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ABSTRACT: Understanding olfactory receptor (OR)—odorant
interaction is crucial for unraveling the molecular intricacies of
smell, a sense that is essential for health and survival and has potential
therapeutic applications. Nevertheless, the absence of comprehensive
experimental data concerning ORs has significantly impeded the
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understanding of the structural dimensions of olfaction, thereby 2©.
necessitating innovative approaches to elucidate the structural OE 2
intricacies of ORs. In this study, we developed an in silico protocol

to predict OR structures and study relevant odorant interactions Oo.....
using the ORS1E2-propionate complex as a reference. We also Hybrid Structure ® 0y
developed a hybrid homology modeling strategy leveraging KNN+PCA

homologous Alphafold structures. This approach resulted in Ligand Clusters
structures with better stability than Alphafold predicted models, as
validated through molecular dynamics simulations. Our pipeline
accurately replicated experimental findings for ORS1E2 and was extended to three homologous ORs: OR51E1, ORS1D1, and
ORS1G2. We used a total of 217 molecules from the M2OR database and key food odorants and applied K-nearest neighbor
clustering, selecting a total of 78 representative molecules based on their proximity to cluster centroids for molecular docking studies.
Our computational pipeline successfully verified over 25 previously established odorant—OR relationships, including the
identification of potential interactions between OR51G2 and molecules such as trans-2-nonenal and acetyl glutamic acid. This
framework provides an efficient method for predicting and characterizing potential OR—odorant pairs, streamlining the discovery
process prior to experimental confirmation and advancing our understanding of OR binding mechanisms.

B INTRODUCTION

Olfaction is an essential biological function that profoundly

applications. In the flavor and fragrance industries, under-
standing the molecular basis of scent and taste can lead to the

impacts the behavior and survival of various species, including
humans. It plays a crucial role in detecting food, identifying
environmental hazards, and navigating social interactions. b2 At
the molecular level, olfaction is facilitated by the interaction of
odorant molecules with the olfactory receptors (ORs). They are
the largest family of G protein-coupled receptors (GPCRs) and
are found within the Olfactory Sensory Neurons (OSNs) in the
nasal epithelium.l’3 However, recent studies have revealed that
ORs are not confined to the nasal cavity. These receptors are
found in various non-olfactory tissues and organs, where they
perform a myriad of biological functions that extend beyond the
conventional scope of olfaction.”** Their presence in extra-
nasal tissues suggests functions beyond odor detection,
including roles in fluid balance, wound healing, digestive
processes, drug metabolism, respiratory control, and potentially
behavior and mood regulation.””

Olfactory perception involves about 800 ORs, out of which ~
400 are functional ORs, involved directly in the reception of
odorants and perception of smell.® Understanding olfaction at
the molecular level is significant for various reasons. Knowledge
of ORs and their ligands holds immense potential in practical
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development of enhanced products. Consequently, the study of
olfaction contributes to our broader understanding of GPCRs,
representing a major class of drug targets. GPCRs are also
implicated in numerous physiological processes, and approx-
imately 34% of all FDA-approved drugs target these
receptors.g’m

The exploration of these receptors has historically been a
challenge in the field of sensory biology, primarily due to their
high genetic variability, limited expression in in vitro systems,
and the obstacles in obtaining high-resolution structural data
due to their complicated structure, making it difficult to
crystallize."'™'* These factors have significantly impeded our
ability to fully understand the structure—function relationships
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Figure 1. Flow-chart representing the methodology pipeline, divided into S phases - Structure Prediction, Binding Site Prediction, Ligand Selection,

Molecular Docking, and Molecular Dynamics Simulations.

inherent to these receptors. Despite these challenges, there have
been advances in the computational study of OR-odorant
interactions that use the physicochemical properties of both the
receptors and the odorants. Recent research in this domain often
focuses on correlating the physicochemical properties of
odorants, such as lipophilicity, molecular weight, number of
double bonds, and vapor pressure, with their afhinity and
specificity to ORs.” Mayhew et al.'* provided fundamental
insights into how certain molecular characteristics of odorants
influence their interaction with ORs revealing that lipophilicity,
a measure of a compound’s affinity for lipids or fats, is a key
determinant in odorant-receptor binding, affecting the com-
pound’s ability to traverse the hydrophobic environment of the
cell membrane and interact with the receptor.'>'°
Chemoinformatic models use the known properties of
odorants in the form of molecular fingerprints and their
corresponding receptor responses to predict the behavior of
untested odorant-receptor pairs.'” '’ The recent development
of M2OR, a comprehensive database containing over 75,000
curated OR-odorant bioassay experiments spanning 51,395
distinct pairs, has significantly enhanced our ability to validate
and predict OR-odorant relationships.”® This extensive
repository of experimental data serves as a valuable resource
for validating chemoinformatic models. These methods allow
the exploration of vast numbers of potential interactions that
would be impractical to test experimentally. Consequently,
Next-Gen Sequencing (NGS) allows for a detailed analysis of
OR sequences,”’ aiding identification of conserved domains and
critical amino acids for receptor activation. These techniques
have enabled us to understand ORs with higher capabilities.
Given that NGS is a high-throughput technique, it typically
necessitates substantial computational power, which may render
it impractical for entirely disparate ORs. This often requires an
exhaustive preliminary examination of chosen ORs, potentially
resulting in inaccuracies.”””” Molecular dynamics (MD)
simulations have also provided insights on OR activation and
time-resolved changes within the membrane environment,
offering deeper insights into the mechanisms of receptor
activation and signal transduction.”* Structural prediction
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tools like Alphafold2 (AFv2)* and Alphafold3 (AFv3)*® have
revolutionized our ability to predict the three-dimensional
structures of proteins, including GPCRs, with high accuracy.
Our study capitalizes on these technological advances to
investigate the structure and function of a specific subset of
human ORs. Ever since the structure elucidation of the ORS1E2
(PDB: 8F76),” there is a possibility to model other closely
related receptors with an even higher accuracy. We utilize in-
silico techniques to develop a workflow, enabling us to
investigate a subset of ORs, i.e., the ORS1-family. Building on
the experimentally determined structure of ORS1E2 (PDB:
8F76), we employ a methodological approach to model other
closely related receptors within this family. This is achieved by
identifying receptors with high sequence similarity to ORS1E2,
such as ORS1El, ORS1D1, and ORS51G2, using BLAST
searches.”® The high degree of sequence conservation among
these receptors enhances the accuracy of homology modeling,
allowing us to predict their structures reliably. Moreover,
previous studies have already demonstrated the efficacy of
combining Alphafold-derived structures with traditional homol-
ogy modeling to enhance protein model quality. For example, an
insect OR database utilized AlphaFold2-generated templates for
homology modeling, significantly outperforming traditional
modeling approaches such as SwissModel in terms of structural
accuracy and reliability.”” High homology also relates to having
more conserved sequences and domains, and thus a linear
prediction strategy favors these receptors very well.”"’!
Leveraging this structural information, our pipeline aims to
hypothesize and identify new ligands and elucidate the
functional properties of these receptors, with a special focus
on ORS51G2. By integrating bioinformatic analysis, structural
modeling, and subsequent ligand-binding predictions, we create
a comprehensive framework. We also assess the structural
stability of our predicted models using MD simulations. This not
only furthers our understanding of the ORS51- receptor family
but also opens avenues for discovering new odorant molecules
and exploring their potential therapeutic and industrial
applications. This approach allows for bridging the gap between
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the current odorant-reliant Olfactory research and the Structural
Olfactory research.

B METHODS

BLAST was performed on ORS1E2 (PDB: 8F76) to find the OR
sequences with the highest sequence similarity. Templates with
sequence similarity greater than 30% are usually selected to
perform homology modeling,‘}’2 we selected the top three most
similar human olfactory receptors (hORs) to ORS1E2, namely
ORS1EL, OR51D1, and OR51G2. The pipeline is divided into
four sections, shown in Figure 1 as a flowchart.

Structure Prediction. We employ four distinct approaches
to predict the structures of selected ORs. First, we obtained
structures from the EBI-AlphaFold database (https://alphafold.
ebi.acuk/) to assess AFv2-generated models under default
settings. Second, we utilized AF3 to generate OR structures
using default parameters.

Third, we applied traditional homology modeling via SWISS-
MODEL.* For ORS1E1, ORSIDI, and ORS1G2, we used
ORS1E2 as the template due to its highest sequence similarity to
these receptors (using pairwise sequence alignment). To model
the ORS1E2 itself, we employed the human Cholecystokinin A
receptor (CCKAR)-Gi complex (PDB: 7EZH) as a template,
despite its low sequence identity of approximately 18% with
ORS1E2 — well below the typical 30% threshold*® for homology
modeling, as this was the GPCR with closest homology to
ORSI1E2 before its structure was elucidated via cryo-EM.

Lastly, we developed a hybrid homology modeling (HHM)
strategy that integrates AFv2 and AFv3 predictions with
MODELER-based homology modeling.”* In this approach,
two sets of template structures were generated: one from high-
confidence mouse olfactory receptors (mORs) predicted by
AFv2 and AFv3, and the other from human olfactory receptors
(hORs) predicted by Alphafold (AFv2 and AFv3). Mouse OR
templates were selected owing to their slightly higher pLDDT
scores and high sequence homology to the target human
receptors—specifically, mouse OIlfr78 for ORS1E2 (93%
homology), Olfr558 for ORS1E1 (94%), Olfr$57 for ORS1D1
(89%), and OIlfr577 for ORS1G2 (91%) [Table 1]. Mouse

Table 1. Comparison of Human and Mouse Olfactory
Receptors Showing Their Homology Percentage and pLDDT
Scores from AlphaFold3 Predictions”

M. pLDDT (H. pLDDT (M.
H. sapiens  musculus  homology sapiens) musculus)
ORSI1EL Olfr558 94% 88.40 88.55
ORSI1E2 Olfr78 93% 87.40 89.72
ORS1D1 Olfrs57 89% 84.21 86.16
ORS1G2 Olfr577 91% 8743 88.61

“The pLDDT scores indicate the predicted confidence of the model,
with higher values suggesting more reliable structural predictions.

olfactory receptors have also been widely studied for their
potential odorants, which furthers the efforts of this work-
flow.”'%** This selection leverages the enhanced structural
quality of homologous receptors to improve the reliability of the
resulting models. Additionally, AF2-predicted human OR
structures were used directly as templates to serve as a
benchmark. Our objective was to assess whether the use of
high-confidence templates, direct human AF predictions, or
their refinement via MODELER produces superior structural
models. After refinement via MODELER, we further refined the

hybrid structures using Rosetta Relax,* a protocol designed to
optimize protein structures by iteratively sampling local
conformations to find the lowest-scoring variant. The protocol
alternates between side-chain repacking and all-atom mini-
mization, performing five cycles of optimization while
maintaining the overall fold. This final refinement step helps
to resolve any remaining steric clashes and optimize the
structures according to energy functions set by Rosetta, enabling
fair comparisons between models generated through different
approaches. To systematically evaluate our modeling strategies,
we performed a comprehensive structural analysis across 15
experimentally determined human GPCR structures [Table 2].
We calculated both unpruned and pruned RMSD values,
comparing experimental structures against four different
prediction methods: hybrid models built using homologous
templates, hybrid models using human AF templates, and direct
predictions from AFv2 and AFv3. This validation set of protein
models enabled a systematic assessment of structural accuracy
through RMSD calculations, providing robust insights into the
relative performance of each modeling strategy. To validate, we
comprehensively compared four modeling approaches—AFv2
default, AFv3 default, traditional homology modeling via
SWISS-MODEL, and our hybrid method—against the exper-
imentally determined structure of ORS1E2. The evaluation was
based on structural metrics such as Root Mean Square Deviation
(RMSD), MolProbity scores,”” and Ramachandran plot
analyses. MolProbity scores provide a comprehensive assess-
ment of protein structural quality by combining clashscore,
Ramachandran outliers, and unfavorable side-chain rotamers
into a single metric that correlates with crystallographic
resolution; lower scores indicate superior structural models.
For a detailed assessment of structural quality, we employed
PyRama® to analyze Ramachandran plot deviations, with
particular attention to Glycine and Proline residues, and used
Chimera® to compute RMSD values across all residues,
including pruned pairs, providing a quantitative measure of
model accuracy.

Binding Site Prediction. In our study, we compared and
utilized multiple tools for binding site prediction to find the
ligand binding pockets of the ORs and to analyze which tools
perform best for these receptors. We first utilized the
PUResNetv2 server, as introduced by Kandel et al.***!
PUResNetv2 employs structural similarity to predict protein—
ligand binding sites (PLBS) and is trained on the scPDB
database, known for its annotated proteins with confirmed
druggable binding sites.*” This tool was specifically designed for
sparse proteins, i.e., proteins that have large, flexible binding
pockets and undergo significant conformational changes upon
ligand binding, making it a great fit for ORs and GPCRs alike.
PUResNetv2 represents these proteins as Minkowski Sparse-
Tensors to efficiently capture their complex three-dimensional
structures while also minimizing computational overhead,
thereby preserving spatial relationships between atoms across
different conformational states. It employs an encoder-decoder
framework based on Minkowski Convolutional Neural Net-
works (MCNNs), with 171 layers and 10,861,601 trainable
parameters.”" ORs can bind a wide variety of odorants, often in
different parts of their binding pocket. PUResNetv2 is equipped
with 171 layers and over 10 million trainable parameters and is
well-equipped to handle this complexity and predict diverse
binding sites. Finally, the focal loss function used by PURe-
sNetv2 helps address the imbalance inherent in the protein—
ligand interaction data. This is especially relevant for GPCRs,
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Table 2. RMSD Comparisons between Different Modeling Approaches and Experimental Structures, Showing Both Unpruned

and Pruned (in Parentheses) Values in Angstroms

PDB ID hybrid with AF templates RMSD
6D9H 2.594 (0.879)
7AUE 1.715 (1.126)
7F4D 1.698 (1.121)
7F53 1.145 (0.949)
7LD3 2.374 (0.857)
7PIU 2.357 (0.960)
7WKD 1.959 (1.008)
7X1T 2.078 (1.061)
S8EFB 1.539 (0.807)
8F7Q 1.554 (0.860)
SF7W 2.715 (1.105)
8F7X 1.835 (0.954)
8HDO 3.428 (1.016)
8HTI 1.903 (1.022)
8ZPS 2.454 (1.053)

hybrid with human AF RMSD

2.615 (0.871)
1.760 (1.028)
1.403 (0.922)
1.767 (0.919)
2.490 (0.905)
1.538 (0.929)
1.961 (0.990)
2.080 (1.060)
1.520 (0.813)
1.588 (0.864)
2.725 (1.118)
3.010 (1.032)
3.333 (1.006)
1.905 (1.048)
2.492 (1.059)

AF3 vs Exp. RMSD

2.630 (0.938)
2.606 (1.095)
1.841 (1.034)
1.741 (0.777)
2.554 (0.992)
2.263 (0.804)
1.928 (1.017)
2.057 (1.021)
3.173 (1.018)
3.096 (1.107)
3.168 (1.109)
3.205 (1.008)
3.279 (0.959)
2.159 (0.874)
2.565 (1.107)

AF2 vs Exp. RMSD

2.594 (0.879)
1.760 (1.028)
1.403 (0.922)
1.766 (0.914)
2.491 (0.914)
1.537 (0.903)
3.359 (0.930)
2.081 (1.057)
1.526 (1.067)
1.560 (1.035)
2.727 (0.858)
3.010 (1.118)
3.340 (1.033)
2.008 (0.998)
2.492 (1.071)

where only a small portion of the protein is directly involved in
ligand binding.

We also utilized the COACH server next, introduced by Yang
et al*’ as a complementary approach to PUResNetv2 for
binding site prediction in ORs. COACH distinguishes itself as a
meta-predictor, integrating PLBS results from five different
methods: TM-SITE, S-SITE,*> COFACTOR,* FINDSITE,*
and ConCavity.* This integration allows COACH to serve as a
multipurpose platform for comparing various ligand binding site
predictions. It is useful for analyzing ORs and GPCRes, as it can
leverage the strengths of different prediction methods to account
for the large, flexible binding pockets, consisting of both
orthosteric and allosteric binding sites. By combining sequence-
based (S-SITE) and structure-based (TM-SITE, COFACTOR)
methods with cavity detection (ConCavity) and evolutionary
information (FINDSITE), COACH provides a comprehensive
analysis of potential binding sites. The ability of the server to
work with both experimental structures and predicted protein
models makes it versatile for studying ORs, where high-
resolution structures are often unavailable. This feature allows us
to compare the performance of different prediction methods
across various levels of structural information, providing insights
into their reliability for OR binding site prediction. By using
COACH alongside PUResNetv2, we aim to create a robust
comparative framework, enabling us to assess the strengths and
weaknesses of different approaches in the context of OR binding
site prediction.

Ligand Selection. We curated a data set comprising 62
known odorants associated with ORSIE1, ORS1DI1, and
ORS51E2.""7*° The primary objective of this step was to verify
if the hybrid models can validate experimental results and if
there is a possibility of identifying new potential ligands for any
of these receptors with high confidence. We note that ORS1E2 is
a homologue of OR51G2, showing the highest similarity to
ORS1E2 among all human ORs (hORs). Furthermore, Olfr577,
with a 91% homology to ORS1G2, suggests significant
phylogenetic similarity, implying comparable functional roles.
Homologous proteins within the same gene family, such as
ORS1G2 and ORS1E2, often preserve structural and functional
traits owing to their common evolutionary background. This
evolutionary link may extend to the binding sites of these
proteins, enabling them to engage with analogous ligands,
including agonists.”' >

The data set with 62 known odorants was combined with
another data set of 227 key food odorants (KEQs)*>* to focus on
odors that are associated with food. We extracted aliphatic
organic molecules from both these data sets, resulting in a total
of 151 aliphatic molecules (36 known odorants and 115 KFOs).
A comprehensive molecular data set was constructed using
Simplified Molecular Input Line Entry System (SMILES)
strings and Extended-Connectivity Fingerprints (ECFP),
along with their physicochemical properties in the form of 1-
dimensional, 2-dimensional, and 3-dimensional descriptors.
These properties were extracted using the RDKit cheminfor-
matics library (https://github.com/rdkit/rdkit) and Mor-
dred,> producing a diverse array of molecular characteristics
including physicochemical, topological, and structural proper-
ties. Additionally, we filtered out descriptors with a Pearson
correlation coefficient greater than 0.95 to minimize redundancy
and collinearity in the data set. This step ensured that only
independent and meaningful descriptors were included in the
analysis.

Similarly, we used the M2OR database to create a parallel data
set of potential odorants. M2OR consists of OR-Odorant data
based on the responsiveness of the molecule toward the odorant,
making it an appropriate resource for validating computational
pipelines. We extracted 102 noncyclic/aliphatic molecules with
experimentally validated responses. These molecules were
processed following the same pipeline as for KFOs. Following
PCA-based dimensionality reduction, the M2OR-derived
molecules were grouped into S distinct clusters. From each
cluster, we selected the top 20 molecules based on their
physicochemical properties and structural diversity, yielding a
set of 58 molecules for subsequent molecular docking studies.
This parallel analysis of M2OR data complements the KFO-
based approach, providing an additional validation data set with
experimentally confirmed OR-odorant interactions.

The clustering process employed a two-step approach:
dimensionality reduction followed by cluster analysis. Principal
Component Analysis (PCA) was first applied to the high-
dimensional feature space, transforming the data into a new
coordinate system oriented along the directions of maximum
variance.

The PCA-reduced data were then subjected to K-means
clustering, partitioning the chemical space into distinct regions.
K-means aims to minimize the within-cluster sum of squares:

https://doi.org/10.1021/acsomega.4c08181
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] — Z xi(j) _ Cj di =
j=1 i=1 (1)

where x{/) is the i-th point in cluster j» and ¢; is the centroid of
cluster j. )

For K-means clustering, the maximum likelihood estimate (L)
is related to this within-cluster sum of squares and can be
expressed as

2
n

1 .
2 Z xiO) 5

In(L) = constant — —
207 T T
j=1 i=1 (2)

where o7 is the variance of the assumed Gaussian distributions
centered at each cluster centroid.

To determine the optimal number of clusters, we
implemented a statistical apsproach utilizing the Akaike
Information Criterion (AIC)*® and Bayesian Information
Criterion (BIC):"’

AIC = 2k — 2In(T) (3)

BIC = In(n)k — 2In(L) 4)

where k is the number of parameters, n is the number of data
points, and L is the maximum likelihood estimate as defined
above.

The robustness of the clustering solution was further validated
using multiple cluster quality indices. Silhouette scores were
computed to measure intracluster cohesion and intercluster
separation:

: b(i) — a(i)
s(i) = —————

max{a(i), b(i)} (8)
where a(i) is the average distance between point i and all other
points in its cluster, and b(i) is the average distance between i
and all points in the nearest cluster.

The Davies-Bouldin and Calinski-Harabasz indices assessed
cluster compactness and distinctness, respectively:

k
1 5t
DB = — max,_
k IZZI l#{ d ]

ij

(6)

H = tr(B;) % n—k
(W) k-1 )

where o; is the average distance of all points in cluster i to its
centroid, dj; is the distance between the centroids of clusters i
and j, tr(By) is the trace of the between-cluster dispersion matrix,
and tr(W,) is the trace of the within-cluster dispersion matrix.

The elbow method provided visual confirmation of the
optimal cluster number,”*~*" plotting the Within-Cluster Sum

of Squares (WCSS) against the number of clusters:

k n
wess =) ) (xY — ¢

j=1 i=1 (8)

2

Based on these analyses, five clusters were deemed
appropriate. Within each identified cluster, the 20 molecules
closest to the geometric center were selected as the
representative compounds. The distance of each molecule to
its cluster centroid was calculated using the Euclidean distance
in the PCA-reduced space:

(9)

where x;; is the j-th coordinate of the i-th molecule in the PCA

space, ¢;is the j-th coordinate of the cluster centroid, and m is the
number of retained principal components.

We selected the four molecules closest to the centroids of each
of the five clusters, totaling 20 molecules representing their
clusters for molecular docking. This approach facilitates the
selection of diverse yet representative molecules that effectively
capture each cluster’s physicochemical properties. To ensure
reproducibility, the complete analytical pipeline is available in
Supplementary section, enabling replication of the workflow.

Molecular Docking. Molecular docking of the selected
ligands was conducted with the hybrid models of hORS1E],
hORS51E2, hORS1D1, and hORS1G2, alongside the exper-
imental structure of ORSIE2 for benchmarking. Ligand
structures, sourced from PubChem in sdf format with implicit
hydrogens, were converted to mol2 format using OpenBabel
v3.1.2,°" ensuring the presence of hydrogens for accurate
docking simulations. The docking process was executed in two
phases to enhance the reliability of the predicted binding poses.
The initial phase utilized Autodock Vina,®”®* which employs an
empirical scoring function and efficient optimization algorithm
to generate and evaluate potential binding modes. Subsequently,
the binding energies of protein—ligand complexes derived from
Autodock Vina were further rescored using Gnina in the second
phase. Gnina, a fork of Smina and AutoDock Vina, employs a
convolutional neural network (CNN)-based scoring function to
refine docking predictions by evaluating binding energies. Its
architecture, particularly the 'Default Ensemble' mode, consists
of five carefully selected CNN models that balance performance
and computational efficiency. This ensemble approach allows
Gnina to learn complex, nonlinear relationships in protein—
ligand interactions that may not be captured by traditional
scoring functions.”* The use of Gnina as a secondary scoring
step offers several advantages. First, its CNN-based scoring
function demonstrates superior performance in both redocking
and cross-docking scenarios, with benchmark tests showing
significant improvements over AutoDock Vina alone. Second,
Gnina’s ability to automatically learn relevant features from 3D
structural data allows for a more intricate understanding of
binding interactions, beneficial for the complex and diverse
binding patterns of ORs. Third, Gnina provides a CNNscore for
each pose, correlating well with the actual quality of the docked
pose and offering an additional layer of confidence in the
predicted binding modes. By combining AutoDock Vina’s
robust sampling capabilities with Gnina’s advanced scoring
function, we aim to generate a diverse set of initial poses and
then rank these poses, providing more reliable predictions of
protein—ligand interactions for our olfactory receptors. This
approach is valuable when working with homology models of
ORs, where the exact binding site conformations may not be
precisely known. A comprehensive comparative analysis of the
scores and binding energies was then conducted to evaluate the
docking efficiency for each receptor—ligand pair. This dual-
method approach, leveraging both traditional empirical scoring
and advanced machine learning techniques, provides a more
robust evaluation of potential binding modes. We also perform
statistical analyses on the binding scores obtained from both
Autodock Vina and Gnina. The distribution of binding ener§i_es
across receptors was assessed using the Kruskal—Wallis test,” a
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Figure 2. (a) RMSD values for Alpfafoldv2 and generic homology modeling performed using SwissModel and the cryo-EM structure of an activated
Cholecystokinin A receptor (CCKAR)-Gi complex. On the right, showing the hybrid homology modeling structure for ORS1E2, modeled using the
Olfr78 structure from AFv2, hybrid structures from mouse and human ORs, and AFv3 structures with an AFv3-hybrid comparison. Pruned pairs are
the subset of atom pairs retained after removing mismatched/unsuitable atoms, ensuring more accurate RMSD calculation (e.g,, RMSD between 219
pruned atom pairs is 1.019 A and across all 302 pairs: 2.238). (b) Ramachandran plots for the two protein models in focus, ORS1G2. AFv2 models
show outliers(in red), while the hybrid model has its residue data within the constraints.

provides Area Under the Curve (AUC) values, which quantify
how well the docking scores discriminate between active and

non-parametric method suitable for comparing multiple
independent groups without assuming normal distribution.
We also conducted ROC (Receiver Operating Characteristic) inactive ligands. This statistical framework enables systematic
curve analysis to evaluate the predictive power of our docking comparison of docking performance across different receptors
approach, using experimental responsiveness data from mouse

homologues (M20R) as ground truth. The ROC analysis®®

and validation against experimental data while accounting for
the inherent variability in computational docking predictions.
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Table 3. MolProbity Data Obtained for Models Generated from AFv2, AFv3, and the Hybrid Homology Modeling (HHM)
Method that Used High-Confidence AFv2 Mouse ORs as Templates”

bad bonds [goal:<0.1%]

ORs model MolProbity score ~ Cp-Dev. [goal:0]
ORS1E2 Exp. 1.82 0 0/2557
AFv2 1.15 0 0/2557
AFv3 0.58 0 0/2638
AF2-Hyb 0.83 0 0/2557
AF3-Hyb 0.70 0 0/2528
ORSIE1 AFv2 0.96 1 (0.33%) 0/2539
AFv3 0.96 1 (0.33%) 0/2539
AF2-Hyb 0.99 0 0/2533
ORSIDI  AFv2 142 1 (0.33%) 0/2580
AFv3 1.58 0 0/2580
AF2-Hyb 0.75 0 0/2554
ORS1G2  AFv2 1.57 1 (0.33%) 0/2520
AFv3 1.46 0 0/2520
AFZ—Hyb 0.70 0 2/2514

bad angles [goal:<0.1%]  CaBLAM out- liers [goal:<1.0%]

0/3302 2 (0.7%)
6/3478 (0.17%) 1(0.3%)
8/3589 (0.22%) 2 (0.66%)
3/3478 (0.09%) 1(0.3%)
5/3441 (0.15%) 0

0.23 0

6/3469 (0.17%) 2 (0.66%)
3/3450 (0.09%) 1 (0.3%)
5/3514 (0.14%) 1 (0.3%)
9/3514 (0.26%) 3 (0.9%)

4/3480 (0.11%) 0

6/3423 (0.18%) 2 (0.6%)

3/3423 (0.09%) 3 (1.9%)
(0.08%) 3/3414 (0.09%) 1 (0.3%)

“It can be observed that for almost all four receptors, the HHM method has generated a better MolProbity score. The score encompasses
Clashscore, Rotamer, and Ramachandran evaluations in a single score, which then, is then normalized to be on the same scale as X-ray resolution.

B RESULTS

We compared the binding behaviors of all four receptors
(hORS1E1, hORS1E2, hORSID1, and hORS1G2) for the
selected odorants. We also assessed the structural stability of the
ORS1G2 protein models using MD Simulations. Both AFv2-
generated models and hybrid models, which used AFv2
structures as templates in homology modeling, underwent a
detailed protein stability evaluation. This assessment encom-
passed multiple analytical methods, including Ramachandran
Plot analysis and MD simulations, to ensure a thorough
examination of protein stability across different modeling
approaches.

Structure Prediction. In our study, BLAST analysis
revealed sequence homologies of 59.8% for ORS1E1, 58.44%
for ORS1D1, and 57.38% for ORS1G2, indicating a
considerable level of evolutionary conservation and suggesting
potential functional or structural similarities among these
proteins. We measured RMSD using the ChimeraX Match-
Maker tool and calculated the RMSD over all residue pairs and
over pruned pairs. The pruning process uses an iterative
approach where the pairs exceeding a 2.0 A distance cutoff are
progressively removed. In each iteration cycle, the tool removes
either the 10% farthest apart pairs or 50% of pairs exceeding the
cutoff (whichever is fewer), then recalculates the fit, continuing
until no paired atoms are more than 2.0 A apart.”’” This iterative
pruning approach effectively excludes sequence-aligned but
conformationally dissimilar regions, such as flexible loops,
allowing us to focus on the best-matching 'core’ protein regions.
The resulting pruned RMSD provides a more meaningful
measure of structural similarity by emphasizing well-conserved
structural elements while reducing the influence of locally
divergent regions.

Structural analysis across 15 experimentally determined
human GPCR structures is given in Table 2. The average
RMSD of hybrid models with homologous Alphafold structures
showed the least average RMSD (2.089 A), followed by the
hybrid-human AF template structures (2.145 A). Notably, some
structures showed method-specific performance patterns.
Structure 8EFB, for example, showed marked differences
between hybrid/AF2 methods (~1.5 A) and AF3 predictions
(3.173 A). Similarly, structure 7WKD demonstrated compara-
ble performance across three methods (1.928—1.961 A) but

significantly higher RMSD with AF2 (3.359 A). These findings
suggest that while all methods can generate reliable GPCR
structure predictions, their performance may vary depending on
specific structural features. Additionally, analysis of structural
models of ORs revealed that the hybrid models, specifically AF3-
hybrid model as the closest representation of the experimental
structure, with a root mean squared deviation (RMSD) of 2.125
A overall and 1.006 A across pruned pairs, slightly out-
performing the AFv2 model (RMSD: 2.499 A) and a generic
homology Modeling approach (RMSD: 3.885 A) as observed in
Figure 2. The hybrid structure using AFv2 templates also
produces results comparable to those of AFv3, however an
average RMSD of 2.551 A was observed in case of AFv3.
Therefore, in certain cases, where there is a lack of structural
data, or in case Alphafold iterations are expensive or unable to
obtain a good RMSD, hybrid approaches can be adopted to
refine structures, following Rosetta Relax. A general slight
refinement can be observed using the hybrid approach in both
cases, AFv2 and AFv3 hybrid models. Rosetta Relax helps
decrease the number of bad angles in hybrid HMs that indicate
localized deviations with bond angle geometry. This could stem
from the hybrid modeling process, where the combination of
template structures and computational modeling might not
perfectly reconcile bond angle geometries everywhere in the
structure, especially in regions where the template and target
sequences diverge significantly.>*®

Analysis of MolProbity scores across the four ORs for three
models, as a general rule, was compared between AFv2, AFv3,
and AFv2-hybrid (see Table 3). For ORS1E2, while the
experimental structure showed a MolProbity score of 1.82,
both hybrid approaches demonstrated superior scores (AF2-
hybrid: 0.83, AF3-hybrid: 0.70), with AF3 direct prediction also
showing excellent quality (0.58), while the experimental
structure showed the least structural deviations. Note that the
AF3-hybrid model achieves optimal stereochemistry with no
CaBLAM outliers and maintains good bond angles (0.15%). For
ORS1G2, the AF2-hybrid model achieved a low score of 0.70,
significantly better than both AF2 (1.57) and AF3 (1.46)
predictions, while maintaining optimal Cf deviations and good
stereochemistry (bond angles 0.09%, CaBLAM outliers 0.3%).
Similarly, for ORS1D1, the AF2-hybrid approach yielded the
best score (0.75) compared to direct predictions (AFv2:1.42,
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Figure 3. () Predicted binding sites in ORS1E2 via PUResNet; (b) predicted binding sites of ORS1E2 via various binding site prediction tools. (c)
Principal component analysis (PCA) plot for the molecules shows the S clusters and their centroids for each data set obtained i.e. KFOs and M2OR.

AFv3:1.58), with no Cf deviations or CaBLAM outliers. The
only exception was ORS1E1, where direct predictions (AFv2
and AFv3, both 0.96) marginally outperformed the hybrid
approach (0.99), though all models showed comparable quality
metrics. These results demonstrate that hybrid approaches
consistently produce models with superior stereochemistry
compared to direct AF predictions, especially when coupled
with Rosetta Relax for energy minimization. The slightly higher
performance of hybrid methods in three out of four cases
suggests that integrating AF predictions with homology
modeling helps optimize local geometric quality while
maintaining overall structural accuracy.

Ramachandran plot analysis was conducted to evaluate the
structural quality of the protein models. Figure 2b illustrates that
all residues in the hybrid models fall within the favorable
conformational space, indicating a high degree of structural
stability. In contrast, only two out of four of the AFv2 models
demonstrated a similar distribution of residues within the
favorable range. The hybrid model of ORS51E1 was an exception,
presenting a few outliers; however, these were notably closer to
the acceptable regions compared to the outliers observed in the
AFv2 models.

All our analyses point toward the greater accuracy of the
hybrid models when compared with AFv2 structures in
replicating the three-dimensional structures of proteins in a
manner that closely mirrors their natural biological counterparts.
The observed sequence homology within the ORS1- family of
proteins implies their phylogenetic similarity but unique
biological functions, suggesting a propensity for interacting
with similar receptors. This comparative study of protein
structure reinforces the efficacy of hybrid modeling techniques
in generating more favorable protein conformations.

24037

Binding Site Prediction and Ligand Selection. The
predicted binding pockets were located within the orthosteric
sites, making them the focal point for subsequent analyses. The
predictions of PuResNET show robust behavior for ORS1E2,
with all potential interacting residues aligning well within the
transmembrane domains TM3, TM4, TMS, TM6, and TM7 for
ORS1D1 and ORS51G2, while TM2 was consistently not
involved in binding interactions. Binding sites were also
predicted via various other tools like ConCavity, FINDSITE,
COACH, etc., the comparisons of the predicted binding pockets
for ORS1E2 are present in 3b, along with the results from the
experimental structure. In the case of OR, our comparative
analysis, shown in (Figure 3b) revealed that PUResNet
consistently outperformed the integrated tools within
COACH by reliably identifying orthosteric ligand binding
sites for the experimental structure of ORS1E2. Thus,
PuResNETV2 was selected for the prediction of the binding
site after comparison with COACH, as it consistently identified
the orthosteric ligand binding sites in the ORs under study.

The PCA of Mordred descriptors, as shown in Figure 3c,
illustrates the distribution of aliphatic molecules in our data set
across the chemical space. The plot reveals five distinct groups,
each represented by a different color, with their centroids
annotating: (Z)-non-6-enal, ethyl hexanoate, 2-methylbutanal,
propanoic acid, and 1- (propyldisulfanyl) propane. The cluster
predominantly contained a,f-unsaturated aldehydes with
conjugated double bonds, the ethylhexanoate group comprised
medium chain esters with balanced lipophilic and polar
properties, the 2-methylbutanal group featured branched
aldehydes, the propanoic acid group consisted of short-chain
carboxylic acids and their derivatives, and the 1-
(propyldisulfanyl)propane group was characterized by sulfur-
containing alkyl chains. This clustering pattern reflects the
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Figure 4. (a) Binding energies of all odorants (key food odorants and molecules from M2OR db on each hybrid receptor model. (b) Representing the
predicted binding interaction of propionate with ORS1E2, CYS:178, and HIS:180, forming an H-bond is apparent in the 2-D diagram on the left, and
the 3-D docking pose shows the formation of these interactions. (c) The left figure compares GNINA docking energies across four olfactory receptors,
where lower scores indicate stronger binding. ORS1E2 shows significantly weaker energies. Statistical analysis (Kruskal—Wallis, p = 1.72 X 107"?)
confirms significant receptor differences, with Dunn’s test showing ORS1E2 binds significantly weaker than ORS1D1 and ORS1G2 (p < 0.0001). The
Plot on the right presents the ROC curves for ORS1El and ORSIE2, the predictive performance of GNINA docking scores for receptor
responsiveness. ORS1E1 achieves a high AUC of 0.78, showing a strong correlation between docking scores and experimental responsiveness, whereas

ORSI1E2 shows a significantly lower AUC of 0.35.

diverse chemical space of food-related odorants, ranging from
highly polar carboxylic acids to more lipophilic unsaturated
aldehydes. Similarly, in Figure 3c, PCA analysis of M2OR-
derived molecules shows distinct clustering patterns based on
their structural and physicochemical properties. The molecules
are segregated into five clusters, primarily differentiated by their
functional group distributions, molecular size, and polarity

24038

profiles. Clusters 1 and 5 are dominated by linear aliphatic
chains containing carbonyl varying lengths, while cluster 2
features nitrogen-containing groups and mixed functionalities.
Clusters 3 and 4 comprise molecules with varying degrees of
unsaturation and simpler structures, respectively.

Propionic acid, visible as a centroid in the lower right quadrant
of the graph, was selected as a reference compound due to its
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known interacting residues with ORSIE2, as reported in
previous studies.”” This selection substantiates our analysis on
the basis of previously established experimental data, providing a
reference point for evaluating the other ligands. From the
clustering in the PCA plot, we selected 19 additional molecules
to complement propionic acid. These selections were made by
choosing compounds closest to each cluster centroid, ensuring a
diverse representation of the chemical space. The chosen
molecules exhibit a variety of olfactory characteristics and are
involved in ectopic OR interactions.”*”*”’° The wide
distribution of points across both principal components in the
PCA plot suggests the physicochemical diversity of the selected
ligands. This diversity is crucial for exploring various binding
modes and interactions with the olfactory receptors under study.
To further characterize the selected ligands, we analyzed the
correlations between their physicochemical properties (see
Figure S1 in Supporting Information). The heatmap reveals
strong positive correlations between molecular weight, LogP,
number of rotatable bonds, and radius of gyration (correlation
coefficients ranging from 0.83 to 0.98). These correlations
suggest that larger molecules in our data set tend to be more
lipophilic and flexible. In contrast, the quantitative estimate of
drug similarity (QED) shows moderate to strong negative
correlations with these properties (correlation coefficients
between —0.59 and —0.74), indicating that smaller and less
lipophilic molecules in our set tend to have higher drug-likeness
scores. The topological polar surface area exhibits weak to
moderate correlations with other properties, suggesting it
captures unique structural information about the molecules.
Correlation analysis of the physicochemical properties of M2OR
molecules shows a strong relationship between LogP, molecular
weight, and estimated boiling points (correlation coefficients
>0.90), indicating that larger molecules in the data set tend to be
more lipophilic with higher boiling points. The topological polar
surface area showed notable negative correlations with LogP
(—0.78), suggesting an inverse relationship between molecular
polarity and lipophilicity (see Figure S1 in Supporting
Information). These relationships align well with our under-
standing of odorant-receptor interactions, where both molecular
size and lipophilicity play crucial roles in binding site
recognition. To prepare these selected molecules for docking
simulations, we performed standard preprocessing steps.
Hydrogen atoms were appended to each molecule, and their
protonation states were standardized to neutral. This stand-
ardization ensures consistency across all docking simulations,
allowing for accurate comparisons of binding modes and
energies among the diverse set of ligands.

Molecular Docking. Docking experiments were conducted
for all 78 potential ligands in the KFO data set and M2OR across
all four receptor models, in addition to the experimental
structure of ORSIE2. Autodock Vina was used to perform
molecular docking and obtain interaction energies, additionally,
the energies were rescored using GNINA to observe potential
docking refinements. Molecular docking was performed using
GNINA and Autodock to assess ligand binding energies across
four hybrid models of ORs: ORS1E1, ORS51E2, OR51D1, and
ORS1G2. The binding energies obtained from GNINA docking
are visualized in Figure 4, illustrating the distinct distributions of
ligand interactions among the receptors. ORS1E2 exhibited the
highest (least negative) binding energies, indicating weaker
ligand interactions, whereas ORS1D1 and ORS1G2 displayed
significantly lower (more negative) energy values, suggesting

stronger binding interactions. ORS1E1 showed an intermediate
binding profile.

To statistically evaluate the differences in binding energies, a
Kruskal—Wallis test was conducted, yielding highly significant
results for both GNINA (p = 1.725 X 107'%) and Autodock
rescoring (p = 1.514 X 107'%), confirming that binding energy
distributions across receptors are not equivalent. A post hoc
Dunn’s test further identified significant pairwise differences,
particularly between ORS1E2 and the other three receptors
(refer Table 4), with ORS1E2 exhibiting significantly weaker

Table 4. Post Hoc Dunn’s Test Results (p-Values) for
Binding Energy Comparisons between Receptors”

receptor ORS1D1 ORSI1E1 ORS1E2 ORS1G2
OR51D1 1.00 1.00 235% 1077 1.00
ORSIEL 1.00 1.00 277 %107 1.00
ORSI1E2 235X 107 277 %1078 1.00 1.52 x 107¢
OR51G2  1.00 1.00 1.52%x 107  1.00

“Significant differences (p < 0.0001 are observed between ORS1E2
and OR51D1/ORS1G2, confirming receptor-specific binding varia-
tions.

energies. To assess the reliability of binding energies as
predictive metrics for ligand responsiveness, ROC curve analysis
was performed for ORS1E1 and ORSI1E2 Figure 4c. ORS1E1
displayed a strong predictive correlation between docking scores
and ligand responsiveness with an AUC of 0.78 (Figure 4c),
whereas ORS1E2 exhibited a poor predictive performance
(AUC = 0.35), suggesting that docking scores alone are
insufficient to predict ligand responsiveness for ORS1E2. The
lack of predictability for ORS1E2 may be attributed to structural
factors, such as alternative binding modes or ligand-induced
conformational changes, that are not captured in standard
docking workflows.

These results indicate that virtual screening performance is
receptor-dependent. While docking-based predictions are
effective for ORS1E1 (AUC = 0.78), they fail for ORS1E2
(AUC = 0.35), suggesting that binding energy scores do not
reliably predict responsiveness across all receptors. This
discrepancy arises from differences in receptor binding
preferences. ORS1E1 and ORS1D1 favor medium to long-
chained fatty acids, while ORS1E2 is selective for shorter to
medium chains.””*’ Since the data set predominantly consists of
medium and long-chained fatty acids, it naturally favors
receptors like OR51E1, leading to better predictive perform-
ance. The poor AUC for ORS1E2 suggests that docking alone is
insufficient for predicting ligand interactions with this receptor.
Structural differences, such as a more constrained binding
pocket or specific hydrogen-bonding requirements, may
contribute to this variability. These findings highlight the
limitations of applying uniform virtual screening strategies
across receptors.

It can be observed in Figure 4a that the hybrid ORS1E2
interacted with propionate through a total of 5 residues, with 2
hydrogen bonds, i.e., between the carbonyl of propionate and
HIS:180[2.10 A], and the hydroxyl group of propionate with
CYS:178[2.86 A]. The presence of two hydrogen bonds
suggests a strong interaction between propionate and
ORS1E2. The interaction energies for all molecules can be
observed in Figure 4b.

In the docking results shown in Figure Sa, the ORS1D1 hybrid
model demonstrates strong interactions with pentyl propionate
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Figure S. (a) Representation of the binding interaction of ORS1D1 and pentyl ropionate, the highest interaction energy was obtained for this
interaction and is solidified with the presence of two hydrogen-bond interactions, i.e., between the carbonyl-ARG:276, and the alkoxy-GLN:195. (b)
Binding interaction between ORS1G2 and 3,6-nonadienal. Regardless of the highest interaction energy with OR51G2, the OR-Odorant pair forms an
unfavorable acceptor-acceptor bond; contrary to that, the same carbonyl oxygen forms a hydrogen bond with HIS:110, suggesting an avenue for
stability. (c) Binding interaction between ORS1E2 and butyric acid, carbonyl forms a hydrogen bond with HIS:180 and a carbon—hydrogen bond with

VAL:179.

via eight residues. These interactions included two hydrogen
bonds one between the alkoxy group of pentyl propionate and
GLN:195[2.13 A], and another between the carbonyl and
ARG:276[2.34 A], the rest of the interactions are observed to be

van der Waals and pi-arene interactions, suggesting an

24040

interaction energy of —5.00 kcal/mol. Figure Sb, represents
the interaction between ORS1G2 and Trans-2-nonenal. The
formation of two hydrogen bonds on the carbonyl group of
trans-2-nonenal suggests a strong interaction with ORS51G2.
GLN:187[2.01 A] and HIS:186[2.59 A] both form sufficiently
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Figure 6. (a) Representation of the binding interaction of ORS1E1 and citral, the highest interaction energy was obtained for this interaction and is
solidified with the presence of two hydrogen-bond interactions, i.e., between the carbonyl-GLN:18S, and the alkoxy-HIS:184. (b) Binding interaction
between ORS1E] and geranylacetate. Regardless of the highest interaction energy with OR51G2, the OR-odorant pair forms an unfavorable acceptor-
acceptor bond; contrary to that, the same carbonyl oxygen forms a carbon—hydrogen bond with SER:111, suggesting an avenue for stability. (c)
Binding interaction between ORS1G2 and acetyl glutamic acid, carbonyl forms a hydrogen bond in all its interactions and thus shows strong binding

energy compared to other molecules.

strong hydrogen bonds with trans-2-nonenal. Interestingly,
trans-2-nonenal is associated with a strong rotten-egg, grassy
smell and is a malodorous compound that is also produced
naturally by the human body as a waste product of metabolism.
Studies have shown that trans-2-nonenal was found to have
significant negative effects on keratinocytes, as it decreases cell
viability, promotes apoptosis, reduces the thickness of the
epidermal layer, and decreases the number of proliferating

cells.”" As shown in Figure 6a, ORS1E1 demonstrates strong
binding with citral through a combination of polar and nonpolar
interactions. Two key hydrogen bonds are observed between
citral’s aldehyde carbonyl and receptor residues GLN:185[2.13
A] and HIS:184[2.59 A], while hydrophobic residues (HIS:108,
ILE:206, ILE:210, and PHE:257) form stabilizing pi-alkyl
interactions with the ligand’s hydrocarbon chain. Similarly,
geranyl acetate shows specific binding to ORS1E1 (Figure 6b)
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Figure 7. (a) Each graph shows the RMSD for three runs each for both models in comparison to each other across a length of 100 ns simulations. The
system for AFv2 is observed to be more flexible initially in the first 30,000 ps compared to an overall stable hybrid model. (b) Radius of gyration across
the axes of the models shows that the hybrid model tends to have more movement at the beginning and end of the simulation. (c) Root mean squared
fluctuations across the receptor sequence within the lipid bilayer show increased flexibility in the ECL regions of the hybrid model, suggesting increased
dynamics of the loop structures that may facilitate interactions with other proteins or the extracellular environment. (d) SASA calculations across the
length of the simulation signify that the hybrid model is slightly more exposed to the solvent in the environment i.e., water.

through a carbon—hydrogen bond with SER:111 and multiple
hydrophobic contacts involving HIS:108, PHE:257, and
LEU:260, consistent with the preference of ORSIE1 for
medium to long-chain odorants. Notably, OR51G2 exhibits
strong interactions with acetyl glutamic acid (Figure 6c),
forming multiple hydrogen bonds with residues SER:264,
GLN:187, HIS:186, and MET:260. The presence of these
multiple short-range hydrogen bonds (2.2—2.8 A) suggests a
highly specific recognition of polar ligands by ORS51G2,
particularly those containing acidic and amide functionalities.
Evidence exists that ORS1E2 is expressed in melanocytes, and
ORS1BS is also expressed in keratinocytes.”*””* Both these
proteins promote wound healing and are also involved in cell
migration and proliferation, apoptosis, and dendritogenesis.””
Similarly, butyric acid also shows a strong interaction with

24042

ORS1E2, with an interaction energy of —3.7 kcal/mol. Butyric
Acid is already a known agonist of ORS1E2 as it is a short-chain
fatty acid (SCFA), and ORS1E2 is agonistic to these
molecules.””*>* Out of our 80 tested interactions, 11 were
already known through literature and experimental results (See
Table S2 Supporting Information Table 2). A general
observation within our data set showed that the sulfur-
containing ligands dimethyl disulfide and Dimethyl Trisulfide
demonstrated low binding energy across all four olfactory
receptors tested (ORS1G2, ORS1D1, ORS1EI, ORS1E2).”
This observation does not necessarily extend to other sulfur-
containing compounds or receptors outside of our selection.
Molecular Dynamic Simulations. Molecular Dynamics
(MD) Simulations were conducted on both ORS1G2 models to
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Figure 8. (a) Ramachandran plots for post-MD structures of the hybrid and Alphafold models. (b) Binding sites for hybrid and Alphafold models
before and after MD simulations. The binding site for the hybrid model has increased relatively more than the Alphafold model by both volume and

area.

investigate protein—membrane interaction mechanisms and
determine the model with higher stability.

Trajectory Analysis for OR51G2. Gromacs was used to study
the stability of both models after mdrun, and the RMSD across
the alpha-C backbone of the GPCRs was measured using
gmx_ rmsd throughout runs, respectively. Three runs for each
OR model were performed to optimally study the OR activity
across a wider sample size. Root Mean Square Deviation
(RMSD) is a critical metric used to understand the extent of
deviation in molecular structures such as proteins, ligands, or
their complexes from a reference structure.”” The calculated
Root Mean Squared Deviation (RMSD) in Figure 7a (graphs
represent the conformational stability of ORS1G2 within a
palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer, as
predicted by two computational models: AFv2 and a hybrid
homology model. Essentially, RMSD measures how much a
group of atoms has moved from its original position. Higher
RMSD values indicate increased deviation from the reference
structure, suggesting structural flexibility. RMSD alone does not
provide insights into receptor activation or stability but reflects
the extent of conformational sampling during simulations. In

protein—membrane systems, fluctuations in RMSD may arise
from receptor adaptation to the lipid bilayer environment rather
than an inherently unstable conformation.”>’® To better assess
the dynamic behavior of the receptor, we analyze the trajectory
across multiple independent runs. The dynamic behavior of the
ORS1G2 receptor within the POPC lipid bilayer was assessed
through three independent 100 ns molecular dynamics
simulations for both the AlphaFold v2 (AFv2) and hybrid
homology models. The Root Mean Square Deviation (RMSD)
of the protein backbone is used as the primary metric to evaluate
the conformational stability and sampling of each model.

In Run 1 (Figure 7a), the AFv2 model exhibits a rapid initial
increase in RMSD, reaching a dynamic equilibrium around 0.4
nm, indicative of a significant initial relaxation or fitting of the
receptor within the lipid bilayer. Some stabilization is observed
around 30 ns. In contrast, the hybrid model displayed a more
gradual increase in RMSD, with an increase in RMSD after 60 ns
and a sudden drop around 70 ns. Beyond 80 ns, both models
seem to be in a stable simulation. A different dynamic profile was
evident in Run 2 (Figure 7a). Here, the AFv2 model initiated
with a lower RMSD, but subsequently increased beyond the
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hybrid model within the first 20 ns. Such higher RMSD
throughout the remainder of the simulation suggest that the
AFv2 model samples a wider range of conformational states.
This could be functionally important for the promiscuous
binding profile of the OR. The hybrid model displayed relative
stability, with a generally lower RMSD, interrupted by a singular
transient spike at 80 ns, implying that the model undergoes
short, significant events but remains relatively stable overall. Run
3 (Figure 7a) exhibits yet another dynamic relationship. The
AFv2 model begins with a higher RMSD value than the hybrid
model. The RMSD decreases over time and surpasses the hybrid
model during the simulation, indicating a stable conformation
during the time window. Contrary to the assumption of
consistently higher RMSD values for the AFv2 model, the
simulation data reveals a more nuanced picture of the dynamic
behavior of both models within the lipid bilayer. While the AFv2
model displays a higher initial RMSD in Run 1, indicative of an
early relaxation or fitting to the lipid environment, Run 3 exhibits
a distinct trend where the AFv2 model achieves lower RMSD
values for the majority of the simulation time. The hybrid
model’s initial relaxation leads to an increase of RMSD, implying
that AFv2 adapts to the lipid bilayer better. Notably, in Run 2,
the AFv2 structure begins with a lower RMSD; however, this
value rapidly increases, exceeding that of the hybrid model.
These contrasting behaviors highlight the importance of
considering the dynamic and stochastic nature of protein
simulations.

In contrast, the hybrid homology model exhibits a more
restrained, yet less consistent, RMSD profile. While the initial
dynamics in Runs 1 and 2 suggest a more stable conformation
relative to the AFv2 prediction, Run 3 revealed a shift in this
trend, underscoring the influence of stochasticity and emphasiz-
ing the need to capture the model’s dynamic variability with a
wider sampling time. The stochastic nature of the MD
simulations, coupled with the dynamic interplay between the
proteins and the lipid environment, introduces complexity in
reaching a definitive conclusion on the dominant mode of
RMSD behavior for each model. Complementary to the RMSD
analysis, the radius of gyration (R,) provides insight into the
overall compactness of each model (Figure 7b). The AFv2
model demonstrates relatively stable R, values throughout the
simulation, indicating resilience in its tertiary structure,
potentially contributing to its functional activity. However, the
hybrid homology model shows more significant variations in
certain fluctuations toward the end of the simulation, specifically
after 80 ns, suggesting transient unfolding events or major
conformational rearrangements. Note that AFv2 has a lower R,
on average, implying that the structure is overall more compact.
However, the variability in R, indicates the presence of dynamic
structural integrity, with adaptive changes within the lipid
membrane, essential for receptor activation in signaling. To
quantitatively describe the relative movements and deviations of
the data, the average and standard deviation of both models are
(hybrid: 2.19 + 0.03, AlphaFold: 2.16 + 0.01).

Residue-level flexibility was assessed by Root Mean Square
Fluctuation (RMSF), revealing variable dynamics across both
models (Figure 7c). High peaks are present in the loops of the
hybrid model, suggesting increased interaction with other
proteins, which might be essential for receptor functionality
and downstream signaling. The comparatively lower RMSF
values observed in the AFv2 model suggest a more conforma-
tionally restrained structure. Such rigidity could potentially limit
the dynamic motions necessary for optimal interactions with the

lipid environment, impacting processes such as membrane
insertion or the formation of functional oligomeric states.”” The
Solvent Accessible Surface Area (SASA) indicates the receptors’
hydrophobic and hydrophilic surface exposure to the lipid
environment (Figure 7d). The AFv2 model exhibits overall
greater SASA values, which is observed to be roughly around 170
nm® during the simulation, suggesting a higher degree of
exposure, with possible interactions with the solvent molecules.

To investigate whether MD simulations effectively optimized
the OR structures, we compared Ramachandran plots of the
AlphaFold and hybrid models before and after 100 ns MD
simulations (Figure 8a). The hybrid model exhibited no
Ramachandran outliers before or after MD, reflecting stable
initial structural quality that was effectively preserved during
simulation. In contrast, the AlphaFold model contained
backbone angle outliers before MD that increased after the
simulation. Figure 8 reveals two notable outliers: one in the
highly unfavorable upper-right quadrant (¢ ~ +100°, w =
+150°) and another in the unfavorable lower-right region (¢ =
+100°, y ~—30°), both representing energetically disfavored
conformations for typical amino acid residues. This persistent
presence of outliers in the AlphaFold model likely arises from
initial structural inaccuracies, such as locally trapped con-
formations or highly strained loops predicted by AlphaFold.”®
Such conformations, when initially modeled incorrectly, often
become trapped in local energy minima. Consequently, shorter
MD simulations (e.g., 100 ns) may be insufficient in sampling
the conformational landscape broadly enough to overcome the
high-energy barriers and properly relax these strained regions.
Typically, MD simulations can effectively relax minor structural
strains, but significant initial inaccuracies or persistent local
strains—often found in flexible loop regions or misfolded
segments predicted by AlphaFold—require substantially longer
or enhanced sampling methods to adequately resolve.”® This
observation emphasise both the inherent robustness of our
hybrid approach in generating structurally stable initial models
and highlights the limitations of relying exclusively on short-
duration MD simulations to resolve significant structural issues
inherent in AlphaFold-generated models.

The simulations also revealed significant changes in the
binding site properties of the ORSIG2 receptor models,
particularly in terms of volume and surface area (Figure 8b).
We used the KVfinder tool in ChimeraX to detect cavities or
pockets in the protein structures.”” Both models demonstrated
an expansion in binding surface area and volume, with the
volume increasing by up to 270% and the surface area growing
by 272%. Similarly, the AlphaFold model exhibited an increase
in binding site volume by 160%, with a corresponding surface
area expansion from 357 to 1063.7 A* (198%). Thus, the hybrid
model shows a more pronounced expansion compared to the
AlphaFold model. This difference suggests that the hybrid
model possesses greater structural flexibility, likely due to
enhanced conformational sampling and reorganization of
residues surrounding the binding pocket during the simulation.
Such flexibility may facilitate improved ligand accessibility and
interaction. In contrast, the AlphaFold model exhibited a more
restrained expansion, indicative of a relatively rigid structure that
may limit large-scale conformational changes. While this rigidity
could provide structural stability, it might also restrict
adaptability for certain functional states or ligand interactions.

Overall, these results highlight the differences in structural
stability and binding-site architecture between the hybrid and
AlphaFold models after MD simulations. For the hybrid
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structure, the post-MD simulation demonstrated a significant
increase in the binding pocket size (Volume: 1530.58 A%, Area:
1228.5 A?) while consistently maintaining favorable stereo-
chemical properties, as evidenced by the absence of Ramachan-
dran plot outliers both before and after MD. Although the
RMSD plot showed minor variations, suggesting slight structural
fluctuations when comparing pre and post MD hybrid
structures, these variations did not lead to unfavorable
conformations. Such minor fluctuations are expected during
MD simulations because MD does not yield a single snapshot of
absolute stability; instead, it captures dynamic structural
transitions across a simulation period.75”76 Therefore, the slight
RMSD variations likely indicate that the structure, while not
entirely converged to a global minimum within the limited
simulation time frame of 100 ns, has approached a structurally
realistic and near-optimal stable conformation. Conversely, for
the AlphaFold structure, post-MD analyses revealed a worsening
in stereochemical quality, with an increase from one to two
Ramachandran plot outliers. Despite observing an increase in
the active pocket size (Volume: 1167.05 A% Area: 1063.7 A%),
this expansion remained comparatively smaller than that
observed in the hybrid model post-MD. The persistence and
even increase of unfavorable backbone angles suggest that the
AlphaFold-predicted structure was structurally strained from the
outset and that the 100 ns MD simulations were insufficient to
alleviate these inherent structural inaccuracies. Collectively,
these results suggest that the hybrid model consistently
preserved high stereochemical quality while significantly
improving the active pocket dimensions through MD
simulations.

B DISCUSSION

In this study, we developed a comprehensive Computer-
Assisted Drug Design (CADD) pipeline to investigate olfactory
receptor (OR)-odorant interactions, with a focus on the ORS51
family. Our approach integrated several computational
techniques, including structure prediction via various methods,
molecular docking, and molecular dynamics simulations, to
predict the structure and function of specific ORs and their
interactions with various odorants. A key element of our
structural modeling strategy was the development of a hybrid
homology modeling approach, which leverages high-confidence
AlphaFold (AFv2 and AFv3) predictions of both human and
murine ORs as templates, followed by refinement using
MODELER and Rosetta Relax. This hybrid approach resulted
in structurally refined models of ORs with enhanced MolProbity
scores and more favorable Ramachandran plot distributions
compared to direct AlphaFold v2 or v3 predictions alone. The
inclusion of Rosetta Relax, with its iterative sampling of local
conformations and all-atom minimization, was crucial for
optimizing the stereochemistry and resolving steric clashes in
our hybrid models, leading to improved overall structural
quality, especially in the loop regions connecting TM helices. To
rigorously validate our modeling strategies, we performed a
structural analysis across 15 experimentally determined human
GPCR structures (Table 2). The hybrid models consistently
yield lower MolProbity scores and more favorable Ramachan-
dran plots, indicating improved local structural quality and
stereochemistry. Furthermore, the hybrid models exhibited
consistent RMSD values, a stable radius of gyration, and realistic
flexibility in key regions, suggesting their suitability for further
computational studies and, importantly, providing valuable
templates for molecular docking studies as a downstream

application. The enhanced accuracy of these models was crucial
for the reliable prediction of OR-odorant interactions, as
demonstrated by our successful replication of experimental
findings for ORS1E2.

By integrating M2OR-derived molecules into our analysis, we
were able to cross-validate our computational predictions
against a well-curated data set of functional responses. This
approach not only enriched our ligand pool with diverse
chemical structures but also strengthened our validation
pipeline. The M2OR database serves as a critical resource that
can help enhance the credibility of predicted OR-odorant pairs,
providing a bridge between computational insights and
experimentally validated outcomes. We also predicted potential
ligands for the selected proteins, especially OR51G2, and found
that our pipeline shows confidence in the selective selection of
odorants for each receptor as ORSIE2 shows a high binding
energy toward shorter and aliphatic molecules like medium to
short-chain fatty acids and responds relatively weakly to long-
chain fatty acids.”” We also observe that low binding energies
were obtained for sulfur molecules, further supporting the
robustness and specificity of our pipeline, which is consistent
with previous findings in the literature.”*

The high binding energy of trans-2-nonenal to ORS51G2
warrants further investigation into its potential functional
relevance. Given the colocalization of ORS1B1 expression in
keratinocytes and a 55% sequence similarity between ORS1B1
and ORS1G2, a stronger phylogenetic relationship could be
inferred, which suggests potential overlapping functionality.
Trans-2-nonenal is also known to increase with aging, thus, the
in silico interaction between the OR and trans-2-nonenal could
be part of the mechanism by which aging affects skin health and
homeostasis.”*”"”* Further experiments would clarify if such
strong binding has true functional implications. Beyond this, we
have also utilized various tools for binding site predictions,
molecular docking, and structure prediction, performing a
comparative analysis of these tools to understand which tools fit
best for the study of OR-Odorant interaction. In the specific case
of ORS1E2, the relatively poor predictive performance observed
in our docking experiments (AUC = 0.35) underscores the
limitations of relying solely on binding energy scores for
predicting ligand responsiveness. While ORS1E1 displayed a
strong correlation between docking scores and experimental
responsiveness (AUC = 0.78), the discrepancy observed for
ORS1E2 highlights the receptor-dependent nature of virtual
screening performance and suggests the involvement of more
complex binding mechanisms or structural features not captured
by our standard docking protocol. The differences can be better
explained through the strong RMSD, the lowest molProbity
scores of AF3, and the higher binding energy for AlphaFoldv2.
AF3 is more compact and hence will allow a greater number of
potential ligands to bind to the complex in high-throughput
binding energy calculations. Post MD simulations, the structural
stability of both proteins was assessed based on their final MD
structures, revealing that the hybrid structure consistently
maintains stereochemistry while yet an increase in the binding
pocket size is observed. Whereas the AFv2 model shows an
increase in binding pocket size, it fails to maintain stereo-
chemistry, leading to comparatively lower stability. Compared
to the AFv2 structure, the pocket volume of the hybrid structure
grew by 270%, whereas the pocket of AFv2 grew by about 160%.
This illustrates the robustness and reliability of the hybrid
modeling approach in yielding biologically plausible and
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dynamically stable receptor models suitable for downstream
computational analyses.

Several methodological limitations must be considered when
interpreting our findings. First, the accuracy of our hybrid
homology models relies heavily on the quality and availability of
suitable homologous templates and the overall pPLDDT of the
Alphafold structures.””*" Any deficiencies in template structures
or sequence alignments can lead to inaccuracies in the predicted
receptor conformations, and the benefits of Rosetta Relax
refinement may be limited. Second, our docking procedures and
scoring functions are, by necessity, approximations.80’81 As
demonstrated by the low AUC for ORS1E2, current docking
protocols do not fully account for complex factors such as
specific solvent interactions or subtle differences in receptor
microenvironments, which can influence binding interactions
and specificity, thus potentially leading to unreliable predictions.
A major point to note is that when using AlphaFold and
computational protein models for molecular docking, the
binding energy predictions made by docking tools are generally
lower due to the lower confidence scores of the models.
Typically, a binding energy threshold around —5 kcal/mol or
higher is necessary to identify potentially active compounds in
virtual screening on computationally generated proteins.*”**
Thus, this in silico pipeline should be further validated through
experimental studies with potential odorants. Third, while the
M2OR database is a valuable resource for validation, it may not
provide exhaustive coverage of all odorant chemotypes relevant
to the receptors of interest. The odorants from KFO provide
diversity to the pre-existing potential odorants obtained from
M2OR. Limited chemical diversity could bias the results and
restrict the generalizability of our predictions.*” Finally, our
clustering and selection methods for identifying representative
ligands depend on the chosen molecular descriptors and
algorithms. These choices can skew ligand selection and
potentially overlook chemotypes that fall outside established
cluster centroids.

Building upon previous developments, such as iORbase that
utilizes AlphaFold2-derived templates for homology model-
ing,”” our study further optimizes this approach by introducing
the HHM pipeline. Our pipeline leverages high-confidence
AlphaFold predictions of human and mammalian OR structures
as templates, coupled with subsequent refinements through
MODELER and Rosetta Relax protocols. The resulting hybrid
models demonstrate significantly enhanced structural accuracy,
as evidenced by improvement in overall structural stability,
validated via Molprobity, Ramachandran plot distributions, and
improved RMSD values compared to AlphaFold predictions
alone. Furthermore, our approach addresses practical limitations
associated with AlphaFold3, including constraints on the
number of online-generated models and the substantial
computational resources required for local installations.
Consequently, our hybrid method provides a computationally
accessible, resource-efficient solution, enabling quicker, large-
scale, and reliable structural modeling of OR protein families.
This represents a meaningful advancement over previous
methods and offers a new way for common users to rapidly
model a large number of OR protein structures.

In essence, the pipeline developed here offers a promising
framework, but these methodological constraints underline the
importance of cautious interpretation. Future improvements,
including more robust template selection strategies, refined
scoring functions (especially those accounting for water-
mediated interactions), and more comprehensive odorant

databases, will be essential for producing increasingly reliable
and broadly applicable OR-odorant interaction predictions.
Future studies should also focus on integrating experimental
validation to confirm predicted interactions. Overall, the
computational viability of our protocol is visibly high, and
there is scope for further experimental studies to validate the
predicted odorant-OR interactions to obtain deeper insights
into these interactions. There is also potential to extend this
work for in silico studies of other GPCRs and ligand interactions.
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