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ABSTRACT Non-Intrusive Load Monitoring (NILM) aims to estimate the power consumption of electrical
appliances from the aggregated power consumption. While recent machine learning approaches have demon-
strated very high disaggregation accuracies, ensuring real-time capability is crucial in NILM’s hardware
implementations. We propose a constrained elastic matching approach for NILM to reduce execution time
significantly. Our approach was tested on two datasets (REDD and AMPds2). The reported performance
is on average 93.2% in terms of estimation accuracy for deferrable loads using the AMPds2 dataset. The
proposed approach reduces execution time by a factor of ten compared to unconstrained elastic matching
techniques, achieving per-frame inference times of 3.5-12.1 ms depending on the hardware platform and
model size. Memory usage for the largest model is approximately 7.5 MB, and reducing the model to 10%
of reference signatures lowers active power consumption from 12.1 W to 5.2 W, representing a 57% energy
saving with minimal accuracy loss. Furthermore, the proposed approach has been evaluated on five different
microprocessors, demonstrating consistent runtime reduction and enabling real-time implementation of
elastic matching based NILM with large reference databases.

INDEX TERMS Energy disaggregation, non-intrusive load monitoring (NILM), smart meter, smart grid,
consumer households, pattern matching, elastic matching, dynamic time warping (DTW).

NOMENCLATURE c Local alignment cost.

A Alignment matrix for elastic matching. e Measurement noise.

D Number of features. Dage Aggregated active power (W).

E Total energy consumption (kWh). Pm Active power of an appliance (W).

F Dimensionality of the reduced order feature space. EM Computational time for EM algorithm (sec).
1 RMS current (A). xt One frame of x with index .

k Model size (%). x Predicted value of x.

L Frame/Window length. X Reduced feature space of x.

N, Number of reference signatures. 8(-) Distance metric, e.g. Euclidean distance.

N, Number of test signatures. € Small error margin.

P Active power (W). () Aggregation function.

(0] Reactive power (VAr). f~'(-) Estimation function.

S Apparent power (VA). Wirain ~ Mean value of the training data.

T Number of samples. Otrain Standard deviation of the training data.

T; Sampling time (sec). T Total number of frames.

w Reference signature database. v(-) Set of statistical function, e.g. mean, max, etc.
Xage Aggregated total smart meter signal. m,n,i Index variables.

Cq Global alignment cost. ACC Accuracy.
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Excc Estimation accuracy.

EM Elastic Matching.

F1 F1 accuracy score.

MAE  Mean Absolute Error.
MBW  Memory BandWidth.
RMSE Root Mean Square Value.
SAE Signal Aggregated Error.

I. INTRODUCTION

Non-Intrusive Load Monitoring aims to extract the power con-
sumption at the device level only from the aggregated power
consumption signal at the inlet of a household or building [1].
Therefore, NILM offers a cost-effective and scalable solution
for energy consumption monitoring in buildings, providing
a valuable data source for smart grid implementations while
preserving consumer privacy [2], [3], [4], [5]. The NILM or
energy disaggregation task can be formulated as a single-
channel source separation problem [6]. Three main families of
approaches have been proposed to solve this problem, namely,
those based on Machine Learning (ML), Pattern Matching
(PM), and Source Separation (SS) [7].

Specifically, ML-based approaches, due to their ability to
model non-linear dependencies and under-determined prob-
lems, have been used extensively to address the NILM
problem. Early approaches have focused mostly on Hidden
Markov Models (HMMs) [8] and their variants [9]. In re-
cent years, Long-Short-Term Memory (LSTM) [10], [11]
and Convolutional Neural Networks (CNNs) [12] have been
investigated due to their ability to model temporal infor-
mation and multivariate signatures [13], respectively. The
most recent approaches focus on Generative Adversarial Net-
works (GANs) [14], [15], [16], Denoising Auto Encoder
(DAE) [17], and bidirectional Transformers [18] to incor-
porate self-attention mechanisms and to further improve the
performance of energy disaggregation. Since NILM is in-
trinsically a source separation problem, SS techniques like
Non-Negative Matrix Factorization (NMF) [6] and Discrim-
inative Sparse Coding (DSC) [19] have been used for energy
disaggregation, while the latest proposed methods have uti-
lized multiple features [20] or considered the temporal content
and operation of many appliances at the same time [21],
[22]. The advantage of these techniques is that they are un-
supervised by the nature of the corresponding algorithms;
however, they rely on a priori information, making them semi-
unsupervised. However, PM-based techniques have been used
to exploit appliance signatures that can be observed in the
aggregated signal under the superposition of other appliances’
signatures. Therefore, Dynamic Time Warping (DTW) [23]
and other Elastic Matching (EM) algorithms, e.g., Multi Vari-
ance Matching (MVM), Global Alignment Kernel (GAK), or
soft Dynamic Time Warping (sDTW), have been utilized to
identify appliance signatures from the aggregated signal [24].
Similarly to the SS-based methods, pattern matching does not
rely on a trained model, but on a set of reference pattern
signatures stored in a database.
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The development of large datasets available for NILM [25],
[26] and the improvements in Graphical Processing Units
(GPUs) have enabled the efficient training of machine
learning-based approaches from large amounts of collected
energy data as well as on high-frequency data (> 1Hz) [12],
thus machine learning based approaches dominate the NILM
task [12], [27], [28]. However, given the increasing need
for running NILM on edge devices (fully or partially) [29],
the energy disaggregation algorithms must work with limited
hardware resources. Therefore, the transfer learning-based
methods [30], [31] and the utilization of pre-trained mod-
els [32] or training-less approaches [33] have been exploited
most recently, and other NILM approaches have also been
investigated to work with very low sampling frequencies [34]
or to reduce latencies within the NILM architecture [35].
Moreover, scalable and light-weight solutions based on low
sampling frequencies and CNNs have been proposed to
achieve real-time NILM [36], [37].

Given that pattern matching-based approaches have not
benefited from parallel computing on GPUs, few recent
NILM approaches based on pattern matching have been pro-
posed, despite their promising results [24], [38]. Especially,
as they do not perform well with large amounts of data
due to long monitoring durations or high sampling frequen-
cies. We propose a multivariate constrained Elastic Matching
(cEM) algorithm that overcomes the computational burdens of
pattern-matching-based NILM approaches. The contribution
is threefold: First, an elastic matching-based NILM archi-
tecture is proposed that achieves on average performance at
the state-of-the-art compared to the best-reported machine
learning-based models, while showing a significant reduction
of execution time and not relying on model training. Specif-
ically, the reduction in computational load of the proposed
method is theoretically derived based on the formulation of
overall algorithm complexity. It enables for the first time
the usage of pattern matching based approaches in real-time.
Second, the approach is evaluated on five different micro-
processors, demonstrating runtime advantages on hardware
applications, enabling real-time capability, and further opti-
mizing NILM models according to hardware restrictions. The
practical evaluation validates the theoretically estimated re-
duction in computational complexity of the proposed method
across all evaluated hardware setups and demonstrates that
real-time usage of elastic matching based NILM is possible
using the proposed method. Third, an exhaustive compari-
son with machine learning and source separation methods
is provided, focusing on accuracy, scalability, transferability,
runtime, and memory requirements. It is shown that the pro-
posed constrained elastic matching approach is advantageous
in terms of runtime, while achieving comparable results in
the other performance criteria using only 10% of the data
compared to the original elastic matching approach.’

! The approach is integrated here:
BaseNILM

https://github.com/pascme05/
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The remainder of the article is structured as follows: In
Section II, the proposed cEM algorithm and the corresponding
NILM architecture are introduced. In Section III, the exper-
imental setup is provided. In Section IV, the experimental
results are presented. Discussion is provided in Section V, and
the article is concluded in Section VI.

Il. CONSTRAINED ELASTIC MATCHING FOR NILM

Let X4, € RT*P be the aggregated signal acquired by a smart
meter, where 7 is the number of samples and D is the number
of features, which can be active power (P), reactive power (Q),
apparent power (S), and current (/). Furthermore, let X €
RE*P and X7 € RE*P be two frames a and b of X4, where L
is the frame length and 7 is the frame index. Let A(X,;, X)) =
[S(xi“,x? )Nij € REXL be an arbitrary cost matrix evaluating
the quality of the alignment of an elastic matching algorithm,
where §(-) is a distance metric, such as the Euclidean, the
Manbhattan, or the Kullback Leibler distance, and i, j denote
the sample indices in the two frames X; and X;/. Based on
the definition of the inner product (A, A(X;, X, )), where A is
the alignment matrix of the elastic matching algorithm with
A € REXL giving the scores of A and the inner product is
defined as (A, A) = Zlii’ji a;, ;6 j, the cost of all possible
alignments for the EM can be written as:

EM (X}, X[) = Ar&i?Lm, AXT,X0)) (D)

where EM can be any elastic matching algorithm, e.g., DTW,
sDTW, GAK, or MVM.

A. CONSTRAINED ELASTIC MATCHING (CEM)

Assuming a database of N, reference signatures W : W,,, 1 <
n < N, with W, € REXP and N, test signatures, there would
be N = N, - N, reference-test signature pair distance estima-
tions necessary to find the reference-test pair with the best
matching, i.e., the minimum distance. As the computational
complexity of EM is in the order of O(n?), the approach is
unsuitable for real-time applications if N is large. For instance,
considering a signature database containing data from one
year of recordings with a sampling rate of 75 = 60 sec and
one-sample overlap between successive frames, would result
in N7 =365-24-60 ~ 0.5 million reference signatures.
To enable real-time energy disaggregation, the computation
of (1) must be performed significantly faster than % ~

114 us, to accommodate additional computational overhead
and ensure real-time processing. Previous evaluations have
shown that disaggregation can be performed in the order of
milliseconds up-to 1 ms [8], thus not fast enough for real-
time implementation of classical EM algorithms. For low-cost
hardware, the disaggregation time per frame should ideally be
even shorter.

However, since typically only a few signatures of the refer-
ence dataset are close to the test signature, the number of EM
searches can be reduced. In detail, let v(-) be a feature map-
ping function that transfers the time domain input signature
X" to a set of low-frequency statistical features X" € RF with
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dimensionality F < (L x D). Similarly, an element of the
dataset of reference signatures W, can be transformed using
v(-), ie., W, € R, where v(-) is a set of statistical functions,
e.g., mean, variance, max/min, et cetera. Subsequently, the
number of EM searches can be reduced by restricting the
search to the reference signatures that are close to the test
signature in the feature space, i.e.:

W%, < @

where || - || denotes the L,-norm with p > 1 and ¢ is an error
margin defining the maximum required distance in the feature
space and in turn the size of the reduced set of reference
signatures to be processed.

The computational cost of the EM algorithm in (1), ap-
plied to two frames X7, X} € RE*P is O(L?D) in time and
O(L?) in memory due to the need to compute the pairwise
distance matrix A and perform dynamic programming for all
L? alignment paths. For a dataset of N, reference signatures,
this results in a total time complexity of O(N,L>D) per test
signature, which is prohibitive for real-time applications. To
address this, (2) introduces a constrained search strategy that
projects each signature into a lower-dimensional feature space
RF (with F « L x D), allowing a fast feature domain reduc-
tion of the search space of the reference signatures with time
complexity O(N,F') and negligible memory requirement. This
reduces the number of costly EM signature alignments from
N, to kN, < N,, where k < 1 is the effective model size (in
percent) that depends on the error margin €. This results in
an improved overall complexity of O(N,F + kL>D) per test
signature, with significant gains in time usage when F and
k are small. The theoretical improvement of computational
complexity is described in (3):

2
NerI_kNrLD:L_i_k%k 3)
N,L2D L*D
where t.g) is the computational time of the proposed con-
strained EM algorithm and tg) is the computational time
of the original EM algorithm. The pipeline for reducing the
candidate reference signatures in the database is illustrated in
Fig. 1.

As shown in Fig. 1, the process consists of four steps.
First, recording the reference signature database W in the time
domain results in N, reference signatures of size (L x D). Sec-
ond, low-frequency features which create the feature vector
dataset W. Third, finding the closest samples in the feature
space using an error margin ¢ for each unknown signature
X . Fourth, reducing the number of reference signatures based
on the constraint in (2), resulting in the dataset of reduced
reference signatures W' € RN XLXD) with N/ signatures and
N/ « N,. The constraint elastic matching algorithm is de-
scribed in Algorithm 1 below:

IcEM

1EM

B. PROPOSED NILM ARCHITECTURE

NILM aims to determine the device-level power consump-
tion based on measurements from a single aggregating sensor
within a specified time window (frame). Specifically, for a

1477



SCHIRMER ET AL.: MULTIVARIATE CONSTRAINED ELASTIC MATCHING WITH APPLICATION IN REAL-TIME ENERGY DISAGGREGATION

Time-Domain Feature-Domain Time-Domain

w'e ]RN;x(Lx}

Reference
Signature
Reduction

Feature
Dataset

Feature
Extraction

Reduced
Reference
Signatures

Reference
Signatures

| -X| <e

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 1. Feature domain-based signature database reduction for the
cEM algorithm, including reference signature recording, feature extraction,
feature matching, and reference signature reduction.

Algorithm 1: Constrained Elastic Matching.

Input: NILM reference signature database W'; Test

sample of aggregated frame X;gg
Output: Index of closest match n’

Initialization: Local align cost ¢; — 00; Global align

cost cg = o0

1:  for signature n in W do

2 W, — generate signature feature vector v(W;)

3 X7 — generate aggregated feature vector v( agg)

4: if (|W, — X", < ¢) then

5: ¢; — evaluate local cost EM (W88, Xieo)

6: if ¢; < cg then

7 ¢, — ¢; updating global cost

8: end if

9: end if
10: n’ — assign index with to smallest global cost ¢,
11:  end for

12:  return n’

set of M — 1 known devices each of them consuming power
Pm € RT, withl<m<M—1landT being the total number
of samples, the aggregated power pqe € RT, measured by the
single sensor will be:

M—1 M
Pagg =F(P1s- s PM—1,©) =Y pute=Y pm 4
m=1 m=1

where e = py € R7 is noise generated by one or more un-
known devices and f(-) is the aggregation function. In NILM
the goal is to find estimations p,,, é of the power consumption
of each device m using an estimation method f~!(-) with
minimal estimation error and py; = é, i.e.:

o DM=1,8) = [ (Page) 5)

As (5) is practically impossible to solve analytically, most
energy disaggregation methodologies segment the aggregated
signal into frames and estimate the power consumption based

P={p1 pa ..
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TABLE 1. Short Description of the REDD and AMPds2 Datasets. P, Q, S,
and / are the Active Power, Reactive Power, Apparent Power, and RMS
Current, Respectively. T; is the Sampling Period

Name Duration | #-Houses | #-Devices | Features Ts
REDD 23 -48d 6 9-24 P 3s
AMPds2 2y 1 20 P,Q,S, 1| 60s

on features.
DT _ [ AT AT
P = {pl . p2, .

where P7 is the predicted power consumption of the M — 1
appliances and the noise for the 7/ frame. To solve the disag-
gregation problem using an elastic matching algorithm during
training, a signature database W : Wy, 1 <n < N, is created
using both the aggregated and appliances signals, i.e, W, =
(wasg, Wt w2, ..., WM]. During testing, the difference be-
tween an unknown signature X,, and the reference signature
database W is then calculated using the cEM algorithm as
formulated in Algorithm 1. The closest match between an
unknown signature X /., and the reference signature database
W can then be written as in (7), while the estimates of the

appliance power consumptions can be determined as in (8):

n' (r) = argmin, .y [cEM (Xa;g, Wn”gg>} (7

A 1 L1 ’ 1 M
P W S W T
L L L
®)

where cEM () is the constraint elastic matching algorithm and
n'(7) is the index of the closest match of the signature in the
database. Since Wn’,”( 0 is a matrix of size L x D, the average of
% > Wrﬁ’( = is computed across the axis including the active
power of the m-th device to predict py,.

Py =X ©)

I1l. EXPERIMENTAL SETUP

The NILM architecture based on the proposed cEM algorithm
in Section II was evaluated using the datasets, parametriza-
tion, and features presented below.

A. DATASETS

Since NILM requires a previously recorded dataset for the
appliance models, the proposed architecture was evaluated
using two different datasets, namely the REDD [39] and the
AMPds2 [26]. The REDD dataset is the most used in the
energy disaggregation task, thus allowing direct comparison
with other methods proposed in the literature. In contrast,
the AMPds2 dataset provides multiple features and does not
require pre-processing for two years of recordings. A descrip-
tion of the datasets is shown in Table 1.

In the NILM literature, either all appliances are used or a
subset of them [8], usually referred to as deferrable loads,
i.e., loads that can be used at a different time. Thus, our
results are presented for both setups. The deferrable loads
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TABLE 2. Optimization of the Frame Length in Terms of Estimation
Accuracy Ezcc (12) Using All Appliances of the REDD Dataset

Data Framelength L
5 10 15 20 25
REDD-1 | 7531% | 75.86% | 75.85% | 74.84% | 74.47%
REDD-2 | 76.07% | 76.40% | 76.05% | 73.43% | 73.32%
REDD-3 | 60.24% | 59.73% | 59.74% | 60.02% | 59.92%
REDD-4 | 59.86% | 59.75% | 60.67% | 60.93% | 60.47%
REDD-6 | 72.93% | 73.61% | 73.89% | 73.68% | 73.66%
All 68.88% | 69.07% | 69.24% | 68.58% | 68.37%

TABLE 3. Optimization of the Distance Metric in Terms of Estimation
Accuracy Ezcc (12) Using All Devices of the REDD Dataset

Data Distance Metric
EUC MIN MAN COS HAM
REDD-1 | 75.85% | 75.85% | 75.85% | 68.99% | 72.57%
REDD-2 | 76.05% | 76.05% | 76.05% | 68.96% | 67.70%
REDD-3 | 59.74% | 59.74% | 59.74% | 55.85% | 57.77%
REDD-4 | 60.67% | 60.67% | 60.67% | 58.36% | 60.03%
REDD-6 | 73.89% | 73.89% | 73.89% | 71.08% | 73.48%
All 69.24% | 69.24% | 69.24% | 64.65% | 66.31%

for the REDD dataset are the kettle, the microwave, the dish-
washer, the fridge, and the washing machine [9], while for the
AMPds2 dataset are the clothes dryer (CDE), the dishwasher
(DWE), the HVAC system (FRE), the heat pump (HPE), and
the kitchen wall oven (WOE) [8].

B. PRE-PROCESSING AND PARAMETRIZATION

Samples normalization has shown performance improve-
ments, especially in transfer learning [40], thus during pre-
processing, mean-variance scaling was applied to the input
feature vectors as described in (9):

r X = Htrain

X=—— ©)
Otrain

where [4;r4in 1S the mean value of the input values x during
training, oy,q;, is their standard deviation, and x’ is the mean-
variance scaled version of x. Furthermore, the free parameters
of the algorithm, namely the frame length, the distance metric,
and the restriction on the warping path were optimized using
a bootstrap training dataset (first five days of each house of
REDD) and five-fold cross-validation. During pre-processing
optimizations, DTW was used as the EM algorithm. The
frame length and the distance metric optimization results are
tabulated in Tables 2 and 3.

As can be seen in Table 2 the optimal frame length was
found to be 15 samples averaged across five houses of the
REDD dataset, while Euclidean (EUC), Minkowski (MIN),
and Manhattan (MAN) distance metrics have achieved the
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FIGURE 2. Relief-F based feature ranking for 14 different statistical
low-frequency features, including the cumulative feature score (black line)
and the standard deviation.

same performance, outperforming Cosine (COS) and Ham-
ming (HAM) distance metrics, thus Euclidean distance has
been selected in all following experiments, as it is the most
computationally efficient one. Furthermore, different restric-
tions on the warping path have been tested, namely Sakoe
and Itakura [41], [42]. The restriction on the warping path re-
ports significantly worse performance, which is in agreement
with [24], thus no restriction has been applied to the warping
path.

C. FEATURE SELECTION

To reduce the model size described in Section II-A, a set
of low-frequency statistical features is calculated from the
frames of the aggregated signal Xatgg. Feature ranking was
conducted using ReliefF [43] and the low-frequency features
proposed in [44]. The results of the feature ranking are shown
in Fig. 2.

As can be seen in Fig. 2, approximately 95% of the ReliefF-
based information can be found in the first seven features
(Minimum, Maximum, 75% Percentile, Root-Mean Square
value, 25% Percentile, Median, and Range), thus in the ex-
perimental results below only these seven features have been
used, and discussion on the influence of the feature selection
on the performance is provided in Subsection V-B.

D. HARDWARE

The real-time performance of the proposed cEM algorithm,
as well as its ability to reduce the runtime and memory re-
quirements of the proposed approach, was evaluated using
various hardware configurations. The hardware configura-
tions, including their most relevant parameters, are tabulated
in Table 4.

The hardware platforms used are a mixture of various ARM
Cortex-A application processors with different external mem-
ory configurations (density/data bus speed/bus width). Al-
though some platforms offer acceleration capabilities (GPU,
FPGA, etc.), only their CPU resources were evaluated. The
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TABLE 4. Overview of Considered Hardware Configurations. In the First
Column, the Name in Brackets is the Name Used in the Text and Figures

TABLE 5. Equivalent Number of Reference Signatures (In Thousands) for
Different Datasets for a Model Size of 100%

Platform CPU RAM Freq. | Bus | MBW | $/Unit

Raspberry PI 4 Cortex-A72 | 4 GB 3200 32 12.8 55
(RPI-4) (1.50GHz) LPDDR4 | MHz bit GB/s

Jetson Nano Cortex-A57 | 4 GB 3200 64 25.6 99
(Jetson) (1.43GHz) LPDDR4 | MHz bit GB/s

KV260 Cortex-A53 4 GB 1200 64 9.6 249
(1.33GHz) DDR4 MHz bit GB/s

i.MX 8M Plus EVK | Cortex-A53 | 6 GB 2133 32 8.5 449
(iMX) (1.80GHz) LPDDR4 | MHz bit GB/s

Ultra96v1 Cortex-A53 | 2 GB 533 32 2.1 249
(Ultra96) (1.20GHz) LPDDR4 | MHz bit GB/s

maximum theoretical Memory Bandwidth (MBW) was also
calculated to assess the external memory performance of each
platform, as defined in (10).

Clock Frequency x Bus
8

MBW =

(10)

IV. EXPERIMENTAL RESULTS

The architecture presented in Section II was evaluated accord-
ing to the experimental setup described in Section III. NILM
performance was evaluated in terms of estimation accuracy
(Eacc), as proposed in [39], i.e.

Sl Yo [P — P
ZZrTzl Z%:l A
where p}, and p,,, are the real and estimated power consump-
tion (closest match from (8)), respectively, of the m-th device
at the 7-th frame, 7 is the number of disaggregated frames
and M is the number of disaggregated devices. Furthermore,
to compare with other approaches previously published in
the literature, additional accuracy metrics, namely the Mean
Absolute Error (MAE) and the normalized Signal Aggregated

Error (SAE), were used:

(1)

Eacc =1~

.
I,
MAE = ;Dp;, — Pyl (12)
=1
[Em — E™|
SAE ="—"_"1 (13)
Em

where E,, denotes the total energy consumption of the m-th
appliance and E,, its predicted value.

A. UNIVARIATE CEM BASED ENERGY DISAGGREGATION

For the experimental setup based on univariate data, i.e., when
only one feature is available (D = 1), the REDD dataset has
been utilized as it includes only active power measurements.
In detail, the data were pre-processed as described in Sec-
tion III-B and downsampled to one sample per minute for a
fair comparison with the literature [19]. The frame length was
15 samples, with 14 overlapping samples between successive
frames. For simplicity, from here onwards, the number of
reference signatures used is denoted as the percentage of the
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Model Size Dependent Performance
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FIGURE 3. Univariate cEM NILM results for REDD (all loads) in terms of
MAE for different numbers of reference signatures (model size (%)). Solid
lines indicate average performance and dashed lines indicate the
performance of the houses (REDD-1: blue, REDD-2: red, REDD-3: yellow,
REDD-4: purple, and REDD-6: green). The gray areas indicate the 2-¢
confidence interval.

total size of each dataset and will be referred to as model
size. The total number of reference signatures, i.e., model size
equal to 100%, for each dataset used in this article, is tabulated
in Table 5.

The results in terms of MAE and relative performance drop
(loss) compared to using all the reference signatures, i.e.,
unconstrained EM, are illustrated in Fig. 3. In detail, the loss
is the difference of the MAE between constrained and uncon-
strained EM, normalized by the MAE of the unconstrained
EM, and expressed as a percentage.

As can be seen in Fig. 3, the proposed cEM algorithm’s
performance in terms of MAE varies between 15.6 — 13.3
(REDD-3) and 8.0 — 6.7 (REDD-2) depending on the number
of reference signatures. In detail, a significant increase of
the MAE can be observed for all houses when reducing the
number of reference signatures below 2 k (10%), with the
error increasing by 1.6% on average. The MAE increases up
to 15% when using only 200 (1%) of the reference signatures
with a two-sigma confidence interval of £8.4%.

B. MULTIVARIATE CEM BASED ENERGY DISAGGREGATION
To evaluate the performance when multiple features (D = 4)
are available, the AMPds2 dataset was used. In detail, the
data were pre-processed as described in Section III-B, and the
NILM feature setups from [28] have been used to ensure a fair
comparison. The frame length was chosen to be 30 samples
(30 minutes). The results for both deferrable and all loads
when using single-fold validation, with 90% training and 10%
testing, are tabulated in Tables 6 and 7. DTW was used as the
EM algorithm.
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TABLE 6. Results for AMPds2 (All Loads) in Terms of Escc Using Different
Model Sizes

Features model size (%)
0.1% 0.5% 1% 5% 10%

P (Out: P) 67.20% | 70.90% | 71.68% | 72.98% | 72.99%
I (Out: I) 72.53% | 75.42% | 76.14% | 76.80% | 76.83%
Q (Out: Q) | 77.58% | 80.78% | 81.41% | 81.69% | 81.68%
S (Out: S) 74.16% | 77.22% | 77.44% | 78.32% | 78.61%
PQ (Out: P) | 74.21% | 76.43% | 77.00% | 77.38% | 77.42%
All (Out: P) | 75.08% | 77.43% | 77.93% | 78.11% | 78.46%

TABLE 7. Results for AMPds2 (Deferrable Loads) in Terms of Ezcc Using

TABLE 8. Performance Comparison for Different Accuracy Metrics and
Elastic Matching Algorithms. The Free Parameter Used for the Kernel of
GAK is o = 2000, for the Soft Alignment of sDTW is y = 0.5, and for the
Step-Width of MVM is step = 10

Mdl ACC F1 Eacc | MAE | RMSE | SAE
DTW | 97.88% | 97.83% | 9291% | 0.11 0.94 | 0.003
sDTW | 97.84% | 97.79% | 92.72% | 0.11 0.96 | 0.001
GAK | 97.71% | 97.67% | 9331% | 0.10 0.83 | 0.001
MVM | 97.83% | 97.77% | 93.55% | 0.10 0.79 | 0.004

TABLE 9. Performance Comparison for Different Accuracy Metrics and
Appliances for MVM

Different Model Sizes App ACC F1 Eacc | MAE | RMSE | SAE
DWE | 97.06% | 97.03% | 46.03% | 0.13 0.88 | 0.02
model size (%

Features (%) FRE | 99.85% | 99.82% | 94.35% | 0.15 026 | 0.00
01% | 05% 1% 5% 10% HPE | 92.84% | 92.60% | 95.82% | 0.3 | 101 | 0.01
P (Out: P) | 78.41% | 83.45% | 84.19% | 8547% | 85.49% WOE | 9956% | 99549 | s0.60% | 003 083 | 006
I (Out:1) | 81.75% | 85.83% | 86.62% | 86.88% | 86.87% CDE | 99.84% | 9984% | 9548% | 0.04 097 | 0.03

Q (Out: Q) | 83.14% | 86.82% | 87.63% | 87.14% | 86.84%

S (Out: S) 82.23% | 86.47% | 86.30% | 87.15% | 87.53% TABLE 10. Literature Comparison With Previously Proposed Approaches

PQ (Out: P) | 86.13% | 88.50% | 89.00% | 89.10% | 88.92%
All (Out: P) | 86.27% | 88.61% | 89.04% 88.92% 89.27% Method REF Loads Metric REF MVM
WaveNILM | [28] Def Eaco | 947% | 93.2%
) ) SSFHMM 8] Def (noisy) Eaco | 941% | 93.6%
As shown in Tables 6 and 7, the reactive power (Q) and SSFHMM (8] Def (denoised) | Eacc | 98.1% | 982%
the apparent power (S) are achieving the best performances EnerGAN | [15] | HPE. WOE. COE | RMSE | 2210 | 1667
followed by the RMS current (/) and the active power (P) EnerGAN++ | [14] | HPE. WOE. COE | RMSE | 1764 | 166.7
when using only one feature. Furthermore, using multivari- BabiLSTM | [27] | HPE. WOE. COE | RMSE | 1586 | 1667

ate features, e.g., the reactive and active power (PQ), the
performance is further improved when disaggregating active
power. When using all features (ALL), the best performance
is observed regardless of the number of reference signatures.
Disaggregating reactive power has the highest performance
values, as it is an easier disaggregation problem with resis-
tive appliances having a reactive power consumption close
to zero; this is in line with the results reported in [28], [45].
Moreover, a similar trend as in the univariate results shown in
Section IV-A can be observed for the multivariate results, i.e.
the performance drops significantly when using less than 9.5k
(1%) reference signatures (it must be noted that AMPDs2 has
two years of data, thus far fewer data is required), while only
minor performance differences can be observed when using
more than 47.5k reference signatures (5%). It should be no-
ticed that when disaggregating all loads, the benefit of having
more data is more significant compared to only disaggregating
the deferrable loads.

C. ELASTIC MATCHING

As discussed in [24] alongside DTW, other elastic matching
algorithms have shown significant performance improvements
for NILM due to their ability to skip outliers, for MVM [46],
or through utilizing smoothing of the warping path, for SDTW
or GAK [47]. Therefore, three additional elastic matching
approaches are evaluated as cEM functions using the AMPds
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dataset (first year of AMPds2). In detail, all input features
(RMS current as the output), a fixed number of reference
signatures of 5%, a constant frame length of ten samples,
and 10-fold cross-validation have been used. To be com-
parable with as many approaches as possible, results are
presented using six different accuracy metrics, including next
to (11)- (13), also Root-Mean-Square-Error (RMSE), accu-
racy (ACC), and Fl1-scores (F1). The results are tabulated in
Table 8.

As tabulated in Table 8, SDTW achieves roughly identical
performance, while GAK and MVM outperform the conven-
tional DTW algorithm, showing performance improvements
of 0.4 — 0.6% in terms of Escc. MVM reports the best perfor-
mance for three out of five accuracy metrics. Furthermore, the
results on the appliance level are tabulated in Table 9.

As tabulated in Table 9, the heat pump has the best dis-
aggregation accuracy according to the Eqcc metric, and the
dishwasher has the worst performance among the selected ap-
pliances. Additionally, the best-performing NILM approaches
reported in the literature are tabulated in Table 10 and are
compared to the proposed cEM algorithm using 5% of all ref-
erence signatures. black WaveNILM [28] and SSFHMM [8]
have been explicitly selected for three reasons. First, their
source code is publicly available, allowing a direct one-to-one
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FIGURE 4. Results of the per-sample hardware inference times using the
REDD-2 (all loads) database. The upper sub-figure shows the absolute
execution time per frame, and the lower sub-figure shows the relative
inference time for different model sizes. In the lower subfigure, the black
solid line indicates the theoretical value from (3), while the stars indicate
the measured values.

comparison. Second, both methods use the AMPds dataset,
which does not require any pre-processing since it does not
contain any missing or implausible values or time gaps in
the measurements, making it the dataset with the lowest am-
biguity in comparisons. Third, their reported performance is
obtained using 10-fold cross-validation, ensuring a fair and
standardized comparison.

As can be seen in Table 10, the proposed cEM algorithm
reports results at the state-of-the-art, only 0.5 — 1.5% lower
than the best performing WaveNILM approach [28], while it
even slightly outperforms previously proposed machine learn-
ing approaches like HMMs and GANs.

D. RUNTIME, ENERGY CONSUMPTION, AND MEMORY

In Fig. 4, the hardware performances are shown and compared
in terms of absolute (upper subfigure) and relative (lower sub-
figure) execution time per disaggregated frame for different
model sizes. A model size of 100% refers to using an uncon-
strained EM approach, while a model size of k% corresponds
to cEM using only the k% of the reference signatures of the
database W.

As shown in Fig. 4, the absolute execution times vary per
hardware platform. Model size, CPU type, CPU clock fre-
quency, and external memory specifications all contribute to
the execution of this application, meaning the fastest CPU
clock or faster memory frequency does not necessarily cor-
relate to the fastest execution speed. In detail, the results are
similar from 1% to 20% of the model size (dominated by
the computational overhead), but for 50% RPI-4 outperforms
Jetson even though it has half of Jetson’s memory bandwidth.
For 100% model size, KV260 outperforms iMX by a small
margin. However, when calculating the relative measured in-
ference time of the cEM as (fy—, — tx—0)/fx=100, Where k is
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TABLE 11. Measured Standby, Maximum, and Active Power Consumption
(Watts) During Inference for Different Model Sizes Across Hardware
Platforms

Board Standby  Max Model Size (%)
1 10 20 50 100
RPI-4 33 9.0 35 37 41 5.4 8.7
Jetson 3.1 100 | 34 35 39 51 8.2
KV260 6.8 200 | 73 77 85 112 18.0
iMX 3.6 150 | 41 41 45 59 9.5
Ultra 6.1 240 | 68 70 7.7 100 16.1
Avg 4.6 156 | 50 52 57 175 12.1

the model size, it can be seen (lower subfigure of 4) that the
results are in line with the theoretical inference time from (3).

The size of the reduced signature database W’ does not
depend on the utilized hardware. For the data from the uti-
lized REDD-2 dataset, which contains approximately 18,000
reference signatures (model size of 100%) of sequence length
L =15 and feature dimensionality D = 1, the memory re-
quirement is 18,000 - 15-10-2bytes ~ 5.1 MB for M =9
appliances and the aggregated signal samples using FP16
representation. Similarly, W does not depend on the utilized
hardware or the model size, and the memory requirement
for F =7 features is 18.000 -7 - 10 -2 bytes ~ 2.4 MB for
an FP16 data representation, resulting into a total memory
requirement of 7.5 MB.

In addition to runtime and memory usage, the energy con-
sumption of the hardware platforms was also measured under
both standby and active inference conditions. Table 11 sum-
marizes the power draw (in Watts) across the five evaluated
boards for model sizes varying from 1% to 100%.

As can be seen in Table 11, the active power consumption
scales significantly with model size: inference using 100% of
the model leads to an average draw of 12.1 W, compared to
just 5.2 W at 10% model size. This represents a reduction of
nearly 57%, with only a marginal loss in inference quality for
EM methods as shown in Tables 6 and 7. Assuming 24 hours
of daily operation, reducing the model size from 100% to
10% would save approximately 165.6 Wh per day, or around
60.4 kWh annually.

V. DISCUSSION

Further, to the experimental results presented in Section IV,
the comparison with ML and SS-based methods and the in-
fluence of features and the number of reference signatures on
execution time and memory requirements are investigated for
the proposed constrained elastic matching.

A. COMPARISON WITH MACHINE LEARNING AND SOURCE
SEPARATION

As discussed in [7], three fundamentally different NILM
approaches have been utilized: machine learning, pattern
matching, and source separation. Each has advantages and
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TABLE 12. Comparative Evaluation of All Loads for the REDD-2 Dataset for
ML, Constrained PM, and SS Approaches

TABLE 13. Comparative Evaluation of Deferrable Loads for the REDD-2
Dataset for ML, Constrained PM, and SS Approaches

ML PM SS ML PM SS
Metric Metric

CNN LSTM | ¢DTW | ¢cMVM NMF DSC CNN LSTM | ¢DTW | cMVM NMF DSC
ACC 97.98% | 97.92% | 98.54% | 98.58% | 76.82% | 89.54% ACC 96.33% | 96.78% | 97.02% | 97.11% | 66.04% | 85.26%
F1 97.89% | 97.78% | 98.54% | 98.56% | 75.32% | 91.91% F1 95.58% | 96.55% | 96.95% | 97.04% | 68.07% | 87.44%
Eacc | 87.13% | 87.30% | 90.14% | 91.09% | 40.29% | 43.71% Eacc | 89.12% | 90.38% | 92.36% | 92.51% | 47.38% | 43.21%

MAE 4.41 4.34 3.30 3.00 27.60 18.78 MAE 5.73 5.03 5.11 4.99 48.70 29.60

SAE 0.033 0.036 0.009 0.016 0.165 0.155 SAE 0.043 0.002 0.031 0.035 0.218 0.306

limitations and can be compared based on five criteria: accu-
racy, runtime, memory requirements, scalability, and transfer-
ability [7]. The following provides a comparative evaluation
of ML, PM, and SS techniques, considering two specific mod-
els, i.e., CNN and LSTM for ML, constrained cDTW and
cMVM for PM, and NMF and DSC for SS. The five crite-
ria are evaluated as described below, and have been chosen
such that lower values are always better for each of the five
categories:

1) Accuracy: Is evaluated in terms of MAE using all appli-

ances

2) Runtime: Is evaluated in terms of execution time (sec)

for training and testing

3) Memory: Is evaluated in terms of the model size (MB)

of the trained model

4) Scalability: Is evaluated in terms of the accuracy differ-

ence between all loads and deferrable loads

5) Transferability: Is evaluated in terms of MAE when

training and testing are done on different houses

For the CNN and LSTM, standard model structures have
been implemented. The CNN consists of five 1D-CNN layers
with the number of filters being equal to [30, 30, 40, 50,
50] and kernel sizes being equal to [10, 8, 6, 5, 5], followed
by three fully connected DNN layers with 256 nodes each.
The LSTM consists of two LSTM layers with 128 nodes
each, followed by three fully connected DNN layers with
256 nodes each. The NMF [6] and DSC [9] approaches have
been re-implemented from the literature. For all evaluations,
REDD-2 has been used to calculate results using 10-fold
cross-validation (using 10% of the training data for valida-
tion). For evaluating the transferability, the model was trained
using REDD-1, while testing was conducted using REDD-2.
The data was not further down-sampled, and a restriction of
1% on the number of reference signatures has been applied for
the constrained PM approaches. The results of the accuracy
evaluation for the deferrable, all loads, and the transferability
setup are shown in Tables 12, 13, and 14.

Similarly, runtime and memory requirements are evaluated
on a desktop PC running an AMD Ryzen 3700X, as shown in
Fig. 5 for ML, PM, and SS approaches, respectively.

To compare the results, a rating of the five criteria accuracy,
runtime, memory, scalability, and transferability is shown in
Fig. 6. In detail, for each of the three methods (ML, PM,
and SS), the average of the two implemented approaches, e.g.,
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TABLE 14. Comparative Evaluation of All the Transferability for the REDD-2
Dataset (Trained on REDD-1) for ML, Constrained PM, and SS Approaches

ML PM SS
Metric
CNN LSTM ¢cDTW | cMVM NMF DSC
ACC 81.82% | 81.95% | 75.70% | 75.68% | 72.83% | 69.88%
F1 77.28% | 77.43% | 71.56% | 71.52% | 74.07% | 75.68%
FEacc | 3874% | 39.38% | 33.46% | 33.33% | 37.31% | 12.92%
MAE 32.51 32.17 46.18 46.28 3322 46.14
SAE 0.628 0.681 0.440 0.440 0.245 0.226
Execution time per sample
’\,? i e LSTM
£ 3
L 2
E 1 DTW MVM
0

Memory usage

—_

OO0 O

DTW MV M

memory (MB)

ML PM SS

FIGURE 5. Comparison of ML, PM, and SS methods considering execution
time per sample for training/testing, and memory requirements.

CNN and LSTM for ML, has been used for evaluation. Then
the relative score is calculated by dividing the average score
of each approach by the sum of the scores of all approaches
and taking the inverse, resulting in a relative rating between
zero (worst) and one (best).

As shown in Fig. 6, PM and ML outperform SS in terms
of accuracy. This is due to the excellent capability of neu-
ral networks to model the non-linear relationships between
device signatures and the aggregated signal, and PM pattern-
matching techniques capture the signal envelope for different
operation states. Furthermore, ML also reports the best result
for transferability, followed by SS and PM. This is due to the
ability of a neural network to generalize appliance signatures,
while SS and PM are based on dictionaries. Conversely, ML is
showing the worst results for both execution time and memory
requirements due to the training period of the neural network
and the number of weights that need to be stored in the model.
Vice versa, SS is reporting the best performance in terms of
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FIGURE 6. Relative comparison of ML, PM, and SS methods for five
different criteria, values close to zero denote worse performance and
values close to one superior performance.

execution time and memory due to formulating the disaggre-
gation problem as a linear algebra problem. Lastly, machine
learning shows the best performance in terms of scalability,
operating as an automated feature extraction engine. Given
that PM does not perform best in terms of transferability,
memory requirement, and scalability, further investigation on
these metrics was performed:

Transferability: In terms of transferability, the difference
between the relative scores of PM, ML, and SS is small com-
pared to accuracy, runtime, memory or scalability metrics,
with the transferability results being in a range of 5% (ML
= T71%, PM = 61%, SS = 65%). Consequently, a detailed
statistical analysis with additional data would be required to
quantify the influence of the three methods on transferability;
this is outside the scope of this article. However, possible
approaches to improve transferability include investigating
more normalization techniques to homogenize the signature
database, e.g. a quantile transformation, which has shown
promising results in [48], or enhancing the reference signa-
tures reduction process by selecting more distinctive features
or exploiting physical correlations between them, such as the
relationship S = /P% 4 Q? for apparent power when using
multi-input features as in AMPds2 [49]. It may also be worth-
while to use the disaggregation obtained from the proposed
technique as a pre-prediction stage for a second machine-
learning model, following the concept presented in [50].

Memory: While the memory requirements of the ML and
PM approaches are comparable in magnitude, their under-
lying causes differ fundamentally. In the ML approach, the
memory footprint is primarily determined by the large number
of trained model parameters, which collectively define the
model size. These parameters must be loaded into memory
simultaneously to compute a prediction from a given input
feature vector. In contrast, the memory requirement of the
proposed PM approach is governed by the size of the signature
database W. When a new input feature vector is received, the
database W is first reduced to a subset W’ based on similarity
criteria, and the subsequent disaggregation is carried out on
this reduced set. Based on the previous evaluations, a size of
W’ of around 1-10% of W is sufficient without suffering a
significant loss in disaggregation accuracy.
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Scalability: Although ML approaches (CNN, LSTM) show
the best relative scalability as indicated by the smallest per-
formance gap between all loads and deferrable loads, the
absolute disaggregation accuracy achieved by PM methods
remains the highest across both scenarios. This implies that
while ML maintains more consistent performance across dif-
ferent appliance types, PM still yields superior overall results,
albeit with slightly greater relative degradation when focusing
on deferrable loads. The higher variability in PM performance
is largely due to the greater challenge of matching variable or
overlapping usage patterns for certain load types, particularly
when using a constrained signature database. Nonetheless,
the drop in PM performance remains moderate and accept-
able in light of its strong absolute accuracy. Future work
could explore adaptive or hierarchical matching strategies
that dynamically adjust signature matching criteria based on
appliance characteristics or load context. Another promising
direction is to incorporate confidence-based selection schemes
or ensemble models that leverage both PM and ML out-
puts [51]. However, these enhancements are beyond the scope
of this article.

B. FEATURES AND MODEL SIZE

As described in Subsection II-A, the cEM algorithms have
two free parameters influencing their performance. First, the
restriction on the number of reference signatures (model
size) is extensively evaluated in terms of performance in
the previous chapters. Second, the number of features used
to perform the model order reduction. These two param-
eters are independent but mutually influence performance,
execution time, and memory requirements. Therefore, a grid
search was used to investigate their impact on the three
requirements. In detail, the REDD dataset was used, and
the number of reference signatures varied between 1-10%,
while the feature dimensionality was successively increased
according to their ReliefF ranking scores as calculated
in Section III-C (Fig. 2). The results are illustrated in
Fig. 7.

As shown in Fig. 7(a), performance improves when adding
additional features and increasing the number of reference
signatures. Specifically, as shown in the feature ranking in
Fig. 2, the most significant performance improvement is ob-
served when using the three to five top-ranked features; using
more than seven features shows only a minor performance im-
provement. Similarly, the largest performance improvement is
observed when using up to 3% of the available reference sig-
natures. Furthermore, as shown in Fig. 7(b), runtime increases
roughly linearly both when adding additional features and
when increasing the number of reference signatures, which is
in agreement with the theoretical discussions in Section II-A.
Moreover, memory increases linearly with a linear increase in
reference signatures and with a linear increase in the number
of features. The optimal number of features and the maximum
possible reference signatures can be optimized for a given
hardware configuration, i.e., based on the available memory
and processing power. An example of a hardware restriction
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FIGURE 7. Influences of model size and feature dimensionality of the cDTW algorithm on (a) performance, (b) execution time, and (c) memory usage.
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FIGURE 8. Restriction on available memory (0.3 MB) and execution time
(8 sec) for a given hardware application.

requiring a model size smaller than 0.3 MB and an execution
time of less than 8 seconds is illustrated in Fig. 8.

In Fig. 8, the two restrictions on memory and execution
time are illustrated using dashed (memory) and dotted lines
(execution time). In detail, the areas above these lines are not
possible under the given hardware restrictions.

VI. CONCLUSION

A constrained elastic matching algorithm with application
to energy disaggregation has been proposed, enabling real-
time energy disaggregation using elastic matching-based
approaches. The proposed algorithm can drastically reduce
execution time while achieving performances close to state-
of-the-art compared to the best-performing approaches in the
literature. In detail, it was shown that reducing the number
of reference signatures by a factor of ten does not signifi-
cantly influence performance. For larger datasets, reductions
as low as 1% of the original data size might be feasible.
Furthermore, the algorithms were tested using five differ-
ent microprocessor architectures, demonstrating the real-time
capability for hardware implementations. Moreover, it was
shown that the algorithm enables optimal disaggregation
for given hardware applications by adapting runtime and
memory requirements independently. The authors hope the re-
sults will increase research interest in pattern-matching-based
energy disaggregation approaches due to their advantages for
hardware applications. The following two aspects should be
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considered in future research: First, the robustness of electri-
cal coupling or noise on the electrical lines. In a first step,
this could be evaluated by artificially amplifying the noise
signal e or adding additional Gaussian White Noise to the
aggregated data. For further evaluations, the coupling between
different devices and the impact of on/off transitions should be
investigated using high-frequency measurement data. Second,
an in-depth evaluation of transfer learning scenarios should
be conducted, considering the absolute number of reference
signatures for each operating state of the appliances.
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