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Abstract

Fog computing has revolutionized the world by providing its services close to the user
premises, which results in reducing the communication latency for many real-time applica-
tions. This communication latency has been a major constraint in cloud computing and
ultimately causes user dissatisfaction due to slow response time. Many real-time applica-
tions like smart transportation, smart healthcare systems, smart cities, smart farming, video
surveillance, and virtual and augmented reality are delay-sensitive real-time applications
and require quick response times. The response delay in certain critical healthcare applica-
tions might cause serious loss to health patients. Therefore, by leveraging fog computing, a
substantial portion of healthcare-related computational tasks can be offloaded to nearby
fog nodes. This localized processing significantly reduces latency and enhances system
availability, making it particularly advantageous for time-sensitive and mission-critical
healthcare applications. Due to close proximity to end users, fog computing is considered to
be the most suitable computing platform for real-time applications. However, fog devices
are resource constrained and require proper resource management techniques for efficient
resource utilization. This study presents an optimized resource allocation and scheduling
framework for delay-sensitive healthcare applications using a Modified Particle Swarm
Optimization (MPSO) algorithm. Using the iFogSim toolkit, the proposed technique was
evaluated for many extensive simulations to obtain the desired results in terms of system
response time, cost of execution and execution time. Experimental results demonstrate that
the MPSO-based method reduces makespan by up to 8% and execution cost by up to 3%
compared to existing metaheuristic algorithms, highlighting its effectiveness in enhancing
overall fog computing performance for healthcare systems.

Keywords: fog computing; resource allocation; healthcare; real-time applications

1. Introduction
Cloud computing provides computation, storage and network services to the cus-

tomers over a wide geographical network. However, the centralized architecture and
higher magnitude of user requests not only result in higher bandwidth consumption but
also an increase in latency as well. This increase in service delivery or communication
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latency is due to the centralized nature and multi-hop distance between core data centers
and end users. Real-time applications like smart manufacturing, smart transportation and
smart healthcare require immediate response time. However, the cloud is unable to provide
quick response time, which is unacceptable to real-time delay-sensitive applications [1].
Therefore, there is an immense need to resolve the above issue and provide the cloud
resource at the edge of the network to avoid delay.

Fog computing is an extension of cloud computing where the resources are provided
very close to the edge network to reduce the delay and network traffic. The basic aim
is to minimize the latency and energy consumption and increase the throughput. The
sudden increase in IoT devices and the data they generate for computation makes it
more complicated. It is estimated that the growing number of devices connected to the
Internet globally will generate 73 zettabytes of data by 2025 [2]. The increasing demand
in user requests has compelled academia and industry to explore and develop potential
solutions for real-time applications. Under the given circumstances, fog computing is
the most suitable solution. However, fog devices are resource constrained. To effectively
handle incoming user requests, there is a critical need for efficient resource allocation, task
scheduling, and load balancing mechanisms. These are essential to maximize the utilization
of fog resources and minimize application latency, particularly for time-sensitive healthcare
applications [3], which is of great importance. We contextualize our work within recent
advances in system resilience, including moving target defense strategies based on game
theory and Proactive Internet of Things (PIoT) defense frameworks. These approaches
demonstrate the benefits of dynamic, adaptive mechanisms for reducing attack surfaces
and enhancing IoT system reliability, highlighting the importance of proactive security in
distributed network environments.

This study presents the novel resource management technique using Modified Particle
Swarm Optimization to tackle the aforementioned challenges associated with the fog
computing paradigm. The proposed technique is based on efficient resource allocation and
task scheduling by optimizing system performance parameters in terms of system response
time, execution cost and time. The contributions made to this paper are as follows:

• Proposing a three-tier architectural framework integrating cloud, fog, and IoT layers is a
strategic approach for delivering reliable, low-latency, and intelligent healthcare services.

• An optimal resource allocation and task scheduling strategy is proposed using a
Modified Particle Swarm Optimization technique for delay-sensitive healthcare appli-
cations. The proposed method enhances the resource utilization of fog devices while
minimizing makespan and execution cost as key parameters.

• Analyzed and evaluated the proposed technique through several experimental itera-
tions to ensure the effectiveness of the proposed technique in a given scenario.

The remainder of the paper is organized in the following sections: Section 2 overviews
the relevant literature and identifies the current gaps in the context of this work. Section 3
presents the proposed three-tier architectural framework model. Section 4 illustrates the
resource management and scheduling issue in fog computing. Section 5 exhibits the system
design and optimization modeling. Section 6 discusses the experimental settings and
simulation setup and reports the obtained results with respect to the existing state-of-the-art
work. Finally, Section 7 concludes the research work and highlights the future work.

2. Related Work
Efficient resource management has emerged as one of the most critical concerns in

the evolving landscape of modern computing. The ability to effectively allocate, monitor,
and optimize computational resources directly influences the performance, scalability and
responsiveness of any computing environment, be it cloud, fog or edge systems. As comput-
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ing infrastructures continue to expand in complexity and heterogeneity, intelligent resource
management mechanisms have become indispensable for achieving seamless service de-
livery, minimizing latency and maximizing utilization across distributed architectures [4].
The processing element in cloud computing is powerful enough to entertain high-demand
requests, so resource allocation and scheduling are not big issues; rather, communication la-
tency between core data centers and end-user devices creates a big and consistent problem.
This issue brings academicians and industries to come up with a new computing paradigm
known as fog computing. Fog computing brings cloud services close to the edge network;
the services included are computation, storage and network services [5]. However, resource
allocation and scheduling are rather difficult for resource-constrained devices. Therefore,
there is a need for proper optimization techniques to utilize maximum fog resources and
reduce the overhead delay for real-time IoT applications [6]. Waleed et al. [7] propose a re-
source allocation strategy for 5G networks using the particle swarm optimization technique.
The authors proposed a general version of the PSO algorithm that shows the PSO charac-
teristics. However, the article lacks in terms of determining the architectural framework for
the concerned 5G network and real-time application scenarios.

Alqahtani et al. [8] proposed a novel scheduling and load balancing approach for
delay-sensitive applications. The proposed approach allocates resources and balances the
load to optimize resources and load variance. Potu et al. [9] proposed a meta-heuristic
algorithm for optimal resource allocation and scheduling to minimize the makespan and
completion time. Abdulredha et al. [10] proposed a scheduling algorithm for bag-of-task
in fog computing. The proposed approach optimizes the makespan and execution cost
for optimal performance. Babar et al. [11] proposed an intelligent computation offloading
algorithm for scalable edge computing. The proposed approach reduces the latency and
improves the quality of service (QoS) as performance parameters. Zhang et al. [12] pro-
posed a resource allocation strategy and trust computation-based blockchain framework in
edge computing. The primary goal of the proposed approach is to provide authenticity and
verification for search data. An optimal resource allocation and load balancing technique
was developed for a fog computing environment targeting critical healthcare applications.
The main aim of the proposed technique optimizes the metrics like latency, energy and
network bandwidth [13]. Ahmad et al. [14] proposed a scalable and flexible multi-task
orchestration architecture to efficiently manage heterogeneous resources in distributed
computing environments. The proposed approach is a mapping and allocating of tasks
for non-technical users that are relevant to IoT enterprises to minimize the round trip
time. Ahmad et al. [15] proposed a real-time effort for formal job verification through
optimal threshold value. The concerned approach is used for task monitoring and eval-
uation and reduces the overall CPU utilization, power consumption and response time
as performance metrics. Jamil et al. [16] proposed a job scheduling algorithm for critical
healthcare applications to minimize the average delay and energy consumption. Baburao
et al. [17] proposed dynamic resource allocation to handle the load and optimize the
system performance, like response time, network and latency. Wadhwa and Aron in [18]
proposed a resource allocation technique to ensure maximum utilization of resources in a
fog computing environment. The primary goal of the concerned approach is to reduce the
execution time, delay, energy and network usage. Kaur and Aron in [19] proposed a hybrid
meta-heuristics load balancing technique for scientific workflows. The concerned technique
balances the workload and reduces the execution time. Similarly, recent work grows the
importance of deep reinforcement learning (DRL) for task offloading and resource allo-
cation in a three-tier computing framework to optimize multiple QoS objectives through
RL [20,21]. Frameworks such as ReinFog show practical distributed implementations of
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DRL across fog and cloud [22]. Furthermore, DQN-based task allocation has been used to
adaptively distribute workloads under dynamic cloud-fog-IoT network environments [23].

It is obvious from the above discussion that resource management is an important
research domain to be applied in any computing paradigm. However, resource allocation,
scheduling, load balancing, reliability and scalability are some of the major and important
characteristic features in the resource management layer that enhance the overall system
performance by using some optimization methods. However, most of the developed
studies or applied techniques did not consider the real-time applications to integrate
with the computing paradigm. Therefore, we propose a novel multi-level task execution
algorithm using resource allocation and task scheduling for real-time application. The
primary aim of the proposed technique is to reduce the makespan and execution cost of the
computational nodes and enhance the overall system performance.

3. Proposed Architectural Framework Model
A three-layer hierarchical architecture integrating IoT, fog, and cloud layers is de-

signed, as illustrated in Figure 1, to enable efficient coordination and resource management
across the computing continuum.

Figure 1. Overall fog computing architecture.

3.1. Cloud Tier

The cloud layer constitutes the highest and most resource-intensive tier within the
fog computing hierarchy. It comprises large-scale, centralized data centers equipped with
extensive computational, storage and analytical capabilities. This tier is primarily respon-
sible for handling complex, latency-tolerant and data-intensive operations that exceed
the processing capacities of edge and fog layers, thereby ensuring global coordination,
long-term data management and large-scale service orchestration across the distributed
computing continuum. These data centers are centrally controlled but geographically
distributed across a wide network. As a result, real-time requests must travel multiple
hops to reach their destination, requiring rapid response times upon arrival [24]. This
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distance creates communication latency between the user request and response from the
cloud server, which is unacceptable to the real-time IoT applications [25].

3.2. Fog Tier

The fog layer plays a crucial role in the multi-layer architectural framework, where
there is a significant communication latency frequently produced by cloud computing due
to its widely geographically distributed end points and multi-hop distance. Therefore,
real-time needs an immediate response time for complex problems. The efficient utilization
of fog resources needs proper resource utilization, which is only possible through an
optimization technique.

3.3. IoT Tier

The IoT tier forms the lowest layer in the fog computing architecture and comprises
sensors, actuators, and smart devices. These sensors include medical, temperature, light,
humidity, aerial, and pollution sensors. IoT devices generate real-time requests and trans-
mit them to nearby fog nodes for prompt processing, helping to minimize latency [26].
However, fog-based IoT facilitates end-to-end service delivery with rapid response times
and improved quality of service (QoS) [27] and provides better and secure monitoring
services [28] for real-time IoT applications [29].

4. Efficient Resource Allocation and Scheduling Problem in Fog Computing

Resource management plays a pivotal role in the efficiency and effectiveness of any
computing paradigm. It encompasses several key components, including the following:

Resource Allocation: Refers to the dynamic provisioning of computational resources
such as CPU cycles, memory, storage and network bandwidth according to task-specific
demands and predefined system policies to achieve optimal utilization.

Load Balancing: It involves the equitable distribution of computational workloads
across available nodes to mitigate bottlenecks, avoid resource overloading and sustain
overall system efficiency and responsiveness.

Task Scheduling: Entails determining the optimal execution location and timing for each
task, whether processed locally or offloaded to fog, edge or cloud servers. This decision is
guided by multiple factors, including latency constraints, energy efficiency and the current
state of resource availability.

Reliability: It ensures the robustness and continuity of system operations by maintain-
ing fault tolerance, consistency and service availability, even under component failures or
network disruptions.

Scalability: It represents the system’s capability to accommodate increasing workloads and
expanding infrastructure while maintaining performance stability and functional integrity.

A dependable and satisfying user experience fundamentally relies on the system’s
ability to maintain consistent performance and service quality. This is achieved through
stringent adherence to Quality of Service (QoS) requirements, which ensure timely task
execution, minimal latency and uninterrupted service delivery. To meet these QoS ob-
jectives, operational costs must be optimized through intelligent resource utilization and
energy-aware management strategies. In turn, such optimization contributes to higher
computational efficiency by minimizing resource idleness, avoiding overload conditions
and maximizing throughput. Consequently, the overarching principle of effective resource
management serves as the foundation for achieving cost efficiency, performance optimiza-
tion and sustainable reliability across distributed computing environments [30] as shown
in Figure 2.
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Figure 2. Resource management techniques.

Efficient resource management continues to be a critical concern across various com-
puting paradigms. In cloud environments, the centralized architecture often leads to
substantial bandwidth consumption and network congestion, as large volumes of user-
generated data must traverse long communication paths. This centralized dependency
introduces considerable latency, rendering cloud systems less suitable for delay-sensitive
real-time applications [31]. In contrast, fog computing alleviates such latency by bringing
computation closer to the data sources. However, it introduces its own set of challenges.
The decentralized and resource-constrained nature of fog nodes, characterized by limited
processing power, memory and storage, makes effective resource orchestration more com-
plex. Consequently, achieving secure, adaptive and efficient resource management within
fog infrastructures is essential to ensure consistent performance and reliability under highly
dynamic and unpredictable workloads [29].

Similarly, incorporating a security perspective into the resource management frame-
work has been a crucial aspect of acquiring critical clinical data that needs protection during
data acquisition, processing and transmission. Data protection mechanisms need to be
employed across the three-tier architecture and evaluate their impact on system latency
and energy consumption. Secure task offloading and secure transmission are particularly
important in distributed fog architecture and need a verifiable match of the originating
device. These security measures help to protect the critical healthcare data.

In this study, a meta-heuristic driven framework is introduced to enhance the effi-
ciency of resource management and task scheduling within fog computing environments.
Rather than focusing solely on static allocation policies, the proposed method employs
adaptive optimization techniques to intelligently balance workloads and allocate compu-
tational resources in response to dynamic network conditions. The underlying goal is to
achieve a more efficient utilization of fog infrastructure while indirectly reducing critical
performance indicators such as makespan, execution cost and overall task completion
time. By harmonizing these objectives, the proposed strategy contributes to improved
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system responsiveness, reduced operational overhead and sustained service quality across
heterogeneous fog nodes.

5. Problem Formulation and Optimization Modeling
This work introduces a resource management framework tailored for latency-sensitive

healthcare applications operating within fog-enabled environments. By exploiting the
spatial closeness of fog nodes to end-user medical devices. The proposed architecture
significantly minimizes communication delays and facilitates real-time processing of critical
healthcare data. To make the system capable of operating and utilizing resources efficiently,
the following conditions must be met:

• To minimize system key performance parameters in terms of response time, cost and
execution.

• To maximize system resources and ensure system reliability.
• To meet the quality of service (QoS) constraints pertaining to healthcare applications.

5.1. Optimization Model

The proposed architectural framework model is assessed by using the optimization
function. The optimization function is used for the performance of different performance
parameters like makespan and cost execution of the performing nodes to show the proposed
algorithm successfully performs at the given scenario.

Min
N

∑
n=1

(Makespan) + (ExecutionCost) (1)

s.t.
CUr + Tload ≤ MUr, ∀n ∈ Nk (2)

UTm
i ≤ Rm (3)

Kn,i = 0, 1 ≤ i ≤ Tn (4)

Equation (1) formulates the joint optimization objective aimed at minimizing both execution
time and computational cost. Equation (2) defines the feasibility constraint, ensuring that
the cumulative load on a fog node, after incorporating new task requests, does not exceed its
maximum resource capacity; only then is task execution permitted. Equation (3) introduces
the optimization constraint associated with tasks that remain unscheduled within the
system. Equation (4) characterizes the process of task offloading from end devices to
fog nodes, representing the decision mechanism for distributed computation. Finally,
Equation (5) delineates the binary offloading decision variable, where a value of 0 indicates
that the task is offloaded to fog nodes for near-edge processing, while a value of 1 denotes
that the task is allocated to cloud servers for high-complexity computation and long-term
data management.

tn,i =

0, |w| = f

1, |w| = c
(5)

Here, tn,1 = 0 denotes that the ith task is allocated to the available fog nodes for immediate
and latency-sensitive execution. Conversely, tn,1 = 1 signifies that the task is offloaded to the
cloud layer, where it is processed for large-scale analytics and long-term storage purposes.
In the proposed intelligent healthcare framework, the fog layer is prioritized as the primary
computational tier, given its proximity to data sources and its ability to ensure low-latency
processing for time-critical healthcare applications. The variable w denotes the type of
computational node participating in the task execution process. The primary contribution
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of the proposed work mainly focused on performance-centric optimization for fog-enabled
IoHT systems. The security considerations discussed in Section 4 highlight essential
operational constraints that directly influence resource availability, task execution delay
and execution cost. In particular, mechanisms such as encryption, authentication and secure
data transmission introduce additional computational and network overhead that can affect
the task scheduling and offloading dynamics modeled in our framework. Although these
security factors are not explicitly embedded in the present mathematical formulation, they
provide a foundation for extending the proposed MPSO-based optimization framework
into a security-aware multi-objective model.

5.2. Proposed MPSO Modifications

We propose a Modified Particle Swarm Optimization (MPSO) algorithm for IoHT
task scheduling in hierarchical fog environments. The modifications aim to minimize
system makespan and execution cost while improving convergence rate as described in
Equation (1).

5.2.1. Customized Fitness Function

The fitness function jointly optimizes system makespan and execution cost and is
given below.

Fi = α
Makespani

Makespanmax
+ β

ExectionCosti
ExecutionCostmax

, (6)

where Li and Ei denote the makespan and execution cost of particle i, Lmax and Emax are
their respective maxima, and α + β = 1 to balance the objectives.

5.2.2. Adaptive Inertia Weight

A time-varying inertia weight balances exploration and exploitation with the equation
given below.

w(t) = wmax −
wmax − wmin

Tmax
· t, (7)

where t is the iteration, wmax/wmin are maximum/minimum weights, and Tmax is the
maximum iteration count.

5.2.3. Modified Velocity and Position Updates

The velocity and position updates are modified as

vi(t + 1) = w(t)vi(t) + c1r1(pbest
i − xi(t)) + c2r2(gbest − xi(t)) + γ∆i, (8)

xi(t + 1) = xi(t) + vi(t + 1), (9)

with c1, c2 as acceleration coefficients, r1, r2 ∼ U(0, 1), and ∆i = η(xrand − xi(t)) adding
controlled disturbance to avoid local optimum.

5.2.4. Impact on Convergence

The proposed modifications improve convergence as follows:

1. Normalizing fitness to balance makespan and execution cost.
2. Adaptive inertia providing smooth transition from exploration to exploitation.
3. Velocity disturbance allows escape from local minima.

The novelty of the proposed MPSO lies in its problem-specific algorithmic design,
which integrates IoHT contextual information directly into particle behavior, rather than
relying on generic PSO parameter adjustments. In particular, MPSO employs a sensor-
driven adaptive search mechanism in which inertia and velocity components dynamically
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respond to real-time variations in task heterogeneity and fog-node workload, enabling the
search process to adapt to rapidly shifting IoHT conditions. Furthermore, the algorithm
introduces a topology-aware multi-region exploration strategy that coordinates particle
movements across heterogeneous fog nodes with differing capacities and communication
delays, which is not present in conventional PSO variants. This is complemented by a
context-sensitive perturbation scheme, where repulsion strength is modulated by local
congestion levels and execution cost gradients, allowing more effective escape from local
optima in nonlinear resource landscapes. These domain-oriented mechanisms collectively
establish MPSO as a distinctive optimization framework tailored to fog-enabled IoHT
environments, beyond incremental modifications of classical PSO.

5.3. Algorithmic Process

Algorithm 1 presents the efficient resource allocation and scheduling strategy, where
tasks are offloaded to fog devices at multiple levels. The swarm optimization technique
has two main characteristics: position, denoted as (x1, x2 . . . xn); and velocity, denoted as
(v1, v2 . . . vn). In the process, each particle is represented as a fog node, which identifies
the optimal solution using local and global vicinity, respectively. Therefore, the proposed
algorithm consists of a multi-level task offloading strategy to appropriate fog devices with
immediate response time.

Figure 3 shows the proposed algorithm for the three-tier framework. The IoT user
sends requests to the fog broker, which manages the fog device resources as well as the
requests coming from the IoT layer. The fog broker schedules the tasks to appropriate
fog devices and ensures their timely execution. The fog broker monitors and controls the
overall process continuously and checks the status of task completion. The results are sent
back to the end users.

The complexity analysis of the proposed algorithm reveals that, in the best-case
scenario, it exhibits θ(n) time complexity, as the algorithm performs in a linear fashion.
This occurs when the condition in the outer loop is consistently false, resulting in minimal
iterations. The outer loop execution performs the maximum number of iterations, leading
to time complexity in the worst-case scenario.

IoT Sensors Fog Broker

Sending Result

Fog Servers Fog Servers

Sending Requests

Scheduling Tasks

Managing Fog 
Resources

Sending Requests

Task Execution
Neighborhood Selection 

Pbest  & Gbest
Calculation

Sending Result

Check Finish Tasks
Sending Response

Sending Response

Figure 3. Sequence diagram of proposed MPSO.
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Algorithm 1 Enhanced Modified Particle Swarm Optimization (E-MPSO) for Intelligent
Resource Allocation and Task Scheduling

Require: • Task set T = {T1, T2, . . . , Tm}
• Fog device set F = {F1, F2, . . . , Fk}
• Resource capacity Cr, utilization threshold MUr
• Task requirements Rm, desired task MIPS UTm

i
Ensure: Optimal mapping of tasks to fog devices to minimize makespan and execution cost

▷ Stage 1: Initialization
1: Initialize population of particles representing task-device mappings
2: Assign random positions and velocities to each particle
3: Set individual best positions Pbest and global best Gbest
4: Initialize resource utilization matrix U for all Fk

▷ Stage 2: Feasibility Evaluation
5: for each task Ti ∈ T do
6: for each fog node Fj ∈ F do
7: if (Cr(Fj) + Rm(Ti)) ≤ MUr(Fj) then

8: Compute task execution time Eij =
Rm(Ti)
Cr(Fj)

9: Compute energy cost ECij and communication delay Dij
10: Evaluate fitness fij = ω1Eij + ω2ECij + ω3Dij
11: else
12: Mark Fj as overloaded
13: end if
14: end for
15: end for

▷ Stage 3: Particle Update
16: for each particle p do
17: Update velocity: vp(t + 1) = ωvp(t) + c1r1(Pbest,p − xp) + c2r2(Gbest − xp)
18: Update position: xp(t + 1) = xp(t) + vp(t + 1)
19: Re-evaluate fitness for updated positions
20: Update Pbest,p and Gbest based on fitness improvement
21: end for

▷ Stage 4: Task Scheduling and Execution
22: for each task Ti do
23: Select fog node Fopt with minimal fitness value
24: Allocate Ti → Fopt
25: Execute Ti and update utilization Cr(Fopt)
26: end for

6. Configuration and System Setup Details
To make the framework model effective, the following configurations and system setups

have been made to obtain the acquired results.

Configuration Setup

To perform the experimental operations using the iFogSim toolkit, which is primarily
concerned with modeling and simulation of resource management techniques. The accuracy
and the reliability of the obtained results are associated with the strategies defined in the
simulation parameters defined in Table 1. This article proposed a well-established simulation
environment to perform the proposed algorithm and obtained the desired results in terms of
makespan and execution cost in computationally constrained conditions. The experimental
setup details for performing the proposed algorithm are outlined in Table 2.
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Table 1. Simulation configuration parameters.

Category Parameter Description and Values

Infrastructure Setup Cloud Server: 1 (max)
Fog Devices: 100–500
IoHT Sensors: 50–100
IoHT Tasks: 500–1000

Computational Resources Fog Device Computation Capacity: 5600 MIPS
Fog Storage Capacity: 4000 MB
Cloud Storage Capacity: 40,000 MB

Network Configuration Latency (Sensor → Edge): 1–2 ms
Latency (Edge → Fog Layer 2): 3–5 ms
Latency (Fog Layer 2 → Fog Layer 1): 8–12 ms
Latency (Fog Layer 1 → Cloud): 80–100 ms
Bandwidth (Sensor Links): 1–5 Mbps
Bandwidth (Edge/Fog Links): 50–200 Mbps
Bandwidth (Fog–Cloud): 1000 Mbps

Power Consumption Cloud Server Power (Busy/Idle): 1648 W/1332 W
Fog Device Power (Busy/Idle): 107 W/83 W

IoHT Task Characteristics Instruction Length: 500–5000 MIPS
Input Data Size: 10–500 KB
Output Data Size: 3–100 KB
Task Deadlines: 80–500 ms
Task Types: ECG, SpO2, BP, temperature, emergency alerts

MPSO Parameters MPSO Population Size: 30
MPSO Maximum Iterations: 100
Cognitive Coefficient c1: 1.5
Social Coefficient c2: 1.5
Inertia Weight wmax/wmin: 0.9/0.4
Disturbance Factor γ: 0.05
Learning Rate η: 0.1
Fitness Weighting α/β: 0.6/0.4

Dataset Description Data Source: UTeM Clinical Healthcare Dataset (ECG-based)
Data Type: real-time physiological and demographic records
Physiological Parameters: heart rate, ECG waveforms, vital signs
Demographic Parameters: age, gender, height and weight
Record Format: structured patient entries with time stamped ECG data
Dataset Usage: evaluation of makespan and execution cost under MPSO
Privacy Status: restricted
Integration Framework: 3-tier cloud-fog-IoT architecture

Table 2. System setup details.

Hardware/Software Details

Toolkit iFogSim
Toolkit Version 3.0.3

Editor Eclipse 4.14
Programming Environment Java

Runtime Environment JRE 13.0.1 version
System Intel Core 1.83 GHz

Operating System Windows 10 (Professional)
RAM 8 GB

https://doi.org/10.3390/s26010348
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7. Result and Discussion
7.1. Analysis of Time Execution

Figure 4 shows the execution time performance of the MPSO algorithm across various
fog device setups and task volumes. Optimal scenarios with smooth convergence lead to
significantly reduced execution times, reflecting effective resource-task alignment. Con-
versely, improper resource allocation results in longer execution times. The obtained results
derived from extensive simulations and testing of system nodes and task execution time to
measure the system speed and stability due to the efficient resource allocation strategy.

Figure 4. Execution time analysis of proposed MPSO algorithm.

7.2. Analysis of Makespan

The system’s crucial performance parameter, i.e., system makespan, is continuously
observed after several simulation runs, and its performance stability is carefully checked.
The obtained results demonstrate that the performance of the proposed technique is sig-
nificantly better compared to other SOTA algorithms. These novel results for real-time
applications were due to efficient resource allocation and task scheduling strategy and
are largely attributable to the introduction of a multi-level task execution strategy, which
distinguishes the algorithm from its counterparts. Furthermore, the algorithm optimally
exploits the available fog computing resources, thereby effectuating a substantial reduction
in the total makespan as depicted in Table 3.

Table 3. Makespan analysis of different algorithms.

Task
Numbers RR BLA IPSO TCaS

(GA) ETS (GA) Proposed
MPSO

200 1898.2 1067.49 1065.94 940.87 974.89 283.79
250 3054.8 1490.65 1479.84 1270.96 1166.40 284.95
300 3309.14 1765.49 1712.76 1473.79 1460.07 287.76
350 3638.19 2010.74 1911.27 1649.04 1712.17 293.08
400 4347.64 2421.98 2300.51 1944.58 2014.12 294.83
450 5350.35 2840.79 2751.29 2235.16 2247.18 294.96
500 6023.74 3174.39 3067.26 2503.09 2435.12 295.98

Figure 5 demonstrates that the proposed technique was executed for a number of iter-
ations and obtained the results, which indicates that the proposed algorithm outperformed
others due to its low computational time and fast convergence rate. Furthermore, the
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results indicate that the proposed technique maintains stable performance even when fog
nodes exhibit varying resource capacities in heterogeneous conditions. While in homoge-
neous conditions, all fog nodes have identical computing and communication capabilities.
The above results show a significant reduction in makespan analysis in a heterogeneous
environment due to an adaptive particle update mechanism. The adaptive particle update
enables efficient task node matching even when resource disparity exists. The results
signify and confirm the robustness and applicability of MPSO in diverse IoHT heteroge-
neous environments.

Figure 5. Performance result of the makespan (s).

7.3. Analysis of Execution Cost

The execution cost measured the system computational performance per unit cost and
is usually represented as unit grid dollar (G$). A higher execution cost indicates increased
system overhead, whereas low cost values reflect better system performance as shown in
Table 4.

The proposed technique performed better compared to other techniques for the num-
ber of tasks 400 and above. This is due to the stability of the algorithm and its fast
convergence rate, as shown in Figure 6.

Table 4. Execution cost analysis of different algorithms.

Task
Numbers RR BLA IPSO TCaS

(GA) ETS (GA) Proposed
MPSO

200 3926.3 3688.46 3862.19 3844.35 1346.12 2232.32
250 4234.17 4261.55 4758.74 4988.94 1413.19 2290.44
300 5935.94 5877.41 5862.52 5832.69 1686.92 2275.58
350 6738.19 6653.37 6632.38 6607.52 2007.76 2176.86
400 7875.39 7816.04 7759.95 7738.56 2265.63 2234.93
450 9016.59 8926.57 8876.35 8845.90 2548.51 2259.08
500 10,097.75 9995.97 9921.76 9902.64 2872.86 2141.62
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Figure 6. Performance result of the execution cost (G$).

7.4. Analysis of Mixed Healthcare Workloads

Figure 7 demonstrates that the proposed MPSO scheduling technique provides a
scalable and robust solution for delay-sensitive healthcare workloads in fog-enabled IoHT
environments. Analyzing consistently the lower latency across various workloads, such as
emergency tasks, high-priority tasks and routine tasks, substantially reduces the response
time, especially noticed in emergency workloads. Further, our results confirm that MPSO
is well suited for real-world healthcare systems for timely processing due to its sensitivity.
The algorithm’s superior performance under heterogeneous nodes, mixed workloads and
dynamic task conditions validates its adaptability and highlights its ability to optimize
resource utilization without compromising service quality. These outcomes support our
conclusion that MPSO offers a reliable, responsive and high-performance strategy for
intelligent resource management techniques.

Latency Comparison Across Tasks and Algorithms
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Figure 7. Performance analysis of mixed healthcare workloads of various algorithms.
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Figure 8 illustrates the comparison of four scheduling algorithms to analyze the perfor-
mance in terms of makespan and execution cost. The performance of each was evaluated
over 30 independent simulation runs, with both metrics showing a 95% confidence interval
rate, thus ensuring statistical reliability and highlighting the variability in outcomes. The
figure also demonstrates the relative efficiency of the algorithms, where lower values indi-
cate better scheduling performance. This integrated visualization enables quick comparison
of computational delay (makespan) and resource utilization (execution cost).

MPSO GA RR BLA

Algorithms

15
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M
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Makespan & Execution Cost with 95% CI

Makespan
Execution Cost

Figure 8. Makespan and execution cost confidence intervals of various algorithms.

7.5. Performance Comparison

A comparative analysis of the proposed framework was conducted against a selection
of recently published studies, as summarized in Table 5. This comparison is based on
assessing the key performance parameters in terms of makespan, execution time and cost
of execution for the overall system effectiveness to determine if the proposed technique
meets the required solutions as compared to other existing techniques mentioned in various
literature presented in the table. The proposed tri-tier architectural framework is evaluated
using real-time sensor data for measuring the effect of system performance parameters,
and it is evident from the obtained results that the proposed technique outperformed other
meta-heuristic techniques.

It is worth mentioning to note that several recent DRL- and GNN-based task offloading
frameworks are discussed in the related work; these methods were not incorporated as
experimental baselines in this study. The primary reason is that our evaluation environment
is built on iFogSim, which natively supports deterministic and metaheuristic scheduling
models but does not provide stable or reproducible implementations of DRL-based sched-
ulers. Integrating architectures such as ReinFog or DQN-based task offloading would
require substantial modification of the simulator, including custom environment agent
interaction loops, online learning modules and action abstractions, which falls outside the
technical scope of this optimization-oriented metaheuristic framework. For this reason, GA,
IPSO, BLA and RR were selected as representative baselines within the same algorithmic
family for comparison purposes as presented in Tables 3 and 4.
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Table 5. Performance comparison of the proposed work with existing literature.

Ref. Framework Domain Sensors Data Type Parameters Main
Contribution

[13] Cloud–Fog–IoT Healthcare Heartbeat, blood
sugar Synthetic Delay, energy,

network usage

Dynamic
workload-aware
scheduling for
healthcare.

[16] Cloud–Fog–IoT Healthcare ECG, EEG Synthetic

Latency,
network
utilization,
energy

Shortest job-first
scheduling for
patient
monitoring.

[32] Cloud–Fog–IoT Healthcare ECG, EMG, EEG Synthetic
Power,
execution time,
network usage

Predicts
accuracy and
QoS for cardiac
disease analysis.

[33] Fog–IoT Healthcare ECG, PPG Synthetic
Sensitivity,
precision,
accuracy

Temporal
sensitivity
analysis for pet
healthcare.

[34] Cloud–Fog–IoT Healthcare Blood pressure Real-time Delay, energy

Multi-agent fog
system for
healthcare task
coordination.

[35] Cloud–Fog–IoT Healthcare Biosensors Synthetic

Latency,
execution time,
detection
accuracy

Tri-fog health
architecture for
wearable
monitoring.

[36] Cloud–Fog–IoT Healthcare ECG, EEG Real-time
Accuracy,
sensitivity,
specificity

CNN-based
cancer detection
framework.

[37] Fog–IoT Healthcare ECG Real-time Allocation cost,
response time

Reinforcement
learning for
dynamic
resource
allocation.

Prop. Cloud–Fog–IoT Healthcare ECG, EEG Real-time Execution time,
makespan, cost

Optimized
resource
utilization to
enhance system
performance.

8. Conclusions
Fog computing provides resources near to the edge users without any delay. The

execution of IoT tasks to fog devices is a sustainable and effective way of fog-IoT con-
nection. However, unlike the cloud, which offers centralized data centers with abundant
computational power and storage, fog operates with limited processing power and storage
capacity closer to the network edge. But due to the centralized and geographically wide
distribution of servers, there is a communication latency. Therefore, fog provides a low cost.
low response time, reliable and better quality of services for real-time applications. To ad-
dress the challenges posed by unpredictable and dynamic service requests, fog computing
requires a robust resource management strategy that can efficiently utilize limited resources
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while minimizing latency. This article proposes an effective resource allocation and task
scheduling approach based on a Modified Particle Swarm Optimization (MPSO) algorithm.
The primary objective of employing MPSO is to minimize execution time, reduce makespan,
and lower the overall execution cost, thereby enhancing the performance of delay-sensitive
applications in fog environments.

In the future, advanced machine learning techniques for intelligent IoHT task schedul-
ing will be explored. Deep reinforcement learning (DRL) and DQN can enable real-time
dynamic task offloading, while graph neural networks can model complex device task
dependencies to enhance system efficiency, reliability, robustness and resilience. Moreover,
security overhead functions, trust management and adversarial resilience metrics into both
the objective formulation and algorithmic design can be a future prospect to incorporate,
thus enabling a unified security performance optimization strategy for next-generation
fog-enabled IoHT environments.
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