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A B S T R A C T 

Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular 
clustering of star-forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z� 1.5 for faint sources, S144 MHz ≥200 

μJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multiwavelength 

sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases 
from b = 0 . 90+ 0 . 11 

−0 . 10 at z∼0.2 to b = 2 . 94+ 0 . 36 
−0 . 36 at z∼1.2; faster than the assumed b( z) ∝ 1 /D( z) models adopted in previous 

LOFAR cosmology studies (at sensitivities where active galactic nuclei dominate), but in broad agreement with previous work. 
We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed 

redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift 
evolution with b = 2 . 33+ 0 . 28 

−0 . 27 at z∼0.7 to b = 2 . 65+ 0 . 57 
−0 . 55 at z∼1.2, though it is also consistent with the assumed bias evolution 

model ( b( z) ∝ 1 /D( z)) within the measured uncertainties. For those LERGs that reside in quiescent galaxies, there is weak 

evidence that they are more biased than the general LERG population and evolve from b = 2 . 62+ 0 . 33 
−0 . 33 at z∼0.7 to b = 3 . 08+ 0 . 85 

−0 . 84 

at z∼1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help 

constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses. 

Key words: large-scale structure of Universe – cosmology: observations – radio continuum: galaxies. 
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 I N T RO D U C T I O N  

arge-area spectroscopic surveys have been instrumental in allowing 
s to observe how galaxies are distributed and to build up knowledge
f the cosmic web. These surveys demonstrate that galaxies are not 
niformly distributed and that there is large-scale structure within the 
niverse. Surveys such as the 2dF Galaxy Redshift Survey (2dFGRS; 
. Colless et al. 2001 ), 6dF Galaxy Survey (6dFGS; D. H. Jones et al.

004 ), Sloan Digital Sky Survey (SDSS; D. G. York et al. 2000 ), and
alaxy And Mass Assembly (GAMA; S. P. Driver et al. 2011 ) survey
ave all been crucial in making detailed maps of the distribution of
alaxies in the Universe, though many of these were limited to more
ocal structures z < 1. These observations show clusters filled with 
alaxies, filaments connecting the clusters, and regions with a clear 
eficit of galaxies, known as voids. 
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By studying how different galaxies are distributed within this 
osmic web, we are able to gain greater understanding of the impact
f the underlying environments on galaxies and their properties. This 
istribution of galaxies in the large-scale structure can be studied 
hrough the spatial two-point correlation function (TPCF), ξ ( r) (see 
.g. P. J. E. Peebles 1980 ). ξ ( r) quantifies the excess probability to
nd galaxy pairs at a comoving spatial scale ( r), compared to if
alaxies are randomly distributed in the Universe. More formally, 
( r) is defined by 

P ( r) = n [ 1 + ξ ( r)] d3 r, (1) 

here n is the mean density of sources and dP the probability to
bserve galaxies in a volume, d3 r , at a given spatial separation, r . The
patial clustering of the aforementioned spectroscopic surveys has 
een studied in great detail and allows the properties of galaxies to
e related to their underlying dark matter environments (in numerous 
orks including D. S. Madgwick et al. 2003 ; I. Zehavi et al. 2011 ;
. Guo et al. 2015 ). 
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However, for the majority of surveys both at radio wavelengths
nd across the electromagnetic spectrum, we are unable to obtain
pectroscopic completeness for large area, deep surveys of galaxies.
his is especially true for the radio surveys that are being carried out
ith state-of-the-art radio facilities such as LOFAR (M. P. Haarlem

t al. 2013 ), ASKAP (A. W. Hotan et al. 2021 ), and MeerKAT
J. L. Jonas 2009 ; J. Jonas & MeerKAT Team 2016 ). Continuum
urveys from such facilities instead image galaxies at specific fre-
uencies, and cannot directly provide redshift information. Instead,
adio surveys rely on counterpart sources from other wavebands
cross the electromagnetic spectrum to determine redshifts. Where
pectroscopic redshifts are unavailable, photometric redshifts are
elied upon. These photometric redshifts combine the available
ultiwavelength data and use template fitting (e.g. G. B. Brammer,

. G. van Dokkum & P. Coppi 2008 ; S. Arnouts & O. Ilbert 2011 ) or
achine learning methods (see e.g. I. A. Almosallam et al. 2016a ;

. A. Almosallam, M. J. Jarvis & S. J. Roberts 2016b ; S. Cavuoti
t al. 2017 ) to assign redshifts ( z). Such redshifts can have broad
robability density functions (PDFs), arising from uncertainties in
odelling photometric redshifts using the data available, and the

istributions can often have multiple peaks. The spatial distribution
f samples where photometric redshifts dominate are therefore much
ore uncertain. However, we are still able to gain an understanding

f the distribution of galaxies using their projected clustering by
easuring the angular TPCF, ω( θ ), defined by 

P ( θ ) = σ [ 1 + ω( θ )] d�. (2) 

his is similar to equation ( 1 ), where now dP is the probability to
bserve galaxies within angular separations ( θ ), σ is the average
urface density of sources, and d� is the solid angle element being
onsidered. 

In practice, ω( θ ) is calculated from galaxy surveys using estimators
such as from A. J. S. Hamilton 1993 ; S. D. Landy & A. S.
zalay 1993 ) through comparing counts of galaxies within angular
eparations compared to randomly distributed galaxies. This does
ot rely upon any redshift information. However, using the overall
edshift distribution of the sources, and assuming a model for ξ ( r),
he spatial clustering can be inferred (see e.g. Limber inversion and
ts use in a number of radio studies; D. N. Limber 1953 , 1954 ; P.
. E. Peebles 1980 ; R. A. Overzier et al. 2003 ; S. N. Lindsay, M. J.
arvis & K. McAlpine 2014 ; C. L. Hale et al. 2018 ). Knowledge of
he clustering and the redshift distribution of sources can be further
sed to relate their clustering to that of the spatial clustering of the
nderlying matter, ξm 

. This allows quantification for a parameter
nown as bias, b (see e.g. discussions in P. J. E. Peebles 1980 ; J. A.
eacock & R. E. Smith 2000 ; V. Desjacques, D. Jeong & F. Schmidt
018 ), defined by 

( z, r) = b2 ( z, r) ξm 

( z, r) . (3) 

hrough tracing how bias evolves for a population of sources, the
elationship between galaxies, their properties, and the underlying
atter environment can be studied to better quantify the evolving

alaxy–halo connection. 
The angular TPCF has been relied upon for a number of studies

nto the clustering of radio sources. These cover both wide area
urveys (e.g. C. Blake & J. Wall 2002 ; R. A. Overzier et al. 2003 ;
. Blake, T. Mauch & E. M. Sadler 2004 ) and smaller regions over
hich there is deep ancillary data (e.g. S. N. Lindsay et al. 2014 ; M.
agliocchetti et al. 2017 ; C. L. Hale et al. 2018 ; A. Chakraborty et al.

020 ). Recent studies with LOFAR have also been used to probe
he clustering of radio-detected sources and study the relationship
f such galaxies to their dark matter environment; however, they
NRAS 544, 1323–1348 (2025)
ave typically focussed on bright populations ( S144 MHz � 2 mJy; T.
. Siewert et al. 2020 ; D. Alonso et al. 2021 ; N. Bhardwaj et al.

024 ; C. L. Hale et al. 2024 ; S. J. Nakoneczny et al. 2024 ). While
adio clustering studies often rely on the angular clustering due to
he dominance of photometric redshifts, this will be improved upon
ith future spectroscopic surveys, which specifically target the host
alaxies of radio-detected sources (see e.g. D. J. B. Smith et al. 2016 ;
. Duncan et al. 2023 ; S. Jin et al. 2023 ). 
With the radio observations of recent deeper surveys with tele-

copes such as LOFAR (W. L. Williams et al. 2016 ; C. L. Hale et al.
019 ; J. Sabater et al. 2021 ; C. Tasse et al. 2021 ), MeerKAT (e.g.
. Mauch et al. 2020 ; I. Heywood et al. 2021 ; C. L. Hale et al.
025 ), ASKAP (R. P. Norris et al. 2021 ; G. Gürkan et al. 2022 ),
-GMRT (e.g. A. Mazumder et al. 2020 ; E. F. Ocran et al. 2020 ),
nd the VLA (e.g. V. Smolčić et al. 2017a ; D. der Vlugt et al. 2021 ),
e are in the regime where star-forming galaxies (SFGs) contribute
 significant fraction to, and can even dominate, the total source
opulation (see e.g. V. Smolčić et al. 2017b ; H. S. B. Algera et al.
020 ; P. N. Best et al. 2023 ). Using such surveys that combine area,
ensitivity, and have a wealth of ancillary data it is possible to identify
ost galaxies for these radio sources and classify these sources into
ifferent sub-classes (e.g. active galactic nuclei, AGN, and SFGs,
ee e.g. V. Smolčić et al. 2017b ; H. S. B. Algera et al. 2020 ; I. H.

hittam et al. 2022 ; P. N. Best et al. 2023 ; S. Das et al. 2024 ). This
lassification allows for in-depth studies of the statistical properties
f different source populations and their connection to their host
roperties, environments, and redshifts. 
Furthermore, AGN can be further categorized based on their

roperties. Historically, AGN have both been split based on morpho-
ogical properties (B. L. Fanaroff & J. M. Riley 1974 ) and into radio
loud’ and ‘quiet’ populations, which distinguish the significance of
he radio emission from the jets (see e.g. A. S. Wilson & E. J. M.
olbert 1995 ). For radio-loud AGN (RLAGN), these are often further

plit based on their accretion on to the central AGN, which may occur
n two fundamental modes based on their radiative efficiency (see
.g. T. M. Heckman & P. N. Best 2014 and M. J. Hardcastle &
. H. Croston 2020 , which provide reviews on this topic). Those
adio sources that accrete from radiatively efficient discs are known
s high-excitation radio galaxies (HERGs) and are believed to be
eometrically thin optically thick accretion discs (N. I. Shakura &
. A. Sunyaev 1973 ). Conversely, low-excitation radio galaxies

LERGs) are believed to accrete from a radiatively inefficient disc,
hich are thought to be fuelled by advection-dominated flows (R.
arayan & I. Yi 1994 , 1995 ). However, recent studies such as those

rom I. H. Whittam et al. ( 2018 , 2022 ) have indicated a greater
verlap in the accretion efficiency of these two populations. 

Previous clustering studies in the radio have shown that different
ource populations cluster differently, with AGN found to be, in
eneral, more highly clustered than their star-formation dominated
ounterparts (see e.g. M. Magliocchetti et al. 2017 ; C. L. Hale et al.
018 ; A. Chakraborty et al. 2020 ; A. Mazumder, A. Chakraborty & A.
atta 2022 ). Owing to this, it is important for radio clustering studies

o study the evolution of different source populations independently.
t is also important to understand the clustering of different source
opulations so that their bias can be applied to multi-tracer techniques
o help overcome cosmic variance at large scales (see e.g. A.
accanelli et al. 2012 ; L. D. Ferramacho et al. 2014 ; Z. Gomes
t al. 2020 ). Recent work has also indicated that there may be a
onnection between the accretion mode of radio-loud AGN and their
lustering, through the study of high-redshift analogues of high-/low-
xcitation radio galaxies (H/LERGs; see C. L. Hale et al. 2018 ). A
ecent summary of a number of radio-based clustering studies can
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e found in M. Magliocchetti ( 2022 ). Moreover, other studies that
robe the environments of H/LERGs through other measurements 
ave also suggested differences in their local environments may be 
mportant (see e.g. C. Tasse et al. 2008 ; M. A. Gendre et al. 2013 ;

. J. Hardcastle & J. H. Croston 2020 ). 
In this work we make use of some of the deepest LOFAR

bservations to date and complementary multiwavelength data to 
tudy the clustering of SFGs and LERGs in three of the LOFAR Two-
etre Sky Survey (LoTSS) Deep Fields. SFGs and LERGs represent 

he two most populous source types identified in the LoTSS deep 
elds (P. N. Best et al. 2023 ). This paper is presented as follows. In
ection 2 we present the data used in this work both from LOFAR and

he associated multiwavelength catalogues. In Section 3 we outline 
he methods used to measure the angular clustering of the SFGs and
ERGs and we present the results of such analysis in Section 4 . We

hen discuss the galaxy bias and present its evolution in Section 5 .
urthermore, owing to the larger radio samples available from the 
OFAR Deep Fields, we further investigate the evolving bias as a 

unction of luminosity for LOFAR detected SFGs. We present the 
onclusions of our analysis in Section 6 . Unless otherwise stated, our
ork assumes a constant spectral index for radio sources, α = 0 . 7,
here Sν ∝ ν−α and we adopt the cosmology used in R. Kondapally 

t al. ( 2021 ) and P. N. Best et al. ( 2023 ), namely, H0 = 70 km s−1 

pc−1 , �m 

= 0 . 3, �
 

= 1 − �m 

and also adopt ns = 0 . 965 and
8 = 0 . 8. 

 DATA  

he data used in this work come from LOFAR observations across
he LoTSS Deep Fields and their associated value added catalogues. 

e summarize the data here but comprehensive details can be found 
n J. Sabater et al. ( 2021 ) and C. Tasse et al. ( 2021 ) for the radio
ontinuum images and catalogues and K. J. Duncan et al. ( 2021 ), R.
ondapally et al. ( 2021 ), and P. N. Best et al. ( 2023 ) for the host
alaxy identification, redshift estimation, and source classification, 
espectively. 

.1 Radio Data: LoTSS Deep Fields 

he LoTSS Deep Fields consist of four well-studied multiwavelength 
elds: Boötes, Lockman Hole, the European Large-Area ISO Survey 
orthern Field 1 (ELAIS-N1), and the North Ecliptic Pole (NEP) 
eld. These fields are all located in the northern sky, at optimal

ocations for LOFAR (which is not a physically steerable telescope) 
o observe. Using the high band antenna (HBA) of LOFAR, the first
bservations at 144 MHz of three of these deep fields were published
n a combination of papers for ELAIS-N1 (J. Sabater et al. 2021 )
nd the Boötes and Lockman Hole (C. Tasse et al. 2021 ) fields. J.
abater et al. ( 2021 ) and C. Tasse et al. ( 2021 ) presented images and
atalogues for observations totalling 164, 80, and 112 h on target 
or the ELAIS-N1, Boötes, and Lockman Hole fields, respectively, 
overing approximately 25 deg2 in each field 1 . 

Processing of the data used a combination of flagging and averag- 
ng of the raw data set, then calibrating the data. This calibration
onsisted of both direction-independent and direction-dependent 
alibration, making use of the packages kMS (C. Tasse 2014 ; O.
. Smirnov & C. Tasse 2015 ; C. Tasse 2023 ) and DDFacet (C.
 Where the ∼25 deg2 corresponds to the area of the images released in C. 
asse et al. ( 2021 ) and J. Sabater et al. ( 2021 ), which are truncated at the 30 
er cent power point of the primary beam. P Y BDSF was run for each image 
ver this full ∼25 deg2 . 

m  

w
a  

e  

t
t

asse et al. 2018 , 2023 ). Direction-dependent calibration is crucial
or observations at such low frequencies to account for the effects of
he ionosphere, which can cause the apparent movements of sources 
cross the sky, but also is necessary to account for primary beam
ffects over long-duration observations. These direction-dependent 
orrections allow for images with an angular resolution of 6 arcsec
o be produced, compared to 25 arcsec with direction-independent 
alibration alone (see T. W. Shimwell et al. 2017 ). 

Source catalogues were extracted in each of the fields using 
he Python Blob Detection Source Finder (P Y BDSF; N. Mohan &
. Rafferty 2015 ), using a 5 σ peak signal-to-noise thresholding 

riterion. Owing to its longer observations, ELAIS-N1 is the deepest 
eld with an average rms of ∼30 μJy beam−1 across the image. This
ompares to ∼60 μJy beam−1 in Boötes and ∼40 μJy beam−1 in 
he Lockman Hole field. This results in the detection of a total of

157 000 sources across the ∼25 deg2 of radio area in each of the
hree fields, with ∼70 000, ∼37 000, ∼50 000 sources in the ELAIS-
1, Boötes, and Lockman Hole fields, respectively. In this paper we
ill adopt a subset of these catalogues for the analysis; we describe

uch cuts to the data in the following sections. 

.2 Multiwavelength data 

longside the radio data, we make use of the multiwavelength 
atalogues of sources detected in the three fields. These were not only
sed to provide counterparts to the radio sources (see Section 2.3 ) but
re also used here to measure the angular cross-correlation of these
ultiwavelength galaxies with the radio sources. These catalogues 

ombine data from the UV to the far-IR and are described in detail in
. Kondapally et al. ( 2021 ); their overlapping regions cover a reduced
rea compared to the radio data alone (see fig. 1 of R. Kondapally
t al. 2021 , where we make use of their shaded regions for this work).

For the Boötes field, the multiwavelength catalogue originates 
rom 4.5 μm and I -band point spread function (PSF) matched 
atalogues from M. J. I. Brown et al. ( 2007 , 2008 ), which combine
ata from the NOAO Deep Wide Field Survey (NDWFS; B. T.
annuzi & A. Dey 1999 ) as well as optical imaging from F. Bian
t al. ( 2013 ) and near-IR data from A. H. Gonzalez et al. ( 2010 ).
or ELAIS-N1 and the Lockman Hole field, R. Kondapally et al.
 2021 ) created their own combined matched-aperture catalogues. 
his includes data from the UV to IR: the Galaxy Evolution Explorer
 GALEX ) space telescope (D. C. Martin et al. 2005 ; P. Morrissey et al.
007 ); Hyper-Suprime-Cam Subaru Strategic Program (HSC-SSP) 
urvey (H. Aihara et al. 2018 ); the Canada–France–Hawaii Telescope 

egaCam instrument (H. Hildebrandt et al. 2016 ); Panoramic Survey 
elescope and Rapid Response System (Pan-STARRS-1; K. C. 
hambers et al. 2016 ); the Herschel Space Observatory (M. J. Griffin
t al. 2010 ; A. Poglitsch et al. 2010 ); and from the Spitzer Space
elescope (from C. J. Lonsdale et al. 2003 ; J. C. Mauduit et al.
012 ). R. Kondapally et al. ( 2021 ) generated 0.2 arcsec pixel scale
mages and detected sources using SEXTRACTOR (E. Bertin & S. 
rnouts 1996 ) to create the multiwavelength catalogues that we use

n this work. Aperture corrections are additionally applied to account 
or varying PSF sizes between the images. 

These combined multiwavelength catalogues contain over 2 mil- 
ion sources in each of the three fields used in this work: ∼2.1

illion in ELAIS-N1, ∼3.0 million in Lockman Hole and ∼2.2 
illion in Boötes. This is reduced in numbers when only the areas
hich have overlap between all the best multiwavelength surveys 

re considered and masking is applied (see fig. 1 of R. Kondapally
t al. 2021 ). This overlapping area covers ∼26 deg2 in total across
he three fields and reduces the number of multiwavelength sources 
o ∼1.4 million sources in ELAIS-N1 (6.74 deg2 ), ∼1.9 million 
MNRAS 544, 1323–1348 (2025)



1326 C. L. Hale et al.

M

Table 1. Table outlining the number of sources (across all redshift ranges) from the initial catalogues and after applying the subsequent cuts that are used in this 
analysis. Each row is cumulative and includes the cuts applied to all previous rows. These numbers are indicated for the radio and multiwavelength catalogues 
separately, for each of the three fields (Boötes, ELAIS-N1, and Lockman Hole) and are not split by source type (i.e. SFG versus LERG). The numbers indicated 
in bold show the final numbers of either radio or multiwavelength sources used across all redshifts. Those used for each redshift sample considered in this work 
can be found in Table 3 . We note that in this table, the starting criteria ‘Original Catalogue’ for the radio populations refers to the source catalogue over the ∼25 
deg2 of each field within the primary beam cut, as described in J. Sabater et al. ( 2021 ) and C. Tasse et al. ( 2021 ). For the multiwavelength data the full catalogue 
relates to the ‘Science Ready’ catalogues released with K. J. Duncan et al. ( 2021 ). 

Description Radio catalogue Multiwavelength catalogue 
Boötes ELAIS-N1 Lockman Boötes ELAIS-N1 Lockman 

Original source catalogue 36 767 70 544 50 112 2 214 329 2 105 993 3 041 793 

In FLAG OVERLAP and FLAG CLEAN regions 18 553 30 768 30 347 1 911 265 1 446 319 1 837 134 
( + (for radio) in cross-matched catalogue of R. Kondapally et al. 2021 ) 

Band Used for magnitude and 5 σ Cut – – – 4.5 μm K 4.5 μm 

Magnitude Cut Applied – – – ≤21.33 ≤21.78 ≤21.18 

Applying 5 σ Cut and Magnitude Cuts – – – 317 022 282 871 302 530 

With redshifts from K. J. Duncan et al. ( 2021 ) 18 238 30 470 30 161 216 708 272 315 297 071 

With source classification from P. N. Best et al. ( 2023 ) 17 707 30 182 29 595 – – –

Additional spatial masking applied (additional star masks 15 905 28 772 27 977 210 714 260 949 284 576 
for all fields + masking of Table 2 for Boötes) 

Radio flux density ( ≥ 200μJy) & SNR ( ≥ 5 σ ) cuts 14 925 17 289 22 797 – – –

Mass cut applied ( M∗ ≥ 1010 . 5 M �) – – – 68 257 59 636 87 525 
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3 For clarity, prior to source association a radio source refers to the source 
ources in the Lockman Hole field (10.28 deg2 ), and ∼1.8 million
ources in Boötes (8.63 deg2 ). For full details of the sources used
fter cuts to the catalogues are applied see Table 1 . The sources
n the areas adopted are identified using a combination of the
FLAG OVERLAP’ ( == 1 for Boötes, == 3 for Lockman Hole and
= 7 for ELAIS-N1) and ‘FLAG CLEAN’ (! = 3) identifiers in the

ource catalogue. This restricts the data to the best multiwavelength
egions, avoiding objects such as stars that may be impacting the
ultiwavelength photometry. Further details of the flag can be

ound in R. Kondapally et al. ( 2021 ) 2 , where FLAG OVERLAP is
ndicative of the availability of multiwavelength coverage in different
ands and FLAG CLEAN relates to the masking around bright stars.
n Boötes an additional flag to mask ultra deep regions is also applied:
FLAG DEEP’( = = 1). 

Finally, we also apply a stellar mass cut of M� ≥ 1010 . 5 M� to the
ultiwavelength data, which, as can be seen in fig. 11 of K. J. Duncan

t al. ( 2021 ), is predominately larger than the 90 per cent magnitude
ompleteness limits already applied in this work. Applying a constant
igh mass cut is generally more restrictive than using the magnitude
uts of K. J. Duncan et al. ( 2021 ) alone to impose completeness.
s discussed in K. J. Duncan et al. ( 2021 ), the stellar masses in

heir catalogue are believed to be robust up to a redshift of z = 1 . 5
nd so we restrict ourselves to such a redshift range over which
o probe the clustering. The result of such a high mass cut is a
obust sample of massive galaxies for cross-correlating to the radio
ata. The high stellar mass cut also restricts the samples to the most
assive galaxies, which is beneficial when considering the angular

ross-correlation, due to the larger bias (see e.g. P. W. Hatfield et al.
016 ). Finally, it also ensures that a similar reference sample of
alaxies is considered across the redshift samples used in this work
s well as between the three fields, to ensure we cross-correlate to a
imilar population. Such cuts reduced the number of multiwavelength
NRAS 544, 1323–1348 (2025)
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ources across the three fields. For more details on the effect of source
umbers on the cuts applied see Table 1 . 

.3 Radio data: host identification and redshifts 

n order to obtain redshift information and source classifications
or the radio-detected galaxies, a catalogue of multiwavelength
ounterparts with redshifts is essential. The cross-matching process
or the LoTSS Deep Fields is described in R. Kondapally et al.
 2021 ), where a combination of likelihood ratio (LR) analysis (see
.g. W. Sutherland & W. Saunders 1992 ; K. McAlpine et al. 2012 ;
. L. Williams et al. 2019 ; I. H. Whittam et al. 2024 ) as well

s visual classification was used to identify the host for the radio
ources as in W. L. Williams et al. ( 2019 ) 3 . Due to the availability
f multiwavelength data, a restricted region of the three fields was
sed for the host identification process, as discussed in Section 2.2
nd presented in Table 1 . Over these smaller multiwavelength areas,
hich are closer to the primary beam centre, the sensitivity improves,
ow measuring a typical rms of ∼20 μJy beam−1 in ELAIS-N1,
30 μJy beam−1 in Lockman Hole, and ∼40 μJy beam−1 in
oötes. 
R. Kondapally et al. ( 2021 ) used a number of decision trees in

rder to identify which sources had a reliable identification of a
ost galaxy from the LR analysis, and which sources instead needed
isual identification to obtain a host galaxy match. Sources with
ompact sizes or secure radio positions were determined to be most
uitable for LR cross-matching; sources with a large size or in a
rowded region of the field were instead sent to visual analysis. For
isual identification, R. Kondapally et al. ( 2021 ) used the Zooniverse 4 
s defined by the source finder, P Y BDSF. After source associations and 
lassifications a source refers to the object within the catalogue of R. 
ondapally et al. ( 2021 ). This is assumed to be from an individual galaxy, 
hich may include multiple of the original P Y BDSF radio sources. 
 https://www.zooniverse.org 

https://lofar-surveys.org/index.html
https://www.zooniverse.org
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Table 2. Additional regions within the Boötes field that are masked within 
the field, see Section 3.2.2 . 

Region RA range (◦) Dec. range (◦) 

1 218.90–219.00 33.45–33.70 
2 216.10–219.00 33.45–33.53 
3 218.20–218.30 32.85–33.70 
4 216.10–218.30 32.85–32.96 
5 217.50–217.60 32.32–33.68 
6 216.78–216.90 32.32–33.68 
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latform (see e.g. C. Lintott et al. 2012 ; J. K. Banfield et al. 2015 ;
. L. Williams et al. 2019 ) where LOFAR surveys team members

sed the interface to help visually cross-match sources to a host
alaxy. Each source required at least five independent classifications 
nd a host galaxy was assigned if at least 60 per cent of users who
nalysed a source agreed on a match. Sources without a clear match
r that were flagged as requiring further detailed inspection were 
ent to experts for assessment. Approximately 97 per cent of the 
OFAR-detected sources within the multiwavelength region have 
ost galaxies identified. 
Alongside the work of R. Kondapally et al. ( 2021 ), K. J. Duncan

t al. ( 2021 ) used the wealth of multiwavelength data across the
hree LoTSS Deep Fields to obtain redshift estimates for the host
alaxies. These redshifts are a combination of photometric redshifts 
nd spectroscopic redshifts, where available. Photometric redshifts 
ere generated through a hybrid method which combines redshifts 

rom spectral energy distribution (SED) fitting techniques and 
achine learning methods (GPz; I. A. Almosallam et al. 2016a ; 

. A. Almosallam et al. 2016b ). This method produced redshifts for
s many sources as possible in the full multiwavelength catalogue 
described in Section 2.2 ), which in turn can provide redshifts for a
umber of LOFAR-detected sources. In total, 21 per cent of cross-
atched sources in the Boötes field have spectroscopic redshifts, 

educing to 5 per cent in the other two fields at the time of release.
urther details of these catalogues can be found in K. J. Duncan
t al. ( 2021 ). We note that additional spectra have subsequently been
btained with the Dark Energy Spectroscopic Instrument (DESI; 
ESI Collaboration 2024 , 2025 ); however, these were not available 
hen host identification was conducted and when the redshifts were 
sed to help in the classification of sources in P. N. Best et al. ( 2023 ).
e therefore rely on the redshift information from K. J. Duncan et al.

 2021 ). 

.3.1 Additional spatial masking 

e apply additional spatial cuts to remove some remaining non- 
niformity. First, we apply additional spatial masking in the Bootes 
eld, detailed in Table 2 . This avoids areas in the Boötes field that
ppeared deeper than the surrounding image and this was depth was 
ot removed by use of FLAG DEEP in the catalogue. Secondly, 
e expand the stellar masks of R. Kondapally et al. ( 2021 ) to
rovide more conservative masking around the brightest stars in the 
aia catalogue (Gaia Collaboration 2016 , 2018 ). This is to ensure
niformity in the optical catalogues close to bright stars. We create 
 mask around sources with magnitudes in the G band ≤ 10 of
 and 4 arcmin for those source with G band magnitudes ≤ 7 . 5.
his masks 42, 61, and 64 stars across the Boötes, ELAIS-N1, and
ockman Hole fields, respectively, and removes an additional 1–
 per cent of sources in the original cross-matched catalogue of R.
ondapally et al. ( 2021 ) compared to the flagged regions discussed
arlier of R. Kondapally et al. ( 2021 ). Such spatial cuts were applied
o both the radio and multiwavelength data as well as the random
atalogues. 

.4 Source classifications 

or the cross-matched sources, classifications were determined using 
he abundance of multiwavelength data and were released in P. N.
est et al. ( 2023 ). In their work, P. N. Best et al. ( 2023 ) used a
ombination of SED fitting codes to assign classifications for the 
ources. This included the SED fitting codes AGNFITTER (G. Calistro
ivera et al. 2016 ), BAGPIPES (A. C. Carnall et al. 2018 ), CIGALE

M. Boquien et al. 2019 ), and MAGPHYS (E. da Cunha, S. Charlot &
. Elbaz 2008 ; E. da Cunha & S. Charlot 2011 ) to provide source
roperties for the host galaxies. For sources with an identified host,
hese were classified as either an SFG or an AGN. For those classified
s an AGN, these were sub-classified as either radio loud (RL) or
adio quiet (RQ) and for those RLAGNs, these were classed as either
ERGs or LERGs. P. N. Best et al. ( 2023 ) present a consensus

lassification for the majority of the LOFAR cross-matched sources, 
hile ∼1500 sources per field remain unclassified (see table 2 of

. N. Best et al. 2023 ). This is a small fraction of the total sources
ithin the multiwavelength region, ∼5 per cent, and this number 

ncludes those sources without an assigned host galaxy and redshift. 
urther details of the classification methods used are provided in P.
. Best et al. ( 2023 ). For the classified population, approximately 68
er cent of sources within the multiwavelength region were identified 
s SFGs, with LERGs being the next biggest fraction of sources at
16 per cent. 

wing to SFGs and LERGs being the two largest populations in
he LoTSS Deep Fields, we investigate the clustering of these two
opulations in this work. We also study the clustering for a subset of
he LERG population, namely, quiescent LERG (or QLERGs). These 
re discussed in R. Kondapally et al. ( 2022 ) and are useful to this
ork as they provide a more representative comparison to the LERG
opulation used in the clustering work of C. L. Hale et al. ( 2018 ),
ho measure the clustering from a sample of QLERGs from the

atalogues from V. Smolčić et al. ( 2017b ). We use the same criterion
s in R. Kondapally et al. ( 2022 ) to classify sources as QLERGs,
amely, making cuts based on the specific star formation rate (SFR)
f the sources. We note, though, that alternative classifications for 
he ELAIS-N1 field were subsequently presented in S. Das et al.
 2024 ) using the SED fitting code, PROSPECTOR (J. Leja et al.
017 ; B. D. Johnson et al. 2021 ). Comparison of the ELAIS-N1 field
lassifications are presented in fig. 8 of S. Das et al. ( 2024 ). For
FGs, ∼90 per cent of sources determined to be SFGs in P. N. Best
t al. ( 2023 ) are also described as SFGs in the work of S. Das et al.
 2024 ); however, this is closer to ∼70 per cent for the LERGs of P. N.
est et al. ( 2023 ). As such, we acknowledge that differences in the
lassification process will affect some of the samples of sources used
n this work. We also note that recent works using physical processes
o split sources by AGN and star formation physical processes using
igh-resolution LOFAR data may indicate some underestimation of 
GN activity in some sources (see L. K. Morabito et al. 2025 ). 
In this work, we continue with the catalogues of P. N. Best

t al. ( 2023 ). This is because they are the source classifications that
ere used to study the luminosity functions of LOFAR-detected 

ources (R. Kondapally et al. 2022 ; R. K. Cochrane et al. 2023 ). The
uminosity functions from these studies will be important to generate 
andom catalogues, which are necessary to measure the clustering of 
ources in this work, as described in Section 3.2 . 
MNRAS 544, 1323–1348 (2025)
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For the “Kept Random Catalogue” obtain “Measured” peak flux 
densities (given the SNR) using results from simulations
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Calculate the LF of the “Input Random Catalogue” in the small z 
bin. Down sample the random sources to match the model LFs 

Combine the catalogues from the small z bins to make the 
broader z range considered (e.g. z: 0.1-0.4 for SFGs)

Calculate the LF of the combined catalogue and down sample to 
match the measured LFs of Kondapally+ 2022 and Cochrane+ 

2023. This is the “LF matched Input Catalogue”.

The random sources in both the LF matched Input Catalogue and
“Kept Random Catalogue” are used for the TPCF. Any flux density, 

SNR or luminosity cuts are applied to “measured” properties.

Apply smearing to peak flux - dependent on field & source type

Use small z bins and obtain model luminosity functions (LFs) 
extrapolating parameters from Kondapally+ 2022, Cochrane+2023

Figure 1. Flowchart outlining the steps to make the catalogue of random 

sources associated with the radio data that are used to measure the clustering, 
divided into three stages. The first (yellow) relates to the creation of the general 
simulated source properties, as in Section 3.2.1 . The second (in blue) describes 
the method of applying completeness effects and measurement errors, as in 
Section 3.2.1 (i). The final stage is the effect of applying corrections for the 
intrinsic luminosity distribution (pink), as in Section 3.2.1 (ii). 
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5 This accounts for known differences between SKADS and faint source 
counts (see e.g. S. Mandal et al. 2021 ; C. L. Hale et al. 2023 ). 
6 scaled from the 1.4 GHz flux densities in SKADS are used. 
 DATA  A N D  R A N D O M  C ATA L O G U E S  F O R  ω( θ ) 

.1 Calculating ω( θ ) from auto-correlation and 

ross-correlations 

s discussed in Section 1 , the two-point correlation is one commonly
sed method to study the large-scale structure of galaxies within
 survey. As the LoTSS sources are dominated by those with
hotometric redshifts we rely on the angular TPCF, ω( θ ), to quantify
he clustering within the fields. We measure ω( θ ) using the Landy–
zalay estimator S. D. Landy & A. S. Szalay ( 1993 ): 

( θ ) = D D ( θ ) − 2D R ( θ ) + R R ( θ ) 

R R ( θ ) 
. (4) 

his uses normalized pairs of galaxies within the data catalogue,
 D ( θ ) , pairs in a random catalogue, R R ( θ ) , and between the two

atalogues, D R ( θ ) . The normalization ensures that across all θ bins,
he sum of the normalized pairs sums to one, e.g.

∑ 

D D ( θ ) = 1. The
andom catalogues should be a random distribution of galaxies, but
hat account for observational systematics in the data and so mimic
etection across the field of view. Such systematics can be complex
o account for (see e.g. discussions in C. L. Hale et al. 2024 ) and
o we describe the creation of our random catalogues in detail in
ection 3.2 . 
Whilst we can rely on the auto-correlation to measure source

lustering, in this work we also use the multiwavelength data from
. Kondapally et al. ( 2021 ) and K. J. Duncan et al. ( 2021 ) to study

he angular cross-correlation function between the radio and multi-
avelength data. These multiwavelength catalogues have a higher

ource density than the radio sources over the same area. Cross-
orrelating between two catalogues can reduce the impact of any
emaining systematics and help improve constraints on the biases of
he radio sources by reducing the statistical uncertainties. Combined,
his can help improve constraints on the physical properties derived
rom modelling the angular clustering. The angular cross-correlation
unction is given by 

CC ( θ ) = D1 D2 ( θ ) − D1 R2 ( θ ) − D2 R1 ( θ ) + R1 R2 ( θ ) 

R1 R2 ( θ ) 
. (5) 

ere ‘1’ and ‘2’ relate to the radio and the multiwavelength
atalogues respectively. Such a formalism has been used in a number
f studies (see e.g. W. G. Hartley et al. 2013 ; S. N. Lindsay et al.
014 ; R. M. Bielby et al. 2016 ; C. Krishnan et al. 2020 ). 

.2 Random catalogues 

s discussed, a catalogue of randomly distributed sources is nec-
ssary to measure ω( θ ) using both the auto-correlation and cross-
orrelations. These random catalogues must have no underlying
arge-scale structure, but must mimic the detection of sources across
he fields, accounting for observational effects and spatial masks.
his means that the distribution of the random catalogue will be
on-uniform. Observational effects, such as sensitivity variations,
re more challenging to account for and require understanding of
he systematic effects which affect source detection. Therefore,
ither conservative flux density limits should be applied or these
bservational effects need to be accounted for within the random
atalogues. The latter approach allows more sources across the field
o be used to measure the clustering for the population and so has
een adopted in a number of studies, such as C. L. Hale et al. ( 2018 );
. Mazumder et al. ( 2022 ); C. L. Hale et al. ( 2024 ). In this work, we

ccount for the observational systematics for our random catalogues
NRAS 544, 1323–1348 (2025)
nd outline this process in the next sections. Fig. 1 provides a
chematic representation of the steps involved. 

.2.1 Radio random catalogues 

o generate our radio random catalogues we first generate positions
cross the LoTSS Deep Fields over the regions that the radio data
as been restricted to (as outlined above, namely the best ancillary
egions of R. Kondapally et al. 2021 ). Each position is assigned the
ource properties (flux density, redshift, shape) from a simulated
ource of the SKA Design Studies (SKADS; R. J. Wilman et al.
008 , 2010 ), using the modified SKADS catalogue (with double the
umber of SFGs) as used in C. L. Hale et al. ( 2024 ) 5 . A peak flux
ensity for the source is calculated by convolving the source model
ith the LOFAR 6 arcsec beam. We restrict the SKADS catalogue to

ntegrated flux densities S144MHz ≥0.05 mJy 6 . Whilst updated radio
imulations are available from T-RECS (A. Bonaldi et al. 2019 ,
023 ), we found (similarly to J. Asorey & D. Parkinson 2021 ) that the
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-RECS source model for bright AGN generated larger sources than 
nticipated, affecting source completeness 7 . Though AGN are not the 
ominant source population in this work (see P. N. Best et al. 2023 ),
t is important to consider such effects and, as such, we used SKADS.

i) Accounting for incompleteness and measurement errors : 

o generate the random catalogue, we broadly followed the method 
f C. L. Hale et al. ( 2024 ), who used the results from completeness
imulations in the LOFAR Two-metre Sky Survey (LoTSS-DR2; T. 
. Shimwell et al. 2022 ) to quantify (i) completeness of source

etection as a function of input signal-to-noise (SNR); (ii) the 
easured-to-simulated peak flux density as a function of input SNR; 

nd (iii) the ratio of the measured-to-simulated peak flux density 
ompared to the measured-to-simulated integrated flux density as a 
unction of SNR. These factors were combined with a distribution 
f sources from the modified SKADS catalogue described above 
o determine which sources would be considered detected within 
he data. C. L. Hale et al. ( 2024 ) also accounted for a positional
ependent smearing of sources across the field of view. Combined, 
. L. Hale et al. ( 2024 ) created a catalogue of random sources which
ccounted for the detection across the field of view and had associated 
measured’ peak and integrated flux densities. 

In this work, we produce our own completeness simulations to 
e analogous to those of T. W. Shimwell et al. ( 2022 ), using the
ethodology described in C. L. Hale et al. ( 2023 ). This uses an input

ource counts model (the modified SKADS catalogue, as above) 
t 144 MHz to generate simulated sources which are injected into 
he radio image. We then use the P Y BDSF parameters of J. Sabater
t al. ( 2021 ) and C. Tasse et al. ( 2021 ) to generate catalogues of
ources which would be detected by PYBDSF . For each field 1000
imulations are run each with 2000 sources per simulation randomly 
njected into the image. These sources have a random flux density 
ssigned from SKADS, with a source model that is convolved with 
he 6 arcsec LOFAR beam. For those sources that are detected by
YBDSF , they are matched to an input source using a 3.5 arcsec
atch radius. This is smaller than the angular resolution to ensure 

hese are true matches. This output matched catalogue allows the 
alculation of the the necessary measurements outlined above, such 
s the completeness and measured source properties as a function of
NR. 
Using the catalogue of simulated random sources, we calculate 

heir SNR based on their peak flux density and the rms at the source
ocation. Using the results of the completeness simulations and the 

ethodology from C. L. Hale et al. ( 2024 ) to measure completeness
s a function of SNR, we obtain the probability that each source in
he catalogue of random sources is detected and then use a process
f random sampling to determine the random sources which will be 
sed to measure the clustering. Unlike in C. L. Hale et al. ( 2024 ),
e do not apply position-dependent smearing as we are unable to 

ndependently measure it and, in any case, smearing effects should 
e reduced given that only a smaller sky area closer to the pointing
entre is used. Instead, we apply a constant smearing factor to the
imulated peak flux density of the random sources in each field. This
actor is allowed to be different for each sub-population in a field,
s in addition to accounting for physical smearing effects, it can 
lso empirically correct for differences between the simulated and 
rue source size distributions. These values are chosen to ensure that 
he peak of the ratio of the measured integrated-to-peak flux density 
 Though we note that a similar analysis with T-RECS led to radio bias values 
roadly similar to those derived using SKADS. 

8

t

istribution for the simulated random sources matches that of the 
ata within each field. These factors varied in the range of ∼1–1.15
cross the fields. 

For those random sources which are considered detected, a 
measured’ peak and integrated flux density is then obtained based 
n the input SNR as in C. L. Hale et al. ( 2024 ), using the measured
utput-to-input flux density distributions as a function of SNR found 
rom the completeness simulations above. These ‘measured’ values 
re more similar to the flux densities in the P Y BDSF data catalogues.
uch flux densities have differences to the intrinsic flux densities 
ue to both the noise in the image and measurement differences
ntroduced by the source finder. 

At this stage, two catalogues of random sources are retained. 
he first contains the input catalogue of random sources and their
osition, local rms, simulated integrated and peak flux densities and 
he completeness probability for the source. It also contains a flag
or whether the source is considered to be ‘detected’ (or not) from
he completeness probability and random sampling. We call this the 
nput random catalogue . The second catalogue contains the subset 
f these sources which were considered ‘detected’ and for which a
measured’ peak and integrated flux density are also recorded. We 
efer to this catalogue as the ‘kept’ catalogue of random sources . The
kept’ catalogue is the basis for the catalogue we use for the radio
andom terms in equations ( 4 ) and ( 5 ) and will apply all SNR, spatial
asks and flux cuts that are applied to the data to this catalogue

f random sources (see Sections 2.3.1 and 3.3 ). We ensure each
atalogue of random sources is more numerous compared to the 
umber of data sources to ensure that the errors will be dominated
y uncertainties in the data. The ratio of randoms to data is given in
able 3 . 

ii) Ensuring an accurate intrinsic luminosity distribution for each 
opulation over the z range : 

hough the source counts distributions of the modified SKADS 

atalogue agrees well with deep radio surveys (e.g. S. Mandal et al.
021 ; A. M. Matthews et al. 2021 ; D. der Vlugt et al. 2021 ; C. L. Hale
t al. 2023 ), we need to ensure that that this remains true when we
plit sources as a function of redshift, source type and flux density.
o do this, we use modelled luminosity functions, � ( L144MHz ) 8 , of
FGs (R. K. Cochrane et al. 2023 ) and the LERGs (and QLERGs;
. Kondapally et al. 2022 ) in the LoTSS Deep Fields. We use

hese models to down-sample the catalogue of random sources so 
heir input luminosity functions match the models for each redshift 
in/source type, as outlined below. 
First, we use the 1/ Vmax method (M. Schmidt 1968 ) to measure
 ( L ) for the input catalogue of random sources . This method is

egularly used for radio luminosity functions (see e.g. T. Mauch &
. M. Sadler 2007 ; M. Novak et al. 2017 ; R. Kondapally et al. 2022 ).
ollowing this method � ( L ) is defined as: 

 ( L ) = 1 

�log 10 ( L ) 

1 

Acorr 

∑ 

i 

1 

Vmax , i 
, (6) 

here: �log 10 ( L ) is the width of the log luminosity bins used
o calculate � ( L ); Acorr is a correction for the finite area of the
bservations; and Vmax ,i is the maximum comoving volume within 
hich the i th source between log 10 ( L ) and log 10 ( L ) + �log 10 ( L ) can
e observed within, given the sensitivity of the data, and the redshift
MNRAS 544, 1323–1348 (2025)

 We will now drop the 144 MHz subscript when referring to luminosities such 
hat L refers to a spectral luminosity at 144 MHz, unless otherwise stated. 
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ange being studied 9 . This work will study the evolving clustering
f radio sources, using the redshift binning of R. K. Cochrane et al.
 2023 ) for SFGs and R. Kondapally et al. ( 2022 ) for LERGs to
 � 1 . 5 (where stellar masses are estimated to in K. J. Duncan et al.
021 ). In the work of R. K. Cochrane et al. ( 2023 ), the lowest redshift
in considered begins at z = 0 . 1. Below such redshifts the size of
ources may affect estimates of the host galaxy properties, using
perture based fluxes. 

Next, for an accurate input catalogue of random sources, we must
nsure that both the input luminosity distribution and the redshift
istribution mimic that of the data. This is to ensure an accurate
ux density distribution (or source counts) within the redshift bin
or the source type considered. Therefore, we use fine redshift
ins ( �z = 0 . 025) to match the input luminosity function of the
atalogue of random sources to the model luminosity functions. In
ach redshift bin, we use a quadratic (linear) fit extrapolation of the
est-fitting parameters of the models from R. K. Cochrane et al.
 2023 ) (or R. Kondapally et al. 2022 ) to estimate the luminosity
unction parameters (and therefore, models) within the �z = 0 . 025
ins. We compare � ( L ) for the input catalogue of simulated random
ources assuming no incompleteness within the field and using a
inimum flux density limit (see Section 3.3 ) term 

10 in equation
 6 ) 11 . Using the ratio of the observed � ( L ) for the input catalogue
f random sources to the model �mod ( L ), we find the smallest value
f this ratio across each �z and luminosity bin 12 . We then normalize
ll luminosity functions of the input catalogue of random sources by
his minimum ratio and downsample the random sources to match the
uminosity function model in each �z bin. Combining the random
ources from each of the �z bins in this way provides an input random
atalogue with a luminosity function that reflects the intrinsic models
nd redshift distributions of radio sources in the Universe. 

However, we note that the parametrized models of the luminosity
unctions for the SFGs and LERGs from R. K. Cochrane et al. ( 2023 )
nd R. Kondapally et al. ( 2022 ) are smoothed models for � ( L ). In
ractice there may be larger deviations between the model and the
ata than at some luminosities. This is more prevalent for LERGs
see 0 . 5 < z ≤ 1 . 0 in fig 6. of R. Kondapally et al. 2022 ). To avoid
arge differences in the luminosity distributions of the catalogue
f random sources to the data � ( L ), we downsample the input
atalogues of random sources across the full redshift bin range to
atch the measured luminosity functions of R. Kondapally et al.

 2022 ) and R. K. Cochrane et al. ( 2023 ). The random catalogues
hich are then used to measure ω( θ ) are the subset of this new

nput random catalogue that were determined to be ‘detected’ in
ection 3.2.1 (i). The sources in the ‘detected’ catalogue should then
ave luminosities, z and flux density distributions which are similar
NRAS 544, 1323–1348 (2025)

 Though it can also be used, as in M. Novak et al. ( 2017 ), to account for 
ncompleteness effects within the data. 
0 The input catalogue of random sources should have no incompleteness 
ffects and be representative of the true underlying population. The effects of 
ncompleteness will be accounted for when a � ( L ) model matched sample of 
he catalogue of random sources is made and the sources that were considered 
detected’ in the catalogue generation earlier are used. 
1 In reality, Vmax should also account for limitations in the multiwavelength 
atalogues. However, owing to the deep nature of the optical and IR data 
nd the high fraction of host galaxy association (97 per cent), we neglect this 
ompared to the Vmax of the radio emission. 
2 As the ratio in the first and last luminosity bin may not be fully probed by 
he data or randoms, we do not use these values to find the minimum ratio. 
he minimum ratio itself will be 	 1 due to the much higher number density 
f randoms. 
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o those of the observed data and which also suffer from similar
ncompleteness effects across the fields. 

.2.2 Multiwavelength random catalogues 

s discussed in Section 3.1 , we also make use of the cross-correlation
etween the LoTSS Deep Fields data and the multiwavelength
atalogues within the field to trace the bias evolution of LOFAR
ources. This requires an additional catalogue of random sources for
he multiwavelength catalogue ( R2 in equation 5 ). For this we use a
niform distribution of sources across the fields. This assumes that
he mass and magnitude limits applied to the multiwavelength data
n Section 2.2 provide high completeness and uniformity across each
f the three fields. 

.3 Additional SNR and flux density cuts 

s discussed in C. L. Hale et al. ( 2024 ), the wavelet fitting mode
hich can be used with the source finding of P Y BDSF can introduce

he detection of a large number of sources below the nominal 5 σ
etection limit across the rms maps. Therefore, we apply a 5 σ peak
NR cut to the radio catalogues for both the data and catalogue
f randoms. Moreover, we apply a constant flux density cut to
ormalize the different flux limits in the three fields. Since, Boötes
s the shallowest field with a typical rms ∼ 44 μJy beam−1 over
he multiwavelength region (see tables in R. Kondapally et al. 2021 ;
. Mandal et al. 2021 ), we therefore impose a 200 μJy integrated
ux density limit such that our data is at SNR � 5 in the shallowest
eld. 
The catalogues of random sources generated per field are also

educed in numbers to ensure a constant ratio of the number of data
o randoms in each field and for each of the radio sources subsamples
e.g. split by redshift). This avoids spuriously large ω( θ ) (at higher
) when a constant ratio was not applied. For each sub-sample we
nsure that the ratio of data to randoms is constant in each field and
hat this ratio is in the range of ∼10–15, see Table 3 . 

At this stage we now have the catalogues necessary to measure
( θ ) across the combined three fields using both the auto-correlation

equation 4 ) and cross-correlation (equation 5 ). 

.4 Resampling of the data to probe p( z) 

o determine the clustering as a function of redshift, and accurate
ncertainties on the measured clustering, it is necessary to take
ccount of the uncertainties in the redshifts of the sources, encoded in
he redshift posterior probability distribution, p( z), for each source.
o do this, we construct 100 new redshift values for each source
rom sampling from the p( z) derived in the analysis of K. J. Duncan
t al. ( 2021 ). For those sources with a spectroscopic redshift we
se a constant value for z in each resample. Combining the redshift
esamples for all the sources provides 100 possible data samples for
hich we apply the necessary masking and flux density/SNR cuts

nd then compute the angular clustering for sources with a resampled
edshift in the z range being considered. 

.5 Comparison of data and random catalogues 

omparisons of the data to the randoms are presented in Fig. 2
or the SFGs and in Fig. 3 for the LERGs and QLERGs. Shown
re comparisons of the flux density, redshift, luminosity and SNR
istributions for the randoms and data both when split into redshift
ins using the Z BEST redshift column (from the catalogue of K.
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Figure 2. Comparison plots of the flux density distributions (first row); redshift distributions (second row); luminosity distribution (third row); signal-to-noise 
(SNR, fourth row); and integrated-to-peak flux density ratio ( SI /SP ; fifth row) for SFGs in the different redshift bins considered in this work, increasing in 
redshift from left to right. In each panel, the data catalogue with redshift cuts applied on the Z BEST column is shown as black dots, while each blue shaded 
region represents the output distribution from the data samples given in the range of the 16th–84th percentiles of the values from the p( z) resamples. The 
randoms for the full sample are shown as red stars. These have associated red shaded regions with the range of randoms from those associated with each of the 
data p( z) resample (to ensure a constant ratio of random sources to data), though these are small as they are drawn from the same random sample and only have 
small differences reflecting the number of data per p( z) sample. 
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. Duncan et al. 2021 ) and also using the resampled z values from
he p( z). These allow us to demonstrate the accuracy of the random
atalogues in accounting for the observational effects within the data. 

As can be seen from Figs 2 and 3 , the randoms broadly provide
 good representation of the data, especially when the data from
he resampled p( z) are compared to. This suggests the random 

atalogues should provide a good simulated catalogue to measure 
( θ ). As discussed in R. Kondapally et al. ( 2021 ) and R. K. Cochrane
t al. ( 2023 ), at some redshifts, there can be large uncertainties
n the photometric redshifts with some aliasing of the ‘Z BEST’ 
alue, whereas the p( z) better captures this effect. The redshift
istributions do present some larger discrepancies within some of 
he sub-samples. However, we note that the flux density comparisons 
nd SNR comparisons are the most important, as incompleteness 
elates to the observed properties of the source and knows nothing 
f their z or luminosity. Provided these flux distributions appear 
ppropriate, differences in the z distribution are of less concern. 
xamples of such differences in the z distribution can be seen for

he 0 . 6 ≤ z < 0 . 8 redshift bin of SFGs, however the flux density and
NR distribution appear to be in good agreement with the data. For
ERGs and QLERGs (see Fig. 3 ), these distributions show broad 
greement to those of the data resamples, though the differences in 
NR distributions are greater than seen for SFGs. This is, in part,
elated to the source models used for such sources. As SKADS does
 d  
ot have L/HERG classification, we use a mixture of AGN (Fanaroff
iley Type I and II sources B. L. Fanaroff & J. M. Riley 1974 , and

adio-quiet quasars). However this may provide a mixture of source 
odels not wholly representative of the demographics of LERGs. 
For SFGs we also intend to study the luminosity dependence of

he clustering of SFGs and so present similar plots to that as in Fig.
 for each of the luminosity ranges considered within each redshift
in investigated. These are presented in the appendix in Figs A1 –
5 and again broadly show good agreement with the relevant 
ata. 

 ω( θ ) – MEASUREMENTS,  RESULTS,  A N D  

I SCUSSI ON  

o measure ω( θ ) we use TREECORR (M. Jarvis 2015 ) to calculate
he pairs of galaxies within different angular separation bins from 

ur data and random catalogues and then use these alongside 
quations ( 4 ) and ( 5 ) to measure the auto-correlation and cross-
ngular correlation functions. Aside from differences in the angular 
ins used, we adopt the same parameters for TREECORR as in C.
. Hale et al. ( 2024 ) and subsequently use these pairs to calculate
( θ ) as in equations ( 4 ) and ( 5 ), ensuring to correctly normalize for

he number of possible pairs across full angular range. In order to
etermine the impact of the redshift (and its uncertainties) on our
MNRAS 544, 1323–1348 (2025)
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M

Figure 3. As for Fig. 2 but for LERGs (left two panels) and QLERGs (right two panels). Owing to differences in the source models between the data (where 
sources are assumed to be Gaussians) and the randoms (which are ellipses convolved with the beam) and that LERGs are likely to have more extended 
morphologies than for SFGs, we expect larger differences in SI /SP for the LERGs than for SFGs compared to the randoms. 
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lustering measurements, we calculate ω( θ ) for both those sources
plit by Z BEST and those split into the redshift bins using the 100
esampled redshifts for each source. The ω( θ ) presented for the p( z)
esampled data is the mean ω( θ ) from the resamples in each angular
in. 
We estimate the uncertainties on ω( θ ) using a process of bootstrap-

ing (see e.g. E. N. Ling, C. S. Frenk & J. D. Barrow 1986 ) where
e resample the data to generate new samples of the data which have

he same size as the original data sample but containing randomly
elected sources and then using these to calculate ω( θ ) 13 . As such,
 given source may be repeated in a sample or may be missing
rom a given bootstrap resample. We repeat this process 100 times.
urthermore, when we consider the effect of the p( z) resampling,
e estimate the error by repeating the bootstrapping process for each
NRAS 544, 1323–1348 (2025)

3 We note that other methods to generate errors are possible such as Jackknife 
rrors and using bootstrapping with sub-regions as opposed to individual 
ources. We choose to remove individual sources, which more closely 
imics how we resample galaxies based on their p( z). While this can be 

ound to underestimate uncertainties in some conditions (see e.g. P. Norberg 
t al. 2009 ), bootstrap resampling using sub-volumes can also be found 
o overestimate errors. We take this individual source approach for more 
onsistency with previous work of (C. L. Hale et al. 2018 ) and note that we 
ill discuss these errors in Section 5.2 . 
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K  
f the resampled p( z) data sets. The errors are calculated from the
ombination of all of the bootstrap resamples in each of the redshift
esamples and determining the uncertainties as would be measured
or a set of bootstrap resamples (as described in P. Norberg et al.
009 ). 
We only resample redshifts for the radio catalogue, not for that

f the optical catalogue. Whilst there are also uncertainties in
he redshift distributions of the multiwavelength catalogues, these
alaxies are used as a reference sample in the cross-correlation. As
he properties of the galaxies such as their mass (which are used
n the completeness cuts) are calculated assuming the measured
best’ redshift of the sources, re-calculating such mass parameters
or a different redshift is an intensive process and so it would be
hallenging to implement such a resampling of redshifts for the
ultiwavelength galaxies. We therefore make redshift cuts for the
ultiwavelength galaxies on the ‘best’ redshift for the source. The

uto-correlation functions for the multiwavelength data are shown
n Figs 4 and 5 for the z binning of the SFGs and (Q)LERGs
espectively. 

We present a comparison of both the auto-correlation and cross-
orrelation functions for SFGs, LERGs and QLERGs in Figs 6 , 7 ,
nd 8 , respectively. This is shown for both the redshift binning based
n the separation using the Z BEST column the catalogues of R.
ondapally et al. ( 2022 ) and K. J. Duncan et al. ( 2021 ) and also from
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Figure 4. Auto-correlation of the multiwavelength sample of galaxies in each of the redshifts bins used to measure ω( θ ) for SFGs. The black open pentagons 
indicate the combined TPCF across the three fields, with their individual ω( θ ) shown for Boötes (red stars), ELAIS-N1 (blue squares), and Lockman Hole (gold 
triangles). The dashed vertical lines highlight the region used to fit the correlation function over in order to measure the bias. 

Figure 5. Similar to Fig. 4 , shown are the auto-correlation for the multi- 
wavelength sample within the redshift bins used for the LERG (and QLERG) 
studies. 
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he resamples which probe the full p( z). These figures demonstrate 
hat the measured clustering within the fields can exhibit differences 
hen the full p( z) is not used to associate a redshift, which in turn
ill affect measurement of bias, though we note that most differences 

re within the uncertainties of the measurements. More broadly, it 
an be seen that these measurements of ω( θ ) from both the auto-
orrelation and cross-correlations exhibit close to expected power 
aw behaviour on the majority of angular scales, up to ∼0.5◦. At
arger angular scales, the clustering signal declines more sharply, 
his is in part as a result of the finite field size limiting the number
f observable pairs of galaxies at the largest angular scales. When 
tting our model we will account for this using an integral constraint
see e.g. N. Roche & S. A. Eales 1999 ) evaluated across the size of
ndividual fields. 

At the smallest angular scales there is continued increased clus- 
ering to the smallest scales considered. In shallower radio surveys 
ith comparatively more AGN, such clustering at small angular 

cales often has a significant contribution from the clustering between 
ultiple components associated with a single galaxy which have not 

een combined together into a single source (see e.g. C. Blake &
. Wall 2002 ; R. A. Overzier et al. 2003 ). However, as radio
omponents have already been cross-matched in the work of R. 
ondapally et al. ( 2021 ), we are likely observing genuine departures

rom the large-scale power-law like clustering due to the ‘1- and 
-halo’ clustering, i.e. the clustering of sources within the same dark 
atter halo (see e.g. A. V. Kravtsov et al. 2004 ; I. Zehavi et al.

004 ). 
Fitting the 1- and 2-halo clustering is possible within a halo 

ccupation distribution (HOD) framework. Such a method allows the 
roperties of the haloes that can host both central and satellite galax-
es to be measured, under the assumption of an HOD parametrization 
see e.g. A. A. Berlind & D. H. Weinberg 2002 ; Z. Zheng et al.
005 ; Z. Zheng, A. L. Coil & I. Zehavi 2007 ; P. W. Hatfield et al.
 b  
016 ). Such modelling of the full HOD parametrization is beyond the
cope of this work, but will be considered in future work, with deep
urveys from telescopes such as LOFAR and MeerKAT (e.g. C. L.
ale et al. 2025 ). We instead focus on the larger scale, 1- and 2-halo

lustering, in order to measure the galaxy bias and how this evolves
ith redshift for different source populations. However, we will 
resent our results of fitting ω( θ ) with models from the cosmology
ode the Core Cosmology Library ( CCL , N. E. Chisari et al. 2019 )
hich take into account both the (i) 1- and 2-halo clustering only

the ‘linear’ model) and (ii) a model which combines the 1- and
-halo clustering (the ‘HaloFit’ model, see e.g. R. E. Smith et al.
003 ; R. Takahashi et al. 2012 ) in Section 5.2 . This is under default
OD used in CCL for the model, which may not be appropriate for

he radio sources, especially on the smallest angular scales. Both 
odels are fit to the data to demonstrate that irrespective of the
odel assumed, we measure comparable values for the large-scale 

ias. 
As can be seen from Figs 6 –8 , at low redshifts the difference in

oth the auto-correlation and cross-correlations between the values 
f ω( θ ) when using the Z BEST values and the p( z) resamples
re small, likely owing to the fact that spectroscopic redshifts will
ikely dominate at low redshifts and sources are more likely detected
cross a wealth of multiwavelength bands. Therefore, the differences 
etween the p( z) samples and the Z BEST selected sample is
educed, compared to higher redshifts. Figs 6 –8 also demonstrate the
arge uncertainties found in the auto-correlation, especially for SFGs 
nd LERGs at high redshifts, are reduced when the cross-correlation 
s instead measured. This is especially true for the LERGs, where the
educed number of sources compared to the SFGs presents challenges 
n measuring the bias from the auto-correlation function alone. We 
ill therefore present the comparison of the bias measurements 

rom the auto-correlation for the SFGs in Section 5.2 and then
roceed with the cross-correlation functions to measure the bias 
volution of SFGs and LERGs in the LoTSS Deep Fields to draw 

onclusions. 

 G A L A X Y  BI AS  RESULTS  A N D  DISCUSSIONS  

.1 Measurement of Galaxy bias, b 

o measure the bias from ω( θ ), we follow the methodology in C. L.
ale et al. ( 2024 ) and use CCL , which uses cosmology packages such

s CAMB (A. Lewis, A. Challinor & A. Lasenby 2000 ) and CLASS
J. Lesgourgues 2011 ) to generate models of the power spectrum
nd infer the angular clustering, through assuming cosmological 
arameters, bias models and redshift distributions. As in D. Alonso 
t al. ( 2021 ) and C. L. Hale et al. ( 2024 ) we use an evolving galaxy
ias model ( b( z) = b0 

D( z) , where D( z) is the growth factor, see e.g. A.
MNRAS 544, 1323–1348 (2025)
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Figure 6. Comparison of ω( θ ) for SFGs in different z bins (left to right), using z cuts based on (i) the data’s best redshift value in the source catalogue (light 
blue) and (ii) from the p( z) resampled value of z (black). This is shown in increasing redshift bins (left to right) and for the auto-correlation (upper panel), 
cross-correlation (middle panel), and for the cross-correlation compared to each of the three individual fields (lower panel) for Boötes (red stars), ELAIS-N1 
(blue squares), and Lockman (gold triangles). In the top and middle panels the red line and shaded region represents the best-fitting ‘Linear’ model, while the 
blue line represents the best-fitting ‘HaloFit’ model to the black data points. Also shown is the model minus the integral constraint indicated by the red dashed 
line (for the ‘Linear’ model) and the blue dotted line (for the ‘HaloFit’ model). The dashed vertical lines indicate the θ ranges, which we fit the data over. The 
grey crosses indicate the value of the p( z) resampled ω( θ ) for the combined fields in the lowest redshift bin, purely to guide the eye. 

Figure 7. As for Fig. 6 for the LERG samples. Figure 8. As for Fig. 6 for the QLERG samples. 



Clustering of AGN/SFGs in LoTSS Deep Fields 1335

J  

p
w  

S  

r
a  

t
a

r  

u  

T  

e  

r
d
f
t
f
r
b  

t
S

f
a
d  

c

χ

w
s
o  

t
m
t
c
v
e

 

m  

C  

(  

t
d  

e  

p
t
w  

s  

θ

t
m
(
a
p
t  

m
s  

s  

m

s  

T

b

w  

b  

s  

t
r
c  

r  

t
b  

a  

t
o
c  

t  

t  

a  

g

t  

(  

a  

t
s  

e  

p  

e
c  

w  

f
i
T  

a
W  

H  

i  

r
t

5

W  

T  

m  

p  

L  

A  

M  

e  

L  

S  

w

14 While S. N. Lindsay et al. ( 2014 ) include a growth factor term in their work, 
as we fold in the evolving bias and redshift distribution of the two populations 
in the modelling in CCL and do not evaluate at a single average redshift, this 
. S. Hamilton 2001 ) to quantify the evolution of the bias for a given
opulation of sources within the redshift bin. A constant bias model 
as also used in D. Alonso et al. ( 2021 ), C. L. Hale et al. ( 2024 ) and
. J. Nakoneczny et al. ( 2024 ), but we note that due to the narrow
edshift ranges considered in this work, the bias measured assuming 
 constant bias model ( b( z) = b) showed little differences compared
o when the evolving galaxy bias model was assumed when evaluated 
t the average redshift in the bin being considered. 

In order to measure galaxy bias, a redshift distribution is also 
equired for the radio and optical sources. For the radio sources we
se a different redshift distribution for each of the p( z) resamples.
his is taken the combined histogram of the resampled redshifts for
ach source in the resample, normalized to form a p( z). Using the
esampled z values avoids unphysical spikes in the combined redshift 
istribution for all sources in the sample, which would be produced 
rom spectroscopic redshifts. For the multiwavelength sources we 
ake a similar approach to create a combined redshift distribution 
or sources with a Z BEST value within the redshift range. These 
edshift distributions are therefore peaked within the redshift bin, 
ut with wings in the p( z) to redshifts beyond the bin value, due
o uncertainties in the redshift values. We discuss this further in 
ection 5.4 . 
The redshift distribution is provided to CCL and b0 is determined 

or the auto correlation through first calculating the CCL model 
ssuming b0 = 1 and then scaling by b2 . This allows the χ2 

istribution to be calculated as a function of bias, using the full
ovariance as given by 

2 = (−→ ω − −→ ωM 

)T Cov −1 (−→ ω − −→ ωM 

) , (7) 

here −→ ω is the angular TPCF which is measured for the data 
ources, −→ ωM 

is the modelled ω( θ ) which includes the subtraction 
f an integral constraint (see e.g. N. Roche & S. A. Eales 1999 ,
o account for the limited field sizes) and Cov is the covariance 

atrix calculated from the bootstrap resampling methods across 
he p( z) samples considered. The covariance takes into account the 
orrelations between θ bins which may impact the inferred bias 
alues, compared to when the diagonal elements alone (i.e. the 
rrorbars in Figs 4 –8 ) are used. 

In the work of C. L. Hale et al. ( 2024 ) both the linear and HaloFit
odels (R. E. Smith et al. 2003 ; R. Takahashi et al. 2012 ) within
CL were used to model the angular clustering. C. L. Hale et al.
 2024 ) determined that the linear model was more appropriate for
he LoTSS-DR2 data across the angular ranges considered, where 
ata at θ ≤ 0 . 03◦ could also not be used to fit the bias in C. L. Hale
t al. ( 2024 ) due to the excess clustering at small angular scales being
artly attributable to multicomponent sources. Due to differences in 
he ‘linear’ and ‘HaloFit’ models, these were in the best agreement 
hen fitting above ∼ 0 . 3◦. Due to the smaller maximum angular

eparations which can be probed in this work, we must use different
ranges to fit the data, where we use 0.05◦ ≤ θ < 0.5◦. 
We fit for both the ‘HaloFit’ and ‘linear’ models and fit for b0 

hrough minimizing χ2 . We determine the uncertainties on b0 through 
odelling the probability distribution from the χ2 distribution of b0 

assuming P ∝ e−χ2 / 2 ). We randomly sample from this distribution 
nd use this to determine the associated median, 16th and 84th 
ercentiles for b0 . To account for uncertainties introduced due to 
he p( z) distribution of sources we fit the galaxy bias for each ω( θ )

easured for the p( z) subsamples. Combining together the randomly 
ampled bias values from fitting each of these ω( θ ) then gives a larger
ample of bias values which we use to then quote the associated
edian and errors from the 16th and 84th percentiles. 
i
To determine b0 from the cross-correlation, ωCC ( θ ), we follow a 
imilar method to that for the auto-correlation, but using two tracers.
his makes use of the relationship: 

2 
CC = bAC, 1 bAC, 2 , (8) 

here bAC, 1 is the bias of the first sample (radio) and bAC, 2 is the
ias for the second sample (multiwavelength), as also used in works
uch as S. N. Lindsay et al. ( 2014 ) 14 . bAC, 2 is determined from
he auto-correlation of the multiwavelength data alone, with the 
edshift distribution of the multiwavelengths sources taken as the 
ombined p( z) of sources with Z BEST values within the given
edshift range. To determine the bias of the radio sample from
he cross-correlation we calculate ωCC ( θ ) assuming the radio bias, 
0 ,radio = 1. We then follow a similar method to the auto-correlation
nd, in every redshift bin for the population being considered, scale
his correlation function using the radio bias (having assumed an 
ptical bias, discussed below). However, in contrast to the auto- 
orrelation, we now scale by the radio bias, b, as opposed to b2 . In
his way, by varying b and scaling the cross-correlation function by
his, we are able to again measure the probability distribution of bias
nd quantify the best fit of b for each radio source population in the
iven redshift bin. 
Uncertainties on the radio bias from the cross-correlation need 

o account for both uncertainties in the measured values of ωCC ( θ )
which include the uncertainties in the p( z) of the radio sample)
nd the uncertainties in the bias of the multiwavelength sources. We
herefore, calculate the radio bias, b, through drawing 100 random 

amples of the bias from auto-correlation of the optical sample. For
ach optical bias value we combine this with the ωCC ( θ ) from the
( z) resampling and use this to calculate the radio bias through
valuating the χ2 and solving similarly to the auto-correlation. After 
ombining the radio bias samples derived for each of the resamples
e have a bias distribution for the radio sample which is derived

rom the cross-correlation and accounts for the redshift uncertainties 
n the radio sources and uncertainties in the multiwavelength bias. 
he bias values reported are then taken as the median bias values and
ssociated errors are calculated from the 16th and 84th percentiles. 
e will present a comparison of the bias results for the Linear and
aloFit models respectively in Section 5.2 , to demonstrate the effect

t has on our measurements of b. The properties of the data in the
edshift bins considered and the bias fitting parameters (assuming 
he HaloFit model) are presented in Table 3 . 

.2 b( z) Results for SFGs versus LERGs 

e present our measurements of bias for SFGs and LERGs in
able 3 and in Figs 9 and 10 alongside the comparison to previous
odels adopted in R. J. Wilman et al. ( 2008 , 2010 ) and for the

revious measurements of A. Nusser & P. Tiwari ( 2015 ) and S. N.
indsay et al. ( 2014 ) which are flux-limited samples (dominated by
GN), and for the classified samples (AGN versus SFGs) of M.
agliocchetti et al. ( 2017 ); C. L. Hale et al. ( 2018 ); A. Chakraborty

t al. ( 2020 ) and A. Mazumder et al. ( 2022 ). As discussed, C.
. Hale et al. ( 2018 ), use the VLA 3 GHz COSMOS Survey (V.
molčić et al. 2017a , b ) to study the clustering of SFGs and AGN, as
ell as high-redshift analogues for HERG and LERG populations. 
MNRAS 544, 1323–1348 (2025)

s not believed to be necessary for this work. 
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M

Figure 9. Comparisons of b( z) for SFGs (left), LERGs (centre), and QLERGs (right). The filled light colours indicate results from the auto-correlation function 
(circles) and dark colours (for red, blue, and purple) indicate the results from the cross-correlation function (squares), when using the ‘HaloFit’ function. 
Additionally, artificially offset by δz = 0.05 and semitransparent are the results from using the ‘linear’ model. We also show previous results of A. Nusser & 

P. Tiwari ( 2015 , dark grey dashed lines; this is for an AGN-dominated population), S. N. Lindsay et al. ( 2014 , grey pentagons; for sources not categorized by 
source type), M. Magliocchetti et al. ( 2017 , grey squares), A. Chakraborty et al. ( 2020 , grey right pointing triangles), A. Mazumder et al. ( 2022 , grey upwards 
pointing triangles), and C. L. Hale et al. ( 2018 , black diamonds for SFGs and black crosses for LERGs). For M. Magliocchetti et al. ( 2017 ), A. Chakraborty 
et al. ( 2020 ), and A. Mazumder et al. ( 2022 ), who measure the bias of AGN and SFGs separately, the points outlined in red represent the bias measurements 
for AGN and we only plot the source type relevant measurements in each given panel. The hatched regions indicate the evolutionary bias model that would 
be observed using the b( z) ∝ 1 /D( z) model, using the bias in the lowest redshift bin for that source type. Additionally, the models used in R. J. Wilman et al. 
( 2008 , 2010 ) are also shown as grey lines for RQQs (light grey dotted), SFGs (light grey dot-dashed), starburst galaxies (SB, dark grey dashed), FRI galaxies 
(dark grey solid, see B. L. Fanaroff & J. M. Riley 1974 , for descriptions of FRI sources) and FRII galaxies (dark grey dotted). 

Figure 10. As for Fig. 9 , now showing the comparisons of bias between the 
different source populations (SFGs, LERGs and QLERGs), using the bias 
derived from the cross-correlation function and using the ‘HaloFit’ fitting 
model. The previous models (A. Nusser & P. Tiwari 2015 ) and data (S. N. 
Lindsay et al. 2014 ; M. Magliocchetti et al. 2017 ; C. L. Hale et al. 2018 ; 
A. Chakraborty et al. 2020 ; A. Mazumder et al. 2022 ) shown use the same 
plotting style as in Fig. 9 . Additionally, the models used in R. J. Wilman et al. 
( 2008 , 2010 ) are also shown as grey lines for RQQs (light grey dotted), (light 
grey dot-dashed), starburst galaxies (SB, dark grey dashed), FRI galaxies 
(dark grey solid, see B. L. Fanaroff & J. M. Riley 1974 , for descriptions of 
FRI and FRII sources), and FRII galaxies (dark grey dotted). The halo masses 
assumed for these populations are also shown in the legend. 

T  

t  

L  

p  

t  

f  

W  

n  

w  

c  

b  

o  

c
 

c  

W  

a  

w  

c  

a  

c  

e  

W  

r  

o  

o  

s  

g  

8  

t  

h  

r  

fi  

s  

b  

v  

fi  

b  

a  

o  

t  

c  

w  

S  
his provides the closest comparison to the studies presented in
his work. However, the classification adopted for the clustering of
ERGs in C. L. Hale et al. ( 2018 ) is more similar to the QLERG
opulation discussed in R. Kondapally et al. ( 2021 ) and adopted in
his work. In the SKADS models, fixed halo masses were assumed
or each population using the formalism of H. J. Mo & S. D. M.

hite ( 1996 ) and we highlight these halo masses on Fig. 10 . We
NRAS 544, 1323–1348 (2025)
ote, though, that the masses assumed by R. J. Wilman et al. ( 2008 )
ill not be a directly transferable to the full population of sources

onsidered as this make assumptions about the source populations
eing dominated by central (not satellite) galaxies, see e.g. the works
f J. Aird & A. L. Coil ( 2021 ) and so we use them indicative only for
omparisons. 

Fig. 9 presents the bias measured from the aut-ocorrelation and
ross-correlation, for both the ‘linear’ and ‘HaloFit’ derived models.
e find good agreement, in general, between the auto-correlation

nd cross-correlation methods, which are consistent within 1 σ , as
ell as good agreement when the ‘linear’ and ‘HaloFit’ models are

ompared. This provides confidence that the measured bias values
re not being affected by the choice of model. We note, though, that
onstraints on the auto-correlations can be very uncertain, which is
vident to be the case considering the auto-correlation in Figs 6 –8 .
e also note that when considering the fitting of ω( θ ), the minimum

educed χ2 (hereafter R- χ2 ) values found can be � 1 (where a value
f 1 would be expected for a good fit of the data), suggesting that
ur estimation of the uncertainties in ω( θ ) may be larger than they
hould be. We note though that the R- χ2 of all resamples which are
enerated (from which the bias is obtained from the 16th, 50th and
4th percentiles) will have larger average R- χ2 , as these values in the
able represent the minimum possible R- χ2 found. As discussed, we
ave aimed to combine uncertainties on the TPCF (through bootstrap
esampling), cosmic variance (through combining the three deep
elds) and uncertainties in the redshift distributions of our radio
ources (through the p( z) resamples). The R- χ2 found in the fitting of
 could therefore be indicative that we have provided too conservative
alues for the uncertainties in ω( θ ), which have folded through to the
tting of b. This therefore could suggest that either (i) the variance
etween fields is larger than is expected, (ii) that the uncertainties
ssociated with the p( z) for the sources may be too broad for a subset
f sources or this is related to the uncertainty method used, or (iii) that
he spread between the fields is a result of remaining systematics or
lassification issues per field. Uncertainties in the redshift distribution
ill be greatly reduced with the upcoming WEAVE-LOFAR (D. J. B.
mith et al. 2016 ) survey, which will provide spectroscopic follow-up
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Table 3. Summary table for fitting the bias from the auto-correlation and cross-correlation for SFGs, LERGs and QLERGs within the redshift bins considered 
in this work. Included is the number of radio ( NRadio ) and multiwavelength sources ( NMulti ) within the redshift bin, the median radio redshift in the bin ( zmed ), 
the median mass of radio sources in the bin from the consensus mass of P. N. Best et al. ( 2023 ) and the ratio of randoms to data in the sample ( NR /ND ). Finally 
the bias from the auto-correlation ( bAC ) and cross correlation ( bCC ) at the average redshift of the bin alongside the minimum reduced- χ2 when fitting for b is 
included. The bias results assume the Halofit model is used. 

Source type z range zmed NRadio NMulti log 10 ( M∗ [M�]) NR /ND bAC ( zmid ) R - χ2 
min, AC bCC ( zmid ) R - χ2 

min, CC 

SFG 0.10–0.40 0.25 6 923 15 117 10.4 15.0 1 . 06+ 0 . 09 
−0 . 10 0.1 0 . 90+ 0 . 11 

−0 . 10 0.2 

SFG 0.40–0.60 0.49 5 044 29 199 10.7 15.0 1 . 44+ 0 . 17 
−0 . 19 0.1 1 . 19+ 0 . 14 

−0 . 14 0.3 

SFG 0.60–0.80 0.69 4 686 44 396 10.8 10.5 1 . 86+ 0 . 26 
−0 . 30 0.03 1 . 52+ 0 . 20 

−0 . 20 0.1 

SFG 0.80–1.00 0.89 3 504 47 295 10.9 12.8 1 . 82+ 0 . 56 
−0 . 79 0.02 1 . 64+ 0 . 34 

−0 . 34 0.2 

SFG 1.00–1.30 1.11 4 683 59 949 11.0 9.8 3 . 49+ 0 . 47 
−0 . 53 0.02 2 . 94+ 0 . 36 

−0 . 36 0.3 

LERG 0.50–1.00 0.73 2 900 108 633 11.1 11.5 2 . 67+ 0 . 40 
−0 . 47 0.03 2 . 33+ 0 . 28 

−0 . 27 0.02 

LERG 1.00–1.50 1.19 1 758 79 211 11.1 15.0 2 . 98+ 1 . 17 
−1 . 60 0.1 2 . 65+ 0 . 57 

−0 . 55 0.2 

QLERG 0.50–1.00 0.69 1 575 108 633 11.2 13.8 2 . 58+ 0 . 55 
−0 . 74 0.01 2 . 62+ 0 . 33 

−0 . 33 0.1 

QLERG 1.00–1.50 1.15 624 79 211 11.2 15.0 2 . 27+ 1 . 66 
−1 . 53 0.1 3 . 08+ 0 . 85 

−0 . 84 0.1 
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f LOFAR-detected sources, thus accurately constraining redshifts 
or a significant population of sources, and allowing for direct spatial 
lustering measurements as well as aiding in the source classification 
rocess. 
In general, the constraints on ω( θ ) from the cross-correlation are 

ess uncertain than from the auto-correlation alone. The comparisons 
n Fig. 10 between the three populations also shows, in agreement 
ith C. L. Hale et al. ( 2018 ), that over medium redshifts ( z ∼
 . 5−1 . 0) LERGs and QLERGs appear to be more biased tracers
f dark matter compared to those radio sources classified as SFGs.
omparing to those models assumed in SKADS, this supports the 

dea from other radio clustering studies that AGN are typically found 
n more massive haloes than star formation dominated radio sources 
see e.g. M. Magliocchetti et al. 2017 ; C. L. Hale et al. 2018 ; A.

azumder et al. 2022 ). This is also in line with numerous studies
t other wavelengths and in simulations where redder galaxies are 
ypically more clustered than blue galaxies (see e.g. R. S. Somerville 
t al. 2001 ; I. Zehavi et al. 2005 ; A. L. Coil et al. 2008 ; J. G.
resswell & W. J. Percival 2009 ) and may reflect the LERGs residing

n galaxies that typically have larger stellar masses than SFGs (which 
an be demonstrated from the average consensus masses of P. N. Best
t al. 2023 , for which the median value is given in Table 3 ). We note
hough that at the highest redshift bin for the SFG population, the
verage mass is similar to that for the LERGs. These in turn may be
osted by more massive haloes, given correlations between galaxy 
lustering and stellar mass (see e.g. D. J. Farrow et al. 2015 ; R. K.
ochrane et al. 2017 ; A. Durkalec et al. 2018 ). 
For the SFGs, our work shows remarkable agreement across the 

edshift bins studied here to that of the studies of C. L. Hale et al.
 2018 ), A. Chakraborty et al. ( 2020 ) and A. Mazumder et al. ( 2022 ).

e measure a smooth evolution in the bias of SFGs, increasing 
rom a bias, b = 0 . 90+ 0 . 11 

−0 . 10 (1 . 06+ 0 . 09 
−0 . 10 ) for the cross-correlation

auto-correlation) at the lowest redshift ( z ∼ 0 . 2) to b = 2 . 94+ 0 . 36 
−0 . 36 

3 . 49+ 0 . 47 
−0 . 53 ) at the highest redshifts considered ( z ∼ 1 . 2). An evolution

n the bias for SFGs is in part expected, as there is evidence (e.g. P.
. Behroozi, R. H. Wechsler & C. Conroy 2013 ), that halo masses
f ∼ 1012 M� are the most efficient dark matter haloes for forming 
tars across a vast range of redshifts. As radio luminosity is known
o be correlated to SFR (see recent studies in e.g. L. J. M. Davies
t al. 2017 ; G. Gürkan et al. 2018 ; D. J. B. Smith et al. 2021 ), we are
ikely observing highly efficient SFGs. In order to reside in such a
imilar halo mass over cosmic time, this will require an evolution in
he bias. 
In other LOFAR clustering studies that average across all redshifts 
e.g. D. Alonso et al. 2021 ; C. L. Hale et al. 2024 ; S. J. Nakoneczny
t al. 2024 ), we have assumed the bias is evolves inversely propor-
ional to the growth factor, b( z) = b0 /D( z). However, in this work
e split into smaller redshift ranges than these previous studies and
o not force b0 to be the same in each redshift bin. Therefore, we are
ble to test whether this functional form is suitable to found in this
ork using smaller redshift bins. To do this we use the value of b0 

ound in the lowest redshift bin considered for the source population
SFG/LERG/QLERG) and trace its evolution under such a model. 
his is given by the hatched regions on Fig. 9 . This comparison
emonstrates that the bias values for SFGs are evolving at a more
apid rate than this previously assumed model, with the evolutionary 
odels used in R. J. Wilman et al. ( 2008 ), suggesting that while

he bias does increase with redshift (as for the models of R. J.
ilman et al. 2008 ), the SFGs here are evolving at a quicker rate

nd with larger bias than for the ‘normal’ SFG population of R.
. Wilman et al. ( 2008 ). Assuming the models of R. J. Wilman
t al. ( 2008 ), our SFGs also suggest there may be some potential
volution above that for a constant halo mass. We note that R. J.
ilman et al. ( 2008 ) split the SFGs into a starburst population,

nd a population of ‘normal’ SFGs galaxy population, whilst we do
ot distinguish the radio-detected SFGs into sub-classes. However, 
ur findings contribute to the growing evidence (from e.g. studies 
f C. L. Hale et al. 2018 ; A. Mazumder et al. 2022 ) that for
 typical radio population at current sensitivities, using the bias 
odels adopted in R. J. Wilman et al. ( 2008 ) to make predictions

such as for cosmological predictions A. Raccanelli et al. 2012 ;
. D. Ferramacho et al. 2014 ; Square Kilometre Array Cosmology
cience Working Group et al. 2020 ) may not be appropriate (though
ee Section 5.4 ). Therefore, works such as Z. Gomes et al. ( 2020 )
hich adopt more recent bias measurement based models are key. 
apid evolution in bias has also been previously found for multi-
avelength studies of SFGs (M. Magliocchetti et al. 2014 ) between
 ∼ 1 − 2. 

This rapid evolution may relate to an intrinsic evolution for the
tar forming population, but may also relate to differences in the
opulations, where the higher redshift sources will typically be more 
uminous sources. Therefore, a dependence of the bias on the radio
uminosity of the source could drive an apparent evolution with 
edshift. This is investigated in Section 5.3 . However, such results
ay also be indicative of sources with increased AGN activity 

t higher redshift. Given the typically larger bias of our LERG
MNRAS 544, 1323–1348 (2025)
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opulation compared to the SFGs (and more generally for AGN
n the works of e.g. C. L. Hale et al. 2018 ; A. Mazumder et al. 2022 ),
reater AGN contamination at the highest redshifts could increase
he observed bias of SFGs. Indeed, there are different approaches
aken to classify radio galaxies both on their multiwavelength
nformation such as through ultra-high-resolution imaging (see e.g.
. K. Morabito et al. 2025 ) as well as using different SED fitting
odes (see e.g. S. Das et al. 2024 ). Both these approaches have
een used to classify LOFAR data in these deep fields and while the
ajority of classifications agree between the different methods, some

ifferences are found in their in their proposed classifications to that
f P. N. Best et al. ( 2023 ) which is used in this work. This includes
t the higher redshifts for SFGs considered in this work. This could
e an alternative explanation for the agreement between the SFGs
nd LERGs in the highest redshift bins considered. However we do
ote that the bias measured for SFGs in the highest redshift bin is
onsistent with the evolution seen when the results of C. L. Hale
t al. ( 2018 ) is combined in this work. 

For the LERG population, we measure a lower bias compared
o the LERG analogues of C. L. Hale et al. ( 2018 ). However, as
oted in Section 2.4 , the QLERG population is believed to be a
ore direct comparison to the LERG population used in C. L. Hale

t al. ( 2018 ). In the current work, QLERGs show better agreement
ith the lower redshift work of C. L. Hale et al. ( 2018 ), though

he LERGs are consistent within ∼ 0 . 5 σ to the QLERGs of this
tudy and ∼ 1 σ to the work of C. L. Hale et al. ( 2018 ). Therefore
e have weak evidence to suggest that QLERGs reside in more
iased haloes than the general LERG population. This could suggest
hat similar to the wider population of galaxies, those with more
ignificant star formation in the host galaxy appear to reside in less
assive haloes. This would imply that the underlying dark matter

alo of a radio source may be influential in the properties of the radio
ource itself, or it appears at least related. The bias of the QLERG
nd LERG populations are more uncertain though and so could also
e consistent with little-to-no evolution. 
Previous works studying the bias evolution in the LOFAR surveys

ave typically been limited to higher flux density limits than
onsidered in this work (see e.g. D. Alonso et al. 2021 ; C. L. Hale
t al. 2024 ; S. J. Nakoneczny et al. 2024 ; G. C. Petter et al. 2024 )
y approximately a factor of ∼10 and will be more dominated by
GN populations (see P. N. Best et al. 2023 ). As such, for those
righter populations the b( z) ∝ 1 /D( z) may have been an appropriate
odel for the bias. We note that in C. L. Hale et al. ( 2018 ), it was

oted that for the full AGN population the bias appeared to flatten
t the highest redshifts considered ( z ∼ 1 . 2−1 . 8), which could be
ndicative of the downsizing of haloes required to host equivalent
ources at higher redshifts. Supporting the results of C. L. Hale
t al. ( 2018 ), we also conclude that the bias models of R. J. Wilman
t al. ( 2008 ) for SFGs more closely reflect that assumed for their
adio-quiet quasar (RQQ) population in this sample. R. J. Wilman
t al. ( 2008 ) split the SFG populations into normal and starburst
alaxies, therefore if such bias models are adopted for cosmological
nalysis (e.g. A. Raccanelli et al. 2012 ; L. D. Ferramacho et al.
014 ) then a bias more representative for a realistic radio SFG
opulation should be adopted. The halo mass estimates from R.
. Wilman et al. ( 2008 ) suggest such differences in the halo masses
ssumed for SFGs could be an order of magnitude and should be
ccounted for in order to place constraints on non-Gaussianity (as
pdated in Z. Gomes et al. 2020 ). Studies similar to this work using
eeper observations from precursor and pathfinder telescopes prior
o the Square Kilometre Array Observatory (SKAO) are crucial
o help understand the bias models to adopt in such studies. Our
NRAS 544, 1323–1348 (2025)
esults for LERGs suggest that AGN sources, of this type are more
iased than star formation dominated galaxies up to intermediate
edshifts ( z � 1), but that the populations become more similar in
heir bias at higher redshifts. This may be related to findings that
he LERG populations appear to become dominated by star-forming
osts for z � 1 in the luminosity functions of R. Kondapally et al.
 2022 ). 

.3 Luminosity dependence of bias for SFGs 

s discussed in Section 5.2 , the bias of the SFGs appears to grow at
 much faster rate than for the evolving model assumed in previous
OFAR studies (D. Alonso et al. 2021 ; C. L. Hale et al. 2024 ; S. J.
akoneczny et al. 2024 , where b( z) ∝ 1 /D( z) is assumed). In this

ection we consider if this is driven by more luminous populations
t higher redshifts, which are intrinsically more biased. This reflects
ork especially at other wavelengths such as that of I. Zehavi et al.

 2011 ); R. K. Cochrane et al. ( 2017 ) and C. Clontz, D. Wake & Z.
heng ( 2022 ). For the work of I. Zehavi et al. ( 2011 ), their study of the
lustering length, r0 , of blue galaxies compared to red galaxies shows
n increase in r0 with luminosity, while R. K. Cochrane et al. ( 2017 )
sed H α detected SFGs at z ∼ 0 . 8 and found these populations to be
ore biased when more H α luminous populations were considered.
e note, though, that R. K. Cochrane et al. ( 2023 ) appeared to

bserve a flattening in bias at larger H α luminosities for z ∼ 1 . 5
ources. However, the clustering of radio-detected SFGs as a function
f luminosity over a wide range of redshifts has not been studied in
etail and can be limited by the redshift regimes probed by high-
nd low-luminosity samples (see e.g. C. L. Hale et al. 2018 ). This is
ecause large samples of SFGs from deep radio imaging are required,
n regions where redshifts are available, such as from the LoTSS Deep
ields. As discussed in Section 5.2 , at radio wavelengths, the SFR
nd radio luminosities are known to be well correlated for SFGs
see e.g. T. Garn et al. 2009 ; L. J. M. Davies et al. 2017 ; G. Gürkan
t al. 2018 ; D. J. B. Smith et al. 2021 ). If the bias of radio SFGs is
orrelated with the radio luminosity, this could in part explain the
ias evolution as an effect of tracing different populations and more
uminous SFGs at the highest redshifts. 

The LoTSS Deep Fields data set is sufficiently large to allow us
o investigate whether we are able to constrain how the bias of SFGs
aries with both redshift and radio luminosity simultaneously. To do
his we take the same approach as in the previous sections (where a
iven redshift range is selected) but additionally split into luminosity
ins for each of the redshift bins that is considered. Specifically we
se three luminosity bins for each of the redshift ranges considered,
efined by taking the luminosities for sources with Z BEST values
ithin the redshift range being considered and take the 33rd and 67th
ercentiles of the luminosities. For the p( z) resampled data sets these
ill not be exactly even percentiles as the sources being considered

n each redshift bin (and their luminosity) will vary, though should
e approximately evenly distributed between luminosity bins. We
pply the same luminosity cuts on the randoms using a combination
f the redshift and the ‘measured’ integrated flux density to obtain
heir luminosities. As for the SFG sample where no luminosity cuts
re applied, we compare the flux density, redshift and luminosity
istributions of the data compared to the randoms, for which there
s broad agreement, especially when the p( z) resampled data are
onsidered. These distributions are shown in Figs A1 –A5 . 

The bias as a function of luminosity is presented in Fig. 11
nd the measured values are given in Table 4 . This is given for
oth the auto-correlation and cross-correlation derived values. Such
ias measurements are plotted at the median luminosity for sources
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Figure 11. Bias as a function of luminosity for the auto-correlation (left) and cross-correlations (right) of SFGs across the redshift bins considered in this work. 
Each colour represents a different redshift bin ranging from z: 0 . 10−0 . 40 (purple) to z: 1 . 00−1 . 30 (yellow). The equivalent SFR is also given on the top x -axis 
using the mass-independent conversion between luminosity and SFR of D. J. B. Smith et al. ( 2021 ). 

Table 4. Bias from the auto-correlation ( bAC ) and cross-correlation ( bCC ) ω( θ ) for SFGs for different luminosity bins within the redshift bins considered in this 
work, evaluated at the mid point of the redshift bin. All luminosities are 144 MHz luminosities. We note that N is the number of sources in the luminosity bin 
based on Z BEST and is only indicative of the number of sources, as we use the resampled z values from the p( z) to make samples to make measurements of 
ω( θ ). 

z range log 10 (L [W/Hz]) Median N bAC ( zmid ) R - χ2 
min bCC ( zmid ) R - χ2 

min 
range log 10 (L [W/Hz]) 

0.10–0.40 21.74–22.79 22.54 2324 0 . 96+ 0 . 13 
−0 . 15 0.05 0 . 68+ 0 . 23 

−0 . 23 0.06 

0.10–0.40 22.79–23.10 22.95 2307 1 . 09+ 0 . 23 
−0 . 30 0.04 1 . 01+ 0 . 17 

−0 . 17 0.06 

0.10–0.40 23.10–24.79 23.29 2291 1 . 27+ 0 . 21 
−0 . 25 0.22 1 . 00+ 0 . 16 

−0 . 16 0.06 

0.40–0.60 23.01–23.40 23.29 1705 1 . 20+ 0 . 37 
−0 . 52 0.04 0 . 93+ 0 . 24 

−0 . 24 0.21 

0.40–0.60 23.40–23.58 23.49 1621 1 . 39+ 0 . 47 
−0 . 64 0.05 1 . 34+ 0 . 26 

−0 . 26 0.21 

0.40–0.60 23.58–24.72 23.72 1717 1 . 21+ 0 . 46 
−0 . 63 0.02 1 . 32+ 0 . 24 

−0 . 24 0.21 

0.60–0.80 23.42–23.70 23.61 1567 1 . 66+ 0 . 64 
−0 . 87 0.06 1 . 44+ 0 . 35 

−0 . 35 0.05 

0.60–0.80 23.70–23.88 23.78 1562 1 . 52+ 0 . 72 
−0 . 89 0.05 1 . 47+ 0 . 38 

−0 . 38 0.05 

0.60–0.80 23.88–25.16 24.02 1555 1 . 37+ 0 . 73 
−0 . 85 0.06 1 . 68+ 0 . 38 

−0 . 37 0.05 

0.80–1.00 23.71–23.96 23.88 1174 1 . 87+ 1 . 12 
−1 . 20 0.05 1 . 75+ 0 . 59 

−0 . 60 0.15 

0.80–1.00 23.96–24.12 24.03 1164 2 . 15+ 1 . 16 
−1 . 34 0.03 1 . 58+ 0 . 63 

−0 . 62 0.15 

0.80–1.00 24.12–25.33 24.25 1165 1 . 50+ 1 . 11 
−1 . 01 0.07 1 . 64+ 0 . 56 

−0 . 56 0.15 

1.00–1.30 23.93–24.20 24.12 1579 3 . 07+ 1 . 07 
−1 . 54 0.03 2 . 43+ 0 . 60 

−0 . 60 0.11 

1.00–1.30 24.20–24.38 24.28 1581 3 . 18+ 1 . 12 
−1 . 59 0.02 3 . 19+ 0 . 63 

−0 . 60 0.11 

1.00–1.30 24.38–25.79 24.51 1551 2 . 99+ 1 . 20 
−1 . 65 0.03 3 . 04+ 0 . 63 

−0 . 62 0.11 

w  

w
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t
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W
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l

ith a Z BEST value in the redshift and luminosity (from Z BEST)
ithin the appropriate bin. The results show broadly good agreement 
etween the auto-derived and cross-derived bias values, though due 
o the smaller sample sizes being considered, the errors are larger 
or the auto-correlation and so challenging to draw any conclusions 
rom. Therefore, our conclusions need to be drawn from the cross-
orrelation derived values. The cross-correlation results in Fig. 11 
how that any dependence of the median bias on luminosity is
eak. To quantify this, we fit a simple linear model and using
cipy ’s (P. Virtanen et al. 2020 ) curve fit module. We find
lopes in the linear fit which are consistent with no evolution within

1 σ . Therefore, we cannot comprehensively determine whether the 
ifferences in the luminosity are driving the evolution for SFGs seen
n Fig. 9 or if the redshift evolution of bias is the only factor at play.
arger source populations will be crucial for such studies which will
e provided through deep surveys such as the second data release
f the LOFAR deep fields (T. W. Shimwell et al. 2025 ) and the
IGHTEE survey (C. L. Hale et al. 2025 ). 

.4 Limitations of this analysis 

hilst this work presented has placed constraint on the evolving 
ias of SFGs and LERGs within the LoTSS Deep Fields, there are
imitations to the analysis, which we outline here for completeness. 
MNRAS 544, 1323–1348 (2025)
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t  
irst, systematics may remain that are unaccounted (or not fully
ccounted) for when obtaining the random catalogues of sources.
his may impact the measurements of ω( θ ) and b( z). However,

here has been considerable effort to account for the observational
ystematics (see Section 3.2.1 ), so we believe remaining effects are
ess significant. 

Moreover, there are significant uncertainties of the redshift dis-
ributions for both the radio and multiwavelength sources. Uncer-
ainty/variation in the p( z) will affect measurements of bias (through
he conversion of ω( θ ) to b). For example, broader p( z) models
as found to raise the bias, compared to if the Z BEST values
ere assumed to be correct. This is because sources over a much

arger redshift range require a larger bias is needed to recreate the
bserved clustering compared to if they were accurately constrained
ithin the redshift range in the bin. Whilst we adopt the redshift
ncertainties of K. J. Duncan et al. ( 2021 ), if these are overestimated
he bias measurements could be reduced. Redshift uncertainty will be
educed with higher spectroscopic coverage for radio sources using
urveys such as WEAVE-LOFAR (D. J. B. Smith et al. 2016 ). 

We also note that whilst there are redshifts uncertainties for the
ata sources, the random catalogues are idealized and so do not have
he same uncertainties in their redshifts. However, what is important
or the random sources is that they reflect the observational detection
cross the fields. We therefore considered the impact of redshift
ncertainties for the random catalogues by measuring ω( θ ) from
sing the random source catalogues in the neighbouring redshift
ins (where available). This saw little change in the measured values
f ω( θ ). Therefore, we believe our results are robust against the lack
f uncertainties in the redshifts for the random catalogues. 
Such redshift uncertainties further affect the multiwavelength

atalogues which we cross-correlate to. In our analysis, we choose
o cut the optical galaxies based on their Z BEST redshift, with
 mass limit applied (where the mass is determined assuming the
est redshift). This allows for a consistent population for the radio
alaxies to be correlated to. However, the large uncertainties in
he redshift leads to a p( z) with more dominance in broad wings,
ompared to some previous works (such as P. W. Hatfield et al. 2016 ;
. Shuntov et al. 2022 ). This results in bias values for the optical

ample with significant deviations to that of previous work. In order
o test such effects, we considered the effect on the bias of the radio
FGs using the method adopted in this work, but also assuming

he multiwavelength redshift distribution is (i) the obtained from the
edshift distribution of the Z BEST values and (ii) resampling the
ptical redshifts. In case (i), bias values for the multiwavelength
atalogue were reduced, and are more comparable to P. W. Hatfield
t al. ( 2016 ), and yet we observe the same trend in the evolving
ias for the radio-selected SFGs. We note that in case (ii) it is
omputationally expensive to recalculate the stellar mass based on
he new redshift and so we do not recalculate the mass of the sample.

e again find the same trend in the bias evolution of the SFGs is
ecovered. For both cases the radio biases are within ∼ 1 σ of the
esults presented in this work. 

Finally, this analysis will be improved in the future through full
OD analysis (as in e.g. Z. Zheng et al. 2005 ; Z. Zheng et al.
007 ; P. W. Hatfield et al. 2016 ). The approach used in this work
nvokes a simpler approach of only fitting the large-scale clustering
ith a simple scaling for a functional form of ω( θ ). Whilst this

s different to the approaches of e.g. C. L. Hale et al. ( 2018 ); A.
hakraborty et al. ( 2020 ); A. Mazumder et al. ( 2022 ) who fit a power-

aw distribution, there are similarities in the approach that full HOD
tting is not used. Therefore, the approach in this work allows for a
ore similar comparison to these previous works, without restricting
NRAS 544, 1323–1348 (2025)
urselves to a power-law model, which will not be appropriate
cross the range of angles considered. Our approach, though, may
ave differences to the effective bias found from HOD modelling
hich accounts for satellite galaxies within the samples to obtain
alo mass estimates, halo properties and constrain bias values. Such
elationships between halo mass and bias need to account for the full
OD in order to accurately probe halo masses, see discussion in J.
ird & A. L. Coil ( 2021 ). The combination of large radio samples

nd accurate redshifts such as WEAVE-LOFAR will, in future,
llow more accurate constraints of the clustering evolution (and halo
roperty evolution) for the dark matter environments hosting radio
ources. 

 C O N C L U S I O N S  

n this work we present a comparison of the clustering of SFGs
nd LERGs across the three LoTSS Deep Fields to trace both
heir evolution with redshift and the relationship between radio
ource populations and their underlying dark matter environments.
e measure both the auto-correlation of the angular clustering

f radio sources and the cross-correlation with a catalogue of
ultiwavelength sources across the fields, which total ∼26 deg2 

f combined area with deep multiwavelength observations. By
ombining measurements of the angular TPCF with knowledge of
he redshift distribution within the fields assuming the full redshift
istribution, p( z), we obtain measurements of the galaxy bias (an
ndicator of how clustered galaxies are to dark matter) and traces its
volution to z � 1 . 5 in a number of redshift bins. This evolution is
easured both for sources separated as a function of source type,

nd for the SFG population also as a function of radio luminosity (a
roxy for SFR). 
Our work suggests an evolution in the bias for SFGs from

 = 0 . 90+ 0 . 11 
−0 . 10 at z∼0.2 to b = 2 . 94+ 0 . 36 

−0 . 36 at z∼1.2. This is at a
uicker evolutionary rate than evolving bias model used for previous
OFAR studies of brighter populations (with a more significant AGN
opulation in e.g. D. Alonso et al. 2021 and C. L. Hale et al. 2024 ),
here b( z) = b0 /D( z) and that this bias model may need to be
odified for future work where broad redshift bins are considered.
his may reflect a need for increasing mass haloes to host SFGs over
osmic time; however, such rapid evolution at the highest redshift
in could also be indicative of either mis-classification of sources
n the highest redshift bin (where AGN activity may actually be
ominating the emission), or a luminosity dependence of the bias
ould be contributing to the rapid evolution seen in the bias at the
ighest redshifts studied, where in flux-limited surveys sources are
aturally more luminous. However the LERGs exhibit no such rapid
volution ( b = 2 . 33+ 0 . 28 

−0 . 27 at z∼0.7 to b = 2 . 65+ 0 . 57 
−0 . 55 at z∼1.2), though

re a factor of ∼ 1 . 5 × more biased compared to SFGs at lower
edshift ( z � 0 . 8). This suggests that the dark matter haloes in which
adio sources reside have a clear correlation to the radio populations
hey host and that the haloes supporting SFGs may be less massive
by potentially an order of magnitude). We further consider the
lustering of a subset of the LERG population known as QLERGs,
hich do not have significant star formation contributions to their
verall emission. These QLERGs have evidence that their bias may
volve ( b = 2 . 62+ 0 . 33 

−0 . 33 at z∼0.7 to b = 3 . 08+ 0 . 85 
−0 . 84 at z∼1.2), and weak

vidence that they are more clustered than the full LERG population
t z < 1. This bias evolution for LERGs and QLERGs is consistent
he bias evolving inversely proportional to the growth function;
owever, the uncertainties associated with such measurements means
his could also be weaker and consistent with potentially no evolution.
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Such differences in the bias evolution of different source popula- 
ions will likely be important for future cosmology studies, such as
ith the SKAO, to exploit the differences in bias of the populations

or cosmological studies (e.g. L. D. Ferramacho et al. 2014 ; Z.
omes et al. 2020 ). However, such studies need accurate models 
f the bias dependence of radio sources and so require studies with
eep radio imaging where source classifications are either through 
ultiwavelength source classifications (e.g. I. H. Whittam et al. 2022 ; 

. N. Best et al. 2023 ) or through morphological classifications 
hrough high-resolution studies (e.g. L. K. Morabito et al. 2025 ). 
uch studies would help disentangle the evolving bias evolution for 
ifferent source populations and could also help understand more 
omprehensive dependencies of the radio populations on parameters 
ntrinsic to the sources, such as their redshift, AGN activity, SFR,
nd luminosity. To this end, we consider the relationship of bias for
FGs on both the redshift and radio luminosity (a proxy for SFR)
f the population being considered. This was in order to establish
hether the rapidly evolving bias evolution for SFGs is as a direct

esult of observing typically more luminous populations when higher 
edshifts are considered. We find that any luminosity-dependence of 
he bias is inconclusive, as whilst there is weak evidence at some
edshifts for the best-fitting bias to increase with luminosity, these 
esults are not statistically significant. Therefore, it could instead 
e that the redshifts of the population are driving the evolution 
n bias. 

In the future, spectroscopic surveys such as WEAVE-LOFAR 

ill help further address the question of the evolving relationships 
etween radio sources and the underlying large-scale structure, 
llowing more accurate measurements of the redshift of sources 
nd reducing the uncertainties introduced by the potentially broad 
( z). Moreover, the combination of spectra alongside high-resolution 

maging will help to more comprehensively categorize sources and 
educe potential classification errors. This combined with deeper 
adio data from the full LOFAR Deep Fields observations will 
mprove our understanding of the galaxy–halo connection for radio 
ources. 
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4379 
avuoti S. , Amaro V., Brescia M., Vellucci C., Tortora C., Longo G., 2017,

MNRAS , 465, 1959 
hakraborty A. , Dutta P., Datta A., Roy N., 2020, MNRAS , 494, 3392 
hambers K. C. et al., 2016, preprint ( arXiv:1612.05560 ) 
hisari N. E. et al., 2019, ApJS , 242, 2 
lontz C. , Wake D., Zheng Z., 2022, MNRAS , 515, 2224 
ochrane R. K. et al., 2023, MNRAS , 523, 6082 
ochrane R. K. , Best P. N., Sobral D., Smail I., Wake D. A., Stott J. P., Geach

J. E., 2017, MNRAS , 469, 2913 
oil A. L. et al., 2008, ApJ , 672, 153 
olless M. et al., 2001, MNRAS , 328, 1039 
resswell J. G. , Percival W. J., 2009, MNRAS , 392, 682 
a Costa-Luis C. et al., 2021, tqdm: A fast, Extensible Progress Bar for Python

and CLI, Zenodo. Available at: https://doi.org/10.5281/zenodo.5109730 
a Cunha E. , Charlot S., 2011, Astrophysics Source Code Library, record

ascl:1106.010 
a Cunha E. , Charlot S., Elbaz D., 2008, MNRAS , 388, 1595 
as S. et al., 2024, MNRAS , 531, 977 
avies L. J. M. et al., 2017, MNRAS , 466, 2312 
ESI Collaboration , 2024, AJ , 168, 58 
ESI Collaboration , 2025, preprint ( arXiv:2503.14745 ) 
esjacques V. , Jeong D., Schmidt F., 2018, Phys. Rep. , 733, 1 
river S. P. et al., 2011, MNRAS , 413, 971 
uncan K. et al., 2023, The Messenger , 190, 25 
uncan K. J. et al., 2021, A&A , 648, A4 
urkalec A. et al., 2018, A&A , 612, A42 
anaroff B. L. , Riley J. M., 1974, MNRAS , 167, 31P 
arrow D. J. et al., 2015, MNRAS , 454, 2120 
erramacho L. D. , Santos M. G., Jarvis M. J., Camera S., 2014, MNRAS ,

442, 2511 
aia Collaboration , 2016, A&A , 595, A1 
aia Collaboration , 2018, A&A , 616, A1 
arn T. , Green D. A., Riley J. M., Alexander P., 2009, MNRAS , 397, 1101 
endre M. A. , Best P. N., Wall J. V., Ker L. M., 2013, MNRAS , 430, 3086 
omes Z. , Camera S., Jarvis M. J., Hale C., Fonseca J., 2020, MNRAS , 492,

1513 
onzalez A. H. et al., 2010, American Astronomical Society Meeting

Abstracts #216. p. 415.13 
riffin M. J. et al., 2010, A&A , 518, L3 
uo H. et al., 2015, MNRAS , 453, 4368 
ürkan G. et al., 2018, MNRAS , 475, 3010 
ürkan G. et al., 2022, MNRAS , 512, 6104 
ale C. L. et al., 2019, A&A , 622, A4 
ale C. L. et al., 2023, MNRAS , 520, 2668 
ale C. L. et al., 2024, MNRAS , 527, 6540 
ale C. L. et al., 2025, MNRAS , 536, 2187 
ale C. L. , Jarvis M. J., Delvecchio I., Hatfield P. W., Novak M., Smolčić V.,
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Figure A1. As for Fig. 2 but for SFGs in the z: 0.1–0.4 redshift bin and then split into luminosity bins, increasing in luminosity from left to right. 
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Figure A2. As for Fig. 2 but for SFGs in the z: 0.4–0.6 redshift bin and then split into luminosity bins, increasing in luminosity from left to right. 
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Figure A3. As for Fig. 2 but for SFGs in the z: 0.6–0.8 redshift bin and then split into luminosity bins, increasing in luminosity from left to right. 
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Figure A4. As for Fig. 2 but for SFGs in the z: 0.8–1.0 redshift bin and then split into luminosity bins, increasing in luminosity from left to right. 
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Figure A5. As for Fig. 2 but for SFGs in the z: 1.0–1.3 redshift bin and then split into luminosity bins, increasing in luminosity from left to right. 
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