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ABSTRACT

Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular
clustering of star-forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z<1.5 for faint sources, S}44 mu,>200
wJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multiwavelength
sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases
from b = 0.9070 1) at z~0.2 to b = 2.94703¢ at z~1.2; faster than the assumed b(z)ocl/D(z) models adopted in previous
LOFAR cosmology studies (at sensitivities where active galactic nuclei dominate), but in broad agreement with previous work.
We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed
redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift
evolution with b = 2.33703% at z~0.7 to b = 2.65’:8:2; at z~1.2, though it is also consistent with the assumed bias evolution

model (b(z)x1/D(z)) within the measured uncertainties. For those LERGs that reside in quiescent galaxies, there is weak

evidence that they are more biased than the general LERG population and evolve from b = 2.621033 at z~0.7 to b = 3.08705

at z~1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help

constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses.

Key words: large-scale structure of Universe —cosmology: observations —radio continuum: galaxies.

1 INTRODUCTION

Large-area spectroscopic surveys have been instrumental in allowing
us to observe how galaxies are distributed and to build up knowledge
of the cosmic web. These surveys demonstrate that galaxies are not
uniformly distributed and that there is large-scale structure within the
Universe. Surveys such as the 2dF Galaxy Redshift Survey (2dFGRS;
M. Colless et al. 2001), 6dF Galaxy Survey (6dFGS; D. H. Jones et al.
2004), Sloan Digital Sky Survey (SDSS; D. G. York et al. 2000), and
Galaxy And Mass Assembly (GAMA; S. P. Driver et al. 2011) survey
have all been crucial in making detailed maps of the distribution of
galaxies in the Universe, though many of these were limited to more
local structures z < 1. These observations show clusters filled with
galaxies, filaments connecting the clusters, and regions with a clear
deficit of galaxies, known as voids.
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By studying how different galaxies are distributed within this
cosmic web, we are able to gain greater understanding of the impact
of the underlying environments on galaxies and their properties. This
distribution of galaxies in the large-scale structure can be studied
through the spatial two-point correlation function (TPCF), £(r) (see
e.g. P. J. E. Peebles 1980). £(r) quantifies the excess probability to
find galaxy pairs at a comoving spatial scale (r), compared to if
galaxies are randomly distributed in the Universe. More formally,
&(r) is defined by

dP(r) =a[l + () d’r, 1

where 7 is the mean density of sources and d P the probability to
observe galaxies in a volume, d3r, at a given spatial separation, r. The
spatial clustering of the aforementioned spectroscopic surveys has
been studied in great detail and allows the properties of galaxies to
be related to their underlying dark matter environments (in numerous
works including D. S. Madgwick et al. 2003; 1. Zehavi et al. 2011;
H. Guo et al. 2015).
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However, for the majority of surveys both at radio wavelengths
and across the electromagnetic spectrum, we are unable to obtain
spectroscopic completeness for large area, deep surveys of galaxies.
This is especially true for the radio surveys that are being carried out
with state-of-the-art radio facilities such as LOFAR (M. P. Haarlem
et al. 2013), ASKAP (A. W. Hotan et al. 2021), and MeerKAT
(J. L. Jonas 2009; J. Jonas & MeerKAT Team 2016). Continuum
surveys from such facilities instead image galaxies at specific fre-
quencies, and cannot directly provide redshift information. Instead,
radio surveys rely on counterpart sources from other wavebands
across the electromagnetic spectrum to determine redshifts. Where
spectroscopic redshifts are unavailable, photometric redshifts are
relied upon. These photometric redshifts combine the available
multiwavelength data and use template fitting (e.g. G. B. Brammer,
P. G. van Dokkum & P. Coppi 2008; S. Arnouts & O. Ilbert 2011) or
machine learning methods (see e.g. I. A. Almosallam et al. 2016a;
I. A. Almosallam, M. J. Jarvis & S. J. Roberts 2016b; S. Cavuoti
et al. 2017) to assign redshifts (z). Such redshifts can have broad
probability density functions (PDFs), arising from uncertainties in
modelling photometric redshifts using the data available, and the
distributions can often have multiple peaks. The spatial distribution
of samples where photometric redshifts dominate are therefore much
more uncertain. However, we are still able to gain an understanding
of the distribution of galaxies using their projected clustering by
measuring the angular TPCF, w(6), defined by

dPO) =0l +w(@)]dR. 2)

This is similar to equation (1), where now d P is the probability to
observe galaxies within angular separations (6), o is the average
surface density of sources, and d€2 is the solid angle element being
considered.

In practice, w() is calculated from galaxy surveys using estimators
(such as from A. J. S. Hamilton 1993; S. D. Landy & A. S.
Szalay 1993) through comparing counts of galaxies within angular
separations compared to randomly distributed galaxies. This does
not rely upon any redshift information. However, using the overall
redshift distribution of the sources, and assuming a model for £(r),
the spatial clustering can be inferred (see e.g. Limber inversion and
its use in a number of radio studies; D. N. Limber 1953, 1954; P.
J. E. Peebles 1980; R. A. Overzier et al. 2003; S. N. Lindsay, M. J.
Jarvis & K. McAlpine 2014; C. L. Hale et al. 2018). Knowledge of
the clustering and the redshift distribution of sources can be further
used to relate their clustering to that of the spatial clustering of the
underlying matter, &,. This allows quantification for a parameter
known as bias, b (see e.g. discussions in P. J. E. Peebles 1980; J. A.
Peacock & R. E. Smith 2000; V. Desjacques, D. Jeong & F. Schmidt
2018), defined by

E(z, 1) = b*(z, )En(z, 7). 3)

Through tracing how bias evolves for a population of sources, the
relationship between galaxies, their properties, and the underlying
matter environment can be studied to better quantify the evolving
galaxy—halo connection.

The angular TPCF has been relied upon for a number of studies
into the clustering of radio sources. These cover both wide area
surveys (e.g. C. Blake & J. Wall 2002; R. A. Overzier et al. 2003;
C. Blake, T. Mauch & E. M. Sadler 2004) and smaller regions over
which there is deep ancillary data (e.g. S. N. Lindsay et al. 2014; M.
Magliocchetti et al. 2017; C. L. Hale et al. 2018; A. Chakraborty et al.
2020). Recent studies with LOFAR have also been used to probe
the clustering of radio-detected sources and study the relationship
of such galaxies to their dark matter environment; however, they
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have typically focussed on bright populations (S144 mp,>2 mJy; T.
M. Siewert et al. 2020; D. Alonso et al. 2021; N. Bhardwaj et al.
2024; C. L. Hale et al. 2024; S. J. Nakoneczny et al. 2024). While
radio clustering studies often rely on the angular clustering due to
the dominance of photometric redshifts, this will be improved upon
with future spectroscopic surveys, which specifically target the host
galaxies of radio-detected sources (see e.g. D. J. B. Smith et al. 2016;
K. Duncan et al. 2023; S. Jin et al. 2023).

With the radio observations of recent deeper surveys with tele-
scopes such as LOFAR (W. L. Williams et al. 2016; C. L. Hale et al.
2019; J. Sabater et al. 2021; C. Tasse et al. 2021), MeerKAT (e.g.
T. Mauch et al. 2020; I. Heywood et al. 2021; C. L. Hale et al.
2025), ASKAP (R. P. Norris et al. 2021; G. Giirkan et al. 2022),
u-GMRT (e.g. A. Mazumder et al. 2020; E. F. Ocran et al. 2020),
and the VLA (e.g. V. Smol¢i€ et al. 2017a; D. der Vlugt et al. 2021),
we are in the regime where star-forming galaxies (SFGs) contribute
a significant fraction to, and can even dominate, the total source
population (see e.g. V. Smolci¢ et al. 2017b; H. S. B. Algera et al.
2020; P. N. Best et al. 2023). Using such surveys that combine area,
sensitivity, and have a wealth of ancillary data it is possible to identify
host galaxies for these radio sources and classify these sources into
different sub-classes (e.g. active galactic nuclei, AGN, and SFGs,
see e.g. V. Smolci¢ et al. 2017b; H. S. B. Algera et al. 2020; 1. H.
Whittam et al. 2022; P. N. Best et al. 2023; S. Das et al. 2024). This
classification allows for in-depth studies of the statistical properties
of different source populations and their connection to their host
properties, environments, and redshifts.

Furthermore, AGN can be further categorized based on their
properties. Historically, AGN have both been split based on morpho-
logical properties (B. L. Fanaroff & J. M. Riley 1974) and into radio
‘loud’” and ‘quiet’ populations, which distinguish the significance of
the radio emission from the jets (see e.g. A. S. Wilson & E. J. M.
Colbert 1995). For radio-loud AGN (RLAGN)), these are often further
split based on their accretion on to the central AGN, which may occur
in two fundamental modes based on their radiative efficiency (see
e.g. T. M. Heckman & P. N. Best 2014 and M. J. Hardcastle &
J. H. Croston 2020, which provide reviews on this topic). Those
radio sources that accrete from radiatively efficient discs are known
as high-excitation radio galaxies (HERGs) and are believed to be
geometrically thin optically thick accretion discs (N. I. Shakura &
R. A. Sunyaev 1973). Conversely, low-excitation radio galaxies
(LERGS) are believed to accrete from a radiatively inefficient disc,
which are thought to be fuelled by advection-dominated flows (R.
Narayan & L. Yi 1994, 1995). However, recent studies such as those
from [. H. Whittam et al. (2018, 2022) have indicated a greater
overlap in the accretion efficiency of these two populations.

Previous clustering studies in the radio have shown that different
source populations cluster differently, with AGN found to be, in
general, more highly clustered than their star-formation dominated
counterparts (see e.g. M. Magliocchetti et al. 2017; C. L. Hale et al.
2018; A. Chakraborty et al. 2020; A. Mazumder, A. Chakraborty & A.
Datta 2022). Owing to this, it is important for radio clustering studies
to study the evolution of different source populations independently.
It is also important to understand the clustering of different source
populations so that their bias can be applied to multi-tracer techniques
to help overcome cosmic variance at large scales (see e.g. A.
Raccanelli et al. 2012; L. D. Ferramacho et al. 2014; Z. Gomes
et al. 2020). Recent work has also indicated that there may be a
connection between the accretion mode of radio-loud AGN and their
clustering, through the study of high-redshift analogues of high-/low-
excitation radio galaxies (H/LERGs; see C. L. Hale et al. 2018). A
recent summary of a number of radio-based clustering studies can
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be found in M. Magliocchetti (2022). Moreover, other studies that
probe the environments of H/LERGs through other measurements
have also suggested differences in their local environments may be
important (see e.g. C. Tasse et al. 2008; M. A. Gendre et al. 2013;
M. J. Hardcastle & J. H. Croston 2020).

In this work we make use of some of the deepest LOFAR
observations to date and complementary multiwavelength data to
study the clustering of SFGs and LERGs in three of the LOFAR Two-
metre Sky Survey (LoTSS) Deep Fields. SFGs and LERGs represent
the two most populous source types identified in the LoTSS deep
fields (P. N. Best et al. 2023). This paper is presented as follows. In
Section 2 we present the data used in this work both from LOFAR and
the associated multiwavelength catalogues. In Section 3 we outline
the methods used to measure the angular clustering of the SFGs and
LERGs and we present the results of such analysis in Section 4. We
then discuss the galaxy bias and present its evolution in Section 5.
Furthermore, owing to the larger radio samples available from the
LOFAR Deep Fields, we further investigate the evolving bias as a
function of luminosity for LOFAR detected SFGs. We present the
conclusions of our analysis in Section 6. Unless otherwise stated, our
work assumes a constant spectral index for radio sources, @ = 0.7,
where S, o« v™* and we adopt the cosmology used in R. Kondapally
et al. (2021) and P. N. Best et al. (2023), namely, Hy = 70 km s~!
Mpc!, €, =0.3, Q4 =1 —Q,, and also adopt n, = 0.965 and
og = 0.8.

2 DATA

The data used in this work come from LOFAR observations across
the LoTSS Deep Fields and their associated value added catalogues.
We summarize the data here but comprehensive details can be found
in J. Sabater et al. (2021) and C. Tasse et al. (2021) for the radio
continuum images and catalogues and K. J. Duncan et al. (2021), R.
Kondapally et al. (2021), and P. N. Best et al. (2023) for the host
galaxy identification, redshift estimation, and source classification,
respectively.

2.1 Radio Data: LoTSS Deep Fields

The LoTSS Deep Fields consist of four well-studied multiwavelength
fields: Bootes, Lockman Hole, the European Large-Area ISO Survey
Northern Field 1 (ELAIS-N1), and the North Ecliptic Pole (NEP)
field. These fields are all located in the northern sky, at optimal
locations for LOFAR (which is not a physically steerable telescope)
to observe. Using the high band antenna (HBA) of LOFAR, the first
observations at 144 MHz of three of these deep fields were published
in a combination of papers for ELAIS-N1 (J. Sabater et al. 2021)
and the Bootes and Lockman Hole (C. Tasse et al. 2021) fields. J.
Sabater et al. (2021) and C. Tasse et al. (2021) presented images and
catalogues for observations totalling 164, 80, and 112 h on target
for the ELAIS-N1, Bodtes, and Lockman Hole fields, respectively,
covering approximately 25 deg? in each field'.

Processing of the data used a combination of flagging and averag-
ing of the raw data set, then calibrating the data. This calibration
consisted of both direction-independent and direction-dependent
calibration, making use of the packages kMS (C. Tasse 2014; O.
M. Smirnov & C. Tasse 2015; C. Tasse 2023) and DDFacet (C.

"Where the ~25 deg? corresponds to the area of the images released in C.
Tasse et al. (2021) and J. Sabater et al. (2021), which are truncated at the 30
per cent power point of the primary beam. PYBDSF was run for each image
over this full ~25 deg?.
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Tasse et al. 2018, 2023). Direction-dependent calibration is crucial
for observations at such low frequencies to account for the effects of
the ionosphere, which can cause the apparent movements of sources
across the sky, but also is necessary to account for primary beam
effects over long-duration observations. These direction-dependent
corrections allow for images with an angular resolution of 6 arcsec
to be produced, compared to 25 arcsec with direction-independent
calibration alone (see T. W. Shimwell et al. 2017).

Source catalogues were extracted in each of the fields using
the Python Blob Detection Source Finder (PYBDSF; N. Mohan &
D. Rafferty 2015), using a 50 peak signal-to-noise thresholding
criterion. Owing to its longer observations, ELAIS-N1 is the deepest
field with an average rms of ~30 uJy beam™! across the image. This
compares to ~60 pJy beam™! in Bootes and ~40 wJy beam™! in
the Lockman Hole field. This results in the detection of a total of
~157 000 sources across the ~25 deg? of radio area in each of the
three fields, with ~70 000, ~37 000, ~50 000 sources in the ELAIS-
N1, Bodtes, and Lockman Hole fields, respectively. In this paper we
will adopt a subset of these catalogues for the analysis; we describe
such cuts to the data in the following sections.

2.2 Multiwavelength data

Alongside the radio data, we make use of the multiwavelength
catalogues of sources detected in the three fields. These were not only
used to provide counterparts to the radio sources (see Section 2.3) but
are also used here to measure the angular cross-correlation of these
multiwavelength galaxies with the radio sources. These catalogues
combine data from the UV to the far-IR and are described in detail in
R. Kondapally et al. (2021); their overlapping regions cover areduced
area compared to the radio data alone (see fig. 1 of R. Kondapally
etal. 2021, where we make use of their shaded regions for this work).

For the Bodtes field, the multiwavelength catalogue originates
from 4.5 wm and I-band point spread function (PSF) matched
catalogues from M. J. I. Brown et al. (2007, 2008), which combine
data from the NOAO Deep Wide Field Survey (NDWFS; B. T.
Jannuzi & A. Dey 1999) as well as optical imaging from F. Bian
et al. (2013) and near-IR data from A. H. Gonzalez et al. (2010).
For ELAIS-N1 and the Lockman Hole field, R. Kondapally et al.
(2021) created their own combined matched-aperture catalogues.
This includes data from the UV to IR: the Galaxy Evolution Explorer
(GALEX) space telescope (D. C. Martin et al. 2005; P. Morrissey et al.
2007); Hyper-Suprime-Cam Subaru Strategic Program (HSC-SSP)
survey (H. Aihara et al. 2018); the Canada—France—Hawaii Telescope
MegaCam instrument (H. Hildebrandt et al. 2016); Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS-1; K. C.
Chambers et al. 2016); the Herschel Space Observatory (M. J. Griffin
et al. 2010; A. Poglitsch et al. 2010); and from the Spitzer Space
Telescope (from C. J. Lonsdale et al. 2003; J. C. Mauduit et al.
2012). R. Kondapally et al. (2021) generated 0.2 arcsec pixel scale
images and detected sources using SEXTRACTOR (E. Bertin & S.
Arnouts 1996) to create the multiwavelength catalogues that we use
in this work. Aperture corrections are additionally applied to account
for varying PSF sizes between the images.

These combined multiwavelength catalogues contain over 2 mil-
lion sources in each of the three fields used in this work: ~2.1
million in ELAIS-N1, ~3.0 million in Lockman Hole and ~2.2
million in Bodtes. This is reduced in numbers when only the areas
which have overlap between all the best multiwavelength surveys
are considered and masking is applied (see fig. 1 of R. Kondapally
et al. 2021). This overlapping area covers ~26 deg? in total across
the three fields and reduces the number of multiwavelength sources
to ~1.4 million sources in ELAIS-N1 (6.74 deg?), ~1.9 million

MNRAS 544, 1323-1348 (2025)
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Table 1. Table outlining the number of sources (across all redshift ranges) from the initial catalogues and after applying the subsequent cuts that are used in this
analysis. Each row is cumulative and includes the cuts applied to all previous rows. These numbers are indicated for the radio and multiwavelength catalogues
separately, for each of the three fields (Bootes, ELAIS-N1, and Lockman Hole) and are not split by source type (i.e. SFG versus LERG). The numbers indicated
in bold show the final numbers of either radio or multiwavelength sources used across all redshifts. Those used for each redshift sample considered in this work
can be found in Table 3. We note that in this table, the starting criteria ‘Original Catalogue’ for the radio populations refers to the source catalogue over the ~25
deg? of each field within the primary beam cut, as described in J. Sabater et al. (2021) and C. Tasse et al. (2021). For the multiwavelength data the full catalogue
relates to the ‘Science Ready’ catalogues released with K. J. Duncan et al. (2021).

Description Radio catalogue Multiwavelength catalogue
Bootes  ELAIS-N1 Lockman Bodotes ELAIS-NI1 Lockman
Original source catalogue 36 767 70 544 50 112 2214329 2105993 3041793
In FLAG_OVERLAP and FLAG_CLEAN regions 18 553 30 768 30 347 1911 265 1446319 1837 134
(+ (for radio) in cross-matched catalogue of R. Kondapally et al. 2021)
Band Used for magnitude and 5o Cut - - - 4.5 um K 4.5 um
Magnitude Cut Applied - - - <21.33 <21.78 <21.18
Applying 50 Cut and Magnitude Cuts - - - 317 022 282 871 302 530
With redshifts from K. J. Duncan et al. (2021) 18 238 30470 30 161 216 708 272 315 297 071
With source classification from P. N. Best et al. (2023) 17 707 30182 29 595 - - -
Additional spatial masking applied (additional star masks 15905 28 772 27977 210714 260 949 284 576
for all fields 4+ masking of Table 2 for Bootes)
Radio flux density (> 200 pJy) & SNR (> 50) cuts 14 925 17 289 22797 - - -
Mass cut applied (M, > 10'%5Mg) - - 68 257 59 636 87525

sources in the Lockman Hole field (10.28 deg?), and ~1.8 million
sources in Bootes (8.63 deg?). For full details of the sources used
after cuts to the catalogues are applied see Table 1. The sources
in the areas adopted are identified using a combination of the
‘FLAG_OVERLAP’ (==1 for Bootes, ==3 for Lockman Hole and
==7 for ELAIS-N1) and ‘FLAG_CLEAN’ (! = 3) identifiers in the
source catalogue. This restricts the data to the best multiwavelength
regions, avoiding objects such as stars that may be impacting the
multiwavelength photometry. Further details of the flag can be
found in R. Kondapally et al. (2021)?, where FLAG_OVERLAP is
indicative of the availability of multiwavelength coverage in different
bands and FLAG_CLEAN relates to the masking around bright stars.
In Bootes an additional flag to mask ultra deep regions is also applied:
‘FLAG_DEEP’ (= = 1).

Finally, we also apply a stellar mass cut of M, > 10'%° Mg, to the
multiwavelength data, which, as can be seen in fig. 11 of K. J. Duncan
et al. (2021), is predominately larger than the 90 per cent magnitude
completeness limits already applied in this work. Applying a constant
high mass cut is generally more restrictive than using the magnitude
cuts of K. J. Duncan et al. (2021) alone to impose completeness.
As discussed in K. J. Duncan et al. (2021), the stellar masses in
their catalogue are believed to be robust up to a redshift of z = 1.5
and so we restrict ourselves to such a redshift range over which
to probe the clustering. The result of such a high mass cut is a
robust sample of massive galaxies for cross-correlating to the radio
data. The high stellar mass cut also restricts the samples to the most
massive galaxies, which is beneficial when considering the angular
cross-correlation, due to the larger bias (see e.g. P. W. Hatfield et al.
2016). Finally, it also ensures that a similar reference sample of
galaxies is considered across the redshift samples used in this work
as well as between the three fields, to ensure we cross-correlate to a
similar population. Such cuts reduced the number of multiwavelength

2and in the read me files available at https:/lofar-surveys.org/index.html
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sources across the three fields. For more details on the effect of source
numbers on the cuts applied see Table 1.

2.3 Radio data: host identification and redshifts

In order to obtain redshift information and source classifications
for the radio-detected galaxies, a catalogue of multiwavelength
counterparts with redshifts is essential. The cross-matching process
for the LoTSS Deep Fields is described in R. Kondapally et al.
(2021), where a combination of likelihood ratio (LR) analysis (see
e.g. W. Sutherland & W. Saunders 1992; K. McAlpine et al. 2012;
W. L. Williams et al. 2019; 1. H. Whittam et al. 2024) as well
as visual classification was used to identify the host for the radio
sources as in W. L. Williams et al. (2019)°. Due to the availability
of multiwavelength data, a restricted region of the three fields was
used for the host identification process, as discussed in Section 2.2
and presented in Table 1. Over these smaller multiwavelength areas,
which are closer to the primary beam centre, the sensitivity improves,
now measuring a typical rms of ~20 uJy beam~! in ELAIS-N1,
~30 ply beam™' in Lockman Hole, and ~40 uJy beam™! in
Bodotes.

R. Kondapally et al. (2021) used a number of decision trees in
order to identify which sources had a reliable identification of a
host galaxy from the LR analysis, and which sources instead needed
visual identification to obtain a host galaxy match. Sources with
compact sizes or secure radio positions were determined to be most
suitable for LR cross-matching; sources with a large size or in a
crowded region of the field were instead sent to visual analysis. For
visual identification, R. Kondapally et al. (2021) used the Zooniverse*

3For clarity, prior to source association a radio source refers to the source
as defined by the source finder, PYBDSF. After source associations and
classifications a source refers to the object within the catalogue of R.
Kondapally et al. (2021). This is assumed to be from an individual galaxy,
which may include multiple of the original PYBDSF radio sources.
“https://www.zooniverse.org
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Table 2. Additional regions within the Bootes field that are masked within
the field, see Section 3.2.2.

Region RA range (°) Dec. range (°)
1 218.90-219.00 33.45-33.70
2 216.10-219.00 33.45-33.53
3 218.20-218.30 32.85-33.70
4 216.10-218.30 32.85-32.96
5 217.50-217.60 32.32-33.68
6 216.78-216.90 32.32-33.68

platform (see e.g. C. Lintott et al. 2012; J. K. Banfield et al. 2015;
W. L. Williams et al. 2019) where LOFAR surveys team members
used the interface to help visually cross-match sources to a host
galaxy. Each source required at least five independent classifications
and a host galaxy was assigned if at least 60 per cent of users who
analysed a source agreed on a match. Sources without a clear match
or that were flagged as requiring further detailed inspection were
sent to experts for assessment. Approximately 97 percent of the
LOFAR-detected sources within the multiwavelength region have
host galaxies identified.

Alongside the work of R. Kondapally et al. (2021), K. J. Duncan
et al. (2021) used the wealth of multiwavelength data across the
three LoTSS Deep Fields to obtain redshift estimates for the host
galaxies. These redshifts are a combination of photometric redshifts
and spectroscopic redshifts, where available. Photometric redshifts
were generated through a hybrid method which combines redshifts
from spectral energy distribution (SED) fitting techniques and
machine learning methods (GPz; I. A. Almosallam et al. 2016a;
I. A. Almosallam et al. 2016b). This method produced redshifts for
as many sources as possible in the full multiwavelength catalogue
(described in Section 2.2), which in turn can provide redshifts for a
number of LOFAR-detected sources. In total, 21 per cent of cross-
matched sources in the Bootes field have spectroscopic redshifts,
reducing to 5 per cent in the other two fields at the time of release.
Further details of these catalogues can be found in K. J. Duncan
etal. (2021). We note that additional spectra have subsequently been
obtained with the Dark Energy Spectroscopic Instrument (DESI;
DESI Collaboration 2024, 2025); however, these were not available
when host identification was conducted and when the redshifts were
used to help in the classification of sources in P. N. Best et al. (2023).
We therefore rely on the redshift information from K. J. Duncan et al.
(2021).

2.3.1 Additional spatial masking

We apply additional spatial cuts to remove some remaining non-
uniformity. First, we apply additional spatial masking in the Bootes
field, detailed in Table 2. This avoids areas in the Bootes field that
appeared deeper than the surrounding image and this was depth was
not removed by use of FLAG_DEEP in the catalogue. Secondly,
we expand the stellar masks of R. Kondapally et al. (2021) to
provide more conservative masking around the brightest stars in the
Gaia catalogue (Gaia Collaboration 2016, 2018). This is to ensure
uniformity in the optical catalogues close to bright stars. We create
a mask around sources with magnitudes in the G band < 10 of
2 and 4 arcmin for those source with G band magnitudes < 7.5.
This masks 42, 61, and 64 stars across the Bootes, ELAIS-N1, and
Lockman Hole fields, respectively, and removes an additional 1—
2 per cent of sources in the original cross-matched catalogue of R.
Kondapally et al. (2021) compared to the flagged regions discussed
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earlier of R. Kondapally et al. (2021). Such spatial cuts were applied
to both the radio and multiwavelength data as well as the random
catalogues.

2.4 Source classifications

For the cross-matched sources, classifications were determined using
the abundance of multiwavelength data and were released in P. N.
Best et al. (2023). In their work, P. N. Best et al. (2023) used a
combination of SED fitting codes to assign classifications for the
sources. This included the SED fitting codes AGNFITTER (G. Calistro
Rivera et al. 2016), BAGPIPES (A. C. Carnall et al. 2018), CIGALE
(M. Boquien et al. 2019), and MAGPHYS (E. da Cunha, S. Charlot &
D. Elbaz 2008; E. da Cunha & S. Charlot 2011) to provide source
properties for the host galaxies. For sources with an identified host,
these were classified as either an SFG or an AGN. For those classified
as an AGN, these were sub-classified as either radio loud (RL) or
radio quiet (RQ) and for those RLAGN:Ss, these were classed as either
HERGs or LERGs. P. N. Best et al. (2023) present a consensus
classification for the majority of the LOFAR cross-matched sources,
while ~1500 sources per field remain unclassified (see table 2 of
P. N. Best et al. 2023). This is a small fraction of the total sources
within the multiwavelength region, ~5 percent, and this number
includes those sources without an assigned host galaxy and redshift.
Further details of the classification methods used are provided in P.
N. Best et al. (2023). For the classified population, approximately 68
per cent of sources within the multiwavelength region were identified
as SFGs, with LERGs being the next biggest fraction of sources at
~16 per cent.

Owing to SFGs and LERGs being the two largest populations in
the LoTSS Deep Fields, we investigate the clustering of these two
populations in this work. We also study the clustering for a subset of
the LERG population, namely, quiescent LERG (or QLERGS). These
are discussed in R. Kondapally et al. (2022) and are useful to this
work as they provide a more representative comparison to the LERG
population used in the clustering work of C. L. Hale et al. (2018),
who measure the clustering from a sample of QLERGs from the
catalogues from V. SmolcCi¢ et al. (2017b). We use the same criterion
as in R. Kondapally et al. (2022) to classify sources as QLERGs,
namely, making cuts based on the specific star formation rate (SFR)
of the sources. We note, though, that alternative classifications for
the ELAIS-N1 field were subsequently presented in S. Das et al.
(2024) using the SED fitting code, PROSPECTOR (J. Leja et al.
2017; B. D. Johnson et al. 2021). Comparison of the ELAIS-N1 field
classifications are presented in fig. 8 of S. Das et al. (2024). For
SFGs, ~90 per cent of sources determined to be SFGs in P. N. Best
et al. (2023) are also described as SFGs in the work of S. Das et al.
(2024); however, this is closer to ~70 per cent for the LERGs of P. N.
Best et al. (2023). As such, we acknowledge that differences in the
classification process will affect some of the samples of sources used
in this work. We also note that recent works using physical processes
to split sources by AGN and star formation physical processes using
high-resolution LOFAR data may indicate some underestimation of
AGN activity in some sources (see L. K. Morabito et al. 2025).

In this work, we continue with the catalogues of P. N. Best
et al. (2023). This is because they are the source classifications that
were used to study the luminosity functions of LOFAR-detected
sources (R. Kondapally et al. 2022; R. K. Cochrane et al. 2023). The
luminosity functions from these studies will be important to generate
random catalogues, which are necessary to measure the clustering of
sources in this work, as described in Section 3.2.
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3 DATA AND RANDOM CATALOGUES FOR w(9)

3.1 Calculating (@) from auto-correlation and
cross-correlations

As discussed in Section 1, the two-point correlation is one commonly
used method to study the large-scale structure of galaxies within
a survey. As the LoTSS sources are dominated by those with
photometric redshifts we rely on the angular TPCF, w(0), to quantify
the clustering within the fields. We measure w(6) using the Landy—
Szalay estimator S. D. Landy & A. S. Szalay (1993):

DD(®) — 2DR(0) + RR(0)

RR©) @

w(f) =

This uses normalized pairs of galaxies within the data catalogue,
D D(0), pairs in a random catalogue, RR(6), and between the two
catalogues, D R(6). The normalization ensures that across all 6 bins,
the sum of the normalized pairs sums to one, e.g. > . DD(0) = 1. The
random catalogues should be a random distribution of galaxies, but
that account for observational systematics in the data and so mimic
detection across the field of view. Such systematics can be complex
to account for (see e.g. discussions in C. L. Hale et al. 2024) and
so we describe the creation of our random catalogues in detail in
Section 3.2.

Whilst we can rely on the auto-correlation to measure source
clustering, in this work we also use the multiwavelength data from
R. Kondapally et al. (2021) and K. J. Duncan et al. (2021) to study
the angular cross-correlation function between the radio and multi-
wavelength data. These multiwavelength catalogues have a higher
source density than the radio sources over the same area. Cross-
correlating between two catalogues can reduce the impact of any
remaining systematics and help improve constraints on the biases of
the radio sources by reducing the statistical uncertainties. Combined,
this can help improve constraints on the physical properties derived
from modelling the angular clustering. The angular cross-correlation
function is given by

D Dy(0) — D1 Ry(0) — DR (0) + R1R»(6)

5
R Ry(0) ©)

wcc(0) =

Here ‘1’ and 2’ relate to the radio and the multiwavelength
catalogues respectively. Such a formalism has been used in a number
of studies (see e.g. W. G. Hartley et al. 2013; S. N. Lindsay et al.
2014; R. M. Bielby et al. 2016; C. Krishnan et al. 2020).

3.2 Random catalogues

As discussed, a catalogue of randomly distributed sources is nec-
essary to measure w(6) using both the auto-correlation and cross-
correlations. These random catalogues must have no underlying
large-scale structure, but must mimic the detection of sources across
the fields, accounting for observational effects and spatial masks.
This means that the distribution of the random catalogue will be
non-uniform. Observational effects, such as sensitivity variations,
are more challenging to account for and require understanding of
the systematic effects which affect source detection. Therefore,
either conservative flux density limits should be applied or these
observational effects need to be accounted for within the random
catalogues. The latter approach allows more sources across the field
to be used to measure the clustering for the population and so has
been adopted in a number of studies, such as C. L. Hale et al. (2018);
A. Mazumder et al. (2022); C. L. Hale et al. (2024). In this work, we
account for the observational systematics for our random catalogues
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Figure 1. Flowchart outlining the steps to make the catalogue of random
sources associated with the radio data that are used to measure the clustering,
divided into three stages. The first (yellow) relates to the creation of the general
simulated source properties, as in Section 3.2.1. The second (in blue) describes
the method of applying completeness effects and measurement errors, as in
Section 3.2.1(i). The final stage is the effect of applying corrections for the
intrinsic luminosity distribution (pink), as in Section 3.2.1(ii).

and outline this process in the next sections. Fig. 1 provides a
schematic representation of the steps involved.

3.2.1 Radio random catalogues

To generate our radio random catalogues we first generate positions
across the LoTSS Deep Fields over the regions that the radio data
has been restricted to (as outlined above, namely the best ancillary
regions of R. Kondapally et al. 2021). Each position is assigned the
source properties (flux density, redshift, shape) from a simulated
source of the SKA Design Studies (SKADS; R. J. Wilman et al.
2008, 2010), using the modified SKADS catalogue (with double the
number of SFGs) as used in C. L. Hale et al. (2024)°. A peak flux
density for the source is calculated by convolving the source model
with the LOFAR 6 arcsec beam. We restrict the SKADS catalogue to
integrated flux densities Sjsqmu, >0.05 m]y(’. Whilst updated radio
simulations are available from T-RECS (A. Bonaldi et al. 2019,
2023), we found (similarly to J. Asorey & D. Parkinson 2021) that the

5This accounts for known differences between SKADS and faint source
counts (see e.g. S. Mandal et al. 2021; C. L. Hale et al. 2023).
65caled from the 1.4 GHz flux densities in SKADS are used.



Clustering of AGN/SFGs in LoTSS Deep Fields

T-RECS source model for bright AGN generated larger sources than
anticipated, affecting source completeness’. Though AGN are not the
dominant source population in this work (see P. N. Best et al. 2023),
it is important to consider such effects and, as such, we used SKADS.

(i) Accounting for incompleteness and measurement errors:

To generate the random catalogue, we broadly followed the method
of C. L. Hale et al. (2024), who used the results from completeness
simulations in the LOFAR Two-metre Sky Survey (LoTSS-DR2; T.
W. Shimwell et al. 2022) to quantify (i) completeness of source
detection as a function of input signal-to-noise (SNR); (ii) the
measured-to-simulated peak flux density as a function of input SNR;
and (iii) the ratio of the measured-to-simulated peak flux density
compared to the measured-to-simulated integrated flux density as a
function of SNR. These factors were combined with a distribution
of sources from the modified SKADS catalogue described above
to determine which sources would be considered detected within
the data. C. L. Hale et al. (2024) also accounted for a positional
dependent smearing of sources across the field of view. Combined,
C. L. Hale et al. (2024) created a catalogue of random sources which
accounted for the detection across the field of view and had associated
‘measured’ peak and integrated flux densities.

In this work, we produce our own completeness simulations to
be analogous to those of T. W. Shimwell et al. (2022), using the
methodology described in C. L. Hale et al. (2023). This uses an input
source counts model (the modified SKADS catalogue, as above)
at 144 MHz to generate simulated sources which are injected into
the radio image. We then use the PYBDSF parameters of J. Sabater
et al. (2021) and C. Tasse et al. (2021) to generate catalogues of
sources which would be detected by PYBDSF. For each field 1000
simulations are run each with 2000 sources per simulation randomly
injected into the image. These sources have a random flux density
assigned from SKADS, with a source model that is convolved with
the 6 arcsec LOFAR beam. For those sources that are detected by
PYBDSF, they are matched to an input source using a 3.5 arcsec
match radius. This is smaller than the angular resolution to ensure
these are true matches. This output matched catalogue allows the
calculation of the the necessary measurements outlined above, such
as the completeness and measured source properties as a function of
SNR.

Using the catalogue of simulated random sources, we calculate
their SNR based on their peak flux density and the rms at the source
location. Using the results of the completeness simulations and the
methodology from C. L. Hale et al. (2024) to measure completeness
as a function of SNR, we obtain the probability that each source in
the catalogue of random sources is detected and then use a process
of random sampling to determine the random sources which will be
used to measure the clustering. Unlike in C. L. Hale et al. (2024),
we do not apply position-dependent smearing as we are unable to
independently measure it and, in any case, smearing effects should
be reduced given that only a smaller sky area closer to the pointing
centre is used. Instead, we apply a constant smearing factor to the
simulated peak flux density of the random sources in each field. This
factor is allowed to be different for each sub-population in a field,
as in addition to accounting for physical smearing effects, it can
also empirically correct for differences between the simulated and
true source size distributions. These values are chosen to ensure that
the peak of the ratio of the measured integrated-to-peak flux density

"Though we note that a similar analysis with T-RECS led to radio bias values
broadly similar to those derived using SKADS.
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distribution for the simulated random sources matches that of the
data within each field. These factors varied in the range of ~1-1.15
across the fields.

For those random sources which are considered detected, a
‘measured’ peak and integrated flux density is then obtained based
on the input SNR as in C. L. Hale et al. (2024), using the measured
output-to-input flux density distributions as a function of SNR found
from the completeness simulations above. These ‘measured’ values
are more similar to the flux densities in the PYBDSF data catalogues.
Such flux densities have differences to the intrinsic flux densities
due to both the noise in the image and measurement differences
introduced by the source finder.

At this stage, two catalogues of random sources are retained.
The first contains the input catalogue of random sources and their
position, local rms, simulated integrated and peak flux densities and
the completeness probability for the source. It also contains a flag
for whether the source is considered to be ‘detected’ (or not) from
the completeness probability and random sampling. We call this the
input random catalogue. The second catalogue contains the subset
of these sources which were considered ‘detected’ and for which a
‘measured’ peak and integrated flux density are also recorded. We
refer to this catalogue as the ‘kept’ catalogue of random sources. The
‘kept’ catalogue is the basis for the catalogue we use for the radio
random terms in equations (4) and (5) and will apply all SNR, spatial
masks and flux cuts that are applied to the data to this catalogue
of random sources (see Sections 2.3.1 and 3.3). We ensure each
catalogue of random sources is more numerous compared to the
number of data sources to ensure that the errors will be dominated
by uncertainties in the data. The ratio of randoms to data is given in
Table 3.

(ii) Ensuring an accurate intrinsic luminosity distribution for each
population over the z range:

Though the source counts distributions of the modified SKADS
catalogue agrees well with deep radio surveys (e.g. S. Mandal et al.
2021; A. M. Matthews et al. 2021; D. der Vlugtet al. 2021; C. L. Hale
et al. 2023), we need to ensure that that this remains true when we
split sources as a function of redshift, source type and flux density.
To do this, we use modelled luminosity functions, ®(L j4mp)%, of
SFGs (R. K. Cochrane et al. 2023) and the LERGs (and QLERGs;
R. Kondapally et al. 2022) in the LoTSS Deep Fields. We use
these models to down-sample the catalogue of random sources so
their input luminosity functions match the models for each redshift
bin/source type, as outlined below.

First, we use the 1/V,;x method (M. Schmidt 1968) to measure
®(L) for the input catalogue of random sources. This method is
regularly used for radio luminosity functions (see e.g. T. Mauch &
E. M. Sadler 2007; M. Novak et al. 2017; R. Kondapally et al. 2022).
Following this method ®(L) is defined as:

1 1 1
AlOgIO(L) Acorr szlx7 i ’

O(L) (6)

where: Alog,,(L) is the width of the log luminosity bins used
to calculate ®(L); Ao is a correction for the finite area of the
observations; and Vi, ; is the maximum comoving volume within
which the i source between log,,(L) and log,,(L) 4+ Alog,,(L) can
be observed within, given the sensitivity of the data, and the redshift

8We will now drop the 144 MHz subscript when referring to luminosities such
that L refers to a spectral luminosity at 144 MHz, unless otherwise stated.
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range being studied’. This work will study the evolving clustering
of radio sources, using the redshift binning of R. K. Cochrane et al.
(2023) for SFGs and R. Kondapally et al. (2022) for LERGs to
7z < 1.5 (where stellar masses are estimated to in K. J. Duncan et al.
2021). In the work of R. K. Cochrane et al. (2023), the lowest redshift
bin considered begins at z = 0.1. Below such redshifts the size of
sources may affect estimates of the host galaxy properties, using
aperture based fluxes.

Next, for an accurate input catalogue of random sources, we must
ensure that both the input luminosity distribution and the redshift
distribution mimic that of the data. This is to ensure an accurate
flux density distribution (or source counts) within the redshift bin
for the source type considered. Therefore, we use fine redshift
bins (Az = 0.025) to match the input luminosity function of the
catalogue of random sources to the model luminosity functions. In
each redshift bin, we use a quadratic (linear) fit extrapolation of the
best-fitting parameters of the models from R. K. Cochrane et al.
(2023) (or R. Kondapally et al. 2022) to estimate the luminosity
function parameters (and therefore, models) within the Az = 0.025
bins. We compare ®(L) for the input catalogue of simulated random
sources assuming no incompleteness within the field and using a
minimum flux density limit (see Section 3.3) term'® in equation
(6)'!. Using the ratio of the observed ®(L) for the input catalogue
of random sources to the model ®,,,q(L), we find the smallest value
of this ratio across each Az and luminosity bin'?. We then normalize
all luminosity functions of the input catalogue of random sources by
this minimum ratio and downsample the random sources to match the
luminosity function model in each Az bin. Combining the random
sources from each of the Az bins in this way provides an input random
catalogue with a luminosity function that reflects the intrinsic models
and redshift distributions of radio sources in the Universe.

However, we note that the parametrized models of the luminosity
functions for the SFGs and LERGs from R. K. Cochrane et al. (2023)
and R. Kondapally et al. (2022) are smoothed models for ®(L). In
practice there may be larger deviations between the model and the
data than at some luminosities. This is more prevalent for LERGs
(see 0.5 < z < 1.0 in fig 6. of R. Kondapally et al. 2022). To avoid
large differences in the luminosity distributions of the catalogue
of random sources to the data ®(L), we downsample the input
catalogues of random sources across the full redshift bin range to
match the measured luminosity functions of R. Kondapally et al.
(2022) and R. K. Cochrane et al. (2023). The random catalogues
which are then used to measure w(f) are the subset of this new
input random catalogue that were determined to be ‘detected’ in
Section 3.2.1(i). The sources in the ‘detected’ catalogue should then
have luminosities, z and flux density distributions which are similar

"Though it can also be used, as in M. Novak et al. (2017), to account for
incompleteness effects within the data.

10The input catalogue of random sources should have no incompleteness
effects and be representative of the true underlying population. The effects of
incompleteness will be accounted for when a (L) model matched sample of
the catalogue of random sources is made and the sources that were considered
‘detected’ in the catalogue generation earlier are used.

1 reality, Vimax should also account for limitations in the multiwavelength
catalogues. However, owing to the deep nature of the optical and IR data
and the high fraction of host galaxy association (97 per cent), we neglect this
compared to the Vpax of the radio emission.

12 As the ratio in the first and last luminosity bin may not be fully probed by
the data or randoms, we do not use these values to find the minimum ratio.
The minimum ratio itself will be >> 1 due to the much higher number density
of randoms.
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to those of the observed data and which also suffer from similar
incompleteness effects across the fields.

3.2.2 Multiwavelength random catalogues

As discussed in Section 3.1, we also make use of the cross-correlation
between the LoTSS Deep Fields data and the multiwavelength
catalogues within the field to trace the bias evolution of LOFAR
sources. This requires an additional catalogue of random sources for
the multiwavelength catalogue (R, in equation 5). For this we use a
uniform distribution of sources across the fields. This assumes that
the mass and magnitude limits applied to the multiwavelength data
in Section 2.2 provide high completeness and uniformity across each
of the three fields.

3.3 Additional SNR and flux density cuts

As discussed in C. L. Hale et al. (2024), the wavelet fitting mode
which can be used with the source finding of PYBDSF can introduce
the detection of a large number of sources below the nominal 50
detection limit across the rms maps. Therefore, we apply a 5o peak
SNR cut to the radio catalogues for both the data and catalogue
of randoms. Moreover, we apply a constant flux density cut to
normalize the different flux limits in the three fields. Since, Bootes
is the shallowest field with a typical rms ~ 44 wJy beam~! over
the multiwavelength region (see tables in R. Kondapally et al. 2021;
S. Mandal et al. 2021), we therefore impose a 200 pJy integrated
flux density limit such that our data is at SNR=>5 in the shallowest
field.

The catalogues of random sources generated per field are also
reduced in numbers to ensure a constant ratio of the number of data
to randoms in each field and for each of the radio sources subsamples
(e.g. split by redshift). This avoids spuriously large w(@) (at higher
0) when a constant ratio was not applied. For each sub-sample we
ensure that the ratio of data to randoms is constant in each field and
that this ratio is in the range of ~10-15, see Table 3.

At this stage we now have the catalogues necessary to measure
(0) across the combined three fields using both the auto-correlation
(equation 4) and cross-correlation (equation 5).

3.4 Resampling of the data to probe p(z)

To determine the clustering as a function of redshift, and accurate
uncertainties on the measured clustering, it is necessary to take
account of the uncertainties in the redshifts of the sources, encoded in
the redshift posterior probability distribution, p(z), for each source.
To do this, we construct 100 new redshift values for each source
from sampling from the p(z) derived in the analysis of K. J. Duncan
et al. (2021). For those sources with a spectroscopic redshift we
use a constant value for z in each resample. Combining the redshift
resamples for all the sources provides 100 possible data samples for
which we apply the necessary masking and flux density/SNR cuts
and then compute the angular clustering for sources with a resampled
redshift in the z range being considered.

3.5 Comparison of data and random catalogues

Comparisons of the data to the randoms are presented in Fig. 2
for the SFGs and in Fig. 3 for the LERGs and QLERGs. Shown
are comparisons of the flux density, redshift, luminosity and SNR
distributions for the randoms and data both when split into redshift
bins using the Z_BEST redshift column (from the catalogue of K.
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Figure 2. Comparison plots of the flux density distributions (first row); redshift distributions (second row); luminosity distribution (third row); signal-to-noise
(SNR, fourth row); and integrated-to-peak flux density ratio (S;/Sp; fifth row) for SFGs in the different redshift bins considered in this work, increasing in
redshift from left to right. In each panel, the data catalogue with redshift cuts applied on the Z_BEST column is shown as black dots, while each blue shaded
region represents the output distribution from the data samples given in the range of the 16th—84th percentiles of the values from the p(z) resamples. The
randoms for the full sample are shown as red stars. These have associated red shaded regions with the range of randoms from those associated with each of the
data p(z) resample (to ensure a constant ratio of random sources to data), though these are small as they are drawn from the same random sample and only have

small differences reflecting the number of data per p(z) sample.

J. Duncan et al. 2021) and also using the resampled z values from
the p(z). These allow us to demonstrate the accuracy of the random
catalogues in accounting for the observational effects within the data.

As can be seen from Figs 2 and 3, the randoms broadly provide
a good representation of the data, especially when the data from
the resampled p(z) are compared to. This suggests the random
catalogues should provide a good simulated catalogue to measure
w(#). As discussed in R. Kondapally et al. (2021) and R. K. Cochrane
et al. (2023), at some redshifts, there can be large uncertainties
on the photometric redshifts with some aliasing of the ‘Z_BEST’
value, whereas the p(z) better captures this effect. The redshift
distributions do present some larger discrepancies within some of
the sub-samples. However, we note that the flux density comparisons
and SNR comparisons are the most important, as incompleteness
relates to the observed properties of the source and knows nothing
of their z or luminosity. Provided these flux distributions appear
appropriate, differences in the z distribution are of less concern.
Examples of such differences in the z distribution can be seen for
the 0.6 < z < 0.8 redshift bin of SFGs, however the flux density and
SNR distribution appear to be in good agreement with the data. For
LERGs and QLERGs (see Fig. 3), these distributions show broad
agreement to those of the data resamples, though the differences in
SNR distributions are greater than seen for SFGs. This is, in part,
related to the source models used for such sources. As SKADS does

not have L/HERG classification, we use a mixture of AGN (Fanaroff
Riley Type I and II sources B. L. Fanaroff & J. M. Riley 1974, and
radio-quiet quasars). However this may provide a mixture of source
models not wholly representative of the demographics of LERGs.

For SFGs we also intend to study the luminosity dependence of
the clustering of SFGs and so present similar plots to that as in Fig.
2 for each of the luminosity ranges considered within each redshift
bin investigated. These are presented in the appendix in Figs Al—
A5 and again broadly show good agreement with the relevant
data.

4 w(@) - MEASUREMENTS, RESULTS, AND
DISCUSSION

To measure w(f) we use TREECORR (M. Jarvis 2015) to calculate
the pairs of galaxies within different angular separation bins from
our data and random catalogues and then use these alongside
equations (4) and (5) to measure the auto-correlation and cross-
angular correlation functions. Aside from differences in the angular
bins used, we adopt the same parameters for TREECORR as in C.
L. Hale et al. (2024) and subsequently use these pairs to calculate
w(#) as in equations (4) and (5), ensuring to correctly normalize for
the number of possible pairs across full angular range. In order to
determine the impact of the redshift (and its uncertainties) on our
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Figure 3. As for Fig. 2 but for LERGs (left two panels) and QLERGs (right two panels). Owing to differences in the source models between the data (where
sources are assumed to be Gaussians) and the randoms (which are ellipses convolved with the beam) and that LERGs are likely to have more extended
morphologies than for SFGs, we expect larger differences in S;/Sp for the LERGs than for SFGs compared to the randoms.

clustering measurements, we calculate w(6) for both those sources
split by Z_BEST and those split into the redshift bins using the 100
resampled redshifts for each source. The w(0) presented for the p(z)
resampled data is the mean w(@) from the resamples in each angular
bin.

We estimate the uncertainties on w(6) using a process of bootstrap-
ping (see e.g. E. N. Ling, C. S. Frenk & J. D. Barrow 1986) where
we resample the data to generate new samples of the data which have
the same size as the original data sample but containing randomly
selected sources and then using these to calculate w(6)'*. As such,
a given source may be repeated in a sample or may be missing
from a given bootstrap resample. We repeat this process 100 times.
Furthermore, when we consider the effect of the p(z) resampling,
we estimate the error by repeating the bootstrapping process for each

13We note that other methods to generate errors are possible such as Jackknife
errors and using bootstrapping with sub-regions as opposed to individual
sources. We choose to remove individual sources, which more closely
mimics how we resample galaxies based on their p(z). While this can be
found to underestimate uncertainties in some conditions (see e.g. P. Norberg
et al. 2009), bootstrap resampling using sub-volumes can also be found
to overestimate errors. We take this individual source approach for more
consistency with previous work of (C. L. Hale et al. 2018) and note that we
will discuss these errors in Section 5.2.
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of the resampled p(z) data sets. The errors are calculated from the
combination of all of the bootstrap resamples in each of the redshift
resamples and determining the uncertainties as would be measured
for a set of bootstrap resamples (as described in P. Norberg et al.
2009).

We only resample redshifts for the radio catalogue, not for that
of the optical catalogue. Whilst there are also uncertainties in
the redshift distributions of the multiwavelength catalogues, these
galaxies are used as a reference sample in the cross-correlation. As
the properties of the galaxies such as their mass (which are used
in the completeness cuts) are calculated assuming the measured
‘best’ redshift of the sources, re-calculating such mass parameters
for a different redshift is an intensive process and so it would be
challenging to implement such a resampling of redshifts for the
multiwavelength galaxies. We therefore make redshift cuts for the
multiwavelength galaxies on the ‘best’ redshift for the source. The
auto-correlation functions for the multiwavelength data are shown
in Figs 4 and 5 for the z binning of the SFGs and (Q)LERGs
respectively.

We present a comparison of both the auto-correlation and cross-
correlation functions for SFGs, LERGs and QLERGs in Figs 6, 7,
and 8, respectively. This is shown for both the redshift binning based
on the separation using the Z_BEST column the catalogues of R.
Kondapally et al. (2022) and K. J. Duncan et al. (2021) and also from
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Figure 4. Auto-correlation of the multiwavelength sample of galaxies in each of the redshifts bins used to measure w(6) for SFGs. The black open pentagons
indicate the combined TPCF across the three fields, with their individual w(6) shown for Bodtes (red stars), ELAIS-N1 (blue squares), and Lockman Hole (gold
triangles). The dashed vertical lines highlight the region used to fit the correlation function over in order to measure the bias.
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Figure 5. Similar to Fig. 4, shown are the auto-correlation for the multi-
wavelength sample within the redshift bins used for the LERG (and QLERG)
studies.

the resamples which probe the full p(z). These figures demonstrate
that the measured clustering within the fields can exhibit differences
when the full p(z) is not used to associate a redshift, which in turn
will affect measurement of bias, though we note that most differences
are within the uncertainties of the measurements. More broadly, it
can be seen that these measurements of w(f) from both the auto-
correlation and cross-correlations exhibit close to expected power
law behaviour on the majority of angular scales, up to ~0.5°. At
larger angular scales, the clustering signal declines more sharply,
this is in part as a result of the finite field size limiting the number
of observable pairs of galaxies at the largest angular scales. When
fitting our model we will account for this using an integral constraint
(see e.g. N. Roche & S. A. Eales 1999) evaluated across the size of
individual fields.

At the smallest angular scales there is continued increased clus-
tering to the smallest scales considered. In shallower radio surveys
with comparatively more AGN, such clustering at small angular
scales often has a significant contribution from the clustering between
multiple components associated with a single galaxy which have not
been combined together into a single source (see e.g. C. Blake &
J. Wall 2002; R. A. Overzier et al. 2003). However, as radio
components have already been cross-matched in the work of R.
Kondapally et al. (2021), we are likely observing genuine departures
from the large-scale power-law like clustering due to the ‘1- and
2-halo’ clustering, i.e. the clustering of sources within the same dark
matter halo (see e.g. A. V. Kravtsov et al. 2004; 1. Zehavi et al.
2004).

Fitting the 1- and 2-halo clustering is possible within a halo
occupation distribution (HOD) framework. Such a method allows the
properties of the haloes that can host both central and satellite galax-
ies to be measured, under the assumption of an HOD parametrization
(see e.g. A. A. Berlind & D. H. Weinberg 2002; Z. Zheng et al.
2005; Z. Zheng, A. L. Coil & 1. Zehavi 2007; P. W. Hatfield et al.

2016). Such modelling of the full HOD parametrization is beyond the
scope of this work, but will be considered in future work, with deep
surveys from telescopes such as LOFAR and MeerKAT (e.g. C. L.
Hale et al. 2025). We instead focus on the larger scale, 1- and 2-halo
clustering, in order to measure the galaxy bias and how this evolves
with redshift for different source populations. However, we will
present our results of fitting w(6) with models from the cosmology
code the Core Cosmology Library (CCL, N. E. Chisari et al. 2019)
which take into account both the (i) 1- and 2-halo clustering only
(the ‘linear’ model) and (ii) a model which combines the 1- and
2-halo clustering (the ‘HaloFit’ model, see e.g. R. E. Smith et al.
2003; R. Takahashi et al. 2012) in Section 5.2. This is under default
HOD used in CCL for the model, which may not be appropriate for
the radio sources, especially on the smallest angular scales. Both
models are fit to the data to demonstrate that irrespective of the
model assumed, we measure comparable values for the large-scale
bias.

As can be seen from Figs 6-8, at low redshifts the difference in
both the auto-correlation and cross-correlations between the values
of w(6) when using the Z_BEST values and the p(z) resamples
are small, likely owing to the fact that spectroscopic redshifts will
likely dominate at low redshifts and sources are more likely detected
across a wealth of multiwavelength bands. Therefore, the differences
between the p(z) samples and the Z_BEST selected sample is
reduced, compared to higher redshifts. Figs 6—8 also demonstrate the
large uncertainties found in the auto-correlation, especially for SEGs
and LERGs at high redshifts, are reduced when the cross-correlation
is instead measured. This is especially true for the LERGs, where the
reduced number of sources compared to the SFGs presents challenges
in measuring the bias from the auto-correlation function alone. We
will therefore present the comparison of the bias measurements
from the auto-correlation for the SFGs in Section 5.2 and then
proceed with the cross-correlation functions to measure the bias
evolution of SFGs and LERGs in the LoTSS Deep Fields to draw
conclusions.

5 GALAXY BIAS RESULTS AND DISCUSSIONS

5.1 Measurement of Galaxy bias, b

To measure the bias from w(#), we follow the methodology in C. L.
Hale et al. (2024) and use CCL, which uses cosmology packages such
as CAMB (A. Lewis, A. Challinor & A. Lasenby 2000) and CLASS
(J. Lesgourgues 2011) to generate models of the power spectrum
and infer the angular clustering, through assuming cosmological
parameters, bias models and redshift distributions. As in D. Alonso
et al. (2021) and C. L. Hale et al. (2024) we use an evolving galaxy
bias model (b(z) = %, where D(z) is the growth factor, see e.g. A.
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blue) and (ii) from the p(z) resampled value of z (black). This is shown in increasing redshift bins (left to right) and for the auto-correlation (upper panel),
cross-correlation (middle panel), and for the cross-correlation compared to each of the three individual fields (lower panel) for Bodtes (red stars), ELAIS-N1
(blue squares), and Lockman (gold triangles). In the top and middle panels the red line and shaded region represents the best-fitting ‘Linear’ model, while the
blue line represents the best-fitting ‘HaloFit” model to the black data points. Also shown is the model minus the integral constraint indicated by the red dashed
line (for the ‘Linear’ model) and the blue dotted line (for the ‘HaloFit’ model). The dashed vertical lines indicate the 6 ranges, which we fit the data over. The
grey crosses indicate the value of the p(z) resampled w(6) for the combined fields in the lowest redshift bin, purely to guide the eye.

107t
1072
1073

1074

Auto, z: 0.5-1.0

Auto, z: 1.0-1.5

"

Data ‘

p(z) Resample
| L1

T

Auto, z: 0.5-1.0

I

Data |
p(z) Resample |
I A I | |

Auto, z:1.0-1.5

I - _J__I»[ I

Cross, z: 0.5-1.0

Cross, z: 0.5 -1.0

Cross, z: 1.0 - 1.5

?f7¥ ; ;

”T?m”

Cross, z: 0.5 - 1.0

Cross, z: 1.0 - 1.5

L ]

i,"
iiiiii

{ Bootes

% Elais

L Lockman

I p(z) Resample

1072 107t 100
e(’)

1072
o)

Figure 7. As for Fig. 6 for the LERG samples.

MNRAS 544, 13231348 (2025)

sy iy |
= My ity
S 0 i

} Bootes
1073y & Elais ‘

L Lockman
107 10-21 107! 100 1072 1071

6(°) er)

Figure 8. As for Fig. 6 for the QLERG samples.



Clustering of AGN/SFGs in LoTSS Deep Fields

J. S. Hamilton 2001) to quantify the evolution of the bias for a given
population of sources within the redshift bin. A constant bias model
was also used in D. Alonso et al. (2021), C. L. Hale et al. (2024) and
S. J. Nakoneczny et al. (2024), but we note that due to the narrow
redshift ranges considered in this work, the bias measured assuming
a constant bias model (b(z) = b) showed little differences compared
to when the evolving galaxy bias model was assumed when evaluated
at the average redshift in the bin being considered.

In order to measure galaxy bias, a redshift distribution is also
required for the radio and optical sources. For the radio sources we
use a different redshift distribution for each of the p(z) resamples.
This is taken the combined histogram of the resampled redshifts for
each source in the resample, normalized to form a p(z). Using the
resampled z values avoids unphysical spikes in the combined redshift
distribution for all sources in the sample, which would be produced
from spectroscopic redshifts. For the multiwavelength sources we
take a similar approach to create a combined redshift distribution
for sources with a Z_BEST value within the redshift range. These
redshift distributions are therefore peaked within the redshift bin,
but with wings in the p(z) to redshifts beyond the bin value, due
to uncertainties in the redshift values. We discuss this further in
Section 5.4.

The redshift distribution is provided to CCL and by is determined
for the auto correlation through first calculating the CCL model
assuming by = 1 and then scaling by b%. This allows the x>
distribution to be calculated as a function of bias, using the full
covariance as given by

x> = (@ — o) Cov (& — am), ©)

where & is the angular TPCF which is measured for the data
sources, aT>M is the modelled w(f) which includes the subtraction
of an integral constraint (see e.g. N. Roche & S. A. Eales 1999,
to account for the limited field sizes) and Cov is the covariance
matrix calculated from the bootstrap resampling methods across
the p(z) samples considered. The covariance takes into account the
correlations between 6 bins which may impact the inferred bias
values, compared to when the diagonal elements alone (i.e. the
errorbars in Figs 4-8) are used.

In the work of C. L. Hale et al. (2024) both the linear and HaloFit
models (R. E. Smith et al. 2003; R. Takahashi et al. 2012) within
CCL were used to model the angular clustering. C. L. Hale et al.
(2024) determined that the linear model was more appropriate for
the LoTSS-DR2 data across the angular ranges considered, where
data at & < 0.03° could also not be used to fit the bias in C. L. Hale
etal. (2024) due to the excess clustering at small angular scales being
partly attributable to multicomponent sources. Due to differences in
the ‘linear’ and ‘HaloFit’ models, these were in the best agreement
when fitting above ~ 0.3°. Due to the smaller maximum angular
separations which can be probed in this work, we must use different
0 ranges to fit the data, where we use 0.05° < 6 < 0.5°.

We fit for both the ‘HaloFit’ and ‘linear’ models and fit for b
through minimizing x 2. We determine the uncertainties on by through
modelling the probability distribution from the x? distribution of by
(assuming P « e X/ 2). We randomly sample from this distribution
and use this to determine the associated median, 16th and 84th
percentiles for by. To account for uncertainties introduced due to
the p(z) distribution of sources we fit the galaxy bias for each w(0)
measured for the p(z) subsamples. Combining together the randomly
sampled bias values from fitting each of these w(6) then gives a larger
sample of bias values which we use to then quote the associated
median and errors from the 16th and 84th percentiles.
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To determine by from the cross-correlation, wcc(0), we follow a
similar method to that for the auto-correlation, but using two tracers.
This makes use of the relationship:

béc =bac,1bac,2, (8)

where byc,; is the bias of the first sample (radio) and bsc » is the
bias for the second sample (multiwavelength), as also used in works
such as S. N. Lindsay et al. (2014)'*. byc» is determined from
the auto-correlation of the multiwavelength data alone, with the
redshift distribution of the multiwavelengths sources taken as the
combined p(z) of sources with Z_BEST values within the given
redshift range. To determine the bias of the radio sample from
the cross-correlation we calculate wcc(6) assuming the radio bias,
by radio = 1. We then follow a similar method to the auto-correlation
and, in every redshift bin for the population being considered, scale
this correlation function using the radio bias (having assumed an
optical bias, discussed below). However, in contrast to the auto-
correlation, we now scale by the radio bias, b, as opposed to b%. In
this way, by varying b and scaling the cross-correlation function by
this, we are able to again measure the probability distribution of bias
and quantify the best fit of b for each radio source population in the
given redshift bin.

Uncertainties on the radio bias from the cross-correlation need
to account for both uncertainties in the measured values of wcc(0)
(which include the uncertainties in the p(z) of the radio sample)
and the uncertainties in the bias of the multiwavelength sources. We
therefore, calculate the radio bias, b, through drawing 100 random
samples of the bias from auto-correlation of the optical sample. For
each optical bias value we combine this with the wcc(0) from the
p(z) resampling and use this to calculate the radio bias through
evaluating the x? and solving similarly to the auto-correlation. After
combining the radio bias samples derived for each of the resamples
we have a bias distribution for the radio sample which is derived
from the cross-correlation and accounts for the redshift uncertainties
in the radio sources and uncertainties in the multiwavelength bias.
The bias values reported are then taken as the median bias values and
associated errors are calculated from the 16th and 84th percentiles.
We will present a comparison of the bias results for the Linear and
HaloFit models respectively in Section 5.2, to demonstrate the effect
it has on our measurements of b. The properties of the data in the
redshift bins considered and the bias fitting parameters (assuming
the HaloFit model) are presented in Table 3.

5.2 b(z) Results for SFGs versus LERGs

We present our measurements of bias for SFGs and LERGs in
Table 3 and in Figs 9 and 10 alongside the comparison to previous
models adopted in R. J. Wilman et al. (2008, 2010) and for the
previous measurements of A. Nusser & P. Tiwari (2015) and S. N.
Lindsay et al. (2014) which are flux-limited samples (dominated by
AGN), and for the classified samples (AGN versus SFGs) of M.
Magliocchetti et al. (2017); C. L. Hale et al. (2018); A. Chakraborty
et al. (2020) and A. Mazumder et al. (2022). As discussed, C.
L. Hale et al. (2018), use the VLA 3 GHz COSMOS Survey (V.
Smolcié et al. 2017a, b) to study the clustering of SFGs and AGN, as
well as high-redshift analogues for HERG and LERG populations.

14While S. N. Lindsay et al. (2014) include a growth factor term in their work,
as we fold in the evolving bias and redshift distribution of the two populations
in the modelling in CCL and do not evaluate at a single average redshift, this
is not believed to be necessary for this work.
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Figure 9. Comparisons of b(z) for SFGs (left), LERGs (centre), and QLERGs (right). The filled light colours indicate results from the auto-correlation function
(circles) and dark colours (for red, blue, and purple) indicate the results from the cross-correlation function (squares), when using the ‘HaloFit’ function.
Additionally, artificially offset by §z = 0.05 and semitransparent are the results from using the ‘linear’ model. We also show previous results of A. Nusser &
P. Tiwari (2015, dark grey dashed lines; this is for an AGN-dominated population), S. N. Lindsay et al. (2014, grey pentagons; for sources not categorized by
source type), M. Magliocchetti et al. (2017, grey squares), A. Chakraborty et al. (2020, grey right pointing triangles), A. Mazumder et al. (2022, grey upwards
pointing triangles), and C. L. Hale et al. (2018, black diamonds for SFGs and black crosses for LERGs). For M. Magliocchetti et al. (2017), A. Chakraborty
et al. (2020), and A. Mazumder et al. (2022), who measure the bias of AGN and SFGs separately, the points outlined in red represent the bias measurements
for AGN and we only plot the source type relevant measurements in each given panel. The hatched regions indicate the evolutionary bias model that would
be observed using the b(z) o 1/D(z) model, using the bias in the lowest redshift bin for that source type. Additionally, the models used in R. J. Wilman et al.
(2008, 2010) are also shown as grey lines for RQQs (light grey dotted), SFGs (light grey dot-dashed), starburst galaxies (SB, dark grey dashed), FRI galaxies
(dark grey solid, see B. L. Fanaroft & J. M. Riley 1974, for descriptions of FRI sources) and FRII galaxies (dark grey dotted).
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Figure 10. As for Fig. 9, now showing the comparisons of bias between the
different source populations (SFGs, LERGs and QLERGsS), using the bias
derived from the cross-correlation function and using the ‘HaloFit’ fitting
model. The previous models (A. Nusser & P. Tiwari 2015) and data (S. N.
Lindsay et al. 2014; M. Magliocchetti et al. 2017; C. L. Hale et al. 2018;
A. Chakraborty et al. 2020; A. Mazumder et al. 2022) shown use the same
plotting style as in Fig. 9. Additionally, the models used in R. J. Wilman et al.
(2008, 2010) are also shown as grey lines for RQQs (light grey dotted), (light
grey dot-dashed), starburst galaxies (SB, dark grey dashed), FRI galaxies
(dark grey solid, see B. L. Fanaroff & J. M. Riley 1974, for descriptions of
FRI and FRII sources), and FRII galaxies (dark grey dotted). The halo masses
assumed for these populations are also shown in the legend.

This provides the closest comparison to the studies presented in
this work. However, the classification adopted for the clustering of
LERGs in C. L. Hale et al. (2018) is more similar to the QLERG
population discussed in R. Kondapally et al. (2021) and adopted in
this work. In the SKADS models, fixed halo masses were assumed
for each population using the formalism of H. J. Mo & S. D. M.
White (1996) and we highlight these halo masses on Fig. 10. We
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note, though, that the masses assumed by R. J. Wilman et al. (2008)
will not be a directly transferable to the full population of sources
considered as this make assumptions about the source populations
being dominated by central (not satellite) galaxies, see e.g. the works
of J. Aird & A. L. Coil (2021) and so we use them indicative only for
comparisons.

Fig. 9 presents the bias measured from the aut-ocorrelation and
cross-correlation, for both the ‘linear’ and ‘HaloFit” derived models.
We find good agreement, in general, between the auto-correlation
and cross-correlation methods, which are consistent within 1o, as
well as good agreement when the ‘linear’ and ‘HaloFit’ models are
compared. This provides confidence that the measured bias values
are not being affected by the choice of model. We note, though, that
constraints on the auto-correlations can be very uncertain, which is
evident to be the case considering the auto-correlation in Figs 6-8.
We also note that when considering the fitting of w(8), the minimum
reduced y? (hereafter R- x %) values found can be < 1 (where a value
of 1 would be expected for a good fit of the data), suggesting that
our estimation of the uncertainties in w(f) may be larger than they
should be. We note though that the R-x? of all resamples which are
generated (from which the bias is obtained from the 16th, 50th and
84th percentiles) will have larger average R-x2, as these values in the
table represent the minimum possible R- x? found. As discussed, we
have aimed to combine uncertainties on the TPCF (through bootstrap
resampling), cosmic variance (through combining the three deep
fields) and uncertainties in the redshift distributions of our radio
sources (through the p(z) resamples). The R-x 2 found in the fitting of
b could therefore be indicative that we have provided too conservative
values for the uncertainties in w(@), which have folded through to the
fitting of b. This therefore could suggest that either (i) the variance
between fields is larger than is expected, (ii) that the uncertainties
associated with the p(z) for the sources may be too broad for a subset
of sources or this is related to the uncertainty method used, or (iii) that
the spread between the fields is a result of remaining systematics or
classification issues per field. Uncertainties in the redshift distribution
will be greatly reduced with the upcoming WEAVE-LOFAR (D. J. B.
Smith et al. 2016) survey, which will provide spectroscopic follow-up
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Table 3. Summary table for fitting the bias from the auto-correlation and cross-correlation for SFGs, LERGs and QLERGs within the redshift bins considered
in this work. Included is the number of radio (Nragio) and multiwavelength sources (Nyy1i) Within the redshift bin, the median radio redshift in the bin (zmed),
the median mass of radio sources in the bin from the consensus mass of P. N. Best et al. (2023) and the ratio of randoms to data in the sample (Nr /Np). Finally
the bias from the auto-correlation (bac) and cross correlation (bcc) at the average redshift of the bin alongside the minimum reduced- 2 when fitting for b is

included. The bias results assume the Halofit model is used.

Source type 7 range Zmed NRadio NMulti logo(M« [Mo])  NR/Np  bac(zmid) R-Xgin ac  becGmia) R cc
SFG 0.10-0.40 0.25 6923 15117 10.4 150 106759 0.1 0.90%91% 0.2
SFG 0.40-0.60 0.49 5044 29 199 10.7 150 1447517 0.1 1197514 0.3
SFG 0.60-0.80 0.69 4686 44 396 10.8 105 1867528 0.03 1.5219-20 0.1
SFG 0.80-1.00 0.89 3504 47295 10.9 128 1.827538 0.02 1647534 0.2
SFG 1.00-1.30 L11 4683 59949 11.0 98 3497047 002  2.94%03% 03
LERG 0.50-1.00 0.73 2900 108 633 11.1 1.5 2677549 0.03 2.33102%8 0.02
LERG 1.00-1.50 1.19 1758 79211 11.1 150 298707 0.1 2.65%037 0.2
QLERG 0.50-1.00 0.69 1575 108 633 11.2 138 2.587033 0.01 2.62103 0.1
QLERG 1.00-1.50 1.15 624 79211 112 150 2274 0.1 3.0810% 0.1

of LOFAR-detected sources, thus accurately constraining redshifts
for a significant population of sources, and allowing for direct spatial
clustering measurements as well as aiding in the source classification
process.

In general, the constraints on w(@) from the cross-correlation are
less uncertain than from the auto-correlation alone. The comparisons
in Fig. 10 between the three populations also shows, in agreement
with C. L. Hale et al. (2018), that over medium redshifts (z ~
0.5—1.0) LERGs and QLERGs appear to be more biased tracers
of dark matter compared to those radio sources classified as SFGs.
Comparing to those models assumed in SKADS, this supports the
idea from other radio clustering studies that AGN are typically found
in more massive haloes than star formation dominated radio sources
(see e.g. M. Magliocchetti et al. 2017; C. L. Hale et al. 2018; A.
Mazumder et al. 2022). This is also in line with numerous studies
at other wavelengths and in simulations where redder galaxies are
typically more clustered than blue galaxies (see e.g. R. S. Somerville
et al. 2001; I. Zehavi et al. 2005; A. L. Coil et al. 2008; J. G.
Cresswell & W. J. Percival 2009) and may reflect the LERGs residing
in galaxies that typically have larger stellar masses than SFGs (which
can be demonstrated from the average consensus masses of P. N. Best
et al. 2023, for which the median value is given in Table 3). We note
though that at the highest redshift bin for the SFG population, the
average mass is similar to that for the LERGs. These in turn may be
hosted by more massive haloes, given correlations between galaxy
clustering and stellar mass (see e.g. D. J. Farrow et al. 2015; R. K.
Cochrane et al. 2017; A. Durkalec et al. 2018).

For the SFGs, our work shows remarkable agreement across the
redshift bins studied here to that of the studies of C. L. Hale et al.
(2018), A. Chakraborty et al. (2020) and A. Mazumder et al. (2022).
We measure a smooth evolution in the bias of SFGs, increasing
from a bias, b =0.90"01) (1.06739%) for the cross-correlation
(auto-correlation) at the lowest redshift (z ~ 0.2) to b = 2.94703¢
(3.4910:47) at the highest redshifts considered (z ~ 1.2). Anevolution
in the bias for SFGs is in part expected, as there is evidence (e.g. P.
S. Behroozi, R. H. Wechsler & C. Conroy 2013), that halo masses
of ~ 10'2 M, are the most efficient dark matter haloes for forming
stars across a vast range of redshifts. As radio luminosity is known
to be correlated to SFR (see recent studies in e.g. L. J. M. Davies
et al. 2017; G. Giirkan et al. 2018; D. J. B. Smith et al. 2021), we are
likely observing highly efficient SFGs. In order to reside in such a
similar halo mass over cosmic time, this will require an evolution in
the bias.

In other LOFAR clustering studies that average across all redshifts
(e.g. D. Alonso et al. 2021; C. L. Hale et al. 2024; S. J. Nakoneczny
et al. 2024), we have assumed the bias is evolves inversely propor-
tional to the growth factor, b(z) = by/D(z). However, in this work
we split into smaller redshift ranges than these previous studies and
do not force by to be the same in each redshift bin. Therefore, we are
able to test whether this functional form is suitable to found in this
work using smaller redshift bins. To do this we use the value of by
found in the lowest redshift bin considered for the source population
(SFG/LERG/QLERG) and trace its evolution under such a model.
This is given by the hatched regions on Fig. 9. This comparison
demonstrates that the bias values for SFGs are evolving at a more
rapid rate than this previously assumed model, with the evolutionary
models used in R. J. Wilman et al. (2008), suggesting that while
the bias does increase with redshift (as for the models of R. J.
Wilman et al. 2008), the SFGs here are evolving at a quicker rate
and with larger bias than for the ‘normal’ SFG population of R.
J. Wilman et al. (2008). Assuming the models of R. J. Wilman
et al. (2008), our SFGs also suggest there may be some potential
evolution above that for a constant halo mass. We note that R. J.
Wilman et al. (2008) split the SFGs into a starburst population,
and a population of ‘normal’ SFGs galaxy population, whilst we do
not distinguish the radio-detected SFGs into sub-classes. However,
our findings contribute to the growing evidence (from e.g. studies
of C. L. Hale et al. 2018; A. Mazumder et al. 2022) that for
a typical radio population at current sensitivities, using the bias
models adopted in R. J. Wilman et al. (2008) to make predictions
(such as for cosmological predictions A. Raccanelli et al. 2012;
L. D. Ferramacho et al. 2014; Square Kilometre Array Cosmology
Science Working Group et al. 2020) may not be appropriate (though
see Section 5.4). Therefore, works such as Z. Gomes et al. (2020)
which adopt more recent bias measurement based models are key.
Rapid evolution in bias has also been previously found for multi-
wavelength studies of SFGs (M. Magliocchetti et al. 2014) between
z~1-=2

This rapid evolution may relate to an intrinsic evolution for the
star forming population, but may also relate to differences in the
populations, where the higher redshift sources will typically be more
luminous sources. Therefore, a dependence of the bias on the radio
luminosity of the source could drive an apparent evolution with
redshift. This is investigated in Section 5.3. However, such results
may also be indicative of sources with increased AGN activity
at higher redshift. Given the typically larger bias of our LERG
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population compared to the SFGs (and more generally for AGN
in the works of e.g. C. L. Hale et al. 2018; A. Mazumder et al. 2022),
greater AGN contamination at the highest redshifts could increase
the observed bias of SFGs. Indeed, there are different approaches
taken to classify radio galaxies both on their multiwavelength
information such as through ultra-high-resolution imaging (see e.g.
L. K. Morabito et al. 2025) as well as using different SED fitting
codes (see e.g. S. Das et al. 2024). Both these approaches have
been used to classify LOFAR data in these deep fields and while the
majority of classifications agree between the different methods, some
differences are found in their in their proposed classifications to that
of P. N. Best et al. (2023) which is used in this work. This includes
at the higher redshifts for SFGs considered in this work. This could
be an alternative explanation for the agreement between the SFGs
and LERGs in the highest redshift bins considered. However we do
note that the bias measured for SFGs in the highest redshift bin is
consistent with the evolution seen when the results of C. L. Hale
et al. (2018) is combined in this work.

For the LERG population, we measure a lower bias compared
to the LERG analogues of C. L. Hale et al. (2018). However, as
noted in Section 2.4, the QLERG population is believed to be a
more direct comparison to the LERG population used in C. L. Hale
et al. (2018). In the current work, QLERGs show better agreement
with the lower redshift work of C. L. Hale et al. (2018), though
the LERGs are consistent within ~ 0.50 to the QLERGs of this
study and ~ 1o to the work of C. L. Hale et al. (2018). Therefore
we have weak evidence to suggest that QLERGs reside in more
biased haloes than the general LERG population. This could suggest
that similar to the wider population of galaxies, those with more
significant star formation in the host galaxy appear to reside in less
massive haloes. This would imply that the underlying dark matter
halo of a radio source may be influential in the properties of the radio
source itself, or it appears at least related. The bias of the QLERG
and LERG populations are more uncertain though and so could also
be consistent with little-to-no evolution.

Previous works studying the bias evolution in the LOFAR surveys
have typically been limited to higher flux density limits than
considered in this work (see e.g. D. Alonso et al. 2021; C. L. Hale
et al. 2024; S. J. Nakoneczny et al. 2024; G. C. Petter et al. 2024)
by approximately a factor of ~10 and will be more dominated by
AGN populations (see P. N. Best et al. 2023). As such, for those
brighter populations the b(z) o 1/D(z) may have been an appropriate
model for the bias. We note that in C. L. Hale et al. (2018), it was
noted that for the full AGN population the bias appeared to flatten
at the highest redshifts considered (z ~ 1.2—1.8), which could be
indicative of the downsizing of haloes required to host equivalent
sources at higher redshifts. Supporting the results of C. L. Hale
et al. (2018), we also conclude that the bias models of R. J. Wilman
et al. (2008) for SFGs more closely reflect that assumed for their
radio-quiet quasar (RQQ) population in this sample. R. J. Wilman
et al. (2008) split the SFG populations into normal and starburst
galaxies, therefore if such bias models are adopted for cosmological
analysis (e.g. A. Raccanelli et al. 2012; L. D. Ferramacho et al.
2014) then a bias more representative for a realistic radio SFG
population should be adopted. The halo mass estimates from R.
J. Wilman et al. (2008) suggest such differences in the halo masses
assumed for SFGs could be an order of magnitude and should be
accounted for in order to place constraints on non-Gaussianity (as
updated in Z. Gomes et al. 2020). Studies similar to this work using
deeper observations from precursor and pathfinder telescopes prior
to the Square Kilometre Array Observatory (SKAO) are crucial
to help understand the bias models to adopt in such studies. Our
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results for LERGs suggest that AGN sources, of this type are more
biased than star formation dominated galaxies up to intermediate
redshifts (z < 1), but that the populations become more similar in
their bias at higher redshifts. This may be related to findings that
the LERG populations appear to become dominated by star-forming
hosts for z 2 1 in the luminosity functions of R. Kondapally et al.
(2022).

5.3 Luminosity dependence of bias for SFGs

As discussed in Section 5.2, the bias of the SFGs appears to grow at
a much faster rate than for the evolving model assumed in previous
LOFAR studies (D. Alonso et al. 2021; C. L. Hale et al. 2024; S. J.
Nakoneczny et al. 2024, where b(z) o« 1/D(z) is assumed). In this
section we consider if this is driven by more luminous populations
at higher redshifts, which are intrinsically more biased. This reflects
work especially at other wavelengths such as that of 1. Zehavi et al.
(2011); R. K. Cochrane et al. (2017) and C. Clontz, D. Wake & Z.
Zheng (2022). For the work of I. Zehavi et al. (2011), their study of the
clustering length, ry, of blue galaxies compared to red galaxies shows
an increase in ry with luminosity, while R. K. Cochrane et al. (2017)
used Ho detected SFGs at z ~ 0.8 and found these populations to be
more biased when more Ha luminous populations were considered.
We note, though, that R. K. Cochrane et al. (2023) appeared to
observe a flattening in bias at larger Ho luminosities for z ~ 1.5
sources. However, the clustering of radio-detected SFGs as a function
of luminosity over a wide range of redshifts has not been studied in
detail and can be limited by the redshift regimes probed by high-
and low-luminosity samples (see e.g. C. L. Hale et al. 2018). This is
because large samples of SFGs from deep radio imaging are required,
in regions where redshifts are available, such as from the LoTSS Deep
Fields. As discussed in Section 5.2, at radio wavelengths, the SFR
and radio luminosities are known to be well correlated for SFGs
(see e.g. T. Garn et al. 2009; L. J. M. Davies et al. 2017; G. Giirkan
et al. 2018; D. J. B. Smith et al. 2021). If the bias of radio SFGs is
correlated with the radio luminosity, this could in part explain the
bias evolution as an effect of tracing different populations and more
luminous SFGs at the highest redshifts.

The LoTSS Deep Fields data set is sufficiently large to allow us
to investigate whether we are able to constrain how the bias of SFGs
varies with both redshift and radio luminosity simultaneously. To do
this we take the same approach as in the previous sections (where a
given redshift range is selected) but additionally split into luminosity
bins for each of the redshift bins that is considered. Specifically we
use three luminosity bins for each of the redshift ranges considered,
defined by taking the luminosities for sources with Z_BEST values
within the redshift range being considered and take the 33rd and 67th
percentiles of the luminosities. For the p(z) resampled data sets these
will not be exactly even percentiles as the sources being considered
in each redshift bin (and their luminosity) will vary, though should
be approximately evenly distributed between luminosity bins. We
apply the same luminosity cuts on the randoms using a combination
of the redshift and the ‘measured’ integrated flux density to obtain
their luminosities. As for the SFG sample where no luminosity cuts
are applied, we compare the flux density, redshift and luminosity
distributions of the data compared to the randoms, for which there
is broad agreement, especially when the p(z) resampled data are
considered. These distributions are shown in Figs A1-AS.

The bias as a function of luminosity is presented in Fig. 11
and the measured values are given in Table 4. This is given for
both the auto-correlation and cross-correlation derived values. Such
bias measurements are plotted at the median luminosity for sources
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Figure 11. Bias as a function of luminosity for the auto-correlation (left) and cross-correlations (right) of SFGs across the redshift bins considered in this work.
Each colour represents a different redshift bin ranging from z: 0.10—0.40 (purple) to z: 1.00—1.30 (yellow). The equivalent SFR is also given on the top x-axis
using the mass-independent conversion between luminosity and SFR of D. J. B. Smith et al. (2021).

Table 4. Bias from the auto-correlation (bac) and cross-correlation (bcc) w(8) for SFGs for different luminosity bins within the redshift bins considered in this
work, evaluated at the mid point of the redshift bin. All luminosities are 144 MHz luminosities. We note that N is the number of sources in the luminosity bin
based on Z_BEST and is only indicative of the number of sources, as we use the resampled z values from the p(z) to make samples to make measurements of

w(®).
Z range logo(L [W/Hz]) Median N bac(zmid) R-x2in bee(Zmid) R-x2in
range log,o(L [W/Hz])
0.10-0.40 21.74-22.79 22.54 2324 0.961013 0.05 0.681023 0.06
0.10-0.40 22.79-23.10 22.95 2307 1.097933 0.04 Lo1*57 0.06
0.10-0.40 23.10-24.79 23.29 2291 127531 0.22 1001918 0.06
0.40-0.60 23.01-23.40 23.29 1705 1207037 0.04 0.93+0.24 021
0.40-0.60 23.40-23.58 23.49 1621 1.397047 0.05 1.347026 0.21
0.40-0.60 23.58-24.72 2372 1717 1217946 0.02 132792 0.21
0.60-0.80 23.42-23.70 23.61 1567 166708 0.06 1.447033 0.05
0.60-0.80 23.70-23.88 23.78 1562 1521572 0.05 1471538 0.05
0.60-0.80 23.88-25.16 24.02 1555 1371573 0.06 1687538 0.05
0.80-1.00 23.71-23.96 23.88 1174 1.877}22 0.05 1757920 0.15
0.80-1.00 23.96-24.12 24.03 1164 2.157}1¢ 0.03 1.5875:63 0.15
0.80-1.00 24.12-25.33 24.25 1165 150701 0.07 1647938 0.15
1.00-1.30 23.93-24.20 24.12 1579 3.0719 0.03 2.4310:40 0.11
1.00-1.30 24.20-24.38 24.28 1581 3187112 0.02 3.197583 0.11
1.00-1.30 24.38-25.79 24.51 1551 2.99+1-28 0.03 3.04706 0.11

with a Z_BEST value in the redshift and luminosity (from Z_BEST)
within the appropriate bin. The results show broadly good agreement
between the auto-derived and cross-derived bias values, though due
to the smaller sample sizes being considered, the errors are larger
for the auto-correlation and so challenging to draw any conclusions
from. Therefore, our conclusions need to be drawn from the cross-
correlation derived values. The cross-correlation results in Fig. 11
show that any dependence of the median bias on luminosity is
weak. To quantify this, we fit a simple linear model and using
scipy’s (P. Virtanen et al. 2020) curve_fit module. We find
slopes in the linear fit which are consistent with no evolution within
~ lo. Therefore, we cannot comprehensively determine whether the

differences in the luminosity are driving the evolution for SFGs seen
in Fig. 9 or if the redshift evolution of bias is the only factor at play.
Larger source populations will be crucial for such studies which will
be provided through deep surveys such as the second data release
of the LOFAR deep fields (T. W. Shimwell et al. 2025) and the
MIGHTEE survey (C. L. Hale et al. 2025).

5.4 Limitations of this analysis

Whilst this work presented has placed constraint on the evolving
bias of SFGs and LERGs within the LoTSS Deep Fields, there are
limitations to the analysis, which we outline here for completeness.

MNRAS 544, 1323-1348 (2025)



1340 C. L. Hale et al.

First, systematics may remain that are unaccounted (or not fully
accounted) for when obtaining the random catalogues of sources.
This may impact the measurements of w(6) and b(z). However,
there has been considerable effort to account for the observational
systematics (see Section 3.2.1), so we believe remaining effects are
less significant.

Moreover, there are significant uncertainties of the redshift dis-
tributions for both the radio and multiwavelength sources. Uncer-
tainty/variation in the p(z) will affect measurements of bias (through
the conversion of w(9) to b). For example, broader p(z) models
was found to raise the bias, compared to if the Z_BEST values
were assumed to be correct. This is because sources over a much
larger redshift range require a larger bias is needed to recreate the
observed clustering compared to if they were accurately constrained
within the redshift range in the bin. Whilst we adopt the redshift
uncertainties of K. J. Duncan et al. (2021), if these are overestimated
the bias measurements could be reduced. Redshift uncertainty will be
reduced with higher spectroscopic coverage for radio sources using
surveys such as WEAVE-LOFAR (D. J. B. Smith et al. 2016).

We also note that whilst there are redshifts uncertainties for the
data sources, the random catalogues are idealized and so do not have
the same uncertainties in their redshifts. However, what is important
for the random sources is that they reflect the observational detection
across the fields. We therefore considered the impact of redshift
uncertainties for the random catalogues by measuring w(f) from
using the random source catalogues in the neighbouring redshift
bins (where available). This saw little change in the measured values
of w(#). Therefore, we believe our results are robust against the lack
of uncertainties in the redshifts for the random catalogues.

Such redshift uncertainties further affect the multiwavelength
catalogues which we cross-correlate to. In our analysis, we choose
to cut the optical galaxies based on their Z_BEST redshift, with
a mass limit applied (where the mass is determined assuming the
best redshift). This allows for a consistent population for the radio
galaxies to be correlated to. However, the large uncertainties in
the redshift leads to a p(z) with more dominance in broad wings,
compared to some previous works (such as P. W. Hatfield et al. 2016;
M. Shuntov et al. 2022). This results in bias values for the optical
sample with significant deviations to that of previous work. In order
to test such effects, we considered the effect on the bias of the radio
SFGs using the method adopted in this work, but also assuming
the multiwavelength redshift distribution is (i) the obtained from the
redshift distribution of the Z_BEST values and (ii) resampling the
optical redshifts. In case (i), bias values for the multiwavelength
catalogue were reduced, and are more comparable to P. W. Hatfield
et al. (2016), and yet we observe the same trend in the evolving
bias for the radio-selected SFGs. We note that in case (ii) it is
computationally expensive to recalculate the stellar mass based on
the new redshift and so we do not recalculate the mass of the sample.
We again find the same trend in the bias evolution of the SFGs is
recovered. For both cases the radio biases are within ~ 1o of the
results presented in this work.

Finally, this analysis will be improved in the future through full
HOD analysis (as in e.g. Z. Zheng et al. 2005; Z. Zheng et al.
2007; P. W. Hatfield et al. 2016). The approach used in this work
invokes a simpler approach of only fitting the large-scale clustering
with a simple scaling for a functional form of w(9). Whilst this
is different to the approaches of e.g. C. L. Hale et al. (2018); A.
Chakraborty et al. (2020); A. Mazumder et al. (2022) who fit a power-
law distribution, there are similarities in the approach that full HOD
fitting is not used. Therefore, the approach in this work allows for a
more similar comparison to these previous works, without restricting
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ourselves to a power-law model, which will not be appropriate
across the range of angles considered. Our approach, though, may
have differences to the effective bias found from HOD modelling
which accounts for satellite galaxies within the samples to obtain
halo mass estimates, halo properties and constrain bias values. Such
relationships between halo mass and bias need to account for the full
HOD in order to accurately probe halo masses, see discussion in J.
Aird & A. L. Coil (2021). The combination of large radio samples
and accurate redshifts such as WEAVE-LOFAR will, in future,
allow more accurate constraints of the clustering evolution (and halo
property evolution) for the dark matter environments hosting radio
sources.

6 CONCLUSIONS

In this work we present a comparison of the clustering of SFGs
and LERGs across the three LoTSS Deep Fields to trace both
their evolution with redshift and the relationship between radio
source populations and their underlying dark matter environments.
We measure both the auto-correlation of the angular clustering
of radio sources and the cross-correlation with a catalogue of
multiwavelength sources across the fields, which total ~26 deg?
of combined area with deep multiwavelength observations. By
combining measurements of the angular TPCF with knowledge of
the redshift distribution within the fields assuming the full redshift
distribution, p(z), we obtain measurements of the galaxy bias (an
indicator of how clustered galaxies are to dark matter) and traces its
evolution to z < 1.5 in a number of redshift bins. This evolution is
measured both for sources separated as a function of source type,
and for the SFG population also as a function of radio luminosity (a
proxy for SFR).

Our work suggests an evolution in the bias for SFGs from
b=0.90"01) at z~0.2 to b =2.94703% at z~1.2. This is at a
quicker evolutionary rate than evolving bias model used for previous
LOFAR studies of brighter populations (with a more significant AGN
population in e.g. D. Alonso et al. 2021 and C. L. Hale et al. 2024),
where b(z) = by/D(z) and that this bias model may need to be
modified for future work where broad redshift bins are considered.
This may reflect a need for increasing mass haloes to host SFGs over
cosmic time; however, such rapid evolution at the highest redshift
bin could also be indicative of either mis-classification of sources
in the highest redshift bin (where AGN activity may actually be
dominating the emission), or a luminosity dependence of the bias
could be contributing to the rapid evolution seen in the bias at the
highest redshifts studied, where in flux-limited surveys sources are
naturally more luminous. However the LERGs exhibit no such rapid
evolution (b = 2.33%03% at z~0.7 to b = 2.657)3] at z~1.2), though
are a factor of ~ 1.5x more biased compared to SFGs at lower
redshift (z < 0.8). This suggests that the dark matter haloes in which
radio sources reside have a clear correlation to the radio populations
they host and that the haloes supporting SFGs may be less massive
(by potentially an order of magnitude). We further consider the
clustering of a subset of the LERG population known as QLERGs,
which do not have significant star formation contributions to their
overall emission. These QLERGs have evidence that their bias may
evolve (b = 2.62703 at z~0.7 to b = 3.08708 at z~1.2), and weak
evidence that they are more clustered than the full LERG population
at z < 1. This bias evolution for LERGs and QLERGs is consistent
the bias evolving inversely proportional to the growth function;
however, the uncertainties associated with such measurements means
this could also be weaker and consistent with potentially no evolution.
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Such differences in the bias evolution of different source popula-
tions will likely be important for future cosmology studies, such as
with the SKAO, to exploit the differences in bias of the populations
for cosmological studies (e.g. L. D. Ferramacho et al. 2014; Z.
Gomes et al. 2020). However, such studies need accurate models
of the bias dependence of radio sources and so require studies with
deep radio imaging where source classifications are either through
multiwavelength source classifications (e.g. I. H. Whittam et al. 2022;
P. N. Best et al. 2023) or through morphological classifications
through high-resolution studies (e.g. L. K. Morabito et al. 2025).
Such studies would help disentangle the evolving bias evolution for
different source populations and could also help understand more
comprehensive dependencies of the radio populations on parameters
intrinsic to the sources, such as their redshift, AGN activity, SFR,
and luminosity. To this end, we consider the relationship of bias for
SFGs on both the redshift and radio luminosity (a proxy for SFR)
of the population being considered. This was in order to establish
whether the rapidly evolving bias evolution for SFGs is as a direct
result of observing typically more luminous populations when higher
redshifts are considered. We find that any luminosity-dependence of
the bias is inconclusive, as whilst there is weak evidence at some
redshifts for the best-fitting bias to increase with luminosity, these
results are not statistically significant. Therefore, it could instead
be that the redshifts of the population are driving the evolution
in bias.

In the future, spectroscopic surveys such as WEAVE-LOFAR
will help further address the question of the evolving relationships
between radio sources and the underlying large-scale structure,
allowing more accurate measurements of the redshift of sources
and reducing the uncertainties introduced by the potentially broad
p(z). Moreover, the combination of spectra alongside high-resolution
imaging will help to more comprehensively categorize sources and
reduce potential classification errors. This combined with deeper
radio data from the full LOFAR Deep Fields observations will
improve our understanding of the galaxy—halo connection for radio
sources.
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APPENDIX A: FURTHER VALIDATION PLOTS
FOR SOURCES SPLIT BY BOTH RADIO
LUMINOSITY AND REDSHIFT

In Figs A1- AS we present the validation plots for SFGs split into
luminosity bins within a given redshift range. The rows are the same
as used in Fig. 2, but now left to right indicates different luminosity
ranges investigated.
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Figure Al. As for Fig. 2 but for SFGs in the z: 0.1-0.4 redshift bin and then split into luminosity bins, increasing in luminosity from left to right.
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Figure A2. As for Fig. 2 but for SFGs in the z: 0.4—0.6 redshift bin and then split into luminosity bins, increasing in luminosity from left to right.
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Figure A3. As for Fig. 2 but for SFGs in the z: 0.6-0.8 redshift bin and then split into luminosity bins, increasing in luminosity from left to right.
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Figure A4. As for Fig. 2 but for SFGs in the z: 0.8—1.0 redshift bin and then split into luminosity bins, increasing in luminosity from left to right.
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Figure AS5. As for Fig. 2 but for SFGs in the z: 1.0-1.3 redshift bin and then split into luminosity bins, increasing in luminosity from left to right.
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