoreline protection. Thus, ensuring

spatially coherent and uncertainty-quantified predictions is

crucial for long-term climate adaptation strategies.

Using the UQ algorithm presented in Section 4, we estimate the

mean of the predictive mean and the mean of the predictive variance of

the deep GP model, along with their respective approximation errors.

Figure 7 displays these quantities, computed using 10,000 Monte Carlo

samples: the top row shows the mean of the predictive mean (left) and

its associated error (right), while the bottom row presents the mean of

the predictive variance (left) and the corresponding error (right). These

results highlight the effectiveness of the deep GP model in capturing

and propagating uncertainty across the domain. In the context of

climate adaptation planning, reliable quantification of predictive

uncertainty ensures that decision-makers can

account for model confidence when designing protective

infrastructure, selecting conservation zones, or projecting

mangrove migration patterns under sea-level rise.

Spatially, uncertainty is highest near channel bifurcations and

shore–vegetation interfaces, where hydrodynamic gradients and

sediment transport rates exhibit strong variability, and lowest in

deeper or morphodynamically stable regions.

Furthermore, a random point was selected, and its probability

density function (PDF) was plotted and is shown in Figure 8. From

this plot, it can be noticed the tight bounds of the two standard

deviations are very close to the mean of the distribution (dotted

line). This means that there is a low variability in the data and

ensures the robustness of the deep GP model.
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Temporally, uncertainty increases during periods of rapid

change in water levels and decreases when the system approaches

more stable hydrodynamic conditions, as reflected in the variability

patterns shown in Figure 8.

Finally, regarding the run-time of the deep GP model, it took 1

minute and 12 seconds for the model to develop the latent space

from the high dimension output space, 30 seconds to train and test

the model on the latent space, and 1 second to reconstruct the high

dimension output space for a total of 1 minute and 43 seconds. This

is over 3 orders of magnitude faster than the numerical model

which validates the use of emulators to speed up the computation.

Such computational savings are significantly valuable from a

research perspective. Nonetheless, they are also critical for

operational management in coastal areas, where frequent scenario

analyses and rapid decision-making under uncertainty are necessary

to safeguard mangrove ecosystems and their protective functions.
5.4 Comparative evaluation: standard GP
vs deep GP performance

Building on the UQ methodology introduced in Section 4, we

systematically evaluate the predictive uncertainty of the Deep GP

emulator by analysing the predictive medians, interquartile ranges,

and 95% uncertainty bounds across selected spatial transects and

temporal nodes.

We compared the performance of the deep GP model against

the standard GP. The latter used the RBF kernel and same training/

testing procedure. The mean RMSE and RMSLE for the GP model

were 0.0465

and 0.0466 respectively. This shows, when compared to the

deep GP, that the latter was 5 times more accurate than the standard

GP model. Figure 9 shows the performance of the GP model on
FIGURE 8

PDF of the model prediction at a selected spatial location for the deep GP. The black dashed line indicates the predictive mean, while the shaded
blue region represents the 99% confidence interval. The narrow spread illustrates the model’s low predictive variance and strong robustness at
that point.
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FIGURE 10

Comparison of GP-predicted vs actual model outputs and corresponding differences at 6, 12, and 18 hours, analogous to the deep GP results shown
in Figure 3.
FIGURE 9

Leave-one-out cross-validation errors (RMSE and RMSLE) for the GP model across 25 timesteps, highlighting improved accuracy and consistency
over time.
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different training and testing validation sets. A similar comparison

can be made for each of the validation sets, where the earlier time-

steps had a much larger error compared to those for the deep GP.

This shows the capabilities of the deep GP in modeling outputs

without having a large number of data from previous time-steps.

This allows for flexibility in the model and the ability to explore

complex outputs accurately.

This level of flexibility is essential when dealing with coastal and

estuarine environments like the Sundarbans, where temporal dynamics

such as tides, sediment transport, and vegetation responses evolve

continuously and need to be captured accurately to inform sustainable

management of mangrove-based protection strategies.

Moving on, we plot the same data at times 6, 12, and 18 hours

for elevation and its predicted output by the GP in Figure 10

From these figures, although the GP model is accurate, the

errors are exacerbated compared to the deep GP errors as the

maximum error for GP reached 0.3m compared to the 1e−6 by the

deep GP which is a 5 order of magnitude improvement.

Such large discrepancies, even though moderate in traditional

engineering applications, can significantly misrepresent the subtle

yet crucial morphological changes occurring in vulnerable

mangrove regions. A few centimeters of elevation error may

dramatically affect predictions of tidal inundation patterns,
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seedling survival, and erosion control potential, highlighting the

critical need for advanced UQ methods like the deep GP in

NbS planning.

Regarding the UQ analysis, the mean of the predictive mean,

the mean of the predictive variance, and their corresponding

approximation errors were computed using the deep GP

methodology introduced in Section 4. The top row of Figure 11

presents the posterior mean of the predictive mean (left) and the

associated numerical error (right). The bottom row displays the

posterior mean of the predictive variance (left) along with its

corresponding error (right), all computed using 10,000 Monte

Carlo samples.

It can be noticed that the performance of both models is quite

similar, however, there are slight better improvements on the mean

of the variance where the GP model had a large area of variance

compared to the GP. These results confirm the ability of deep

learning architectures to tackle complex predictive tasks and

provide an accurate measure of uncertainty.

From an environmental perspective, tighter variance control in

predictions is crucial for designing adaptive management policies,

as it reduces the risk of over- or under-estimating the effectiveness

of mangrove-rooted barriers in storm surge mitigation, sediment

retention, and shoreline stability.
FIGURE 11

UQ results using the GP model based on 10,000 samples. Top left: Posterior mean of the predictive mean. Top right: Error in the posterior mean
(numerical approximation error). Bottom left: Posterior mean of the predictive variance. Bottom right: Error in the predictive variance. All results are
shown over the spatial domain (x1,x2).
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Similarly, the PDF of a random point is shown in Figure 12. In

comparison to PDF plot of the deep GP model in Figure 8, the PDF

of the GP shows a higher degree in variability.

Finally, regarding the run-time of the GP model, the model took

just 16 seconds to run the training and testing procedure which is, as

expected, faster than the deep GP model. This difference in the

computation time between both models is due to the more complex

operations run by the deep GP as it constructs a latent space and has

more layers, thus more parameters, to optimise. Nonetheless, the run-

time of the deep GP is still substantially better than the numerical

model, and the accuracy of the deep GP is much better than the GP.

The modest additional computational effort required for the

deep GP is a worthwhile tradeoff, considering the significant

improvements in uncertainty control, especially for NbS

applications where minimising errors and uncertainty can lead to

more resilient and sustainable coastal adaptation solutions.

The advantages of the Deep GP framework arise from its

hierarchical structure, which allows the model to represent multi-

scale nonlinearities and non-Gaussian dependencies more

effectively than standard GPs or shallow surrogate models. Each

layer captures residual structure unexplained by the previous layer,

enabling the emulator to learn complex hydro-morphodynamic

interactions such as shoreline–vegetation feedbacks and spatial

gradients in flow and sediment transport. In contrast to deep

neural networks or PINNs, Deep GPs retain a fully Bayesian

formulation that naturally propagates uncertainty through the

model, providing calibrated predictive intervals while avoiding the

risk of overconfident extrapolation.

Compared with other advanced surrogate approaches, such as

PINNs (Raissi et al., 2019), Bayesian PINNs (Yang and Foster, 2022),

and polynomial chaos expansions (Wan and Karniadakis, 2005; Li

et al., 2021), the Deep GP demonstrates more favourable trade-offs

between accuracy, robustness, and computational cost. PINN-based

methods can embed physical constraints but often suffer from
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optimisation difficulties and scalability limitations in large coastal

domains (Fanous et al., 2023a, b), whereas polynomial chaos methods

become inefficient in the presence of strong nonlinearities and high-

dimensional parameter spaces. The Deep GP, by contrast, remains

tractable through sparse variational inference (Titsias and Lawrence,

2010) and generalises well across spatial domains. Although the

present study focuses on one mangrove system, the underlying

drivers, vegetation–flow interactions, sediment feedbacks, and

channel complexity, are shared across many mangrove ecosystems

(Mazda et al., 2005; Gilman et al., 2008). This suggests the framework

is likely to be transferable to other sites, provided site-specific forcings

and boundary conditions are incorporated during training.
6 Conclusions and future works

6.1 Major findings

This study presents a novel methodology for efficiently

implementing UQ in complex hydro- morphodynamic models

using deep GPs. The framework demonstrates substantial

improvements over traditional surrogate models by offering both

higher predictive accuracy and drastically reduced computational

cost. It successfully captures the intricate, nonlinear interactions

inherent in spatio-temporal coastal processes and produces robust

UQ outputs. Deep GPs consistently outperform standard GP

models, especially when modeling high-dimensional outputs

across large spatial domains. The integration of Bayesian GPLVM

enables automatic dimensionality reduction, leading to better

computational scalability and generalisability. These capabilities

are particularly relevant in the context of NbS for coastal

resilience, such as mangrove protection systems.

Beyond methodological contributions, the Deep GP framework

also offers practical value for coastal management and NbS planning.
FIGURE 12

PDF of the model prediction at a selected spatial location for the standard GP model. Similar to Figure 8 for the deep GP, the black dashed line
indicates the predictive mean and the shaded blue region shows the 99% confidence interval. Compared to the deep GP, the GP model exhibits
slightly wider uncertainty bounds, indicating higher predictive variance and less robustness at the same location.
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The ability to rapidly generate uncertainty-aware predictions enables

decision-makers to assess confidence levels in projected water

elevations, identify zones of elevated risk, and prioritise areas where

mangrove restoration or protective interventions may have the

greatest impact. Spatial maps of predictive variance can guide

surveillance and monitoring efforts by highlighting regions where

additional data would most reduce uncertainty. Furthermore,

temporal UQ outputs allow coastal planners to evaluate scenario

robustness under extreme hydrodynamic conditions, supporting

adaptive management strategies such as early-warning thresholds,

optimisation of restoration layouts, and design of resilient buffer

zones. These examples demonstrate how the proposed UQ

framework can directly inform operational decisions in climate-

exposed coastal regions.
6.2 Research limitations

While the proposed deep GP approach is efficient and accurate,

several limitations persist. The surrogate model requires retraining

when major changes in initial or boundary conditions occur, which

can involve additional computation and setup time. Moreover, deep

GPs rely on variational inference as exact Bayesian solutions are

analytically intractable, introducing possible approximation errors.

Another critical issue is the lack of inherent physical interpretability

in deep GPs; without embedded physical constraints, the model

may generate predictions that are statistically sound but physically

implausible. This limits their direct applicability in high-stakes

decision-making unless complemented by domain-specific

knowledge or hybrid methods.

A further limitation relates to the volume and diversity of

training data required for capturing the full range of hydro-

morphodynamic variability. Although the present Deep GP

model performs well with the available simulation ensemble, its

performance may degrade in settings where the training data do not

sufficiently cover rare or extreme events, or where the parameter

space is substantially broader. In such cases, the model may under-

represent tail behaviour or exhibit wider predictive uncertainty,

particularly in highly nonlinear regions of the state space. These

constraints reflect a general challenge shared by most surrogate

models, including PINNs, Bayesian PINNs, and polynomial

chaos expansions.
6.3 Recommendations for future research

Future research should focus on strengthening the robustness

and generalisability of the proposed Deep GP framework. First, the

performance of the surrogate remains sensitive to the volume and

diversity of the training data. Targeted sampling of rare or extreme

conditions, along with adaptive enrichment of the training set,

would help ensure reliable performance under rapid hydrodynamic

transitions or climate-induced extremes. In addition, evaluating the

model across mangrove and estuarine systems with differing

geomorphological and ecological characteristics would provide

insight into its universality and transferability.
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Another promising direction is the hybridisation of Deep GPs

with physics-informed modelling. Embedding conservation laws

directly into the kernel design or variational objective could

improve physical fidelity, particularly for long-term predictions or

scenarios where observational constraints are limited. Such

extensions would enhance model robustness compared with

conventional surrogates, especially for multiscale PDE-based

systems where numerical solvers are computationally expensive

and shallow GP models struggle to capture the required dynamics.

Finally, the integration of online or transfer learning techniques

represents an important opportunity for applications in

dynamically evolving coastal systems. These approaches would

enable rapid surrogate updates as new data become available,

supporting real-time forecasting and operational decision-making

in climate-resilient coastal management.
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