
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
/2

02
6 

12
:3

0:
14

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Dense Sense: a n
aUniversity of Hertfordshire, UH Biocomput

ac.uk
bCSIR-Central Scientic Instruments Organi

India
cAcademy of Scientic and Innovative Resea
dDepartment of Higher Education, Shimla-1
eIndian Institute of Science Education and Re

462066, India
fNational Institute of Technology Karnataka

Cite this: Digital Discovery, 2025, 4,
3339

Received 23rd May 2025
Accepted 21st September 2025

DOI: 10.1039/d5dd00224a

rsc.li/digitaldiscovery

© 2025 The Author(s). Published by
ovel approach utilizing electron
density augmented machine learning paradigm to
understand the complex odour landscape

Pinaki Saha, *a Mrityunjay Sharma,bcd Sarabeshwar Balaji,e Aryan Amit Barsainyan,f

Ritesh Kumar, *bc Volker Steuber a and Michael Schmuker a

Olfaction is a complex process where multiple nasal receptors interact to detect specific odorant

molecules. Elucidating structure–activity-relationships for odorants and their receptors remains difficult

since crystallization of the odor receptors is an extremely difficult process. Therefore, ligand-based

approaches that leverage machine learning remain the state of the art for predicting odorant properties

for molecules, such as the graph neural network approach used by Lee et al. In this paper we explored

how information from quantum mechanics (QM) could synergistically improve the results obtained with

the graph neural network. Our findings underscore the possibility of this methodology in predicting odor

perception directly from QM data, offering a novel approach in the machine learning space to

understand olfaction.
Introduction

Olfaction is a vital sense for perceiving the world that is crucial
to the survival of many animals, e.g. in foraging, mating and
detecting prey and predators. It also plays an important role in
human life, e.g. to detect hazards or maintaining hygiene.
Although it plays such an important role, the intricacies of the
olfaction process are not well understood. In the case of olfac-
tion in humans, olfactory perception involves about 802 genes
which encode for the ORs, out of which 388 genes are functional
receptors while the remaining 414 are reported to be
pseudogenes.5

The exploration of these receptors using structural biology
tools has been challenging due to their high genetic variability
and limited expression in in vitro systems. Their instability
during the isolation process makes them difficult to
crystallize.1–3 Additionally, the binding of odorants to the ORs is
not very straightforward. Individual ORs can recognize multiple
odorants while a single odorant can elicit responses from
multiple receptors, resulting in a complex scheme for odorant
recognition.6 The complexity of odorant-OR binding impedes
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structural based understanding of the odorant binding process.
Nonetheless, there is some notable research going on con-
cerning the structural biology aspect of olfaction. Utilizing Cryo-
EM, researchers have been able to elucidate the structure of
a single human olfactory receptor:7 OR51E2. In the case of
OR51E2 receptor, size selectivity has been observed for
carboxylic acid based ligands. Short chain linear carboxylic
acids were shown to bind better to OR51E2 receptor compared
to their long chain counterparts.3 Recently using the AI based
homology modelling tool Alphafold and molecular dynamics
(MD) simulation, researchers have tried to elucidate the struc-
ture of different ORs present in the human nasal epithelium.8

In contrast to the structure based approach, we have the
ligand based approach where we solely focus on features of
molecules to predict olfactory properties. Recently Lee et al.
reported success in utilizing message passing graph neural
networks (MPGNNS) for predicting odor labels of various
organic molecules.4 They achieved an impressive AUROC score
of 0.894 using an ensemble of 50 GNNs. This is currently the
state of art model whereas for a traditional machine learning
approach (random forest) using Morgan ngerprints an AUROC
of 0.85 was reported by them and this model was chosen as the
baseline model in their paper.

MPGNNS have gained a lot of traction in the eld of chem-
informatics;9 this is due to the fact that they are able to directly
input the two-dimensional structure of the molecule, thus
enabling featureless learning for molecules and removing the
need for calculation of molecular descriptors/features or
ngerprints. MPGNNS treat molecules as graphs: the atoms are
treated as nodes and the bonds are treated as edges.10 The
message passing step collates all the information in the nodes
Digital Discovery, 2025, 4, 3339–3350 | 3339
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Fig. 2 Electron density contours of benzene and paths of the gradient
vector field Vr(r), highlighting atomic boundaries and atomic basins of
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and edges to output an embedding which is fed to a feed
forward neural network for either a classication or regression-
based task. The embedding obtained post the message passing
step can further be ne-tuned using backpropagation during
training. This enriches the embedding with information perti-
nent to the model training. The embeddings thus tend to
outperform traditional cheminformatics based molecular
ngerprints which have a more generalized scope. Due to these
advantages, graph neural networks have been steadily gaining
traction in the eld of cheminformatics.

Computational chemistry is another powerful tool to eluci-
date properties and structures of molecules. Previously,
researchers have augmented computational chemistry with
machine learning to create machine learning-based force elds
that are trained on computational chemistry data, one notable
example being the Behler–Parrinello neural network (BPNN).11

Here, we augment computational chemistry with graph neural
networks using the AIMLDM (atoms in molecule localization
and delocalization matrices) approach.12

AIMLDM stems from the AIM (atoms in molecule) approach
founded by Bader.13 This is a partitioning scheme that assigns
a 3D region of molecular electron density to each constituent
atom of the molecule. Partitioning of the electron density is
possible because an atom does not completely lose its identity
when it bonds to form a molecule. The electron density of
a molecule (r) can be written as sum of the electron densities of
its atomic constituents (ri):

XN
i¼1

riðrÞ ¼ rðrÞ (1)

In the AIM method, the atomic constituents are dened by
the following boundary conditions:

Vr$n = 0 (2)

The boundary conditions are given by the dot product of the
gradient of electron density (Vr) and the normal vector to the
gradient (n). In case of a covalent bond, there will be an accu-
mulation of electron density at the bonding region and hence
V2r < 0, while in case of ionic bonding there will be a depletion
Fig. 1 Representation of QNN framework. The molecules are converted
graph neural network then predicts the odour labels for the molecules.

3340 | Digital Discovery, 2025, 4, 3339–3350
of electron density at the bonding region as ionic bonding is
purely an electrostatic interaction, thus V2r > 0. The bonding
region thus can be dened by the eqn (2) which in turn corre-
sponds to the atomic boundary regions.

The surface integral of eqn (2) gives the ux for the gradient
of electron density: þ

A

dSAVrðrÞ$nðrÞdr ¼ 0 (3)

Thus, in the AIM partitioning scheme, the atomic basin is
constrained by the zero ux condition. The gure below high-
lights the treatment of the benzene molecule with the AIM
approach (Fig. 2).

AIMLDM utilizes the AIM approach to create localization and
delocalization indices for determining the extent of localization
and delocalization in a molecular system. To understand
localization and delocalization indices we need to understand
the Fermi hole.15 The concept of Fermi hole comes from Pauli's
exclusion principle, which states that two electrons of the same
spin cannot exist in an orbital. The Fermi hole is thus a region
of space surrounding an electron of spin þ1

2
where an electron

of spin �1
2
cannot exist. Mathematically, it can be represented

in the following way:

raa(r1,r2) = ra(r1){r
a(r1) + h(r1,r2)} (4)

raa(r1, r2) is the pair density of two electrons having the same
spin state: a at positions r1 and r2, respectively, while r

a(r1) and
to LDM matrices, which are then fed to the graph neural network. The

benzene.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ra(r2) represent the one-electron density of electrons at posi-
tions r1 and r2, respectively. The quantity h(r1, r2) represents the
Fermi hole. The Fermi hole follows the electron; if the electron
is localized, so is the Fermi hole, and if the electron is delo-
calized the Fermi hole is also delocalized. Thus, the Fermi hole
is useful for quantifying localization and delocalization in
a molecule. Eqn (4) can be rearranged to the following:

raa(r1,r2) = ra(r1)$r
a(r1) + ra(r1)$h(r1,r2) (5)

raa(r1,r2) = ra(r1)$r
a(r1) + rX(r1,r2) (6)

The quantity rX(r1, r2) is termed the exchange density. Inte-
grating the exchange density over atomic region A gives the
number of same-spin electrons (having spin a) excluded from
atomic region:

FaðA;AÞ ¼
ðð

UA

rX ðr1; r2Þdr1dr2 (7)

Fb(A, A) pertains to excluded b electron density. The localization
index l(A) is dened as:

l(A) = jFa(A,A)j + jFb(A,A)j (8)

while the delocalization index s(A, B) is dened as:

s(A,B) = Fa(A,A) + Fb(A,A) (9)

In the AIMLDM approach, integration of the Fermi hole over the
atomic regions which are obtained from the AIM partition is
performed to get the localization and delocalization indices. We
then get the LDM matrix Ai,j, where the diagonal elements are
localization terms while the off diagonal elements are delocal-
ization terms:

ai,j=i = l(i,i) (10)

ai,jsi = s(i,j) (11)

An example of the LDM matrix for the methane molecule
(CH4) is given by Table 1.

The diagonal terms which correspond to localization indices
give an idea about distribution of electrons on the atoms while
the off-diagonal terms which correspond to the delocalization
indices give an idea regarding the bonding present in the
molecule. The LDM matrix is conceptually similar to an
Table 1 The LDMmatrix for methane is shown, the diagonal elements
represent the localization indices while the off-diagonal terms
represent the delocalization indices. The summation terms shows the
electron count for each atom16

C1 H2 H3 H4 H5 S

C1 4.04 0.492 0.492 0.492 0.492 6.007
H2 0.492 0.444 0.021 0.021 0.021 0.998
H3 0.492 0.021 0.444 0.021 0.021 0.998
H4 0.492 0.021 0.021 0.444 0.021 0.998
H5 0.492 0.021 0.021 0.021 0.444 0.998
S 6.007 0.998 0.998 0.998 0.998

© 2025 The Author(s). Published by the Royal Society of Chemistry
adjacency matrix used in graph representations, but it is not an
actual adjacency matrix. This is because in a true adjacency
matrix, the diagonal elements must be zero and any off-
diagonal elements corresponding to unconnected node pairs
must also be zero. In contrast, all elements in the LDM matrix
are positive integers.

In MPGNNs the molecules are treated as graph with the
atoms as nodes and bonds as edges while in our QNN approach
we take the localization indices (diagonal terms) as node
features while the delocalization indices (off diagonal terms) are
taken as edge features (Fig. 1). This QNN (QM based neural
network) model is then applied to a dataset containing 4872
molecules. The molecules were sourced from two datasets of
odorants with odor labels: Goodscents and Leffingwell.17,18

Previously, an ensemble model4 consisting of 50 GNNs has been
reported of having the highest accuracy score of 0.894 (AUROC)
while the baseline performance of an individual ML model was
reported to be 0.859. Our model surpasses the baseline perfor-
mance of their reported individual ML model and is at par with
their ensemble model.
Material and methods

The rst step of creating AIMLDM matrices was utilizing
ORCA19 to perform a single point energy calculation at B3LYP/6-
311++G(d,p) level of theory on all the molecules present in the
dataset. Single point energy calculation produces a wave-
function le which is then utilized by AIMall.20 AIMall then
performs the AIM partition calculation to produce sum les
which contain the information of atomic basins, critical point,
electron density and the gradient and the Laplacian of the
electron density. These sum les are used for generating LDM
matrices (Localization and delocalization matrices) using the
AIMLDM soware.12 Thematrices are generated as csv les. The
matrices are then fed into the graph neural network. Our model
architecture is based on Message Passing Neural Networks.21

For the message passing layer, we used 2 layers of edge-
conditioned matrix multiplication with 63 hidden units and
GRU updates, on top of a 45-dimensional atom featurization. In
the readout layer, each atom's embedding is folded into its
adjacent bond embeddings into a 152-dimensional embedding,
and then summed to generate a molecule embedding. This
molecule embedding is transformed through a 4-layer fully
connected network, with decreasing layer sizes from 1024 to 256
and a nal sigmoid function to make label predictions.
QM pipeline

(1) Perform single point energy calculation using ORCA (open
source soware). This generates binary .gbw les, use ORCA
tool: orca_2aim to generate the wavefunction le (.wfx) from the
binary les. It took approximately 40 days to nish the calcu-
lations for our dataset of 5 Kmolecules. These calculations were
performed on the HPC cluster of the University of
Hertfordshire.

(2) Use AIMall suite (commercial soware with a free version
which allows computing albeit at a slower processing time).
Digital Discovery, 2025, 4, 3339–3350 | 3341
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Run the AIMQB suite which is GUI based and browse for
wavefunction les and execute them. This will produce the
required .sum les. It took 20 days to nish the AIMall based
calculations on our dataset with the free version (the paid
version will take a smaller amount of time, paid version also
supports parallelization). The computation was done on
a Macbook Pro (M2 Max chip).

(3) AIMLDM is an open sourced soware available at https://
www.cmatta.ca/soware/. Place the .sum les in the folder
containing the AIMLDM executable le. Running the
executable les produces a folder containing csv les which
contains the LDM information. It took 3 days to nish the
calculations on a Macbook Pro (M2 Max Chip).

Hyperparameter tuning

To optimize model performance, a systematic hyperparameter
tuning strategy using the Optuna framework22 was done, which
efficiently explored the search space through a combination of
Bayesian optimization and pruning. Key parameters such as
learning rate, batch size, weight decay, message passing steps,
and feed-forward network congurations were varied during
optimization. An early stopping mechanism was incorporated
to prevent overtting and reduce computation by halting
training when the validation loss plateaued. Poor-performing
runs were pruned dynamically and trials were evaluated using
the ROC-AUC metric, and the tuning was parallelized across
available CPU cores to accelerate the search process. The details
fo the hyperparamter values chosen are given in Table 2.

Explainability

Gradients quantify how innitesimal changes in input features
can affect the model predictions. One such attribution tech-
nique is Integrated Gradients (IG),23 which calculates the inte-
gral of gradients along a path from a baseline input to the actual
input in order to quantify the contribution of each input feature
to a model's prediction. Gradients and their variations can
therefore be leveraged to efficiently examine how feature
changes affect the model's predicted results. IG satises key
explainability axioms, such as sensitivity and implementation
Table 2 Best hyperparameter values chosen for DMPNN + LDM
model

Hyperparameter Search space Chosen value

Initial_lr_rate [1e−4, 1e−2] 0.00539
Decay rate [0.1, 0.9] 0.77710
Decay steps [764, 384, 96] 764
Batch size [16, 25, 32] 25
Loss aggr type [sum, mean] sum
Num step message passing [2, 5] 5
Message aggregator type [sum, mean, max] max
ffn_hidden_list [[256, 256], [392, 392],

[512, 512]]
[512, 512]

ffn_dropout_p [0.0, 0.5] 0.1545
ffn_dropout_at_input_no_act [True, False] False
Weight decay [1e−6, 1e−4] 1.39161e−6

3342 | Digital Discovery, 2025, 4, 3339–3350
invariance, making it well-suited for molecular feature attribu-
tion. Mathematically, the IG attribution for the i-th input
feature is dened as:

IntegratedGradsiðxÞ :¼
�
xi � x

0
i

�
�
ð1
0

vF
�
x

0 þ a
�
x� x

0
��

vxi

da

(12)

where x represents the molecular input which is generally
atomic or bond features, x0 is the baseline input which is typi-
cally a zero vector or a neutral molecule representation, F(x) is

the model's output (odor prediction score), and
vF
vxi

is the

gradient of the model's output with respect to the i-th feature.
The integral is approximated using numerical summation over
m steps:

IntegratedGradiðxÞz
�
xi � x

0
i

�

�
Xm
k¼1

vF

�
x

0 þ k

m

�
x� x

0
��

vxi

� 1

m
(13)

In our study, IG is adapted for graph neural networks (GNNs)
in which we use the Directed message passing neural network
(DMPNN)24 as featurizer to analyze node and edge attributions.
Node attributions are computed by perturbing atomic features
while maintaining graph connectivity, identifying key atoms
that contribute to odor perception.

By altering bond features, edge attributions are obtained,
exposing some signicant bonding interactions that help in
predicting a particular odor. To ensure meaningful compari-
sons across molecules, attribution values are normalized. This
approach enables the identication of functional groups and
structural motifs associated with specic odor notes. Moreover,
it offers a deeper understanding of how atomic-level features,
such as atoms, bonds, and molecular structures, contribute to
odor prediction.
Results and discussion

Our main objective is to compare our QNNmodel to the state of
art MPGNN model that has been reported in the literature4 but
unfortunately the GNN models have not been made available.
We thus replicated their models by creating them in-house.25

The GNN research replication work has been termed openPOM
(Principal odor map). Principal odor map is a theoretical or
computational framework used to visualize and categorize
different odors based on their chemical properties and
perceived characteristics. Lee et al.4 have utilized principal
component analysis (PCA) of GNN embeddings to generate an
odor map where similar odors are clustered together and
dissimilar ones are placed further apart. The map is helpful for
predicting the odor of a new or uncharacterized molecule on
their map position. We recreated the POM reported in the
literature and made it open source; the model is deposited in
the Deep Chem repository, which is an open source repository
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Specifications of Hardware Resources

Component Specication

Operating System Ubuntu 18.04.6 LTS (x86_64)
Kernel 5.4.0-150-generic
Host DS400TG-48R Intel
CPU Intel Xeon Silver 4214 (48 cores, 3.20 GHz)
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of cheminformatics based tools https://deepchem.io/tutorials/
predict-multi-label-odor-descriptors-using-openpom/

We utilized the same 138 odor labels that were used for
generating the principal odor map by Lee et al.4 The odor labels
used were: alcoholic, aldehydic, alliaceous, almond, amber,
animal, anisic, apple, apricot, aromatic, balsamic, banana,
beefy, bergamot, berry, bitter, black currant, brandy, burnt,
buttery, cabbage, camphoreous, caramellic, cedar, celery,
chamomile, cheesy, cherry, chocolate, cinnamon, citrus, clean,
clove, cocoa, coconut, coffee, cognac, cooked, cooling, cortex,
coumarinic, creamy, cucumber, dairy, dry, earthy, ethereal,
fatty, fermented, shy, oral, fresh, fruit skin, fruity, garlic,
gassy, geranium, grape, grapefruit, grassy, green, hawthorn,
hay, hazelnut, herbal, honey, hyacinth, jasmine, juicy, ketonic,
lactonic, lavender, leafy, leathery, lemon, lily, malty, meaty,
medicinal, melon, metallic, milky, mint, muguet, mushroom,
musk, musty, natural, nutty, odorless, oily, onion, orange,
orangeower, orris, ozone, peach, pear, phenolic, pine, pine-
apple, plum, popcorn, potato, powdery, pungent, radish, rasp-
berry, ripe, roasted, rose, rummy, sandalwood, savory, sharp,
smoky, soapy, solvent, sour, spicy, strawberry, sulfurous,
sweaty, sweet, tea, terpenic, tobacco, tomato, tropical, vanilla,
vegetable, vetiver, violet, warm, waxy, weedy, winey, woody.

The data were sourced from Goodscents and Leffingwell
datasets17,18 each containing odorant molecules and corre-
sponding odor descriptors. Datasets were carefully curated to
match, as closely as possible, the (unpublished) datasets that
were used by Lee et al.4 The full process is documented in the
code repository. Post curation we got 4872 odorants. For split-
ting the dataset into train, valid and test sets, a stratied
splitting technique was used to ensure the distribution of che-
motypes was the same in the training, validation and test
dataset thus removing imbalance in the chemical dataset. The
dataset was split as follows:
Fig. 3 ROC values for both DMPNN+ LDM and openPOM5 folds. The fig
(a) ROC value for the DMPNN+ LDMmodel. The coloured line shows the
line shows the mean ROC value.

© 2025 The Author(s). Published by the Royal Society of Chemistry
80% training : 10% validation : 10% test.

To counter imbalance in the label side, we calculated class
imbalance ratios so that each odor label's contribution to the
loss was weighted by a factor of log(1+ class imbalance ratio).
Class imbalance ratio for a particular odor label is dened as
ratio of frequency of that label to the frequency of the most
prevalent odor label. This ensures that rarer odor labels are
given higher weights. For model training, we set the number of
epochs to 30. The loss function utilized for training was somax
based cross entropy and the AUROC metric was used to assess
the model. We utilized MPGNN with atom features and bond
features which were mentioned by Lee et al.4 and nally the
following features were utilized:

Atom features: valence, bonded neighbours count, hydrogen
count, hybridization, formal charge.

Bond features: aromaticity, cyclicity, degree of bonding.
Utilizing these features we trained the MPGNN and got the

results as shown in Table 4.
The training was completed within 2 hours and 32 minutes

on a system that had hardware specication as mentioned in
Table 3. We applied ve-fold cross-validation, consistent with
the approach used in the principal odor map study4 by Lee et al.
In this paper they have not reported the performance of the
ures show ROC values separately for each fold and also themean value.
mean ROC value. (b) ROC value for the openPOMmodel. The coloured

GPU NVIDIA Tesla V100 PCIe 32 GB
Memory 10193 MiB/128568 MiB RAM

Digital Discovery, 2025, 4, 3339–3350 | 3343
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Fig. 4 Areas dense with molecules that have the broad category labels fl
labels are outlined. The principal odour map (a) recapitulates the true perc
map replicated using our DMPNN + LDM (d) Principal odour map replica
absolute) coordinates matter. Figure (a) and (b) are reproduced with per

Table 4 Results of the MPGNN training process

Dataset AUROC

Validation (5-fold CV) 0.8661 � 0.0015
Validation 0.864
Test 0.871

3344 | Digital Discovery, 2025, 4, 3339–3350
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individual MPGNN model but nonetheless it is safe to assume
that the accuracy obtained for single MPGNN will be between
the accuracy (5 fold CV) reported for the baseline traditional ML
model and the accuracy (5 fold CV) reported for the ensemble
model:

0.894 (ensemble) > single MPNN accuracy > 0.859 (baseline)
oral, meaty, or alcoholic are shaded; areas dense with narrow category
eptual map4 (b) POM coordinates (256 dimensions)4 (c) Principal odour
ted using our DMPNN + Morgan fingerprint; note that only relative (not
mission from Science (https://doi.org/10.1126/science.ade4401).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Results of the QNN training process. DMPNN + LDM neural
network provides best results amongst all the GNN as per the valida-
tion score and is competitive with openPOM as per test score

GNN architectures (40 epochs) Validation (AUROC) Test (AUROC)

MPNN + LDM 0.8383 0.8499
GCN + LDM 0.849 0.85
DMPNN + LDM 0.871 0.86
openPOM 0.864 0.871
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The accuracy of our single MPGNN model (0.864, 5-fold CV)
falls well within this range (Fig. 3). Next, we attempted to
replicate the Principal Odor Map reported by Lee et al. by
plotting the principal components of their GNN embeddings.
Fig. 4c presents the principal odor map we reconstructed using
embeddings from our trained graph neural network. The
AUROC scores obtained on DMPNN + LDM and the replication
of POM points to the fact that we have successfully recreated
MPGNN utilized by Lee et al.4 We then utilized it for benchmark
analysis of our QNN model.

The dataset of approximately 5000molecules, which was used
for training the openPOM, was also utilized for training the QNN
model. The rst step involved the calculation of LDM matrices
for these molecules. This was achieved by performing a single-
point energy calculation on these molecules and generating
a wavefunction le containing their wavefunction information.
The single-point energy calculation was performed at the B3LYP/
6-311++G(d,p) level of theory.26 This choice is justied because
our dataset consists solely of organic molecules, and the B3LYP
functional has been extensively used for studying the structures
of organic molecules.27 6-311 is triple zeta basis set which offers
higher exibility for describing valence electrons. Polarization
functions (d, p) are essential for capturing the anisotropic elec-
tron distribution. Diffuse functions (++) are important for accu-
rately modeling electron-rich regions and long-range
interactions. There do exist other functionals which also would
have been suitable for our dataset like range-separated func-
tionals with 100% asymptotic exchange.28,29 These functionals
are designed to improve upon standard DFT approximations by
more accurately modeling the long-range behavior of electron
exchange interactions which could potentially occur during
odorant-receptor binding. We nonetheless utilized the B3LYP/6-
311++G(d,p) basis set due to the dual advantage of accuracy and
computational speed. The basis set is suitable for our dataset size
of 5000 molecules (which is the largest available open source
dataset for labelled odorants) but it would not be feasible for
a dataset containing millions of compounds. We can reduce the
basis set to increase the computational speed but then we
tradeoff the accuracy. We hypothesized a solution where pro-
molecule density30 can be used to tackle the scalibility issue,
a promolecule density can be calculated on the y for molecules
as it is generated by combining precalculated atomic densities.
This promolecule density then can be utilized for olfaction based
machine learning.

The wavefunction les so obtained from single point calcu-
lations were then utilized for the creation of LDM matrices
using the soware codes AIMall and AIMLDM.exe. The dataset
of LDM matrices was then used for training the graph neural
network. The graph neural network was used to predict the odor
label for the molecules. We utilized the same 138 odor labels
that were used for openPOM. The dataset was split in the
following way: 80 : 10 : 10 (training : validation : test). To counter
imbalance in the label side, we calculated class imbalance ratios
to get each odor label's contribution to the loss being weighted
by a factor of log(1+ class imbalance ratio). Class imbalance
ratio for a particular odor label is dened as ratio of frequency
© 2025 The Author(s). Published by the Royal Society of Chemistry
of that label to the frequency of the most prevalent odor label.
This ensures that rarer odor labels are given a higher weighting.

The optimization process utilized a cross-entropy loss func-
tion, and the model performance was evaluated using the
AUROCmetric. We utilized various architecture of graph neural
networks: message passing neural networks (MPNN), directed
message passing neural net (DMPNN) and graph convolutional
neural networks (GCN). Using solely the LDM indices for
training the various GNNs we got the following result as shown
in Table 5. The QNN training performance using molecular
ngerprints as input features (40 epochs) is shown in Fig. 6.

The results of the QNN model are impressive for this chal-
lenging odor label classication task given the fact that only
electron localization and delocalization data were provided to
the QNN model. The DMPNN + LDM model gives us the best
results amongst all the GNNs by achieving a validation score of
0.871, which is better than the openPOM result. We also created
a perceptual map for the DMPNN + LDM model. Fig. 4
demonstrates that the replicated Dense-Sense model preserves
the perceptual organization of odor space established by the
Principal Odor Map (POM). Similar to the true perceptual map
(a) and the original POM embedding (b), the replicated model
(c) produces well-separated clusters for broad odor categories
(oral, meaty, alcoholic) and their associated subcategories,
indicating that the model effectively captures human odor
similarity relationships from molecular structure.

The baseline model reported by Lee et al. shows an accuracy
of 0.859. Their baseline model is a random forest model that
uses Morgan ngerprints. We also deployed molecular nger-
prints and descriptors in the graph neural network framework
to see the comparison of their performance with our QMmodel.
We tried both DMPNN and MPNN architectures with the
MACCS/Morgan ngerprints and RDkit descriptors. The test
and validation AUROC score for the ngerprints and descriptors
based GNN models were similar to the score obtained for
DMPNN + LDM model (Table 6) and the perceptual map ob-
tained for the Morgan ngerprint had similar contours as the
one obtained for the DMPNN + LDM model (Fig. 4). The POM
model is a GNN framework which incorporates atomic and
bond features; inclusion of ngerprints and descriptors did not
lead to a drastic increase in the AUROC score. This could be due
to the fact that the descriptors and ngerprints do not encode
any additional olfaction specic information which would aid
the model. To further enhance the classication performance in
this multilabel setting, we optimized per-label thresholds for
Digital Discovery, 2025, 4, 3339–3350 | 3345
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Table 8 Results of the ensemble training process of GNNs having
different architectures

Ensemble
Random
seed

Validation
(AUROC)

Test
(AUROC)

DMPNN + MPNN + GCN 1 0.869 0.865
DMPNN + MPNN + GCN 42 0.867 0.859

Table 9 Results of the ensemble training process of DMPNNs. The
best Validation and test score was achieved by ensemble of ten
DMPNNs

Ensemble Validation (AUROC) Test (AUROC)

10 DMPNNs (random seed) 0.857 0.872
10 DMPNNs 0.88 0.875
30 DMPNNs (random seed) 0.857 0.869
30 DMPNNs 0.88 0.875
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converting predicted probabilities into binary outputs (Table 7).
With these thresholds applied to the validation predictions, the
model achieved a macro-averaged precision of 0.4244, recall of
0.4615, and F1 score of 0.3853. The OpenPOM model achieved
similar results: a macro-averaged precision of 0.4387, recall of
0.5039 and F1 Score of 0.4156. These metrics are reasonable for
a high label, imbalanced and noisy dataset. We then employed
an ensemble approach to combine graph neural networks for
improved performance. We rst explored combining DMPNN
models, as they demonstrated the best results. We tested
ensembles of 10 and 30 DMPNNs and aggregated their result by
averaging out their predictions. The AUROC metric was used to
evaluate the model performance. We tested two cases where we
varied random seeds and one without random seed variation.
Another approach involved creating ensembles of different
graph-based neural network architectures, with odor label
predictions aggregated using the mean. DMPNN + LDM model,
openPOMmodel (MPNN) and GCN + LDM were utilized for this
approach. The results are shown in Table 8.

The best ensemble training result was achieved with an
ensemble of ten DMPNNs as shown in Table 9. Aer applying
per-label thresholds to the validation predictions, the model
attained a macro-averaged precision of 0.4806, recall of 0.4862,
and F1 score of 0.4247. Although our ensemble result does not
surpass the result for the ensemble model (AUROC: 0.894) re-
ported by Lee et al.,4 our ensemble is at par with their ensemble
approach (AUROC: 0.88). Recently, Burns et al.31 reported the
application of graph neural networks for the prediction of
olfaction labels. They utilized the coordinates of three dimen-
sional structures of molecules as input and added additional
features to their graph neural network: Hirshfeld charge and
Hirshfeld volume. The model showed promising results but at
signicantly higher epochs as compared to our models or the
POM model reported by Lee et al.4 Burns et al. reported AUROC
Table 6 Results of QNN training using fingerprint-based features over
40 epochs

GNN architectures (40 epochs) Validation (AUROC) Test (AUROC)

DMPNN + MACCS 0.872 0.862
DMPNN + Morgan
((radius = 2, size = 1024))

0.872 0.866

DMPNN + RDkit 0.873 0.863
MPNN + MACCS 0.876 0.870
MPNN + RDkit 0.873 0.867

Table 7 Results of the QNN 5 fold results of the training process.
DMPNN + LDM neural network provides best results among all the
GNN as per the validation score and is competitive with openPOM as
per test score

GNN architectures (40 epochs) Validation (5-fold CV)

MPNN + LDM 0.8405 � 0.0018
GCN + LDM 0.8485 � 0.0041
DMPNN + LDM 0.853 � 0.0034

3346 | Digital Discovery, 2025, 4, 3339–3350
of 0.874 and 0.865 for their validation and test set respectively,
but at 400 epochs. At 40 epochs the AUROC for validation is
shown to be approximately around 0.65, which is signicantly
less than the results reported by us or Lee et al.4 at 40 epochs.
Also, a fair comparison cannot be warranted between their and
our models as their dataset is smaller (∼3500 molecules)
compared to our dataset of ∼5000 molecules.
Explainability

The best way to validate explainability was by using an
explainability analysis for compounds with functional group-
based odor labels, such as ketonic, phenolic, etc. These labels
are ideal for explainability analysis because their structural
basis is well understood. The explainability analysis must then
highlight the functional group as the odorgenic region of the
molecule.

Our explainability analysis conrmed this. We took the
functional group odor labels that our model was able to
successfully predict (AUROC per label score >0.8). Thus, we
obtained ketonic, phenolic, sulfurous, and lactonic-based odor
labels. The results of the explainability analysis are as follows:

Ketonic odor label (AUC per label score: 0.94). In case of
compounds with ketonic labels, the explainability analysis
shown in Fig. 5a correctly predicts the carbonyl group as the
main contributor regarding olfaction. In case of the rst
molecule in Fig. 5a. The ketone region is correctly highlighted
by the explainability analysis.

Phenolic odor label (AUC per label score: 0.89). In case of
compounds with phenolic labels, the explainability analysis
correctly predicts the hydroxy group of phenol as the main
contributor regarding olfaction. In some molecules it also
highlights the carbonyl group attached to the aromatic ring;
this may be due to the fact that the enolic tautomer of such
a carbonyl will be electronically similar to phenolic OH as the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00224a


Fig. 5 Explainability analysis of compounds with different odour labels: (a) ketonic, (b) phenolic, (c) lactonic, and (d) sulfurous. The importance of
bonds towards olfaction is highlighted using color gradation, where red indicates high importance and pink indicates low importance. In the case
of atoms, dark green atoms have the highest importance, while light green have the lowest.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3339–3350 | 3347
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enolic form in this case will be a hydroxy group conjugated with
an aromatic system.

Lactonic odor label (AUC per label score: 0.92). In case of the
compounds with lactonic labels, the explainability analysis in
Fig. 5c correctly predicts the lactone group (aliphatic cyclic
ester) as the main contributor to olfaction.

Sulfuruous odor label (AUC per label score: 0.97). In case of
the compounds with sulfuruous labels, the explainability
Fig. 6 Explainability analysis of compounds with different odour labels:
molecule, and (e) camphoreous (f) structure of camphor molecule. Red
The importance of bonds towards olfaction is highlighted using color g
importance. In the case of atoms, dark green atoms have the highest im

3348 | Digital Discovery, 2025, 4, 3339–3350
analysis as shown in Fig. 5d correctly predicts the thio group/
dithia linkage as the main contributor to olfaction.

Post this validation exercise we looked at odor labels which
had a more complex relationship with the structure of odorant:

Vanilla odor label. The major chemical compound respon-
sible for vanilla odor is the vanillin molecule. The structure of
the vanillin molecule is given in Fig. 6a. The explainability
analysis in this case highlights the importance of phenol and
para-carbonyl group and ortho hydroxy groups. The vanillin
(a) vanilla (b) Structure of vanillin, (c) musk, (d) Structure of muscone
circle highlights the quaternary bridgehead carbon, and (g) cinnamon.
radation, where red indicates high importance and pink indicates low
portance, while light green have the lowest.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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molecule contains both these motifs. We further performed our
analysis on other odor labels (results given in SI). We also utilize
explainability analysis where a complex relationship exist
between the odor and the odorant molecule:

Musk odor label. The explainability analysis in this case
highlights the importance of the macrocyclic ring for the musk
odor label. The macrocyclic ketone and heterocyclic oxygen
group are also deemed signicant. Natural musk odor is
primarily due to the constituent called muscone which is
a macrocyclic ketone as shown in Fig. 6d. As per the literature32

OR5AN1 is a human musk-recognizing receptor, which binds
with muscone via hydrogen-bond formation from the tyrosine-
260 residue along with hydrophobic interactions with
surrounding aromatic residues on the receptor. The keto group
and the macrocyclic ring thus play an important role in
imparting musk odor; this is corroborated via the explainability
analysis.

Camphoreous odor label. In case of camphoreous molecules
the explainability analysis highlights the importance of the
quaternary carbon, especially the quaternary carbon bridgehead
for the camphoreous smell. The bridgehead carbon is a prom-
inent feature of the camphor molecule as shown in Fig. 6f.

Cinnamon odor label. The explainability analysis in this case
highlights the importance of conjugation of the olen bond
with a carbonyl group. Cinnameldehyde (second molecule in
Fig. 6g) is the molecule which imparts aroma to the cinnamon
spice.

Explainability gives a special edge to our model in designing
a new fragrance/odorant. We can specically design novel
molecules by conserving the odorogenic regions given by the
explainability analysis; this can be a useful utility for
researchers working in the generative AI eld in olfaction.

Conclusion

Lee et al.'s seminal work on the principal odor map is a big step
towards the digitization of smell. We have replicated their
principal odor map and created a MPGNN model with an
accuracy of 0.86 (AUROC). We have made the model and our
codes open source to help olfaction researchers benchmark
their work. We utilized this model to benchmark our novel
quantum mechanics (QM) data-based neural networks (DENSE
SENSE). We have successfully created a model which works
solely on QM based features and shows high accuracy on the
odor dataset. The QM data is obtained from LDM matrices
which contain localization and delocalization indices of
a molecule. These have been used by GNN to accurately predict
odor labels for our dataset (best model AUROC: 0.87). Our QM
based GNN model performs better than the conventional GNN
model. In case of ensemble modelling, our QM based GNN
model (best model AUROC: 0.88) is at par with the conventional
GNN model (AUROC: 0.894). Our explainability analysis per-
formed in this paper gives unique insight regarding the
contribution of molecular features to olfaction. This is a novel
machine learning approach of utilizing QM based data. Our
work paves the way for a novel machine learning paradigm that
can be utilized for various prediction tasks.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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