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deployment in Africa through a weather-
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Renewable energy deployment in Africa must account for the continent’s pronounced weather
variability to ensure a reliable electricity supply. Here, we introduce a weather-aware framework that
integrates multi-criteria decision analysis with assessments of meteorological variability to optimize
renewable site selection. Optimal solar and wind energy locations are identified not only by their
highest average yields but also by evaluating generation variability under major climate oscillations,
including the Madden-Julian Oscillation modulated by El Niflo—Southern Oscillation. In addition, novel
synoptic regimes are derived through self-organizing map cluster analysis, providing further insight
into region-specific drivers of variability. Country-level yield estimates reveal the dominant
meteorological patterns shaping renewable output and their frequencies of occurrence. Our findings
underscore the necessity of accurately forecasting these regimes to enhance system resilience and
inform long-term planning. By explicitly linking generation variability to underlying climate drivers, this
framework offers a robust pathway for optimizing renewable energy expansion across Africa.

Africa’s energy demand is projected to triple over the coming decades’,
positioning renewable energy (RE) as central to the continent’s power
strategy. Hydropower has historically underpinned African RE portfolios’,
yet rapid cost declines in wind and solar technologies™* paired with the
imperative to conserve freshwater are expected to accelerate progress
towards the Sustainable Africa Scenario (SAS) goals’ by 2030. Ifall currently
proposed projects were implemented, RE could satisfy 76% of Africa’s
projected 2040 electricity demand, with solar and wind providing the
dominant shares®. Realizing this outcome requires strategic planning that
integrates infrastructure readiness, resource distributions, and the impacts
of weather and climate variability’.

Africa’s renewable energy potential is vast. Continental assessments
indicate roughly 110 GW of developable wind capacity and about 10 TW of
solar potential®. Solar prospects are especially strong because nearly 90% of
the landmass receives substantial incoming solar radiation’; however, pro-
duction remains sensitive to high cloud cover, dust aerosols, and
temperature'’. Favorable locations for wind power generation have been
identified in North and Southern Africa, the Horn of Africa, and coastal
regions'"'’. However, key geospatial considerations for RE deployment
include existing grid infrastructure, population density, and geographical
constraints'. Identifying optimal deployment sites for wind and solar power,
such as the model supply regions (MSRs) defined by Sterl et al."” improves

the effectiveness of energy planning. RE sources are subject to intrinsic
variability of the natural weather systems", therefore, a thorough under-
standing of the local meteorology, large-scale synoptic circulation features,
and the impacts of global teleconnections is essential for operations from
days to decades ahead""".

Among the numerous synoptic features that constitute the day-to-day
to sub-seasonal meteorological variability over Africa (affecting RE pro-
duction and demand) are weather regimes'’’. Weather regimes can be
defined as large-scale recurring patterns in the atmospheric circulation,
which can persist for periods from days to weeks'®'"”. Much has been done to
investigate their impacts on energy production over Europe, where
renewable generation tends to be above normal in the presence of cyclonic
weather patterns (particularly in wind dominated systems) but below
normal during blocked-regimes™ . Concurrently, energy demand rises
during blocked regimes, emphasizing the interconnectedness between cli-
mate variability and present-day energy systems. Bloomfield et al.”* devel-
oped a new approach to defining weather regimes called “targeted
circulation types” (TCTs) where the patterns were defined by clustering
continental-scale energy variables and showed that the resultant four TCT's
explain European power system variability better than standard weather
regimes. These new circulation types retain the sub-seasonal predictability
of traditional weather regimes while being more directly tied to power
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Fig. 1| Model supply regions (MSRs) and normalized annual yields across Africa.
a Optimal MSR locations for solar power deployment. b Optimal MSR locations for

wind power deployment. MSRs are colored by their annual mean capacity factor (CF
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%). ¢ Total annual solar yield (GWh) for each country, normalized by the total MSR
area within that country. d Total annual wind yield (GWh) for each country, nor-

malized by MSR area.

system impacts. This approach, therefore, offers a promising foundation for
developing more accurate operational forecasts for the energy sector.

Despite Africa’s centrality to global energy transitions, connections
between weather regimes and African RE potential remain underexplored.
Existing studies nevertheless reveal influential circulation features, including
regimes that organize biomass aerosol transport™, the modulation of
Senegal’s conditions by African Easterly Waves”, links between the
Madden-Julian Oscillation and rainfall across southern Africa®, and cir-
culation patterns associated with South Africa’s rainfall variability””.
Building on these insights, an Africa-focused framework that couples
impact-relevant circulation patterns with wind and solar resources mapped
onto realistic siting constructs such as MSRs can quantify regime-dependent
variability in production and demand and improve sub-seasonal to decadal
planning, forecasting, and resilience for the continent’s emerging low-
carbon power systems.

To optimize country-specific energy generation analysis, we adopt the
methodology of Sterl et al'”., which evaluates renewable resource potential,
landuse, population, topography, and infrastructure constraints to identify
optimal cost efficient RE deployment sites, termed MSRs. We enhance this
approach by incorporating a “variability” criterion for more robust site

selection and using a 45-year climatology to strengthen resource potential
analysis (see Methods “Datasets”). Energy generation statistics are com-
puted for all countries and analyzed under different scenarios, including
climatological conditions and specific weather regimes. Additionally, this
study explores links between RE generation and key variability drivers
affecting Africa, such as the Madden-Julian Oscillation (MJO)**, and the El
Nifio-Southern Oscillation (ENSO)*’ and a novel set of self-organizing maps
created based on fields driving RE generation. By identifying regions opti-
mized for cost-efficient and reliable RE deployment and integrating their
power generation potential with various large-scale drivers, this study
supports Africa’s ability to meet its energy demand sustainably and reliably.
By identifying key weather patterns associated with maximum variability at
MSRs and highlighting the need to improve their predictability, this study
presents a pathway toward more reliable and efficient energy forecasting
models.

Results

MSRs and climatological annual mean generation

Using the updated MSR creation methodology described in Section
“Creating MSRs”, we identified optimal locations for solar and wind energy
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Fig. 2 | Optimal model supply regions (MSRs) for solar and wind deployment in
Nigeria. a Locations of solar MSRs, colored by their annual mean Capacity Factor
(CF%). b Locations of wind MSRs, colored by their annual mean CF%. The maps
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also show key infrastructure and geographical constraints used in the screening
process, including protected areas (orange), water bodies (blue), roads (gray), and
transmission (red) and distribution (purple) grids.

deployment across Africa. A spatial map of all screened MSRs is shown in
Fig. 1a (solar power) and Fig. 1b (wind power). These MSRs differ from the
original work" by including variability criteria and 45 years of wind/solar
data. While all countries have suitable MSR locations for solar generation,
many in central and western Africa lack suitable wind MSRs due to low
resource potential. Identified wind MSRs generally have higher mean
capacity factors (CF) than solar MSRs. An illustrated map of the MSRs for
Nigeria is shown in Fig. 2. The MSR maps of all countries are given in the
repository MSRs.

Total annual yields were calculated (See Methods Section “Computing
the RE generation statistics from MSRs”) for each country using 45 years of
weather data. The MSR screening method caps deployment at 5% of a
country’s total area, giving larger countries higher yields. However, despite
their size, Angola and the Democratic Republic of the Congo have lower
wind yields due to limited wind resource potential. To emphasize resource
potential over country size in total yield, we normalized each country’s total
annual yield by its total MSR area (Figs. Lc, solar and 1d, wind). Normalized
solar power yields are highest in Egypt, Somalia, Kenya, Namibia, Malawi,
and Zimbabwe, while wind yields are highest in Kenya, Sudan, Chad, Niger,
and Western Sahara.

Weather drivers and clustering analysis

MJO and modulation by ENSO. MJO is a tropical oscillation char-
acterized by an eastward-propagating wave of enhanced (associated with
high cloud cover and rainfall) and suppressed convection with a peri-
odicity of 30-60 days™. It progresses through eight phases; each linked to
distinct convection centers in the tropics (see Methods Section “Identi-
fying MJO phases” for details of the phases and identification metho-
dology). ENSO is a quasi-periodic oscillation (2-7 years) associated with
anomalous warming (El Nifno) and cooling (La Nina) in the eastern
Pacific Ocean™. As the dominant source of planetary-scale interannual
variability, ENSO impacts global weather through teleconnections™. The
well-documented modulation of MJO by ENSO*>” is the focus of this
study, as MJO phases show distinct characteristics during different ENSO
modes. Since ENSO varies inter-annually, while MJO is intra-seasonal,
we analyze MJO behavior separately for El Nifio, La Nifia, and neutral
years. The ENSO years were identified using the method described in the
Methods Section “Identifying El Nifio Southern Oscillation (ENSO)
modes”. Figure 3 presents the Outgoing Longwave Radiation anomaly
(OLR) composites of MJO phases for the June-July-August (JJA) season
during El Nifio and La Nifia years. The results for other seasons are in

Supplementary information Figs. S2-S4. As ENSO peaks in the boreal
winter”, the MJO anomalies for December-January-February (DJF) are
centered in the same DJF season. Due to the lead-lag relation between
MJO and ENSO, where MJO activity is enhanced prior to El Nifo
peaking in winter, with a subsequent weakening of MJO after the peak™,
the MJO anomalies for March-April-May (MAM), June-July-August
(JJA), and September-October-November (SON) are considered for the
seasons prior to ENSO peak. Comparing anomaly composites of all MJO
phases with ENSO modes reveals that El Nifo tends to enhance sub-
sidence in MJO phases, while La Nifia amplifies convection (Fig. 3). This
is evident from the stronger positive OLR anomalies during MJO phases
1, 5, 6,7, and 8 in El Nifio years, indicating enhanced subsidence. Con-
versely, the negative OLR anomalies during MJO phases 1, 2, 3, and 4 are
more pronounced in La Nifa years, suggesting stronger convection over
the tropical African region.

African OLR regimes. Many regions in Fig. 3 do not exhibit significant
anomalies during MJO phases. It is therefore evident that MJO alone
cannot account for all fluctuations in the RE system. Taking a similar
approach to Bloomfield et al.”’, we wish to create impact-based patterns
for potential generation sites. Therefore, we opted for clustering analysis
to capture patterns that specifically capture solar radiation variability
across the country using OLR fields (focusing particularly on solar due to
the large number of identified MSR regions in Fig. 1). This novel
approach and its motivation are further explained in the Methods Section
“Identifying AORs using clustering analysis”. The clustering analysis was
performed separately for each of the four seasons, identifying nine pro-
minent weather patterns, hereafter referred to as African OLR regimes
(AOR), numbered from 1 to 9. OLR anomaly composite maps for each
AOR for season JJA are shown in Fig. 4. The composite maps for all other
seasons are provided in the Supplementary Fig. S5. It is evident from Fig.
4 that the spatial OLR anomaly structure in the clustered AORs exhibits
distinct complementary patterns, with pairs forming dipole-like struc-
tures. This highlights a recurring relationship between contrasting OLR
patterns, where one pattern is mirrored by its opposite in both spatial
distribution and intensity. For example, the convection centers with
strongest anomalies in AOR-1 are flipped in the AOR-2. Similarly, with
patterns AOR-3 and 4 and AOR-6 and 9. For AOR 7, the tripolar
structures are complemented by AOR-5 and 8. These strongly con-
trasting patterns are evident across all four seasons. Compared to MJO
patterns, the anomaly composites of clustered AORs exhibit stronger
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Fig. 3 | OLR anomaly composites for MJO phases
during the JJA season, stratified by ENSO state.
The figure shows composite maps of Outgoing
Longwave Radiation (OLR) anomalies (W/m?) for
each of the eight MJO phases, calculated over the
period 1980-2024. a Composites for MJO phases
during the June-July-August (JJA) season in years
preceding an El Nifio peak. b Composites for MJO
phases during the JJA season in years preceding a La
Nina peak.
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magnitudes, capturing greater weather variability, which in turn could higher magnitudes; for example, AOR-1 resembled MJO phase 5, and
better explain fluctuations in RE generation from the MSRs. Predicting AOR-4 mirrored MJO phase 6 during JJA. The methodology using
these AORs could greatly aid in forecasting power system variability at  Taylor diagrams™ for the identification of these matching anomaly pat-
sub-seasonal to seasonal (S2S) timescales, as demonstrated over Europe™.  terns is presented in the Methods Section “Finding matching patterns
Some AOR patterns show similar spatial patterns to MJO phasesbut with  between AOR and MJO phases”.
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Fig. 4 | OLR anomaly composite maps for the nine African OLR regimes (AORs)
during the JJA season. Each panel shows the composite Outgoing Longwave
Radiation (OLR) anomaly (W/mz2) for one of the nine identified AORs, averaged

W/m2

over all days assigned to that cluster. Negative anomalies (blue regions) indicate
enhanced convection, while positive anomalies (red regions) indicate suppressed
convection.

Energy generation from MSRs for AORs and MJO

The CF time series and total yield for each AOR day from the MSRs, compared
to climatological mean data, are shown for Nigeria (for both solar and wind) in
Fig. 5. These were generated as described in the Methods Section “Computing
the RE generation statistics from MSRs”. It’s worth mentioning that for clarity
we have shown only the dominant weather patterns in the main figures; full-
resolution plots encompassing all patterns across all countries and seasons are
available in the repository AOR. For solar power, the diurnal CF cycle remains
consistent across regimes, following the climatological pattern. However, CF
magnitudes and total daily yields vary. DJF shows the lowest solar generation
variability, with yield fluctuations from —6.5% (AOR-8) to +2.6% (AOR-3).In
other seasons, RE yield varies significantly across regimes: MAM ranges from
—84% (AOR-9) to +6.8% (AOR-5), JJA from —8.1% (AOR-4) to +8.5%
(AOR-6), and SON from —8.7% (AOR-6) to +6.9% (AOR-2). For wind, the
least variability occurs in SON, with yield fluctuations ranging from —9.1%
(AOR-6) to +3.5% (AOR-2) compared to climatology. JJA has the largest
fluctuations: —16% (AOR-2) and +10.2% (AOR-8). Similarly, the result for
MJO during ENSO years is shown in Fig. 6. For solar, MAM exhibits the
highest variability, ranging from +8% (phase 6, La Nifia) to —6% (phase 1, El
Nifio). JJA shows theleast change (+3.6% in phase 7 La Nifna to —4% in phase 8
neutral). Wind RE is more variable overall, with SON showing the largest range
(+12% in phase 4 El Nifio to —13% in phase 7 La Nifia). JJA has the lowest
wind variability (+8% in phase 6 neutral to —6% in phase 2 La Nifa).

RE generation statistics from MSRs for all countries and seasons, based
on MJO phases are available in the repository MJO. As with the AOR
analysis, the main figures present a simplified view of the most extreme
MJO-ENSO impacts, while the repository contains the full, detailed plots for
all combinations. Across all countries, neither AORs nor MJO alone fully
explain the largest RE generation variability. In some countries, MJO phases
have a stronger impact, while in others, AORs play a more dominant role.
To better understand their relative influence, we analyze total yield varia-
bility across Africa for all four seasons in a more comprehensive manner.
Figure 7 presents the feature associated with maximum and minimum

energy yield for solar and wind MSRs in each country during JJA. Distinct
regional clustering is observed for solar MSRs, with neighboring countries
affected by similar weather patterns. In North Africa, MJO phases pre-
dominantly influence both maximum and minimum RE generation, though
overall variability is low compared to other regions. In the Sahel, AORs are
the primary drivers of RE variability with AOR-4, 7 and 8 causing minimum
solar generation while maximum generation is attained during AOR-6. In
the western coastal region, AORs 2 and 4 cause minimum yield, and AOR-6
is generally linked to maximum generation. In the Horn of Africa, AOR-9
leads to the lowest generation, with no clear distinction for the feature
causing maximum generation. In East Africa, the lowest generation is linked
to a mix of MJO phases and AORs, while AOR-3 drives the highest gen-
eration. The southern and southwestern regions are also mainly influenced
by MJO phases. Overall, variability is highest in tropical regions and lowest in
the northern areas. Similar maps for other seasons are provided in Supple-
mentary Figs. S7-S9.

Wind MSRs show significantly higher RE generation fluctuations than
solar MSRs. Similar to solar, clustering of similar features causing minimum
and maximum generation can be observed in wind energy production. The
northern Africa variability is associated with MJO phases. In the western
African region, AOR-2 widely causes a minimum in wind generation while
maximum is associated with different features. The variability in generation
in the horn of Africa region is predominantly influenced by MJO phases with
phase 1 during El Nifio years tend to have minimum generation, but
maximum is associated with different phases. The variability in southern
African region is driven by a mix of AORs and MJO phases. The region
encompassing Uganda, Kenya, South Sudan, and the Central African
Republic is of particular interest as it exhibits the highest variability in wind
generation. Notably, Uganda experiences a 53% above-normal generation
during AOR-5, while MJO phase-4 (under neutral ENSO) results in a 25%
decline. This analysis highlights the significant influence of weather regimes
and MJO phases on RE generation, revealing distinct regional drivers of MSR
yield variability. These findings provide a basis for understanding energy
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Fig. 5 | Impact of African OLR regimes (AORs) on renewable energy generation
in Nigeria. The figure shows the mean diurnal cycles of the capacity factor (CF) for
a solar and b wind, averaged across all Nigerian MSRs for each season. For each

season, the plot displays the climatological mean diurnal cycle (black line) alongside

* Change in total yield (%) w.r.t climatology

the cycles for the AORs that produce the maximum (blue line) and minimum (red
line) total daily yields. Inset bar charts show the total daily yield (GWh) for these
three cases. The text boxes identify the specific AORs responsible for the maximum
and minimum yields and their percentage deviation from climatology.

fluctuations, aiding RE deployment and planning under different synoptic
conditions, and a starting point for sub-seasonal prediction system
development.

Discussion
This study presents a detailed and refined approach for optimizing RE
deployment across continental Africa. We present an updated MSR list for
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Fig. 6 | Impact of MJO-ENSO combinations on renewable energy generation in
Nigeria. The figure shows the mean diurnal cycles of the capacity factor (CF) for
a solar and b wind, averaged across all Nigerian MSRs for each season. For each
season, the plot displays the climatological mean diurnal cycle (black line) alongside
the cycles for the MJO-ENSO combinations that produce the maximum (blue line)

* Change in total yield (%) w.r.t climatology

and minimum (red line) total daily yields. Inset bar charts show the total daily yield
(GWh) for these three cases. The text boxes identify the specific MJO-ENSO com-
binations responsible for the maximum and minimum yields and their percentage
deviation from climatology.

each African country, factoring in meteorological variability and long-term
data for cost-efficient, reliable RE generation. We then analyzed RE gen-
eration variability from these MSRs under MJO phases during different
ENSO modes and a novel set of regimes called AORs. These OLR-derived

AORs revealed higher anomaly magnitudes than traditional MJO anomalies
across Africa, better representing system variabilities than traditional
weather patterns. The RE yield from these MSRs was subsequently com-
puted for climatological scenarios and specific MJO phases/AORs across all
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Fig. 7 | Weather features associated with maximum and minimum renewable
energy yields during the JJA season. The maps show the specific weather feature
that causes the largest positive (maximum) and negative (minimum) deviation in
total yield from the climatological mean for a solar and b wind. Each country is
marked with a symbol representing the feature associated with the minimum yield

(left bar) and maximum yield (right bar). The color and hatch pattern for each
feature (AORs and MJO-ENSO combinations) are defined in the main legend at the
bottom. The inset graph provides a larger, representative example of a country’s yield
variability, showing the percentage deviation from the mean.

four seasons. Our analysis reveals significant regional disparities in RE
generation potential. During JJA, West and Central African solar MSRs
show maximum variability, with AORs 2 and 4 yielding least (occurring for
7 and 9 days per season, respectively), and AOR-6 yielding most RE pro-
duction (increasing solar yield by 8% and occurring for 16 days). This region
being frequented by the West African monsoon” and African easterly
waves, may explain the enhanced variability, potentially captured by our
AORs. An additional cluster of high solar variability is observed in south-
eastern Africa during JJA, where MJO phase 3 during neutral ENSO years
(occurring for 15 days) and AOR-3 (with an expected frequency of 7 days
per season) dominate the variability. Considering other seasons, DJF saw
maximum variability in East Africa, the Horn of Africa, and southeastern
Africa, and MAM in central Africa and the East African monsoon domain.
The highest variability during SON is found to be scattered across the
continent. The least variability in solar is found in North Africa.

Overall, the variability from wind MSRs is very high compared to solar
MSRs. Among all the countries, Uganda stands out with exceptionally high
variability in wind generation throughout the year. The Central-East Afri-
can region generally displays high wind generation variability across all
seasons. For example, in East Africa during JJA, MJO phase 8 during El Nifio
is associated with the highest RE generation (occurring for 11 days), while
MJO phase 4 during a neutral ENSO year adversely affects wind generation
(occurring for 9 days). The least variability in wind generation is found in
north and northwest Africa. Frequency of occurrence of each weather fea-
ture is shown in Fig. 8. Accurate forecasting of weather patterns in MSRs is
crucial for both daily RE operations and long-term planning, enabling early
warnings and effective preparedness for reliable RE deployment across
Africa. By quantifying RE yield from MSRs under different synoptic weather
conditions, this work establishes a robust framework for weather aware RE
deployment, underscoring the significance of understanding and predicting
these patterns across timescales to optimize RE generation. A key

implication is the potential for S2S forecasting using our novel AORs. Our
Africa-centric AORs better explain local energy variability because, unlike
the globally-defined MJO, they capture regional weather patterns that are
often missed in large-scale composites. The prospects for their S2S pre-
dictability are promising. Since the MJO has known predictive skill in the
S2S models on these timescales™, the AORs that resemble MJO phases are
therefore likely to inherit this forecast skill. The predictability of the other,
more regional AORs, however, remains an open question and a new fore-
casting challenge. Therefore, a crucial next step is to conduct the first formal
predictability assessment of all AORs. Such an analysis would be essential
not only for quantifying their forecast skill but also for diagnosing the
diverse physical drivers from global teleconnections to regional processes
that govern these impact-relevant weather regimes.

Methods

Datasets

This study employs the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis version 5 (ERA5) dataset” to calculate
renewable potentials across Africa. ERA5 provides comprehensive, globally
consistent high-resolution data, making it a suitable choice for analyzing
meteorological and climatic variables in regions where ground-based
observations are sparse or unavailable, such as in many parts of Africa. By
combining model simulations and observations through data assimilation,
ERAD5 provides reliable reconstructions of the past weather and their validity
as proxy for observations is well documented in literature"**. The variables
used in this study are: Wind speed (at 100 m above ground), temperature (at
2 mabove ground), and surface solar radiation downwards at the surface for
calculating renewable energy outputs; outgoing longwave radiation (OLR)
for AOR and MJO phase identification; and sea surface temperature (SST)
and mean sea level pressure (MSLP) for ENSO identification. Hourly data
was utilized except for ENSO identification, where monthly fields were
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Fig. 8 | Mean occurrence frequency of AORs and MJO phases. The four heatmaps
show the mean number of occurrence days per season for each identified weather
feature, averaged over the 1980-2024 period. The y-axis represents the nine AORs

AOR MJO_ELNINO  MJO_LANINA  MJO_NEUTRAL

and eight MJO phases, while the x-axis shows the AORs and MJO phases further
stratified by ENSO state (El Nifio, La Nifa, and Neutral).

employed. All datasets span the period from 1980 to 2024. The static
datasets for MSR identification can be found in Sterl et al.”’. To account for
systemic biases in the ERA5 reanalysis, we corrected the data using the high-
resolution Global Solar Atlas (GSA)* and Global Wind Atlas (GWA)" as a
reference. For each grid point, we calculated an additive offset from the
difference between the long-term mean of the reference atlas and the raw
ERA5 data, and then added this constant offset to the entire 45-year hourly
ERADS time series. This mean adjustment method ensures that the long-term
climatology of our input data matches the reference atlases. It is also
important to note that our results are presented as deviations from the
climatological state, making our conclusions about the relative impact of
different weather patterns unaffected by any constant mean bias in the
energy yield time series.

Creating MSRs

The methodology for identifying MSRs is adapted from Sterl et al.”’ to
determine optimal locations for solar and wind deployment across Africa,
using the following criteria: For resource potential, solar regions with cli-
matologically average Global Horizontal Irradiance (GHI) < 4 kWh/m?/day
and wind regions with wind speeds <6 m/s at 100 m height were excluded.
Locations with population density >100 inhabitants/km?, elevation >2000
meters above sea level, and slope >20% were excluded. Land use was limited
to specific categories from the European Space Agency (ESA) Globe Cover
map, while protected areas (from the World Database on Protected Areas)
were excluded. Only regions within 50 km of existing roads and power grids
were considered. After creating this first set of MSRs, hourly CFs for solar
and wind were calculated using ERA5 data for 2018, and Levelized Cost of
Electricity (LCOE) was computed for each MSR. Later MSRs with the lowest
LCOE were selected, ensuring their total area did not exceed 5% of the
country’s total land area.

In contrast to the original> MSRs, which were only calculated with a
single year of weather data, we recreated them using a climatological year,
based on the mean of 45 years of GHI and wind data (1980-2024) from
ERAS5. We also incorporated variability of solar and wind resources into the
screening criteria, as high variability affects the financing of new renewable
generation'. The standard deviation of hourly GHI and 100-m wind speed
was calculated at each of the MSRs and used as the variability index (VAR).
The LCOE and VAR were then normalized and added together by giving
75% weight to LCOE and 25% weight to VAR to create the combined
LCOE-VAR index. The weighting criterion for the combined LCOE-VAR
index was determined through experimentation, viewing the balance as a
trade-off between economic optimization (lowest LCOE) and operational
reliability (lowest VAR). We started with a 100% weight on LCOE and
gradually increased the weight given to variability. We found that when the
weight for VAR exceeded 25%, the selected MSRs no longer substantially
overlapped with the regions having the highest resource potential (i.e., those
identified by the 100% LCOE approach). Because of this, the 75-25% bal-
ance was chosen for our index as it represents a scenario that strongly favors
economic potential while still giving a tangible consideration for grid sta-
bility. This framework is inherently flexible. For instance, planners with
different priorities could increase the weight of variability to 40% or 50%,
placing a higher premium on a stable energy supply. Such a change would
likely alter MSR site selection by favoring regions with more consistent, even
if less powerful, renewable resources. The weighting thus acts as a tuneable
parameter, allowing site selection to be aligned with specific national or
regional policy goals.

Computing the RE generation statistics from MSRs
Each MSR’s rated power-generating capacity is determined by its area and
plant specifications. The actual energy generated is obtained by multiplying
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Table 1 | IEC Wind Turbine classification and corresponding
wind speeds

IEC class Wind speed
Class 3 <7.5m/s
Class 2 7.5-8.5m/s
Class 1 >8.5m/s

hourly CFs by the MSR’s rated power. Following the methodology in Sterl
et al."”, we assume that not the entire area from each MSR is allocated for
power generation, as space is required for infrastructure, such as on-site
roads. Consequently, 90% of the MSR area is designated for solar power
generation, while 75% is allocated for wind energy. To study the impact of
AORs and MJO on RE generation from MSRs, the hourly CFs for all days
corresponding to specific regimes and MJO phases (ENSO modes sepa-
rately) were calculated using the methodology described in Sections “Solar
power model” and “Wind Power model”. The mean diurnal cycle of CFs for
a typical regime/MJO phase day at each MSR was determined by averaging
the CF for each hour across all days within that AOR/MJO phase. This
diurnal CF time series was generated for each MSR in every African country
across all four seasons. Additionally, the total daily yield for each AOR/MJO
phase was calculated. To assess country-level impacts, the mean CF across
all MSRs within each country was computed, and the total generation was
determined by summing the total yield from all MSRs within the country.
For comparison purposes, the power generation for climatological mean
days is also calculated.

Solar power model

The parameter used to evaluate solar energy potential is the solar photo-
voltaic (Solar PV) CF. CF, expressed as a percentage, is defined as the ratio of
the actual energy produced by a solar power plant to its theoretical max-
imum output under standard environmental conditions.

The energy generated by a Solar PV system depends on the downward
shortwave radiation flux, commonly known as Global Horizontal Irradiation
(GHI), as well as the ambient temperature (T2M). The formula for calcu-
lating the Solar PV CF is adapted from Bloomfield et al.”” and is given by:

ActualSolarPVOutput G(t)
SolarPVCE(t) = =Nk
o © SolarPVOutputunderStandardConditions i Ggre
M
Where:

*  G(t):is the incoming global horizontal irradiance (GHI) at each hour in
W/m?

*  Ggrc: is the reference irradiance under standard test conditions (STC),
a constant of 1000 W/m?>.

o 1 is the relative efficiency of the solar panel.

This relative efficiency term models the panel’s real-world performance
by accounting for the decrease in cell efficiency per unit increase in the
ambient temperature. It is defined as:

7=0.9%(1 —0.0042x (Ty, — Tres)) )
This efficiency term has two components.

o Temperature-dependent efficiency: The term 1 — 0.0042 X (Tom — Trep)
calculates the dynamic change in the panel’s performance based on its
temperature. This factor decreases the efficiency when the ambient
temperature (T, is above the 25 °C (T,) reference and increases it
when the temperature is below 25 °C. It is the primary variable factor
affecting the panel’s hour-to-hour performance.

o Static loss factor: This is the constant 0.9 in the formula, and it accounts
for all the non-weather-related losses, applying a baseline 10%
performance penalty.

Wind power model

The Wind CF is defined as the ratio of a wind turbine’s actual power output
to its maximum rated power output. A standard hub height of 100 m is used
for wind turbines, and the power curve of a turbine is applied to convert
wind speed at this height into the Wind Power CF. This methodology is
adapted from Bloomfield et al.””. Instead of relying on a single turbine class
to compute the wind CF, we consider three different classes of wind tur-
bines, categorized according to the International Electrotechnical Com-
mission (IEC) classification”. Based on the mean wind speed over a given
grid cell, the corresponding IEC turbine class is assigned to that location, and
the appropriate power curve is used to determine the Wind CF for that grid
cell. The IEC classification of wind turbines is outlined in Table 1.

Identifying MJO and ENSO

The methods of identifying MJO and ENSO modes were adopted from
literature and the detailed methodologies are given below. The analysis was
carried out for all African countries for four climatological seasons, DJF,
MAM, JJA, and SON.

Identifying El Nifio Southern Oscillation (ENSO) modes. El Nifio and
La Nifa years were identified using the method outlined in AchutaRao
et al.*’, based on both the NINO3 and SOI indices. The NINO3 index is
the area-averaged monthly SST anomaly in the NINO3 region (5°N-5°S
and 150°W-90°W) and SOI (Southern Oscillation Index) is measured as
the difference in sea level pressure anomalies between Tahiti and Darwin
(Australia). An El Nifio year is defined as one where the standardized
NINO3 index is greater than 0.6 and the standardized SOI is less than
—0.6 during the DJF season. Conversely, a La Nifia year is identified when
the standardized NINO3 index is less than —0.6 and the standardized SOI
is greater than 0.6.

Identifying MJO phases. MJO exhibits 8 phases. In phase 1, convection
is strongest over the western Indian Ocean, gradually shifting eastward
until phase 8, where an MJO cycle terminates in the central Pacific and
the next cycle begins”. This study uses an Outgoing Longwave Radiation
(OLR)-Based MJO index (OMI) first developed by Kiladis et al.*® and
made into an easy-to-use Python package called “mjoindices” by Hoff-
mann et al.”. The first two principal components (PC1 & PC2) of OLR
form the MJO index. The PCs are computed by projecting 20-96 day
filtered OLR onto the EOF patterns of 30-96 day eastward filtered OLR. A
Wheeler-Hendon phase diagram™ can then be used to find out the phase
of the MJO. The phase diagram can be visualized as a scatter graph
plotted between PC1 and PC2 values. The graph is divided into eight
sectors corresponding to each phase of the MJO. The sector where the
PC1 value meets PC2 is the phase of the MJO. An objective imple-
mentation of the phase diagram method, written in Python, is used for
identifying the MJO phases from the MJO index. After identifying the
MJO phases, seasonal OLR anomaly composites for the period
1980-2024 were computed using daily OLR maps for each phase across
the tropical African region (20°S-20°N, 35°W-65°E) for the seasons DJF,
MAM, JJA, and SON. This tropical African domain, encompassing both
the African continent and adjacent parts of the Atlantic and Indian
Oceans, was chosen to capture the convective anomalies associated with
the MJO phases where it is active. OLR anomaly composites are used to
visualize MJO phases as they depict enhanced (negative OLR anomalies
indicating convection) and suppressed (positive OLR anomalies indi-
cating reduced cloudiness) convection associated with the different
phases of MJO. The anomaly composites are presented in Supplementary
Fig. S1. These composites show different convection and subsidence
centers, indicated by negative and positive OLR anomalies, respectively.
To assess MJO-ENSO teleconnections, MJO phases were grouped
separately by each ENSO mode, and seasonal OLR anomaly composites
were computed. Since ENSO peaks in DJF, DJF composites are centered
on the same ENSO year, while those for MAM, JJA, and SON correspond
to seasons leading up to ENSO’s peak.
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Identifying AORs using clustering analysis

To identify weather regimes over Africa, we use the Self-Organizing Maps
(SOM) algorithm, a clustering method based on artificial neural networks™. In
SOM, a map of neurons is initialized with random weights, and a Best
Matching Unit (BMU) is selected based on the least distance measure between
input vectors and neurons. The neuron weights are then adapted towards the
input vectors using a learning rate, and the process repeats over multiple
iterations until each input vector is assigned to a BMU. For clustering, we use
the Python implementation of the SOM algorithm called MiniSom™.

Major weather variabilities over the Tropical African region include the
Madden-Julian Oscillation (MJO)™, African Easterly Waves (AEW)™, and
Equatorial Kelvin and Rossby Waves™, each with different periodicities
(30-60 days for MJO™, 3-5 and 6-9 days for AEW™, 3-20 days for Kelvin
Waves™ and 10-72 days for Rossby waves™). To capture these variabilities,
we focused on the tropical African belt, setting the domain for clustering
between 35°W-65°E and 20°N-20°S, an area dominated by these weather
events. As these target features are linked to convection and subsidence,
outgoing longwave radiation (OLR) data were used as a proxy for convective
activity, with negative OLR anomalies indicating enhanced convection and
positive anomalies indicating subsidence. To exclude unwanted frequencies
such as low-frequency seasonal variations and high-frequency day-to-day
changes, we applied a bandpass filter to remove periodicities greater than
100 days and less than 3 days. Finally, SOM with a 3 x 3 node shape was
applied to the bandpass filtered daily OLR anomaly data, identifying 9
distinct weather regimes called African OLR regimes (AOR) over the study
area. Deciding the number of SOM nodes was done after doing some
experimentation. Initially, we experimented with SOM configurations from
2 x 2, gradually increasing the size to 2 X 3,2 x 4,3 x 3,3 x 4,and 4 x 4. We
observed that as the number of nodes increased, identifying a clear “elbow”
in the quantization error for objective cluster selection became difficult.
Because increasing the number of clusters can lead to overfitting and
redundant patterns that are difficult to interpret, we determined the number
of clusters subjectively. Our decision to use a 3 x 3 configuration considered
the frequency of occurrence of the resulting patterns, which is important for
sub-seasonal to seasonal (S2S) forecasting, and their spatial pattern simi-
larity to existing phenomena such as the MJO. Details of assessing the
pattern similarity with MJO can be found in Section “Finding matching
patterns between AOR and MJO phases”.

Finding matching patterns between AOR and MJO phases
Taylor diagrams™ were created between each clustered AOR and the MJO
phase patterns to find out if the clustered regimes showed similarity to MJO
phases. The similarity between two patterns, measured by the correlation
between two patterns, their root-mean-square difference, and the individual
amplitude of variations (measured using the individual standard devia-
tions), can be graphically illustrated using a Taylor diagram. Using the
statistics observed from the Taylor diagrams, the patterns with the least
RMSE and highest correlation coefficient are chosen as the closest matching
patterns, and they are plotted together to see how the AORs and MJO phases
resemble each other and a sample matching patterns are shown in Sup-
plementary Fig. S6.

Data availability

The ERAS reanalysis data used in this study are publicly available from the
Copernicus Climate Change Service (C3S) Climate Data Store. The derived
numerical data supporting the findings of this study, such as the final MSR
shapefiles and processed yield statistics, are available from the corre-
sponding author upon request. A full repository containing all supple-
mentary figures generated for every African country (including individual
MSR maps and yield plots) is publicly available on GitHub [repo](https:/
github.com/rajeevskurup/msr_aor_re_figures).

Code availability
The custom codes used to perform the analysis and generate the figures are
available from the corresponding author upon reasonable request.
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