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Abstract

As 5G and beyond networks grow in heterogeneity, complexity, and scale, traditional
Intrusion Detection Systems (IDS) struggle to maintain accurate and precise detection
mechanisms. A promising alternative approach to this problem has involved the use of
Deep Learning (DL) techniques; however, DL-based IDS suffer from issues relating to
interpretation, performance variability, and high computational overheads. These issues
limit their practical deployment in real-world applications. In this study, CiNeT is intro-
duced as a novel DL-based IDS employing Convolutional Neural Networks (CNN) within
a bijective encoding-decoding framework between network traffic features (such as IPv6,
IPv4, Timestamp, MAC addresses, and network data) and their RGB representations. This
transformation facilitates our DL IDS in detecting spatial patterns without sacrificing fi-
delity. The bijective pipeline enables complete traceability from detection decisions to their
corresponding network traffic features, enabling a significant initiative towards solving
the ‘black-box” problem inherent in Deep Learning models, thus facilitating digital foren-
sics. Finally, the DL IDS has been evaluated on three datasets, UNSW NB-15, InSDN, and
ToN_IoT, with analysis conducted on accuracy, GPU usage, memory utilisation, training,
testing, and validation time. To summarise, this study presents a new CNN-based IDS with
an end-to-end pipeline between network traffic data and their RGB representation, which
offers high performance and enhanced interpretability through revisable transformation.

Keywords: convolutional neural network (CNN); lossless encoding and decoding; network
traffic to images; images to network traffic; intrusion detection system (IDS); computational
complexity; TensorFlow; PyTorch; 5G; B5G

1. Introduction

The rollout of 5th Generation (5G) through 3rd generation partnership project (3GPP)
releases 15th to 19th [1] has created a standardised foundation for scalable applications with
guaranteed performance. Rapid advances towards 5G-Advanced [2,3] further enhance this
infrastructure across diverse environments. Examples include Connected and Automated
Vehicles (CAVs), the Internet of Things (IoT), and Multi-Access Edge Computing (MEC) [4].
These use cases, which complement primary use cases such as enhanced mobile broadband
(eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type
communications (mMTC), have placed a heightened demand for secure networks requiring
privacy [5], reliability [6], and availability [7].

The exponential growth of connected devices and end users in mobile telecommunica-
tions with smart devices is expected to reach 7.95 billion by 2028, from 7.21 billion at the
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end of 2024 [8]. Mobile hand-held smart devices are already reported to have generated
1.3 zettabytes of data in 2024 [9]. This exponential growth of users and traffic volume raises
an important question: How do we protect the 5G and beyond from adversarial threats? The ap-
plication of traditional Intrusion Detection Systems (IDS) and Intrusion Prevention Systems
(IPS), such as Firewalls, has proven to be ineffective in the face of diverse traffic patterns
with exponential volumes [10]. The complexity of attacks, sophistication of Advanced
Persistent Threats (APTs), and large-scale Distributed Denial of Service (DDoS) attacks,
as well as the widespread availability of tools to conduct a sophisticated attack, continue
to challenge existing security capabilities [11-13]. As per the research by [13], Machine
Learning (ML) methods have proven to be an effective, faster, and more accurate threat
detection and prevention mechanism compared to the traditional security solutions in
the big-data era [14]. Despite its many advantages in cybersecurity, ML methods alone
do possess drawbacks. Adversarial attacks and evasion [15], adaptability limitations, the
black box problem, and lack of interpretability [12,16], for example, can be construed
as drawbacks. Deep Learning (DL), a subset of ML, has attracted the attention of both
academia and industry as a viable method to overcome drawbacks such as the above,
with potential to autonomously grasp intricate patterns and connections within data [17].
Similarly, the authors of [18] postulate that DL methods are becoming increasingly essential
in cybersecurity solutions and deployments in an attempt to address the fundamental
limitations of ML-based solutions.

Recent studies have explored the use of images based on network traffic to leverage
the strong feature extraction and extrapolation capabilities offered through the use of
CNN, and hence it has become a popular DL model for the intrusion detection problem.
Popular methods include converting network traffic to grayscale [19], RGB images [20], and
serialised images [21]. Higher accuracy generated by the use of RGB images as opposed to
grayscale methods motivated us to develop a new bijective method for image encoding
and decoding to ensure that CNN approaches to the IDS problem remain interpretable by
security experts post detection, unlike in serialised approaches where reconstruction of the
original network data remains inaccessible.

Despite the popularity and the advances in the field of CNN-based IDSs, comparative
studies involving computational efficiency and overhead remain unavailable, particularly
with respect to the use of TensorFlow and PyTorch frameworks. Differences in constructing
computational graphs, hardware utilisation, optimisation strategies, and memory allocation
and de-allocation, can significantly impact model performance, training time, testing time,
and scalability [22]. Hence, to test the effectiveness of this approach, three popular datasets
used in the study of ML/DL for the intrusion detection problem were employed. They are
UNSW NB-15 [23], InSDN [24], and ToN_IoT [25].

This paper introduces CiNeT (Classify in Network Transformation), a novel CNN-
based IDS for 5G and beyond networks. While CNNs are well-established for intrusion
detection, existing approaches face critical challenges, including the ‘black-box” nature of
deep learning models, limited traceability for forensics analysis, and performance vari-
ability stemming from different DL framework choices. The CiNeT algorithm has been
developed to address these challenges through integration with the NeT2I (NEtwork Traffic
to Images) and I2NeT (Images to NEtwork Traffic) pipeline [26], leveraging the PyTorch
and TensorFlow frameworks. This process alleviates the ‘black-box” problem when ML /DL
models have been applied and facilitates interpretability in detection and results [27]. Ad-
ditionally, a rigorous comparative study of CiNeT’s implementation across PyTorch and
TensorFlow provides insights into framework-specific performance variations.

Two variants of the CiNeT algorithm are implemented and compared: CiNeT-TF
(developed using TensorFlow) and CiNeT-PT (developed using PyTorch). Our analysis
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and evaluation in terms of accuracy, loss, memory utilisation, GPU usage, training, and
validation time, and architectural layers are presented in Section 5. The experiments and
results collected demonstrate that CiNeT-PT outperformed CiNeT-TF in all use cases for
the above metrics. Furthermore, the robustness of NeT2I and I2NeT across theoretical
and empirical complexities was analysed to test its application to systems requiring real-
time detection.

1.1. Contribution
This paper makes the following contributions to the field of 5G and beyond security:

¢ Animproved NeT2I and I2NeT implementation that encodes network traffic into RGB
images and decodes the images back to network traffic in a bijective manner.

*  Developed and evaluated a novel Plug-and-Play CiNeT detection algorithm, a CNN-
based IDS tailored for resource constrained edge devices for 5G and beyond.

* A comparative study of CiNeT between TensorFlow and PyTorch across varying
architectural depths in terms of performance trade-offs, resource usage, scalability,
and speed of training and testing.

e  Validation of results across UNSW NB-15, InSDN, and TON_IoT datasets.

1.2. Structure of the Paper

The remainder of this paper is organised as follows. Related work is discussed in
Section 2. Proposed algorithms in this research are discussed in Section 3, outlining the
evaluation metrics in Section 4 and programs used. Results and analysis for the proposed
algorithms across datasets are presented in Section 5. The overall results obtained from our
research are discussed in Section 6. Concluding remarks, observations, and planned future
work are presented in Section 7.

2. Related Work

This section presents a review of the state-of-the-art literature in the field of Network
Intrusion Detection Systems (NIDS), datasets, deep learning frameworks, deep learning
models, various model architectures, and finally, trends and advancements of image-based
representations for network traffic, which lays the foundation of this work.

The development, evaluation, and deployment of IDS based on ML models and the
acquired accuracy rely heavily on the dataset. The quality and the realistic nature of network
traffic pertaining to the dataset contribute towards the applicability and performance of
such NIDS based on ML models. The UNSW NB-15 dataset [23], was introduced and
designed to address the limitations and drawbacks found in the KDD Cup 99 dataset, which
can be construed as outdated. UNSW NB-15 contained modern network attacks, attack
vectors, and a balanced distribution between normal and malicious network traffic. Another
dataset used in the context of research into ML models and the NIDS problem is the InNSDN
dataset, based within a Software Defined Network environment [24]. InNSDN provides
a large-scale collection of network traffic distributed amongst a multi-class classification
of malicious and normal traffic. Finally, the recently collected ToN_IoT [25] dataset has
emerged as a comprehensive collection of network traffic in a multi-class classification, a
benchmark dataset for training, testing, and evaluating ML models for the NIDS problem.
When conducted, a cross-evaluation amongst the three datasets reveals that the ToN_IoT
dataset offers a significant performance gain in comparison to the UNSW NB-15 [28] and
InSDN [29] datasets, highlighting its applicability and the quality of the data found within
the collection. Hence, the ToN _IoT dataset may be considered a benchmark dataset for
applying ML models to advance research into NIDSs.
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Deep Learning models have demonstrated superiority over ML models for the IDS
problem through their ability to reveal complex, hierarchical features and their representa-
tions from raw, unprocessed data. Unlike ML models, whose accuracy relies on accurate
feature selection and engineering, DL models such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Artificial Neural Networks (ANNSs), and Deep
Neural Networks (DNN), for example, facilitate the extraction and identification of patterns
in network traffic, increasing their robustness to ever-evolving network attacks. Researchers
at [14] demonstrated that a DL-based NIDS outperformed classical ML-based NIDS, achiev-
ing higher accuracy and lower false alarms, in sophisticated multi-class attacks [30]. The
research in [31] further emphasised that the automatic feature extraction capability facili-
tated by DL models was a key contributing factor for their superior performance. These
studies collectively confirm the validity of applying DL models to the NIDS problem, as
opposed to using traditional ML models.

The choice of DL framework can significantly impact the development, training, eval-
uation, testing, and deployment of an IDS based on a DL model. TensorFlow and PyTorch
are the most commonly used frameworks for deploying a model for DL tasks [32]. The
extensive community support, ecosystem, and integration into cloud platforms such as
Google Colab, Lambda Labs, and Jupyter Notebooks, for example, have contributed to
these two frameworks becoming the de facto standards in both academia and industry.
TensorFlow, due to its static computational graph, offers high performance and a seamless
capacity for integration and deployment. Conversely, PyTorch offers a dynamic computa-
tion graph that offers greater flexibility, ease of debugging, and faster prototyping, which
have led to this framework’s increasing popularity [2,32]. A recent survey [5] highlights
the interchange between the two frameworks, PyTorch and TensorFlow, with the choice
of framework having the potential to impact their application, particularly for real-time
interference, model interpretability, and ease of development and deployment.

Long Short-Term Memory (LSTM) networks have been widely adopted and applied in
NIDSs based on DL models. Their ability to model temporal dependencies, the capability to
handle the multivariate, and the sequential nature of network traffic have contributed to its
wider adoption in intrusion detection problems. Respective research by [33-36] developed
IDSs employing LSTM models and tested their accuracy for a variety of datasets. The
LSTM models, however, require high resource availability and computational complexity,
which can constitute a bottleneck when applied in a real-time system. Also, the sequential
nature of LSTM hinders parallelisation, leading to longer training, validation, and testing
periods. Furthermore, the research in [33] highlights that LSTMs’ struggle with extensive
dependencies in network traffic, as well as their reliance on hyper-parameter tuning, can
contribute to overfitting and reduced model generalisation.

The adaptation of Large Language Models (LLMs) into various applications across
industry and academia has opened an avenue for them to be considered in the intrusion
detection problem. Research by [37,38] employed LLMs for exploring and analysing
patterns in network traffic generating responses pertaining to network activity (malicious
or non_malicious). Despite the adoption of LLMs into the intrusion detection problem,
similar to the LSTM models, resource requirements and computation remain extremely
high [39]. Inference latency and the ‘black-box’ nature of LLMs create a bottleneck in their
application to IDSs, requiring real-time detection and the rationale for decisions.

Deep Neural Networks and Artificial Neural Networks have been foundational DL
models for the intrusion detection problem. Research by [40-43] presented DL models
tested across various benchmark datasets to support the usability of DL in NIDSs. Despite
the popularity and the foundational work, these models face a tendency to overfit, which
can lead to higher rates of false positive alarms. The extensive requirement for hyper-
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parameter tuning, the higher computational complexity, and the ‘black-box” problem create
barriers to their deployment in real-time systems and resource-constrained environments.

Convolutional Neural Networks (CNN) have become a popular choice for IDSs due to
high accuracy, precision, and excellent generalisation properties [44]. The work presented
in [45] highlighted that the CNN model outperformed ML models such as Random Forest
and Support Vector Machine. Furthermore, their work highlighted that employing a
2D CNN model produced superior performance in comparison to 1D CNNs. The same
observation has been recorded in the works of [46] in their intrusion detection system,
where a 2D CNN model produced superior accuracy. This prompted us to explore a
2D CNN as a viable option for the detection of malicious traffic in the 5G and beyond
network infrastructure. Surveys conducted by [47,48] provide a comprehensive overview
of the CNN-based IDSs with various architectures, performance, and their applicability
for intrusion detection problems. Respective research by [26,49-55] introduces various
applications of CNNSs to further solidify the usability of CNNs to the intrusion detection
problem, emphasising their effectiveness in handling high-dimensional network data.
Compared to LSTM and LLM models, CNNs are computationally viable, with a lower
cost and smaller memory footprint. CNNs also allow parallel processing, leading to faster
training and are suitable for inference times, unlike LSTM models. The ability to handle
high-dimensional data, shared weights, and parameter reduction through pooling avoids
the overfitting problem, unlike in ANN and DNN models. Finally, CNNs offer greater
interpretability avoiding the ‘black-box” problem found in other models.

One of the greatest challenges in the application of CNNs to network security involves
the process of encoding data into a form recognisable by the CNN. As CNNs accept images
for training and testing, data collected from a dataset has to be converted into images.
Existing research uses various methods to encode network traffic data into images that can
be used to train a CNN algorithm. Research published in [19,56-61] employed grayscale
images to represent and encode the desired features of network traffic for training and
testing a CNN algorithm. However, representing network traffic by grayscale images
can lead to a loss of information since modern network traffic, due to heterogeneity and
complexity, can contain data that exceeds a pixel value in the grayscale (0-255).

Due to this limitation on grayscale images, the authors of [20,21,62,63] employed
mechanisms to encode network traffic as RGB images. Improvements in accuracy were
observed [20,63] when employing RGB images in preference to grayscale images. The
authors of [20,62] employed a tiled image approach along the x and y axes, for a given
pixel length and width, whereas [21,63] generated serialised RGB images. Although these
images are capable of producing a higher accuracy than with grayscale images, RGB can
represent a pixel value between 0 and 16,777,215 in a tiled image, which places a high
demand on CPU, memory, and time of execution. In comparison, [26] showed that the
proposed encoding algorithm, coupled with the CNN, achieved higher detection and
better computational complexity than a significant baseline model. Serialised images
can be construed as computationally viable, but are not bijective with information being
lost during conversion, between network traffic and images. This information loss could
potentially classify a CNN-based IDS as a ‘black-box’ solution. In this work, an improved
NeT2I and I2NeT bijective algorithm is proposed for encoding and decoding of network
traffic, including IPv6 addresses, MAC addresses, IPv4 addresses, timestamps, and other
network features. A novel detection algorithm, CiNeT, is also presented, which is a dynamic
plug-and-play algorithm capable of detecting classes and determining related parameters.
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3. Proposed Algorithm

In this section, a novel encoding algorithm (NeT2I) is presented that is used to rep-
resent network traffic as RGB images, along with a corresponding decoding algorithm
(I2NeT) to translate the RGB images back into network traffic. A dynamic detection al-
gorithm (CiNeT) developed using both TensorFlow and PyTorch is also included in this
section, which is used to identify observed traffic.

3.1. Encoding and Decoding Network Traffic (NeT2I-I2NeT Pipeline)

The secure, structured, and deterministic transformation of network data traffic into
images is achieved through the integration of a NeT2I-I2NeT pipeline, initially introduced
in [26]. The pipeline has been significantly developed since its first inception, to now
include a comprehensive set of network features that accommodate, for example, IPv4 and
IPv6 addresses, timestamps, MAC addresses, floating-point numbers (e.g., flow duration,
jitter), and integer numbers (e.g., protocol identifiers, packet count, port numbers, and
packet load). These features form a multi-dimensional representation of network traffic
and behaviour, for the detection of malicious attacks with advanced complexity.

The pseudo code presented in Algorithm 1 (Encoding Algorithm: NeT2I) describes
our method for representing network traffic as PNG images. A generated image from
the NeT2I can be seen in Figure 1. The ability to handle IPv6 addresses is a significant
new feature of this pipeline, driven by the urgent need for network security solutions
to support the global transition to IPv6 [64]. The US Executive Order on furthering the
Nation’s Cybersecurity and Cyber readiness and the European Union’s IPv6 action plan
require all public internet assets to be IPv6 ready [65] by the end of 2025. In response to this,
our NeT2I-I2NeT pipeline provides a meticulous, lossless, and deterministic method for
encoding and decoding IPv6 addresses. To achieve this each 128-bit value is converted to its
packed binary form. The 16-byte sequence is padded with two additional zero bytes to form
an 18-byte array, compatible with a 3-byte RGB grouping, to form six consecutive RGB pixel
tuples, with values ranging from 0 to 255. Each of these now corresponds to one horizontal
stripe in the generated image. This approach ensures that each IPv6 address that is to
be mapped and encoded to an RGB image does so in a lossless manner, maintaining full
address fidelity. The NeT2I-I2NeT pipeline handles date-time fields with a deterministic
approach, ensuring lossless integrity. Each timestamp (date-time) is decomposed into six
components. They are year (Y), month (M), day (D), hour (H), minute (M), and seconds (S).
The values are converted to float and form twelve RGB pixels per timestamp. This ensures
full temporal fidelity and enables accurate reconstruction during the decoding stage.

During the encoding phase, NeT2I automatically generates a JSON companion file
containing metadata to ensure accurate and unambiguous data reconstruction. This file
meticulously documents the structure of the network traffic in the input CSV file. The I2NeT
decoder, as described in Algorithm 2 (Decoding Algorithm: I2NeT), reverses this process
by reading the JSON metadata file by identifying six consecutive RGB pixels from the PNG
image, with each pixel representing three of the 18-byte padded binary representation. The
first 16 bytes are interpreted as the packed binary of the IPv6 address, allowing an accurate
reconstruction of the original IPv6 address in a standardised colon-separated hexadecimal
format. In order to ensure robustness at the decoding stage, images generated from IPv6
addresses are tagged with an additional prefix (e.g., ipv6_1022.png). This ensures that in a
scenario where the JSON file is not available, I2NeT can default to the appropriate path
for decoding. The structured, type-aware, and error-resilient approach ensures that I2NeT
achieves high fidelity for the recovery of IPv6 addresses.
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Figure 1. A Visual representation of an image generated via NeT2i.

In the NeT?2I algorithm, floating-point numbers are mapped to image data using an
invertible binary serialisation approach that ensures both accuracy and integrity. Initially, a
floating-point number is converted to its 32-bit IEEE 754 [66] binary representation, ensur-
ing network byte-order consistency. This 4-byte floating-point number is then represented
in two RGB pixels. The first RGB pixel carries the first three bytes (RGB), and the second
pixel encodes the fourth byte in its Red channel, setting the Green and Blue channels to
zero. This deterministic mapping sequence allows the decoder in the I2NeT algorithm to
accurately reconstruct the original floating-point number from the RGB representation,
correctly reassembling the byte sequence in a lossless manner. Prior to the NeT2I encoding
phase, unstructured string data, such as free-form text that may appear in the CSV, are
removed as they can not be encoded in a bijective manner. To ensure robustness and fault
tolerance, unstructured string data are handled using a dedicated mechanism that activates
if the residual string-like data may cause pipeline failures, thus prioritising system stability
and continuity. The metadata is stored in the JSON file to aid at the decoding stage.

The I2NeT decoder captures and reconstructs floating-point numbers from images
through a deterministic process that ensures accuracy, integrity, and fidelity. During the
decoding phase, I2NeT extracts the RGB stripe from the horizontal bands in the image and
processes each pair of pixels to recover and reconstruct the original 4-byte float structure.
The original floating-point number is reconstructed by concatenating these four bytes
accurately, following the byte order. The I2NeT decoder follows type-aware reconstruction
employing the metadata from the JSON file to determine fields which are floating-point
numbers. In a scenario where the JSON file is not available, I2NeT uses a default generic
decoding mechanism, ensuring a robust recovery. Similarly, I2NeT also follows bound
checking, exception handling, and error resilience features to manage potential mismatches
or corrupted data.

This end-to-end pipeline of NeT2I for encoding and I2NeT for decoding creates a
bijective transformation between structured data and the corresponding image represen-
tation. The latest version of NeT2I can be found in the GitHub repository [67] and in
the Python Package Index (PyPI) [68]. The latest version of I2NeT can be found in the
GitHub repository [69] and in the Python Package Index (PyPI) [70]. By integrating support
for modern network features such as IPv6 and floating-point numbers, the NeT2I-I2NeT
pipeline provides a robust, scalable, future-proof, errorless, and deterministic solution for
securing network data transmission.
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Algorithm 1: Encoding Algorithm: NeT?2I

Input: input.csv

Output: image.png

Function encodeCSVToRGB (csv_path):

Data: Loaded CSV data

Data: Detected data types per column (Float, IPv4, IPv6, MAC, DateTime, String)
Data: Processed RGB pixel array

/* Step 1: Clean output directory and temporary files */
cleanOutputDirectory()

/* Step 2: Split CSV into IPv4 and IPv6 datasets */
ipv4_data, ipv6_data < splitCSVByIPType(csv_path)

/* Step 3: Process each dataset separately */

processDataset(ipv4_data, is_ipv6=False)
processDataset(ipv6_data, is_ipv6=True)

/* Step 4: Save type information for decoding */
saveTypelnformation()

/* Step 5: Generate images from RGB pixel arrays */
generateImages()

Function convertDataToRGB (row, types):
Data: List of RGB pixel tuples per row
rgb_row <[]
foreach value, dtype in zip(row, types) do
switch dtype do
case "DateTime” do
comps + [Y, M, D, H, M, S] from parse(value)
rgb1, rgb2 < floatToTwoRGB(float(comp))
case "IPv6 Address” do
rgb_pixels <— convertIPv6ToRGB(value)
case "IPv4 Address” do
float_val < convertIPv4ToFloat(value)
case "MAC Address” do
float_val < convertMACToFloat(value)
case "Float” do
| rgbl, rgb2 < floatToTwoRGB(value)
case "String” do
/* Ensure System Continuity */
hash_val «+— hashStringToFloat(value)
otherwise do
| Error: Unknown data type
end

end
end
return rgb_row
Function createImageFromRGB (rgb_row, image_id, prefix):
initializeImageArray()
/* Fill image with RGB pixel stripes */
rows_per_color < calculateStripeHeight(rgb_row)
current_row < 0
foreach rgb in rgb_row do
(, g, b) + normalizeRGB(rgb)
for i = 0 to rows_per_color do

if current_row < image_size then

fillRow(current_row, r, g, b)
‘ current_row < current_row + 1

end

end

end
/* Fill remaining rows with last colour if needed */
while current_row < image_size do
fillRow(current_row, 1, g, b)
‘ current_row <— current_row + 1
end
return savelmage(image_id, prefix)
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Algorithm 2: Decoding Algorithm: I2NeT

Input: input.png (directory or single image)
Output: output.csv
Function decodeImagesToCSV (image_path):

/* Step 1: Auto-detect IP version and load type info */
autoDetectIPVersion(image_path)

/* Step 2: Extract RGB pixel values */
rgb_values <— extractRGBFromImage (image_path)

/* Step 3: Detect expected data structure */
adaptive_type_info < detectDataStructure (len(rgb_values), type_info)

/* Step 4: Reconstruct structured values */
decoded_values < reconstructValues (rgb_values, adaptive_type_info)

/* Step 5: Write to CSV */

writeToCSV (decoded_values)
return output.csv

Function extractRGBFromImage (rmage_path):
/* Extract RGB pixel values using stripe detection */
img = openlmage(image_path)

array = convertToNumpyArray(img)

stripe_colors = detectColorStripes(array)

return stripe_colors

Function detectDataStructure (rgh_count, type_info):
if type_info is available then
calculateExpectedPixelCount(type_info)
if rgb_count < expected_count then
| return truncated_types

end
else
| return type_info

end
end
else

/* Fallback: assume 2 pixels per float */
end

Function reconstructValues (rgb_values, adaptive_type_info):

for orig_type in original_types do

if orig_type == "Date Time" then

comps ¢ parseDateTimeToComponents(value)
datetime < float(comps)
reconstructed.append(datetime)

end

if orig_type == "IPv6 Address” then
ipv6 < decodelPv6From6Pixels(rgb_values)
reconstructed.append(ipvé)

end

else if orig_type == "IPv4 Address” then

ipv4 < decodelPv4From6Pixels(rgb_values)

reconstructed.append(ipv4)

end

else if orig_type == "MAC Address” then

mac < formatMACFromChunks(chunk1, chunk?2)
reconstructed.append(mac)

end

else if orig_type == "Float” then
float_val < decodeFloatFrom2Pixels(rgb_values)
reconstructed.append(float_val)

end

else if orig_type == "String” then

hash_val +— decodeHashFromPixel(rgb_values)

reconstructed.append(str(hash_val))

end
else

‘ /* Error */
end

end
return reconstructed
Function mergeComponents (values):

/* Merge [Y,M,D,H,M,S] =+ "YYYY-MM-DD HH:MM:SS" */
/* Reconstruct IPv4/IPv6 and MAC from components */
/* Handle partial or invalid sequences gracefully */

Function writeToCSV (decoded_values):
/* Write decoded values to CSV file */
createNewCSVFile()
for row in decoded_values do
| writeRowToCSV(row)
end
return output.csv
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3.2. Detection Algorithm (CiNeT)

The CiNeT algorithm conducts a multi-class classification of network traffic by leverag-
ing DL techniques. This algorithm has been developed and designed to integrate seamlessly
with the NeT2I and I2NeT frameworks. CiNeT is implemented using both TensorFlow
and PyTorch to enable cross-framework evaluation. This method allows for comparative
analysis on model performance, training efficiency, accuracy, loss convergence, and compu-
tational complexity. The TensorFlow variant of CiNeT employs a CNN architecture with
three convolutional blocks, whereas the PyTorch variant employs four convolutional blocks,
with batch normalisation and dropout for robustness. The model is trained on images
generated via NeT2i, and classification accuracy is validated by reconstructing predictions
via I2NeT, ensuring a seamless encoding-classification-decoding pipeline of a full-fledged
DL-based IDS.

The CiNeT algorithm features an autonomous and adaptive class detection mechanism
that enables automation without requiring manual intervention or the specification of
output classes. During the initialisation phase CiNeT scans the input directory and sub-
directories within and passes the sub-directory names to dynamically construct a list of
class labels and assign a unique index to each. The detected class count is used to configure
the CNN, setting the output units to K, where K denotes the number of classes. This is
used to select the appropriate loss function. For K = 2, binary cross-entropy is used, and
for K > 2, categorical cross-entropy is used.

In addition to autonomous class detection, CiNeT employs a data-driven mechanism
to select the optimal batch size. This decision is based on the total number of training
samples. The algorithm determines the best candidate batch size from a predefined set
of rules to reduce underutilisation and thereby improve training efficiency. Along with
adaptive class detection and automated batch size selection, CiNeT is a highly scalable
and efficient plug-and-play classification system that integrates seamlessly with NeT2I and
I2NeT for encoding and decoding. The latest version of our CiNeT variants can be found
in the GitHub repository [71].

3.2.1. TensorFlow

The CiNeT algorithm implemented within this ecosystem, which is implemented
in TensorFlow, performs multi-class classification using a CNN architecture, employ-
ing three sequentially stacked convolutional blocks. The pseudo code can be found at
Algorithm 3 (CiNeT-TF Algorithm). Each of these comprises a Conv2D layer with ReLU
activation, followed by max-pooling, and dropout for spatial downsampling and regularisa-
tion. The input layer accepts images in RGB format specifying the three colour channels and
the size of 150 pixels (150 x 150 x 3). The size corresponds to the output image generated
via NeT2I. The TensorFlow variant of CiNeT progressively extracts features through in-
creasing filter depth of 32, 64, and 128, respectively, per layer. Regularisation is achieved by
a 25% dropout upon each max-pooling operation, while the fully connected layer includes
a 512-unit dense layer with a 50% dropout to ensure overfitting is mitigated.

CiNeT leverages the Keras API for model creation, complication, training, and eval-
uation. The RMSProp optimiser was utilised with a learning rate set for 1 x 10~* with
an adaptive loss function based on the class count (binary cross-entropy for two classes
or categorical cross-entropy for multi-classes). Data augmentation was applied during
training to improve generalisation and avoid overfitting with random rotation, shifting,
shearing, zooming, and flipping across the horizontal plane. Performance validation was
conducted using a test set (15%), with training and validation at 70% and 15%, respectively.
The confusion matrix consisted of accuracy, Fl-score, recall, and precision, these being
generated using the results obtained from the test set.
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Algorithm 3: CiNeT-TF Algorithm (3-Layer)

Input: Directory with class folders (e.g., data_4, data_B)
Output: Trained model (.h5), accuracy, confusion matrix
Function main():
class_names < discoverClasses("/home/ubuntu/Images/”)
num_classes < len(class_names)
createDirs("{training,validation,testing}")
for cls in class_names do

| splitData(’data_" + cls, f"training/{cls)”, f"validation/{cls)”, f "testing/{cls}")
end
model < buildModel (num_classes)

trainGen, valGen, testGen < createLoaders (selectBatchSize(), num_classes)
history < train(model, trainGen, valGen, epochs=100)

evaluation < evaluateModel (model, testGen, num_classes)

saveModel (model, "cinet_tf_model”)

return {success=True, test_accuracy:evaluation.accuracy}
Function discoverClasses (dir):
for item in listDir(dir) do
if isDir(item) and startsWith(item,”data_") then

| classes.append(removePrefix(item,"data_"))
end

end

return sorted(classes)

Function splitData(src, train, val, test):

files < shuffle(nonEmptyFiles(src))
splitAndCopy(files, [0.7, 0.15, 0.15], [train, val, test])

Function buildModel (1):

model < tf keras.Sequential([
Conv2D(32,(3,3),padding="same’,input_shape=(150,150,3)), BatchNormalization(),
Activation('relu’), MaxPooling2D(2), Dropout(0.25),
Conv2D(64,(3,3), padding="same’), BatchNormalization(), Activation('relu’),
MaxPooling2D(2), Dropout(0.25),
Conv2D(128,(3,3),padding="same’), BatchNormalization(), Activation('relu’),
MaxPooling2D(2), Dropout(0.25),
Flatten(), Dense(512), BatchNormalization(), Activation('relu’), Dropout(0.5)
D

if n == 2 then

model.add(Dense(1, activation="sigmoid’))

‘ loss_fn <+ ’binary_crossentropy’

else

model.add(Dense(n, activation="softmax"))
loss_fn < ’categorical_crossentropy’

end
model.compile(optimizer=RMSprop(le-4), loss=loss_{n, metrics=["accuracy’])
return model
Function createLoaders (bs, num_classes):
class_mode < 'binary’ if num_classes==2 else "categorical’
trainGen <— ImageDataGenerator(rescale=1./255, rotation_range=20,
width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True,
brightness_range=[0.8,1.2], zoom_range=0.2, fill_mode="nearest’)
valTestGen <— ImageDataGenerator(rescale=1./255)
trainFlow ¢ trainGen.flow_from_directory("training/", (150,150), bs, class_mode, True)
valFlow < valTestGen.flow_from_directory("validation/", (150,150), bs, class_mode, False)
testFlow < valTestGen.flow_from_directory("testing/", (150,150), bs, class_mode, False)
return trainFlow, valFlow, testFlow
Function train(model, trainGen, valGen, epochs):
callbacks «+ [
EarlyStopping(monitor="val_loss’, patience=15, restore_best_weights=True),
ModelCheckpoint('best_model.h5’, monitor="val_accuracy’, save_best_only=True),
ReduceLROnPlateau(monitor="val_loss’, factor=0.5, patience=7, min_lr=1e-7)
1
history < model.fit(trainGen, epochs=epochs, validation_data=valGen,
callbacks=callbacks, verbose=1)
return history
Function evaluateModel (model, testGen, num_classes):
testGen.reset()
test_loss, test_acc <— model.evaluate(testGen, verbose=0)
predictions <— model.predict(testGen)
true_labels « testGen.classes
if num_classes == 2 then
\ pred_labels < (predictions > 0.5).astype(int).flatten()
else
| pred_labels < np.argmax(predictions, axis=1)
end
return {accuracy=test_acc, predictions=pred_labels, targets=true_labels}
Function saveModel (model, name):
model.save(f"{name}.h5")
saveMetadata({"architecture’: ‘CiNeT-TF-3Layer’, ‘classes’: class_names}, f"{name}_meta.json")
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3.2.2. PyTorch

The second variant of the CiNeT algorithm was implemented using PyTorch, per-
forming multi-class classification leveraging CNN. The pseudo code can be found at
Algorithm 4 (CiNeT-PT Algorithm). The optimal model architecture is composed of
4 sequentially stacked convolutional blocks, each consisting of a Conv2D layer, batch
normalisation, ReLU activation, max-pooling, and dropout for regularisation. Similar to the
TensorFlow variant, the input layer accepts RGB images of three channels (150 x 150 x 3).
The PyTorch variant of CiNeT progressively extracts features through increasing filter
depths of 32,64,128, and 256, respectively, per layer. Regularisation is achieved by
a 25% dropout upon each max-pooling operation, while the fully connected layer in-
cludes 512 neurons and a 50% dropout to ensure overfitting is mitigated, before the final
classification layer.

RMSProp optimisation is employed with a learning rate of 1 x 10~%, where the loss
function is based on the number of classes. BCEWithLogitsLoss for binary classes and
CrossEntropyLoss for multi-classes were chosen. Random rotation, horizontal flipping,
shifting, shearing, and zooming under augmentation were used to increase input diversity
and to reduce overfitting. Performance validation was conducted using a test set (15%),
with training and validation accruing for 70% and 15%, respectively. The confusion matrix,
comprising accuracy, Fl-score, recall, and precision, was generated using the results collated
from the test set.

Algorithm 4: CiNeT-PT Algorithm (4-Layer)

Input: Directory with class folders (e.g., data_A, data_B)
Output: Trained model (.pth), accuracy, confusion matrix
Function main():
class_names <— discoverClasses ("/home/ubuntu/Images/”)
num_classes <+ len(class_names)
createDirs("{training,validation,testing}")
for cls in class_names do
| spiitbata(’data_" + cls, f"training/{cls|”, f"validation/{cls}", f"testing/{cls)")
end
model, criterion, optimizer < buildModel (num_classes)
trainLoader, valLoader, testLoader < createLoaders (selectBatchSize())
best_val_acc + 0.0
for epoch < 1 to 100 do
train_loss, train_acc < trainEpoch (model, trainLoader, optimizer, criterion)
val_loss, val_acc < valEpoch (model, valLoader, criterion)
if val_acc > best_val_acc then
best_val_acc < val_acc
saveModel (1model, "best_model.pth”)

end
end
test_acc, preds, targets <— evalTest (model, testLoader)
Function discoverClasses (dir):
for item in listDir(dir) do
if isDir(item) and startsWith(item,”data_") then
|  classes.append(removePrefix(item,"data_"))
end

end

return sorted(classes)

Function splitData(src, train, val, test):

files < shuffle(nonEmptyFiles(src))
splitAndCopyf(files, [0.7, 0.15, 0.15], [train, val, test])

Function buildModel (1):

model « nn.Sequential(
nn.Conv2d(3,32,3,padding=1), nn.BatchNorm2d(32), nn.ReLU(),
nn.MaxPool2d(2), nn.Dropout(0.25),
nn.Conv2d(32,64,3,padding=1), nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(2), nn.Dropout(0.25),
nn.Conv2d(64,128,3,padding=1), nn.BatchNorm2d(128), nn.ReLU(),
nn.MaxPool2d(2), nn.Dropout(0.25),
nn.Conv2d(128,256,3,padding=1), nn.BatchNorm2d(256), nn.ReL.U(),
nn.MaxPool2d(2), nn.Dropout(0.25),
nn.Flatten(), nn.Linear(256x9x9, 1024), nn.BatchNorm1d(1024),
nn.ReLU(), nn.Dropout(0.5), nn.Linear(1024, n))

criterion - nn.BCEWithLogitsLoss() if n==2 else nn.CrossEntropyLoss()
optimizer < optim.RMSprop(model.parameters(), lr=1e-4)
model.to(device)

return model, criterion, optimizer
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Algorithm 4: Cont.

Function createLoaders (bs):
trainTransforms <— transforms.Compose([Resize(150,150), RandomRotation(20),
RandomHorizontalFlip(), ColorJitter(0.2,0.2), ToTensor(), Normalize()]);
valTransforms « transforms.Compose([Resize(150,150), ToTensor(), Normalize()]);
trainLoader < DataLoader(ImageFolder("training/", trainTransforms), bs, True);
valLoader < DataLoader(ImageFolder("validation/", valTransforms), bs, False);
testLoader <— DataLoader(ImageFolder("testing/", valTransforms), bs, False);
return trainLoader, valLoader, testLoader;
Function trainEpoch (model, dataloader, optimizer, criterion):
model.train();
running_loss <— 0, correct < 0, total < 0;
foreach (data, target) in dataloader do
data, target «— data.to(device), target.to(device);
optimizer.zero_grad(), output <— model(data);
loss < criterion(output, target);
loss.backward();
optimizer.step();
running_loss += loss.item() ;
, predicted < torch.max(output, 1);
total += target.size(0);
correct += (predicted == target).sum().item();

end
return running_loss/len(dataloader), 100*correct/total;
Function valEpoch (model, dataloader, criterion):
model.eval();
running_loss < 0, correct < 0, total < 0;
With torch.no_grad() foreach (data, target) in dataloader do
data, target < data.to(device), target.to(device);
output <— model(data), loss < criterion(output, target);
running_loss += loss.item(), predicted < torch.max(output, 1);
total += target.size(0);
correct += (predicted == target).sum().item();
end
return running_loss/ len(dataloader), 100*correct/total;
Function evalTest (imodel, dataloader):
model.eval(), predictions < [], targets < [], correct <— 0, total < 0;
With torch.no_grad() foreach (data, target) in dataloader do
output <— model(data.to(device)), predicted < torch.max(output, 1);
predictions.extend(predicted.cpu().numpy()), targets.extend(target.numpy());
total += target.size(0), correct += (predicted.cpu() == target).sum().item();
end
return 100*correct/total, predictions, targets;
Function saveModel (1model, path):
‘ torch.save({"'model_state_dict": model.state_dict(), ‘architecture”: "CiNeT-PT-4Layer’}, path);

4. Evaluation Metrics for the Algorithms
4.1. Workflow and Datasets

Among publicly available datasets, INSDN contains the most recently collected data
for malicious and non-malicious traffic. The dataset contains multi-classes and has been
collated on a Software Defined Networking environment with 80 features; 18% of the
dataset consists of malicious network data. The ToN_IoT dataset is another comprehensive
dataset consisting of multi-class traffic along with malicious and non-malicious traffic. The
dataset contains 44 features with approximately 15% of the dataset classified as malicious.
Finally, the UNSW-NB 15 dataset contains 49 features, with 12% of the available traffic in
the dataset corresponding to malicious traffic. The workflow of the proposed algorithms
and their applications on the datasets is shown in Figure 2. Due to class imbalance in the
datasets, to ensure fairness in representation, the training, validation, and testing datasets
were generated using stratified sampling to ensure class distribution. Furthermore, class-
weighted loss functions were also applied during the training stage. Thus, improving
model fairness and performance on minority classes. CSV files were extrapolated from
the datasets and used as input to the NeT2I algorithm, generating PNG images based on
the network traffic. The generated PNG images are then input into the CiNeT algorithm.
Following detection by the CiNeT algorithm, the I2NeT algorithm is used to decode the
images back to a CSV file in order to evaluate the accuracy of our detection algorithm. The
following Table 1 shows the selected features for each dataset, through Recursive Feature
Elimination with Random Forest due to its ability to handle data with high dimensions
and its ability to handle non-linear complex interactions [72].
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Dataset | Feature Selection — NeT2i
CSV of Malicious Traffic 12NeT ¢ CiNeT
Figure 2. Workflow of the proposed algorithms.
Table 1. Features selected from each dataset.
Dataset Selected Features
In-SDN 2,13, f4, 15, f6, £8, 19, 10, f11, f12, 13, 15, 19, £21, £22, £23, 24, 27, £31, {68, {78
UNSW NB-15 | f1, 2, f4, 5, 16, {7, £10, f11, f16, f17, £18, f19, £21, £24, £25, £26, £27, {28, £38, f40, f45
ToN IoT f1, £2, £3, f4, 15, f6, £7, £8, 19, £10, f11, f12, f13, f14, f15, f16, f17, 18, £19, £20, 21

4.2. Theoretical and Empirical Performance Analysis

The NeT2I and I2NeT algorithms were evaluated with respect to execution time, CPU
usage, memory utilisation, and time complexity in terms of the Big-O notation, supporting
both theoretical and empirical performance analysis.

4.3. Theoretical Analysis

For our theoretical evaluation of the computational complexity, the Big-O notation
framework is applied for NeT2I, I2NeT, and CiNeT algorithms. As per the study of [73],
the application of a theoretical evaluation using this framework provides a characterisation
of the algorithm as a function of the input size. The encoding to detection to decoding
processes within the proposed pipeline involve a deterministic transformation that en-
compasses problems that can be solved in polynomial time. This efficiency is critical
for both desk approaches and real-time applications; requiring predictable and scalable
performance is essential [73].

4.4. Reproducibility and Implementation Details

Table 2 provides the information necessary to reproduce our experiments to ensure
credibility and transparency. All experiments were conducted with a random seed of 42 to
ensure deterministic outcomes by eliminating stochastic variability. The models were
trained to 100 epochs employing the RMSProp optimiser using a learning rate of 1 x 107,
To avoid overfitting and increase generalisation of the training dataset, a series of data
augmentation techniques was applied. NeT2I generated images that are structured and
deterministic; the application of a standard vision-based augmentation process ensured a
prevention of overfitting to spatial patterns or orientations. The following were included in
the augmentation pipeline for the training dataset.

e RandomRotation (£40°)

*  RandomHorizontalFlip (0.5)

e RandomAffine (translate = (0.2, 0.2), scale = (0.8, 1.2), shear = 0.2)

*  Color]itter (brightness = 0.2, contrast = 0.2, saturation = 0.2, hue = 0.1)
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Table 2. Specifications of hyperparameters, software versions, and data augmentation settings for
reproducibility and implementation.

Aspect Details

Deep Learning Framework | PyTorch 2.1.0, TensorFlow 2.15.0
CUDA/cuDNN CUDA 12.2, cuDNN 8.9
Python Version 3.10.12
Random Seeds 42 for all experiments
Learning Rate 1x10°* (RMSProp)
Batch size Selected dynamically based on dataset size
Epochs 100

RandomRotation

. RandomHorizontalFli

Data Augmentation RandomA ffine P

ColorJitter
Training/ Validation/Test 70%, 15%, 15%
Kernel Size 3x3
Pooling Kernel 2x2
Loss Function (TF) Binary_crossentropy/Categorical Cross _Entropy
Loss Function (PT) BCEWithLogitsLoss/CrossEntropyLoss

Class Imbalance Handling | Class-weighted loss (inverse frequency weighting)

The Augmentation process was not applied to the validation and testing datasets
to ensure an unbiased evaluation. The batch size was selected dynamically based on
the dataset size, adhering to the following logic to balance GPU utilisation and memory
efficiency.

e Iftotal_images < 100, candidates: {4, 8, 16}

e If100 < total_images < 500, candidates: {8, 16, 32}

e Jf500 < total_images < 2000, candidates: {16, 32, 64}

e [f2000 < total_images < 5000, candidates: {32, 64, 128}
e Otherwise, candidates: {64, 128, 256}

Finally, models used 3 x 3 convolutional kernel 2 x 2 max-pooling layers with a loss
function chosen based on the classification problem

*  Binary: binary cross-entropy (TensorFlow)/BCEWithLogitsLoss (PyTorch)
*  Multi-class: categorical cross-entropy (TensorFlow)/CrossEntropyLoss (PyTorch)

4.5. Empirical Computational Complexity

As discussed in [73], identifying accurate empirical measurements of an algorithm’s
execution time and memory utilisation is both important and essential, as theoretical
complexity alone may not reflect accurate performance due to memory allocation, de-
allocation, system-level overheads, and I/O operations. To accommodate this, execution
time, CPU usage, memory utilisation, and GPU utilisation are collected and collated.

4.5.1. Execution Time

For measuring the time of execution, the Python time library was employed. Variation
in execution time can affect performance and efficiency; this is particularly important when
applying the algorithm to an intrusion detection problem based in an environment with
low resources. To ensure reliability average execution time is presented in Section 5 with
each experiment being repeated over multiple runs (n = 10), to mitigate caching and
Just-In-Time (JIT) compilation effects [74].



Network 2025, 5, 42

16 of 29

4.5.2. CPU Usage

To monitor CPU usage the Python psutil library was employed. The library was
utilised to monitor and sample CPU usage at one-second intervals during the execution of
NeT2I and I2NeT. To ensure statistical reliability, the average of multiple runs (n = 10) was
recorded. The experiments were conducted in an environment with the Global Interpreter
Lock, which restricts code to be executed as a single thread. This restriction is important to
ensure that the proposed algorithms can be executed in environments with low-processing
power [75] such as Multi-Access Edge Computing (MEC) nodes.

4.5.3. Memory Utilisation

As discussed in the work presented by [76], memory allocation in a modern operating
system is inherently imprecise compared to CPU usage or execution time. This is due
to over-allocation, caching, and ineffective garbage collection. To monitor the memory
consumption across NeT2l, I2NeT, and CiNeT, the Python memory-profiler library was
employed at 1-s intervals. Computer systems often over-allocate memory to minimise
the allocation and deallocation frequency, and garbage collection does not occur instanta-
neously. Due to this non-deterministic behaviour, averages of multiple independent runs
(n = 10) were recorded, to ensure a more reliable and comparable indicator.

4.5.4. GPU Utilisation

The CiNeT algorithm was designed to leverage GPU acceleration, while NeT2I and
I2NeT were designed to be CPU bound. To determine the GPU compute usage, and
memory allocation, the nvidia-smi and CUDA interface were employed. GPU utilisation
was measured using pynvml at predefined stages (e.g., epoch start, data loading) for GPU
monitoring. The experiments were conducted in a controlled environment with access
to a single GPU to emulate an edge-launched intelligent IDS. As highlighted in [39], DL
executions exhibit suboptimal GPU utilisation despite resource allocation and availability.
This leads to inefficient compute usage and prolonged execution times. By measuring
utilisation, we ensure that CiNeT achieves high computational throughput and that it
effectively leverages the parallel processing capabilities of the GPU. GPU utilisation is a
key indicator for algorithmic efficiency. High and sustained utilisation reflects minimal idle
time and effective kernel execution. Low and erratic usage may indicate underutilisation,
poor resource management and orchestration, despite high accuracy. Therefore, GPU
monitoring provides a valuable and necessary statistic collected over multiple independent
runs (n = 10), to ensure performance gains are not achieved at the cost of excessive
hardware dependency or energy consumption.

5. Results and Analysis

Data was collected on a UVT_Cloud deployment running Ubuntu 22.04 LTS, with a
single CPU, 8 GB of RAM and 20 GB of HDD space for the NeT2I and I2NeT algorithms.
The CiNeT algorithm was trained, validated, and tested using an NVIDIA H100 GPU
(96 GB VRAM) within a system based on the ARM64 architecture. Two hundred twenty-
five thousand images representing network traffic that belong to various malicious and
non-malicious classes were selected, with images being subsequently grouped following
the ratio of 70:15:15, for training, validation, and testing, respectively.

5.1. Encoded Images

Figure 3 represents images generated from distinct lines of network traffic in the input
CSV. The image consists of one-dimensional horizontal lines with a variable x value and
a fixed y value. Each line in the generated PNG encompasses a network feature such as
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source IP, destination IP, MAC address, timestamp, protocol, source port, destination port,
packet length, jitter, duration and load. Each file name consists of a prefix (ipv4, ipv6) to
aid the I2NeT algorithm in distinguishing and applying the correct decoding strategy.
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Figure 3. Images generated by NeT2I.

As stated in Section 3.1, NeT2I converts floating-point numbers to RGB pixel values
without loss, using the IEEE 754 standardisation. For example, for a floating-point value
3.14159, the Python function struct.pack(‘!f’,3.14159) would be used to generate the
IEEE 754 binary representation [64, 9, 33, 25]. The respective binary representation would
then be split into 2 RGB pixel values ((64,9,33), (25,0,0)), which would then be employed
at the image generation phase in NeT2L

When encoding an IPv4 address, NeT21 splits the IP address into 4 octets. Each integer
octet is treated as a float number and mapped to the respective RGB channel. For instance,
for the IP address 192.168.1.100,

struct.pack(¢!£’,192.0) >IEEE 754 [66,192,0,0]—RGB((66,192,0), (0,0,0))
struct.pack(¢!£’,168.0) —IEEE 754 [66,160,0,0]—RGB((66,160,0), (0,0,0))
struct.pack(¢!£,1.0) —IEEE 754 [63,128,0,0]—=RGB((63,128,0), (0,0,0))

struct.pack(!£,100.0)—IEEE 754 [66,100,0,0]—RGB((66,100,0), (0,0,0))

The generated RGB pixel values are employed in the image generation.

MAC addresses are handled by converting the hexadecimal string into a 48-bit long
integer. This integer value is split into two 24-bit chunks, which are converted to a
float and mapped using the two RGB pixel method. For example, for a MAC address
00:1A:2B:3C:4D:5E, the following procedure is followed:

e 00:1A:2B:3C:4D:5E—001A2B and 3C4D5E

o 001A2B—67019

e 3C4D5E—3951966

o struct.pack(‘!f’, 67019.0)—IEEE 754 [72,131,128,0]—RGB ((72,131,128), (0,0,0))

e struct.pack(‘!f’, 3951966.0) —IEEE 754 [87,102,128,0]—RGB ((87,102,128), (0,0,0))

The generated RGB pixel values from the MAC address are employed in image
generation.

Finally, IPv6 addresses are mapped to their 128-bit long representation, which is
converted to 16 bytes with two additional zeros appended to the end, thus forming an
18-byte long array. For example, for the IP address 2001:0458:8543:0000:0000:842¢:0370:7334:

L IPv6Adress.packed(2001:0db8:85a3:0000:0000:8a2e:0370:7334) —
[32,1,13,184,133,163,0,0,0,0,0,0,138,46,3,112]
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*  Appending [0,0] —[32,1,13,184,133,163,0,0,0,0,0,0,138,46,3,112,0,0]—

RGB ((32,1,13), (184,133,163), (0,0,0), (0,0,0), (138,46,3), (112,0,0))

Following the above process, network features are converted to RGB pixel values and
these are then used for image generation without loss.

5.2. Computational Complexity

In Table 3, the following averaged times are presented: execution, CPU usage, and
memory utilisation for the NeT2I and I2NeT algorithms for each of the three datasets. In
Table 4 the computational complexity for the two variants of the CiNeT algorithm is found,
which is averaged across the three datasets. Evaluation for the CiNeT algorithm is carried
out in terms of time complexity, GPU usage, and memory utilisation.

Table 3. Averaged computational complexity over 10 independent runs for the NeT2I and 12NeT
algorithms for each of the three benchmarked datasets.

Algorithm | Dataset Number of Tf)tal Execution Execution Time CPU Usage Me.er?lory
Images Time per Image Utilisation

InSDN 215,000 9s 0.00046 s 100% 18%

NeT2I UNSW NB 15 | 215,000 100 s 0.000465 s 100% 19%
TON-IoT 215,000 100 s 0.000465 s 100% 19%
InSDN 215,000 103 s 0.00047 s 100% 20%

12NeT UNSW NB 15 | 215,000 102s 0.000474 s 100% 20%
TON-IoT 215,000 101s 0.000469 s 100% 20%

Table 4. Averaged computational complexity over 10 independent runs for the CiNeT algorithm
across varying architectural depths for the three benchmarked datasets.

. Training Validation Testing GPU Memory
Algorithm | Layers Time Time Time Usage Utilisation
1 Layer 12.35h 149h 255 98.2% 26.9%
2 Layers | 12.11h 201h 43s 99.9% 27.5%
CiNeT-TF | 3 Layers | 13.25h 2.11h 1.24 min 99.9% 27.7%
4Layers | 15.1h 2.35h 2.15 min 99.9% 29.5%
5Layers | 17.45h 3.05h 3.30 min 99.9% 30%
1Layer | 51h 3.19h 2.01 min 5.1% 8.4%
2 Layers | 524h 329h 2.09 min 8.9% 9.4%
CiNeT-PT | 3Layers | 538h 3.31h 2.11 min 13.2% 10.6%
4 Layers | 6.01h 3.42h 2.13 min 14.8% 11%
5Layers | 6.22h 345h 2.20 min 15.8% 12.1%

5.2.1. Execution Time

Execution time per image was formulated based on the total execution time, since the
task of image creation from network traffic is an Aperiodic Task [77]. The enhanced NeT2I
and I2NeT algorithms demonstrate significant empirical improvements over our prior
work [26], with a 4.1% reduction in execution time for NeT2I and a 16% reduction for [2NeT.
These performance gains are attributed to comprehensive codebase improvements that
incorporated Object Oriented Programming (OOP), resulting in a more modular, efficient,
and maintainable implementation.

5.2.2. CPU Usage

Given the global interpreter lock and single-threaded execution of Python code, it was
observed that the algorithms NeT2I and I2NeT used 100% of the CPU resources. However,
due to their light weight and deterministic logic, NeT2I and I2NeT algorithms utilised the
CPU for a smaller window, as seen in the total execution time in Table 3, compared to [62],
when it was evaluated against NeT2l in [26], releasing the CPU for other tasks. This is an
efficient use of resources and allows for rapid completion, thus freeing the CPU for other
processes in an MEC environment. High CPU usage during active execution is a hallmark
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of an efficient algorithm design, as it indicates reduced and minimal idle time, illustrating
an efficient use of available computational resources [76].

5.2.3. Memory Utilisation

NeT2I utilised 19% of memory on average across the three datasets, consistent with the
findings at [26]. This low memory footprint is attributed to the algorithm’s deterministic
approach and the absence of large intermediate data structures. The light-weight encoding
operations, such as binary serialisation, struct packing, pixel generation, and mapping,
make NeT2I ideal to launch in a resource-constrained environment. The higher utilisation
of 20% by I12NeT can be attributed towards the overhead generated by image loading and
the initial processing of NumPy arrays for RGB extraction. Although a marginal increase in
memory utilisation was recorded, memory leaks or unbounded copies were not recorded,
making the decoding I2NeT suitable for resource-constrained edge devices.

5.2.4. GPU Utilisation

During the training, validation, and testing phases, data relating to GPU usage was
collected. The data can be seen in Table 4. The observed results and usage patterns revealed
a dramatic divergence. The variant developed using the TensorFlow framework, namely
CiNeT-TF, exhibited a high GPU usage consistently with an average of 99.9% across its
application to the three datasets (for layers 1 to 5). This demonstrates a highly efficient
execution in which the GPU is nearly saturated during the training and validation process,
minimising idle time and maximum throughput. However, this high utilisation is attributed
to a cost, where frequent out-of-memory (OOM) errors occur when employing larger batch
sizes within deeper architectures (4 to 5 layers), indicating a resource boundary. The same
has been observed in the works of Gao et al. [39], where utilisation constituted a constraint
of computation, forcing reduced batch sizes or model complexities.

In contrast, the CiNeT developed using the PyTorch framework (CiNeT-PT) exhib-
ited a low GPU utilisation across its application to the three datasets and all applications
(layers 1 to 5). While this may constitute a performance deficiency, it reflects the funda-
mental difference between frameworks, where reproducibility and stability are crucial
over optimal hardware usage [22]. Unlike the TensorFlow variant of CiNeT operating at
the edge of GPU memory, which resulted in OOM errors, the PyTorch variant prevents
resource contention and system instability. As stated in the work of Sencan et al. [78], such
inefficiencies are common in real-world workloads where GPU usage remains low despite
high resource availability. Thus suggesting that underutilisation of resources, computa-
tion, or memory can be construed as a deliberate design choice to enhance fault tolerance
in production environments where crash avoidance is crucial and predictable behaviour
sought, as opposed to unpredictability and OOM errors due to saturation [79,80]. Table 4
also shows the memory utilisation for the CiNeT algorithm across the two variants with
various architectural depths. Initial observations reveal that the iterations of CiNeT-TF
have consumed more memory, ranging from 26.9% to 30% of the system’s total memory
allocation, compared to the CiNeT-PT variants, utilising only 8.4% to 12.1%. The disparity
in memory utilisation is attributed to the memory management strategy of the underlying
framework, where TensorFlow tends to reserve larger memory blocks at the start of execu-
tion for graph construction and data handling, contributing to a higher memory utilisation.
Conversely, PyTorch employs a more dynamic on-demand memory allocation process,
where memory is allocated as tensors during the training phase, and when these tensors
are out of scope, the allotted memory is released back to the system through efficient and
prompt reference counting and garbage collection mechanisms. This process employed
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by PyTorch has led to a more conservative memory footprint in contrast to the memory
footprint created by TensorFlow [32].

The CiNeT-PT variant can therefore be viewed as a failure-averse deployment for the
intrusion detection problem, with a priority for stability and energy efficiency. As stated
by [81], peak utilisation of resources, memory, and computation is largely proportional to
higher energy consumption, and by operating at a lower GPU usage, CiNeT-PT avoids
resource saturation and power demands, whilst maintaining an enhanced fault tolerance,
resulting in a reliable and sustainable choice for real-time security applications.

5.3. Theoretical Analysis (Big-O Notation)

The theoretical analysis of NeT2I, I2NeT, and CiNeT is conducted by employing the
Big-O notation. Big-O notation is used to characterise an algorithm as a function of time
and space with respect to the input [82].

5.3.1. Theoretical Complexity for NeT2I

In evaluating NeT?2], let n denote the number of rows in the input csv file, 4 the number
of features, and p the dimension of the output image.

e Reading the CSV file is O(n - d), as each row must be scanned and passed across
columns.
e The nested loop, which iterates over each row and feature, results in O(# - d) iterations.

- Within the loop, each data entry is encoded using O(1)
- Therefore, processing one row is O(d) and for n rows, O(n - d)

¢ Image generation of p by p pixels, where p is the number of RGB stripes, will result
in p?

*  As the pixels are of a fixed size and do not scale with the number of rows or features,
O(p?) = 0(1)

Therefore, the total time complexity can be stated as (T (1, d))
T(n,d) =0(n-d)+0(1) =0(n-d) (1)

For the space complexity S(n,d), it can be seen that

e Theinput as per the above O(n - d)
e The output image, as per the above O(p?) = O(1)

Hence,
S(n,d) =0(n-d) 2)

It therefore follows that the NeT2I algorithm belongs to the polynomial-time class
bounded by O(n - d), making it suitable for real-time applications.

5.3.2. Theoretical Complexity for I2NeT

In applying the Big-O notation to I2NeT, let m denote the number of images, p the
number of RGB pixel stripes, and d the number of features.

e Discovery of images with O(m) and sorting m files O(mlogm)

*  Loading the JSON file as O(1)

* Image decoding and RGB extraction, involves iterating over p rows in the image,
resulting in O(p)

*  Employing the JSON file, calculation of the pixel count, with d as the number of
features, which is constant, resulting in O(1)

*  Value reconstruction similar to value encoding is O(1)
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e  For one image T(1,p) = O(p) with m images, T(m, p) = O(m - p). With O(mlogm)
cost being smaller, the total time complexity can be stated using

T(m,p) = O(m - p) 3)
With regards to the space complexity of I2NeT,

*  Thelist of images O(m)
e  Extracting RGB pixel data and the reconstruction for a row O(p)
e Hence, the final CSV O(m - p)

It follows that the space complexity (S(m, p)) is given by
S(m, p) = O(m - p) 4)

Similar to NeT2I, the decoding algorithm I2NeT also belongs to the polynomial-time
class bounded by O(m - p). As stated by [82], polynomial-time algorithms are regarded as
tractable or efficiently solvable.

5.3.3. Theoretical Complexity for CiNeT

When evaluating the theoretical complexity for CiNeT, the training, validation, and
testing phases of the algorithm must be taken into consideration. Let E denote the epochs,
Nirgin the number of training samples, N, the validation samples, and F the number of
floating-point operations for a single forward pass through the network. This theoretical
application is embedded into the standard methodology for training, validating, and testing
a DL model [39,83].

*  For each sample, the model conducts a forward pass through convolutional layers
and fully connected layers. As the number of operations is determined by the model
architecture and the operations per sample are constant, the forward pass is O(F)

e  Similarly, the back propagation can be construed as being approximately proportional
to the above, hence it is also O(F)

*  The optimizer updates the weights and this can be O(P), where P is the number of
parameters.

*  The above steps are repeated for each sample, resulting in Ny, times per epoch, with
the loop being repeated E times.

The total training time (T},,) is therefore given to be
Tirain = O(E * Ntrain - (P +F+ P)) = O(E * Ntrain - F) (5)

During the validation and the testing phase, the model requires a forward pass O(F)
for each N, with Ny, for validation and Niest for testing, resulting in Ty, ference

Tinference = O(N ’ F) (6)
For the space complexity S,
S = O(P + B - Factivation) @)

where P is the total number of parameters, batch size B, and the number of floating-point
values in the activation map Ftipation created during the forward pass.

5.4. Training and Validation

Table 5 presents the validation accuracy for CiNeT models with 1 to 5 layers, instanti-
ated using both TensorFlow and PyTorch. While both variants show improved accuracy
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with layer depth up to 3, the CiNeT-TF suffered performance degradation at layers 4 and
5. In contrast CiNeT-PT maintained its performance up to 4 layers prior to plateauing
at 5 layers. The collated results demonstrate that CiNeT-PT achieves a peak validation
accuracy of 99.2% at 4 layers. Conversely, CiNeT-TF achieved a peak of 97.1% at 3 layers.
This finding corroborates the work of [20], where the accuracy of their model developed in
TensorFlow degraded accuracy and precision when the number of layers exceeded three,
suggesting architectural depth and sensitivity to accuracy.

Table 5. Averaged validation accuracy across 10 independent runs of CiNeT variants with 1 to 5 layers
for each of the three benchmarked datasets.

Dataset CiNeT-TF (%) CiNeT-PT (%)

1L 2L 3L 4L 5L 1L 2L 3L 4L 5L
InSDN 943 | 958 | 971 | 96.5 | 959 | 96.7 | 97.8 | 98.4 | 99.1 | 98.6
UNSW-NB15 93.6 | 95.0 | 96.8 | 96.0 | 95.3 | 959 | 97.1 | 98.0 | 98.9 | 98.3
ToN-IoT 948 | 96.0 | 97.2 | 96.7 | 96.1 | 97.0 | 98.0 | 98.7 | 99.2 | 98.8

As evident in Figure 4a,b, the CiNeT-PT (4 Layer) model acting on the ToN_IoT dataset
exhibits a steady increase in training and validation accuracy, suggesting effective learning
with minimal overfitting. Conversely, the CiNeT-TF (3 Layer) model acting on ToN_IoT
shows fluctuations in both accuracy and loss, with the validation curve displaying a slower
convergence, suggesting potential numerical issues during training.
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Figure 4. Training and validation data from the TON_IoT dataset.

5.5. Evaluation of Detection

Albeit marginal, this performance gap suggests that CiNeT-PT implementation ben-
efitted from the efficient training process, better gradient handling, consistent weight
initialisation, efficient memory usage (as shown in Table 4), and numerical instabilities,
as suggested by the authors of [84,85]. These studies further suggest that TensorFlow
models are prone to silent bugs and incorrect gradient computations that can degrade
model accuracy. In contrast, PyTorch’s dynamic computation graph and programming
model offer greater transparency and control during the training and validation stages,
enabling a reliable and more accurate model with a deeper architecture, making it more
suitable for a complex multi-class intrusion detection problem.

The performance of the two CiNeT algorithms was evaluated using the results shown
in Tables 6 and 7. Table 6 presents the accuracy acquired during class-wise tests for both
CiNeT-TF(3 Layer) and CiNeT-PT (4 Layer) for each of the three datasets, with Table 7
providing a more granular analysis of the best model (CiNeT-PT(4 Layer)), presenting the
accuracy (Acc), precision (Prec), recall (Rec), and F1-score (F1) for each traffic class.
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Table 6. Averaged test accuracy across 10 independent runs of CiNeT variants with 1 to 5 layers for
the three benchmarked datasets and traffic classes.

InSDN UNSW-NB15 ToN-IoT
Traffic Class CiNeT-TF | CiNeT-PT | CiNeT-TF | CiNeT-PT | CiNeT-TF | CiNeT-PT
(L) (4L) (3L) (L) (3L) (4L)
Normal 98.5 99.0 96.9 97.5 99.1 99.4
DDo$S 98.7 99.3 97.2 98.1 99.0 99.5
Do$S 97.5 98.4 95.8 96.9 98.1 98.8
Reconnaissance 96.3 97.5 94.6 95.7 97.0 97.8
Exploits 95.1 96.4 932 94.5 95.9 96.7
Backdoor 94.0 95.2 91.8 93.0 94.8 95.6

Table 7. Averaged confusion matrix of traffic classes across 10 independent runs of CiNeT-PT
(4 Layer) for the three benchmarked datasets.

Traffic Class InSDN UNSW-NB15 ToN-IoT
Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Normal 99.0 987 992 989 | 975 971 978 974 | 994 992 995 993
DDoS 993 991 994 992 | 981 978 983 98.0 | 995 993 99.6 994
DoS 984 98.0 987 983 | 969 965 972 968 | 988 985 99.0 987
Reconnaissance 975 970 979 974 | 957 952 960 956 | 978 974 981 977
Exploits 964 959 968 963 | 945 940 949 944 | 96.7 963 97.0 96.6
Backdoor 952 947 956 951 | 93.0 925 934 929 | 956 952 959 955

Further to the results found in Table 5, Table 6 confirms superior detection for the
CiNeT-PT (4 Layer) algorithm. For the ToN-IoT dataset (a highly sought-after dataset
with diverse and realistic data), CiNeT-PT achieved an exceptional accuracy of 99.4% for
normal traffic and 99.5% for DDoS traffic, suggesting an improvement from 99.1% and
99% for the CiNeT-TF algorithm. The performance variation is observable for each of the
cases investigated.

As shown in Table 7, the CiNeT-PT variant achieves an F1-score of 99.4%, 99.3% for
precision, and 99.6% for recall, over DDoS traffic, suggesting that the model performed with
high precision and accuracy and a lower false alarm rate. Similarly, for other attack types
such as backdoor, exploits, DoS, and reconnaissance, the CiNeT-PT variant maintained high
accuracy and precision, demonstrating the robust application of CiNeT-PT for detecting
a wide range of attacks. Achieving an accuracy of 100% would signify an overfitting of
data in neural networks; the achieved accuracy can be considered as having achieved
cross-validation in our methodology due to augmentation, regularisation, and increase of
varied training data [86].

6. Discussion

In the context of this research, a comprehensive performance evaluation of the CiNeT
algorithm is presented. CiNeT is a novel DL algorithm capable of automated attack class
detection and represents a new IDS that operates on images encoded and decoded via a
NeT2I-I2NeT pipeline. The work has improved and extended the pipeline through which
a broader range of network features, including IPv6 and floating-point numbers without
loss, can be encoded as RGB images, allowing for a rigorous comparative analysis of the
CiNeT algorithm deployed using TensorFlow and PyTorch. The evaluation focuses not
only on critical performance metrics such as accuracy, prediction, recall, and Fl-score,
but also on theoretical and empirical evaluations of its computational complexity and
resource utilisation.

The computational complexity of the CiNeT algorithms reveals a fundamental trade-
off between resource usage and model robustness. The TensorFlow variant achieving peak
GPU usage demonstrated hardware efficiency, but fragility, and error-prone behaviour
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during training and validation. The PyTorch variant exhibited low GPU usage and demon-
strated exceptional stability, robustness, and consistent performance. This observation
highlighted an important insight: high GPU usage may constrain performance, efficiency,
and sustainability. The CiNeT-PT 4 Layer model, therefore, produces a superior perfor-
mance that prioritises stability, reproducibility, and sustainability, without compromising
accuracy of detection.

To further validate the observed performance increase of CiNeT-PT compared to
CiNeT-TF, the two best-performing models (CiNeT-PT (4 Layer) and CiNeT-TF (3 Layer))
were subjected to a two-sample t-test on the collected results from 10 independent runs,
employing the below hypothesis.

Null Hypothesis (Ho). There is no difference in the mean performance between CiNeT-TF and
CiNeT-PT (p1 = up).

Alternative Hypothesis (Hy). There is a difference in the mean performance between CiNeT-TF
and CiNeT-PT (u1 # o).

Table 8 presents the standard deviation across independent runs. For Training time, the
mean of CiNeT-TF (13.25 &£ 0.32) showed a significant increase over CiNeT-PT (6.01 +£ 0.15),
with a t-statistic of 64.76 and 13 degrees of freedom, resulting a p-value < 0.001. For ac-
curacy, a t-statistic of 15.34 and 10 degrees of freedom, resulting a p-value < 0.001. For
GPU usage t-statistic of 224.48 and 9 degrees of freedom, resulting a p-value < 0.001.
Finally, for memory usage, t-statistic of 20.34 and 10 degrees of freedom, resulting a
p-value < 0.001. Since all the p -value were less than 0.001, Hy can be rejected, accepting
the Hl‘

Table 8. Statistical comparison of CiNeT-TF (3L) and CiNeT-PT (4L). The mean and standard deviation
(& STD) of key performance metrics reported over 10 independent runs on the ToN-IoT dataset.

Metric CiNeT-TF (3 Layer) CiNeT-PT (4 Layer)
Mean & STD Mean & STD
Training Time (h) 13.25 + 0.32 6.01 £0.15
Accuracy (%) 972+ 04 99.2 + 0.1
GPU Usage (%) 99.9 +£0.1 148 +1.2
Memory Utilisation (%) 277 +25 11+0.7

It is evident that the CiNeT-PT variant has outperformed the CiNeT-TF variant. As
discussed previously, this performance gain can be attributed to the stable and efficient
training process, gradient handling, weight initialisation, and resource usage. As the CiNeT-
PT (4 Layer) model was able to detect with high precision and minimal false positives, it
can be stated that the model is exceptionally well-suited for application as an IDS.

Finally, across the three datasets, the ToON-IoT dataset outperformed both the UNSW-
NB15 and InSDN datasets. This can be attributed to the dataset quality and diversity
of traffic when evaluating intrusion detection problems. This aligns with recent studies
that have suggested ToN-IoT is better suited for IDSs equipped with DL models [28,29].
Following our research, it can be stated that the CiNeT-PT (4-layer) variant represents a
significant advancement in the field of network security.

7. Conclusions and Future Work

In this paper, we presented CiNeT, a novel CNN-based IDS capable of detecting
multiple classes of malicious traffic, leveraging both PyTorch and TensorFlow. Alongside
CiNeT, an advanced pipeline of NeT2I and I12NeT was also introduced, enabling a bijective
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encoding—decoding process to be established, which allowed for the application of the
CiNeT detection algorithm. This approach allowed for the utilisation of CNN for spatial
pattern recognition in network flows, which maintained full traceability from detection
to packet-level information, providing a step towards intrusion prevention. This method
enhances the interpretability of the model by enabling complete traceability from the detec-
tion decision to the packet-level information through the bijective NeT2I-I2NeT pipeline.
While not a complete solution to the ‘black-box’ problem associated with Deep Learning
models [18], this reversibility allows for the reconstruction and inspection of the network
flows that trigger an alert and paves the way to a explainable intrusion detection system
utilising a Deep Learning model. In the current NeT2I-I2NeT pipeline, unstructured string
data is removed during preprocessing. To ensure system continuity, any residual tempo-
ral string data is handled and managed gracefully using the hash function to preserve
system continuity.

Two variants of the CiNeT algorithms were evaluated across three datasets, UNSW NB-
15, InSDN, and TON_IoT, with a focus on multi-class classification in intrusion detection.
Our results demonstrated that CiNeT-PT (4 Layer) achieved a superior accuracy of 99.5%,
outperforming the CiNeT-TF architectures. CiNeT-PT outperformed CiNeT-TF across
computational metrics, calculating a 60% reduction in training time, a 63% reduction in
memory utilisation, and an 88% reduction in GPU usage, making CiNeT-PT a strong
candidate for deployment in resource-constrained environments.

Currently, research is being conducted towards the deployment of CiNeT-PT (4 Layer)
in a 5G testbed, extending the research in [87], to include the integration of a Next Unit of
Computing (NUC) device using an Intel x86 CPU, which is capable of conducting edge
detection. The environment will also integrate control and data plane programmability
using technologies such as Software Defined Networking and Programming Protocol
independent Packet Processing [88] to realise a 5G and B5G testbed that employs a real-
time CNN-based NIDS. This work draws upon the foundational framework of Real-Time
Deep Learning-based NIDS (RTDL-NIDS) [89], where the NeT2I-CNN-I2NeT pipeline
was successfully implemented and evaluated within a 5G-Multi-Access Edge Computing
(MEC) mobile telecommunication testbed. This work demonstrates that the aforementioned
pipeline enables intrusion detection in real-time as opposed to a ‘desk-approach’. The
ongoing research is aimed at implementing the CiNeT-PT (4 Layer) within a 5G testbed,
paving the way for an intelligent and automated security implementation.

The success of this application not only relies on a higher accuracy of detection, but
also on its resilience to adversarial attacks. The current application of this pipeline possesses
a limitation in that its robustness to adversarial perturbations has not been assessed. To
mitigate misclassification of crafted messages by an adversary, the robustness of CiNeT will
be evaluated using the Fast Gradient Sign Method and Projected Gradient Descent methods.
Applying Kerckhoffs’s principle, input sanitation against adversarial manipulation for the
NeT2I-CiNeT-I2NeT pipeline will also be conducted. This analysis will be crucial for
understanding end-to-end security, together with associated protocol aspects relating to
confidentiality, integrity, availability, and non-repudiation.
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