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 a b s t r a c t

The cueing task is a robust experimental paradigm for investigating attention. A centrally presented valid cue, 
correctly indicating the location of an upcoming target stimulus, leads to quicker responses than an invalid 
cue. A feature of this paradigm is that increasing the delay between a peripheral cue and a target reverses this 
effect, where responses become slower for a valid cue, a phenomenon termed inhibition of return (IOR). Using 
GEMS, a system that utilises genetic programming techniques, we generated potential strategies underlying the 
facilitation and IOR effects in the cueing paradigm. Models were generated for three experiments differing in 
their experimental designs, all with good fit to behavioural data. Our approach helps address current issues 
in the field of attention regarding how it is defined and what mechanisms underlie it. Additional benefits and 
limitations of this method are discussed.

1.  Introduction

Attention has been a central concept in the study of human cognition 
for decades. It is often defined as the selective processing of features of 
the environment, and inhibition of irrelevant sensory information (Car-
rasco, 2011). Attention is often considered a necessary mechanism due 
to limited cognitive and neural resources available for processing the 
wealth of sensory information coming from the environment. It essen-
tially allows us to ignore features of the environment that are not impor-
tant, and enhance those features that are task-relevant, novel or salient.

Different kinds of attention have been described, often as dichoto-
mous concepts. For example, attention that requires eye movements is 
overt, while covert attention refers to shifts in attention without eye 
movements. Similarly, attention can be described as endogenous, where 
focus is deliberately shifted, or exogenous, where attention is reflex-
ively captured by something in the environment. Often, these concepts 
are teased apart with the cueing experiment (Posner, 1980), which in-
volves an initial cue, followed by a target stimulus either in the cued or 
uncued location (see Fig. 1 for an example trial). This simple and pop-
ular paradigm is often used to investigate aspects of selective attention. 
For example, comparing a central arrow cue, which requires deliberate 
moving of attention, against a sudden-onset peripheral cue that catches 
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attention, has been suggested to give insight into exogenous and en-
dogenous attention.

While attention is often taken for granted in the literature, a com-
prehensive understanding of its components and mechanisms remains 
largely absent and the use of the concept itself has been criticised. For 
example, Anderson (2011) argued that constructing and testing such 
dichotomies has substantially slowed progress in understanding atten-
tional effects, and has only worked to show that such dichotomies do 
not exist. Indeed, an uninformative arrow cue will still affect behaviour 
(Ristic, Friesen, & Kingstone, 2002), suggesting that both central and 
peripheral cues can capture attention. There are also issues with defini-
tions – attention can be described in many different ways, often without 
a clear conceptualisation, and often definitions are informal and verbal. 
Frequently, attention is used as a placeholder for ‘something’ rather than 
a detailed theoretical concept (Anderson, 2011). While some researchers 
argue that the term has become unproductive and should be abandoned 
due to the range and diversity of meanings and confusion over what at-
tention is (Anderson, 2021; Hommel et al., 2019), others argue that at-
tention could still be a useful concept (Taylor, 2023). Throughout years 
of study and experimentation, there are now a number of unwieldy the-
ories that, instead of being disregarded or overhauled, often tack on 
new features to explain new results. This results in increasingly complex
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Fig. 1. Example trials of the central cueing (upper) and peripheral cueing 
(lower) experiments.

theories with potentially ill-defined additional features, and reduced 
predictive capabilities. In a similar vein, it has been argued that there 
is a lack of theory-driven experimentation or interpretation of data (An-
derson, 2021). In order to constrain definitions and theories of attention, 
researchers have been demonstrating that effects often attributed to se-
lective attention could instead be accounted for by other factors, such 
as efficient peripheral vision encoding (Rosenholtz, 2018).

Given these criticisms, researchers must scrutinize definitions of at-
tention more thoroughly. However, use of the term is pervasive, and it 
is within the context of previous research and theories that we interpret 
and understand research findings. Researcher bias is a strong factor in 
not only how results are interpreted, but which experiments are planned 
and how they are designed. The growing discontent within psychology 
due to many years of often verbal theories that lack precision, and a 
lack of coherence across different psychological domains contribute to 
issues such as the replication crisis (Open Science Collaboration, 2015). 
As such, new techniques need to be developed.

In the current paper, we show how the Genetically Evolving Models 
in Science (GEMS) methodology (Bartlett et al., 2023b,c), which uses the 
artificial intelligence (AI) technique of genetic programming (GP), can 
construct novel and well specified models of attention that can account 
for the human data. Based on the models generated, new experiments 
can be designed to test the models and their predictions.

2.  The cueing paradigm

As described above, a particularly influential paradigm in the atten-
tion literature is the cueing task (see Fig. 1) – effects are generally robust 
across experiments, and the paradigm has been consistently used since 
its popularisation by Posner (1980). The cueing paradigm is ideal for 
computational modelling, as the effects are well established, consistent 
and reliable. Further, the simplicity and flexibility of the experiment has 
resulted in a wealth of data with variations in conditions, timings, and 
participant pools.

As demonstrated in Fig. 1, the basic task consists of an initial cueing 
phase, followed by the presentation of a target stimulus, which partici-
pants must respond to. For this paradigm, a number of design decisions 
are made based on what is being investigated and the goals of the exper-
iment (see Chica et al. (2014) for a detailed overview of the task and the 

variables that can be adjusted). Typically, a central arrow cue that cor-
rectly indicates the location of the target (a valid cue) results in quicker 
and more accurate responses compared to an invalid cue, where the cen-
tral arrow is not directed towards the target. Details of this facilitation 
effect have been thoroughly explored: it is seen for unpredictive cues 
(e.g., for experiments with 2 possible target locations, the cue is correct 
50% of the time), increases with cue predictability (Arjona et al., 2016), 
typically lasts for a number of seconds (Posner, 1980) and occurs when 
target onset is approximately 300 milliseconds after cue onset (stimulus 
onset asynchrony (SOA); Remington and Pierce (1984)).

A number of computational models have been developed to explore 
attentional processes, both symbolic and connectionist. For example, the 
symbolic cognitive modelling architecture of ACT-R (Anderson et al., 
2004) involves components relating to attention. These components 
have been extended to account for more attentional processes. For in-
stance, ACT-R has been used to model the attentional network test (ANT) 
developed by Fan et al. (2002). This task is a variation of the cueing task 
described in the current paper, consisting of a cueing phase, followed 
by a test phase that presents the Flanker task (Eriksen & Eriksen, 1974) 
at either the cued or uncued location. The flanker task has a target (typ-
ically an arrow) at the centre of the display, with 2 arrows on either 
side that either point in the same direction or opposite direction to the 
central target. This task was designed to test a theory of attention com-
prising of 3 elements: alerting, orienting and executive control (Posner 
& Petersen, 1990). Behavioural results of the ANT were well fit by a 
modified version of ACT-R (Hussain & Wood, 2009; Wang et al., 2004).

The cueing experiment has also been modelled with the connection-
ist model of MORSEL (multiple object recognition and attention selec-
tion; Mozer (1991), Mozer and Sitton (1998)). This model can simulate 
visual search data, and demonstrate generalisability to the Posner cue-
ing task. It has two components: an object recognition system and an 
attentional mechanism that modulates levels of activation in the recog-
nition module. More specifically, activation levels are raised for stimuli 
in attended areas compared to unattended areas, similar to a spotlight 
conceptualisation of attention (Posner et al., 1980). This spotlight is not 
fixed though, with excitatory local connections and inhibitory connec-
tions for distant units, akin to the zoom lens model of attention (Eriksen 
& St. James, 1986). For the cueing task, target location was pre-activated 
by the cue, which reduced the amount of activation needed once the 
target appeared in the cued location, but caused competition following 
invalid cues.

These methods of modelling attentional cueing effects are important 
for furthering our understanding of the mechanisms underlying atten-
tion. However, GEMS provides another angle for exploring potential the-
ories. In particular, rather than creating a theory and testing how well it 
fits experimental data, GEMS can include operators (i.e., basic mecha-
nisms) from multiple different theories and from different psychological 
domains, and evolve models that best fit the data.

While the cueing paradigm is often used to explore the facilitatory 
effect of a valid cue, it also serves to explore the inhibitory effect of a 
valid cue, termed inhibition of return (IOR). This phenomenon occurs 
following a peripheral cue at a particular location, where responses are 
slower for target stimuli that are presented at the cued location. This 
leads to the pattern of results shown in Fig. 3: while at short interstim-
ulus intervals (ISI) a valid cue facilitates responses, when the interval is 
longer a valid cue increases response times.

IOR is a surprising effect, given the robust findings for reduced errors 
and reaction times for valid, compared to invalid, cues. In one of the 
initial demonstrations of the effect, Posner and Cohen (1984) suggested 
that IOR might occur because of novelty seeking. Inhibition has also 
been suggested to be functional for search by moving away from areas 
already inspected, and as such useful for foraging (Klein, 2000).

The mechanisms and circumstances under which IOR can be found 
have been extensively studied (for a review, see Lupianez et al., 2006). 
IOR is only present for peripheral cues, and occurs even when partici-
pants are aware that the cue is not informative. The timecourse of the 
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effect has also been explored; IOR lasts for over three seconds (Samuel 
& Kat, 2003), and can occur for ISIs from 250 ms (Klein, 2000; Samuel 
& Kat, 2003), though more demanding tasks have a later onset IOR (Lu-
pianez et al., 1997). The link between inhibition shown in the cueing 
paradigm and eye movements was made by Posner et al. (1985). When 
participants respond by moving their eyes towards the stimulus that 
they perceived first, these movements were more often made in the di-
rection away from the cued location, suggesting that eye movements 
were biased by the cue. Behavioural results may also be accounted for 
by sensory adaptation mechanisms, where sensitivity is reduced follow-
ing exposure to a stimulus (Hilchey et al., 2014; Lim et al., 2018).

The effect of IOR, despite the interest of psychologists and numerous 
experiments, is still not consistently understood. Dukewich and Klein 
(2015) explored how IOR assumptions varied across experts, finding 
unique points of view regarding the phenomenon and concluding that 
a coherent theory was lacking. There are some concerns regarding the 
overuse of the term, and differences in experimental conditions could 
lead to different underlying mechanisms being employed. This relates 
to the issues outlined regarding attention research more generally. Com-
putational modelling with comprehensive theories are beneficial for un-
derstanding IOR (Satel et al., 2019). We demonstrate the potential of 
symbolic modelling to address some of the issues raised, with a view to 
better understanding attention and IOR.

The simplicity and flexibility of the cueing paradigm make it highly 
informative about cognitive processes. The possibilities that the flexibil-
ity of the paradigm allows has, however, resulted in a great number of 
experiments with slightly different timings and stimulus positions with-
out theoretical justification. As such, it can be difficult to have a clear 
picture of the mechanisms underlying the paradigm. For example, com-
paring experiments with different stimulus display durations might give 
insight into the effect of stimulus duration, but if other factors (e.g., dis-
tance from fixation, method of response, etc.) are arbitrarily different, 
then clear conclusions cannot be made.

2.1.  Automating scientific theory development

One viable direction for the field is to harness the ever increasing 
power of AI. With continuous improvements of both hardware and soft-
ware, AI has become more integrated into scientific practice (Musslick 
et al., 2025). It has already been embraced in fields that have precise 
goals and specific procedures (e.g., functional genomics, King et al., 
2004). AI techniques have similarly been gaining interest and use for 
scientific discovery in psychology. For example, Peterson et al. (2021) 
used machine learning to develop theories of decision-making. For an 
overview of computational modelling and AI in psychology, see Bartlett 
et al. (2023a).

In this paper, we generate a number of new models of attention us-
ing GEMS to better understand patterns of cue facilitation and IOR in 
the peripheral and central cueing paradigms. This technique generates 
candidate models and evolves them over many generations to find those 
with the best fit according to a specified fitness function. First generation 
models are created by randomly sampling operators, and those with the 
best fit move into the next generation. A selection of these models un-
dergo alterations, namely crossover (swapping sections of models) and 
mutation (changing an operator of a model for something new). A no-
table feature of GP is that entire programs are evolved and can vary in 
size, rather than the fixed length strings characteristic of genetic algo-
rithms.

Reinforcement learning (RL) is another technique that has been em-
ployed to sequence actions with the aim of maximising a fitness func-
tion or a reward signal. A comparison between the two approaches is 
therefore appropriate at this stage. Both genetic programming (GP) and 
reinforcement learning (RL) optimise behaviour by searching for solu-
tions that maximise a performance criterion, but they differ in how they 
explore and update candidates. As just noted, GP evolves a population of 
candidate programs using selection, crossover, and mutation, evaluat-

ing each against a global fitness function (Koza, 1992). RL typically im-
proves a single policy over time through trial-and-error interaction with 
the environment, using reward signals and temporal-difference methods 
for credit assignment (Sutton & Barto, 2018). While GP often produces 
interpretable, symbolic solutions, RL is generally more sample-efficient 
and better suited for problems requiring stepwise feedback (Brameier & 
Banzhaf, 2007).

Computational modelling techniques such as GEMS are beneficial 
for cognitive science, as they require formal specification of all aspects 
of a cognitive theory. All parts of a model/theory are defined, avoid-
ing informal theorising that gives rise to the issues seen in attention 
research outlined above – attention is not an abstract placeholder for an 
effect, rather it is specified as a sequence of defined mechanisms. Using 
these techniques also reduces bias: researchers typically interpret re-
sults in light of their existing preconceptions regarding the topic. While 
researcher bias can certainly still feature in cognitive modelling (e.g. 
numerous decisions need to be made by the researchers regarding key 
aspects of modelling, each of which can introduce bias), it should be 
reduced relative to typical data interpretation, and can be reduced fur-
ther by including more data, more operators and collaborating across 
research teams. These techniques further allow an efficient method to 
test different theories – for example, if an experiment that is used to in-
vestigate attentional effects can be explained by unrelated mechanisms, 
this suggests we cannot take for granted that our experiments are inves-
tigating what we think they are. Finally, it is an efficient way to generate 
novel ideas in a field with a wealth of data and cumbersome theories.

In the remainder of this paper, we use GEMS to generate models of 
attention in three experiments: one experiment using the central cueing 
paradigm (Arjona et al., 2016) and two experiments using the periph-
eral cueing paradigm (Langley et al., 2011; Lim et al., 2018). Table 1 
provides information about the experimental and simulation details.

3.  Method

3.1.  GEMS Implementation

To evolve candidate models of human attention, we employed the 
GEMS system, a semi-automated method that uses the evolutionary prin-
ciples of GP (for more details regarding GEMS, see Frias-Martinez and 
Gobet (2007), Lane et al. (2016)). Models are sequences of operators, 
each of which reflects cognitive operations and interacts with the GEMS 
architecture (see Table 2 for details of the operators included in the 
simulations described in this paper). Each model is run through the spe-
cific cueing experiment under consideration, with operators engaging 
with the cognitive architecture in specific ways. The (simple) cogni-
tive architecture used in this paper is consistent across experiments and 
features core cognitive components. Namely: (i) a short-term-memory 
(STM) store with three slots, (ii) the location of attention, (iii) a ‘current’ 
buffer where currently attended items are stored, (iv) a salience map 
for salient areas of the visual field, (v) a preparatory response buffer, 
for storing the currently primed response, (vi) a response buffer to save 
the given response, (vii) a strength-association value, and (viii) a clock. 
Operators might have an effect on the cognitive architecture, and the 
state of the cognitive architecture during a trial might affect the op-
erators within a model. For example, the respond-X operator sets the 
model response to X, and increases the model clock based on the value 
in the preparatory response buffer – if they do not match, then the prep-
response-X operator is called, increasing the model clock further.

The strength-association value is updated each trial based on the va-
lidity of the trial, increasing following a valid cue, and decreasing fol-
lowing an invalid cue. The change of value is based upon the Rescorla-
Wagner (RW) equation (Rescorla & Wagner, 1972) of associative learn-
ing, which determines the strength of the association between a signal 
(in this case, the cue) and a stimulus (the target). This value remained 
close to 0.5 for the peripheral experiments (Langley et al., 2011; Lim 
et al., 2018), as cue validity was 50%.
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Table 1 
Details of GEMS modelled cueing experiments.

Arjona et al. (2016) Langley et al. (2011) Lim et al. (2018)
 Published Experiment Details
 Number of trials  300  80  360
 Participant age range  18–35  18–28  18–28
 Type of cue  Central arrow  Peripheral  Peripheral
 Cue validity  50%, 68%, 86%  50%  50%
 Cue modality  Visual  Visual  Visual
 Target modality  Auditory  Visual  Visual
 Response type  Button press  Button press  Eye movement
 Cue phase (ms)  300  50  100
 Interstimulus interval (ms)  370  50, 250, 550, 950  150, 300, 450, 600, 750, 900
 Response window (seconds)  2  6  3
 Simulation Details
 Fitness weights  0.45, 0.5, 0.05  0.3, 0.65, 0.05  0.3, 0.65, 0.05
 (accuracy, RT, model size)
 Best model fitness  0.03  0.03  0.03
 RMSE  11.68  8.45  12.82
 R2  0.70  0.90  0.82

Table 2 
Overview of the operators used by GEMS in this paper’s simulations. Each operator type had a set time 
(in milliseconds, ms) gleaned from the scientific literature, as follows: input (100 ms), output (70 ms), 
cognitive (70 ms), STM (50 ms), syntax (0 ms). The subscript ’v’ indicates that the timing is variable and 
can be altered via other factors.
 Name  Function  Type
 attend  Puts the item at the attention location into model ‘current’  input
 move-att-X  Shift ‘attention’ to a location in the visual display  cognitive

 (X ∈ {𝑐𝑒𝑛𝑡𝑟𝑒, 𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒})
 attn-capture  if there is a stimulus, move attention to its location  cognitive
 current-X-p  Predicate for stimulus type of model ‘current’ (X ∈ {𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠})  cognitive
 prep-response-X  Sets model ’prep-response’ to X, advances model clock based on  cognitive𝑣

 saliency-map (X ∈ {𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑐𝑒𝑛𝑡𝑟𝑒})
 respond-X  Sets model ‘response’ to X  output

 (X ∈ {𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑐𝑒𝑛𝑡𝑟𝑒, ‘current’-item-location})
 executes prep-response-X if X doesn’t match ’prep-response’

 rehearsal-N  Updates item-time in STM item N (N ∈ {1, 2, 3}) to current model ‘clock’  stm
 retrieve-N  Sets model ‘current’ to STM item N (N ∈ {1, 2, 3})  stm
 retrieve-X  Sets model ‘current’ to STM item matching type X  cognitive

 (X ∈ {𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠})
 nil  Sets model ‘current’ to nil  cognitive
 put-stm  Pushes value in model ‘current’ and model ‘clock’ to STM slot 1  cognitive
 RW-cue-strength  Given a cue, predict target location and prepare response  cognitive𝑣
 RW-cue-percept  Give a cue and target, predict target location and prepare response  cognitive𝑣
 if-strength-assoc  If model ’strength-assoc’ over threshold 0.7, respond in line with cue  output
 prev-val  If the previous trial was valid, respond in line with cue  output
 dotimes-N  Repeats a given expression (N ∈ {2, 3, 4})  syntax
 if  Executes condition, executes one of two expressions depending on  syntax

 the condition
 prog-N  Sequence of expressions (N ∈ {2, 3, 4})  syntax
 wait-N  Advances model clock by the specified number N of milliseconds (N ∈ {25, 50,  syntax

100, 200, 1000, 1500, 0.5-trial-length, 0.25-trial-length, 0.1-trial-length})
 while-N  Repeats an expression for a set time in ms (N ∈ {100, 200})  syntax

For this implementation of the cueing experiment, STM had three 
slots, in order to keep the model structure simple. However, GEMS is a 
flexible system, and different numbers of slots will be explored in future 
work.

Models are constrained so that only one response can be given 
– once the response buffer has been filled, the program will end. 
The structure of the architecture is invariant across experiments and 
across GP runs: GP is not changing the architecture, rather it is chang-
ing the models that are implemented within the architecture. The re-
action time and accuracy of each model is stored and averaged for 
each experimental condition (ISI for the peripheral experiments, block 
validity for the arrow experiment). These values are then compared 
against the averaged reaction times and accuracy of the published
datasets.

A multi-objective fitness function, within the range 0–1, indicates 
how well the model data fits the published data, where a smaller value 
indicates a better fit. In particular, the difference between the model 
and published data (reaction time and accuracy) for each experimental 
condition is scaled to the range 0–1. (RT was scaled to 0–1 using a half-
sigmoid function.) These comparisons are then weighted and summed 
to generate a single fitness value. The computation of fitness is phased 
during evolution (see Lane et al. (2022)) so that models are first opti-
mised for accuracy, then accuracy and reaction time, followed by accu-
racy, reaction time and model size (preferring smaller models); in the 
final phase each parameter is weighted (see Table 1 for fitness weights). 
Each experimental condition was equally weighted.

The models from the final generation with the best fitness values 
were then processed, replacing operators that were only advancing the 
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Fig. 2. Reaction times for the published behavioural data and model output for 
each experimental condition of Arjona et al. (2016).

clock with wait operators (see Lane and Gobet (2024) for more de-
tails of the post-processing techniques). This allowed the removal of any 
duplicate models from the set, resulting in a more interpretable set of
models.

3.2.  Published experimental data

Three experiments were modelled using the GEMS method: one using 
the centrally presented cueing paradigm, and two with peripheral cues. 
Across these experiments we explored the effect of cue type (central vs. 
peripheral), response method (button press vs. eye movement), a wide 
range of ISIs, different durations for both cue and target presentations, 
and the effect of cue informativeness. For all experiments, a population 
of 3000 models were evolved over 500 generations.

3.2.1.  Central cueing paradigm
In the experiment carried out by Arjona et al. (2016), an arrow cue 

was presented centrally and an auditory target stimulus was presented 
to the left or the right ear. The duration of each phase can be found in 
Table 1. To record their response, participants pressed a button indicat-
ing the location of the target.

Three cue-validity conditions allowed analysis of learning across a 
block of trials: in one condition the cue was valid 50% of the time (un-
informative), another had cues that were valid for 68% of the trials, and 
another was 86% valid (highly informative cue). Participants were not 
informed of the condition they were in. As can be seen in Fig. 2, there is 
a cueing effect for all block validity conditions; participants responded 
more quickly following a valid cue compared to an invalid cue. Further, 
this cueing effect increased with increasing block validity, moving from 
only a very slight effect for nonpredictive cues (the 50% condition) to 
a slightly greater effect when the cue was valid for 86% of trials in a 
block.

In order to model learning, operators based on the Rescorla-Wagner 
equation, which determines the associative strength of a cue and a tar-
get, were included. Specifically, either using the cue alone, or both the 
cue and target together, these operators predicted where the target was 
likely to appear.

3.2.2.  Peripheral cueing with button response
To simulate IOR and peripheral cueing, we used the experiment car-

ried out by Langley et al. (2011). The duration for each phase of the 
experiment can be found in Table 1. Participants provided a response 
by pressing the appropriate button indicating the location of the target. 
While the published paper included a number of other conditions (three 

Fig. 3. Reaction times for the published behavioural data and model output for 
each experimental condition of Langley et al. (2011).

different age bands of participants, removal of the delay phase), we only 
included data for the youngest group and with a delay phase, to align 
with the other experiments modelled.

This experiment manipulated the duration of the interval between 
the cue and the target stimuli (the ISI); as can be seen in Fig. 3, following 
an initial facilitatory effect at shorter ISIs, the pattern reduces and is 
reversed for longer ISIs. With increasing ISI, RTs reduce – participants 
are quicker to respond when the delay phase is longer regardless of the 
validity of the trial.

3.2.3.  Peripheral cueing with eye movement response
A second peripheral cueing experiment (Lim et al., 2018) was used 

to generate models of IOR with a broader range of ISIs (see Table 1 
for details) and with a different method of response: eye movements 
towards a target were recorded rather than a button press, resulting in 
shorter RTs compared to both experiments described above. The timing 
for the response operator was reduced to 0 ms for the experiment of Lim 
et al. (2018), as the hand motor response was absent.

The pattern of results for this experiment (which can be seen in 
Fig. 4) differs slightly from the Langley et al. (2011) peripheral experi-
ment as there is no evidence of a facilitation effect at short ISIs. In par-
ticular, the shortest ISI of this experiment was longer than those of Lan-
gley et al. (2011), and so this initial facilitation was not demonstrated. 
Rather, the IOR effect (quicker responses for invalid cues) increases be-
tween the two shortest ISIs, and then stays mostly constant. RTs for both 
valid and invalid trials are reduced as ISI increases, as in Langley et al. 
(2011).

4.  Simulations

4.1.  Central cueing and learning models

For the Arjona et al. (2016) experiment, initial models were gen-
erated to capture the 86% valid block effect, as this condition had the 
greatest effect of cue validity. The best model for this condition was then 
used to seed 10% of the initial 3000 models generated for simulating 
the results of the entire experiment (with all three block conditions), 
with the remaining 90% of models randomly generated.

Post-processing of the final generation of models with the best fitness 
values resulted in one final model with a fitness of 0.02 (0 indicates a 
perfect fitness), which can be seen in Fig. 5. In order to account for 
randomness in some operators, this final model was rerun 1000 times; 
the averaged RTs for each condition can be seen in Fig. 2.
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Fig. 4. Reaction times for the published behavioural data and model output for 
each experimental condition of Lim et al. (2018).

This model particularly utilised the RW-cue-strength operator, 
which predicts the target location and prepares a response based on 
the cue. Initially, the model waits and then attends the arrow cue, 
then uses RW-cue-strength to prepare a response given the cue and 
the strength association of the block. The model then moves attention 
right, attends again and responds with the currently attended item (if 
there is anything currently attended). This attend and respond-with-
attended cycle is then repeated if the trial is continuing (i.e. there 
is no target stimulus on the right), until the model finally responds 
left. This is an interesting strategy for the cueing task – it is essen-
tially localising attention on one side, and if a target stimulus never 
appears, after a certain time it responds in line with the unattended side. 
This model follows the pattern of results demonstrated in Arjona et al. 
(2016), with an increasing effect of cue validity as the cue becomes more
informative.

4.2.  Peripheral cueing with button response models

Initial models generated for the Langley et al. (2011) experiment 
captured the IOR effect; however, they did not demonstrate the facili-
tation effect at shorter ISI’s. To address this issue, models for just the 
50 ms and 250 ms ISI conditions were evolved. The best fitting model 
for these conditions (with a fitness of 0.01) then comprised 10% of the 
initial 3000 models generated for the full dataset (with all four ISI con-
ditions).

Post-processing of the models from the final generation, followed by 
removal of duplicate models from the set, resulted in one final model 
with a fitness of 0.03 (seen in Fig. 6).

The best model for Langley et al. (2011) utilised the dotimes op-
erators to cycle through sequences of searching for a stimulus in the 
display (attention capture) and responding in line with any stimulus 
that has been found. If no stimulus is found, the cycle repeats, until a 
response has been given. If no target is ever detected, the model will 
end by responding ‘right’.

The model, like the human data, demonstrated faster reaction times 
with increasing ISIs (see Fig. 3). The facilitation effect seen in the hu-
man data for the shortest interval of 50 ms and the minimal difference 
between valid and invalid trials for the 250 ms ISI was also captured 
by the model. Further, the inhibition of return effect was evident – that 
is, an invalid cue resulted in faster reaction times than a valid cue, for 
the 550 ms and 950 ms intervals. As such, this model captured the main 
features of the original human data. It is interesting to note that this 
pattern of results was found even though the cue, which is central to 
this paradigm, was ignored.

4.3.  Peripheral cueing with eye movement response

Following post-processing, the best model for the Lim et al. (2018) 
experiment had a fitness of 0.03, and can be seen in Fig. 7.

This model first attempts to store the cue, by moving attention to the 
left and then attending. The model then prepares a response to the left. 
Through using the RW-cue-strength operator, if the cue was attended 
(i.e., it was presented to the left), Rescola-Wagner learning operations 
based on the model strength association are used to predict the likely 
target location, and a response is prepared. The model then utilises the 
dotimes operators to cycle through attention capture, attending and re-
sponding with anything that is attended.

This model is consistent with the published data, with a clear IOR 
effect (see Fig. 4) – valid trials resulted in slower reaction times than 
invalid trials. Further, the IOR effect increased from the shortest ISIs, 
and remained approximately consistent following the 300ms ISI. While 
the model captures these trends, it results in a more dramatic effect of 
ISI than the more gradual slowing of RT seen in the published data.

4.4.  Model comparison

For each of the cueing experiments described, the same architecture 
was used and the GEMS system had access to the same operators. This 
demonstrates that the system is capable of producing models with a good 
fit for different kinds of tasks. The models themselves have some simi-
larities across the experimental paradigms. Namely, a cycle of attending 
and responding in line with what is attended was prevalent across all 
models. The central arrow model focused on one side of the environ-
ment, with a final response to the opposite side if no target stimulus 
is detected, whereas the peripheral cuing models utilised the attention 
capture operator, more in line with the exogenous type of orienting. 
While the models simulating the experiments carried out by Arjona et al. 
(2016) and Lim et al. (2018) utilised the cue, the model simulating the 
experiment by Langley et al. (2011) did not – this is likely due to the very 
short duration that the cue was presented for in the experiment. Opera-
tor timings could be altered in the future to allow perception of the cue; 
however, interestingly the model still demonstrates the facilitation and 
IOR pattern of the published results. It could be the case, therefore, that 
other elements of the experimental design, or simpler cognitive mecha-
nisms are driving the effects seen in cueing experiments. This is one of 
the benefits of using a system such as GEMS – we can explore whether 
experimental paradigms are actually investigating what they set out to.

5.  Discussion

Issues within psychology in general and attention research in par-
ticular, such as inconsistency in definition and informal, verbal theo-
ries, require new approaches and a critical evaluation of how theories 
are formed. Computational modelling, while not a new technique, is in-
creasingly accessible to psychologists, and could benefit the field. Due 
to the nature of modelling, theories must be well specified, avoiding 
the kind of informal theories often used in psychology. Advances in AI 
can further be applied to psychological research. Here, using GEMS, a 
new method of theory generation, we were able to capture a number 
of the key behavioural findings for the attentional cueing paradigm. In 
particular, we generated models for both central and peripheral cueing 
experiments, encapsulating patterns of facilitation and inhibition.

The models generated by GEMS for the cueing paradigm were able 
to capture the pattern of results seen for human participants. Specifi-
cally, facilitation effects were demonstrated with short ISI peripheral 
cueing (Langley et al., 2011) and with centrally presented arrow cues 
(Arjona et al., 2016). Further, the increased facilitation effect when a 
central arrow cue is more likely to predict the location of a target was 
demonstrated (Arjona et al., 2016). Finally, the IOR effect, with slower 
RTs given a valid cue in a peripheral cueing experiment at longer ISIs 
was demonstrated in both Langley et al. (2011) and Lim et al. (2018). 
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Fig. 5. Graphical representation of the best-fitting model generated by GEMS for Arjona et al. (2016). Fitness = 0.03.

Fig. 6. Representation of the best-fitting model generated by GEMS for Langley et al. (2011). Fitness = 0.03.

Fig. 7. Representation of the best-fitting model generated by GEMS for Lim et al. (2018). Fitness = 0.03.

This suggests that GEMS is a capable method of producing well-defined 
models and strategies for cognitive tasks.

Although models produced for Arjona et al. (2016) and Lim et al. 
(2018) datasets utilised the cue, the model for Langley et al. (2011) 
did not, while still demonstrating the facilitation and IOR pattern. This 
brings into question what behaviour is happening in these experimental 
paradigms, and whether interpretations relying on attention and cueing 
should be more critically considered. On the one hand, the cue may be 
ignored due to decisions about the timings of operators. For this dataset, 
the cue was presented very briefly (only 50 ms), while most of the oper-

ators take more time than this. These timings were taken from the litera-
ture; however, future work will determine whether these timings should 
be adjusted. On the other hand, that GEMS was able to produce models 
that fit the human data despite not acknowledging the cue suggests that 
the findings of such experiments could be due to the exploitation of dif-
ferent features of the cognitive system. More focused experimentation 
is necessary to further explore these considerations.

GEMS assists in theory development in a multitude of ways. For 
the current paper, the best fitting model for both Arjona et al. (2016) 
and Langley et al. (2011) featured an unexpected strategy (focusing
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attention on just one side of the environment, and ignoring the cue en-
tirely), which casts doubt on the typical interpretations of the cueing 
paradigm. GEMS’s capacity to generate surprising strategies, as noted in 
earlier work, appears to stem in part from its ability to exploit idiosyn-
cratic features of the experimental settings. These “low-level” strate-
gies illustrate the value of genetic programming for theory development 
while also highlighting potential limitations of researchers in exploring 
the hypothesis space. An important open question is whether human 
participants employ comparable strategies, a topic that warrants further 
investigation.

An additional benefit is that, for generating new theories, the ar-
chitecture and the operators used by the GEMS system have to be well 
specified, which results in clear definitions of key concepts. For exam-
ple, attention is operationalised by operators that have direct effects that 
can be examined, adjusted and explored. For the models generated in 
the current paper, attention was treated as a point that can be moved 
around a display in a number of ways, where the area receiving attention 
is salient. However, it is possible to define attention in many different 
ways, as well as compare these theories against one another. By pro-
viding the system with different options, we can explore differences in 
fitness values. All attention-related operators could also be removed, to 
see if the effects being measured by tasks designed to isolate attention 
can be explained by other mechanisms.

As shown in the current paper, the GEMS system can be applied to 
multiple datasets. In a previous example, Bartlett et al. (2023c) applied 
the methodology to two datasets for the delayed-match-to-sample task, 
to determine the importance of often taken-for-granted factors in ex-
perimental methods (such as the duration of stimulus presentation and 
the ISI). With the ever-increasing amount of data being collected, it is 
useful to integrate findings to get a more holistic view of what mecha-
nisms might be underlying similar and dissimilar behaviours. By using 
multiple experiments, we have been able to identify similarities and dif-
ferences between models for different experimental conditions, allowing 
a better understanding of the mechanisms of the cueing experiment.

A key benefit of GEMS is that the potential for bias is reduced. In par-
ticular, researchers in a given field might have particular assumptions, 
which would affect how data is interpreted, as well as what research 
is conducted and how it is designed. While GEMS will still have bias 
in terms of how the architecture is structured, which operators are in-
cluded and how they are operationalised, these can be reduced by feed-
ing in different operators, different definitions and investigating differ-
ent theories. Further, the models that GEMS produces are novel and can 
be unexpected. Such models can then suggest directions for experimen-
tal research that may not have been considered previously. One of the 
criticisms of psychology in general and attention research in particular 
is that those working in a particular domain might not appreciate the 
impact of other mechanisms on behaviour. For example, a task assumed 
to measure short-term memory might also engage mechanisms relating 
to decision making. Including operators from many domains avoids this, 
and encourages collaboration between researchers.

A few limitations of the approach might be noted. First, we had to 
experiment with the three weights in the fitness function in order to 
get good models; hence, the weights differ between the three experi-
ments. Second, the modeller had to perform some preliminary search 
for helping GEMS find suitable models. For example, for the first two 
experiments, a preliminary run had to be carried out with a subset of 
the conditions – the ones with the largest cueing effect – in order to 
find models that could partly seed the simulations for all the conditions. 
Third, because the smallest non-zero time parameter was 50 ms, it was 
not possible to achieve a perfect fit for the RT component of the fit-
ness function. Optimising the parameters alongside the models would 
resolve this limitation. Fourth, a related issue is that, despite the large 
search space, all three experiments converged on a single best-fitting 
model (after post-processing and de-duplication). The relatively small 
number of operators, combined with the strong constraints imposed by 
the timings, appears to have drastically restricted the solution space. 

Once again, optimising the timing parameters – along with expanding 
the set of operators – may help to address this problem.

Searching for a model that can explain data from multiple datasets 
is a critical future application of GEMS. As timings often differ across 
experiments (as in the current paper), timing parameters will need to 
be optimised in future work to achieve this. Additional methods for 
analysing the models generated by GEMS will also be developed in fu-
ture applications. For example, analysing how each specific operator in-
fluences the behaviour of the model would allow better understanding 
of how each operator relates to higher level attentional processes. This 
could potentially be achieved by removing each operator in the model 
and more thoroughly analysing the effect of its removal on model out-
puts. This would also help us to determine which operators are most 
critical for the experiment. While the models generated by GEMS have 
been displayed in tree diagrams, clearer and more interpretable meth-
ods of displaying models will be explored in the future. Further, the 
integration of GEMS with more complex and well established architec-
tures is an important future direction. This would allow a powerful and 
nuanced method for modelling the complex field of attention, building 
upon the critical work undergone by those refining detailed cognitive 
architectures.

The flexibility of the GEMS system and the benefits outlined above 
suggest that it could be a useful tool for theory development within 
psychology, addressing the lack of clearly defined and well specified 
theories.
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