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Abstract— This paper presents an XAI-based framework 

for touch-stroke behavioral biometrics. Initially, a Random 

Forest classifier is trained to perform user classification, and 

feature importances are derived from the model's internal 
metrics. Subsequently, SHAP explanations are applied to 

obtain model-agnostic feature attributions. A comparison 

between the two approaches is then conducted to identify 

consistent patterns of feature relevance, informing the 

decision to exclude redundant or less influential features. The 
findings underscore the potential of integrating XAI into 

behavioral biometrics to enhance transparency and user 

trust. 

Keywords— eXplainable AI (XAI), touch-stroke dynamics, 

biometrics, SHAP  

I. INTRODUCTION  

Biometric authentication systems are increasingly 
valued for providing secure and user-friendly identification 

methods. Among various biometric modalities, touch-stroke 
dynamics are emerging as a promising approach, capturing 

unique behavioural patterns from user interactions with 

touch devices. This modality is particularly well-suited for 
continuous authentication in high-security contexts such as 

mobile banking and healthcare. 

In parallel, the field of eXplainable AI (XAI) is gaining 

momentum, aiming to make AI model decisions transparent 
and interpretable. Within biometric authentication, XAI 

plays a critical role in addressing the black box nature of 

machine learning models, fostering trust and accountability 
among users and stakeholders. This is especially relevant as 

regulatory and ethical frameworks increasingly demand 

explainability in AI-driven systems. 

A generic biometric authentication system incorporating 
Explainable AI (XAI) is shown in Fig. 1. Such a system 

integrates two interrelated concepts: explainability, which 

refers to understanding an algorithm’s internal design, 
training, and decision-making process; and interpretability, 

which focuses on presenting those insights in a human-

understandable, cause-and-effect manner. 

One emerging behavioural biometric modality that 

stands to benefit from XAI is touch-stroke biometrics. This  

 

Fig.1 Explainability and Interpretability for a Machine Learning Model[1] 

technique analyses how users’ swipe, tap, or interact with 
touchscreens to authenticate their identity. It is a  relatively 

recent area of research, gaining traction due to the 

increasing ubiquity of touchscreen devices. Touch strokes 
are defined as sequences captured by a device’s touch 

sensors during user interaction [2]. Due to the 
distinctiveness of human musculoskeletal structures, 

individuals produce unique movement patterns [3] allowing 
for the extraction of digital signatures from touch points or 

keystrokes captured through built-in sensors [4]. Prior work 
in this area includes mobile signature verification using 

handheld devices [5], often examining the influence of data 

acquisition methods and classifiers such as Hidden Markov 
Models (HMMs) across different datasets. Frank et al. [4] 

explored K-Nearest Neighbours (KNN) and kernel-based 
Support Vector Machines (SVM), while Serwadda et al. [6] 

carried out a benchmark of 10 different classifiers. These 
studies collectively highlight the potential of touch gestures 

as a reliable biometric modality. 

To the best of our knowledge, there has been no prior 
work in eXplainable AI (XAI) specifically addressing 

touch-stroke dynamics. By focusing on the nuances of touch 
dynamics and the unique behavioural traits they capture, we 

can enhance the transparency, trust, and usability of 
biometric authentication systems. We introduce methods for 

feature attribution, visualisation, and user-specific 

explanations that build upon existing XAI techniques, 
tailored specifically for the touch-stroke domain. This 

contribution is a first step towards providing insights for 



robust solutions in the field of touch-stroke biometric 

authentication. 

The rest of the paper is organised as follows: In Section 
II, we introduce a model-agnostic explanation technique 

namely SHAP. In addition, touch-stroke biometric model is 
described for SHAP to generate explanations of the 

classifier. Section III provides a detailed explanation of the 

results generated against the ground truth and validated by 
cross correlation and manual feature importance 

extractions. Section IV shows classifier performance 
improvement through a pruned set of features. Section V 

provides conclusion and further work. 

II. METHODOLOGY 

A. SHAP – Local Interpretability of Predicitve Models 

SHapley Additive exPlanations (SHAP) [7] provides a 

well-established approach for assigning a numerical value 

to represent each feature’s contribution to a specific model 

prediction. The model output is interpreted as a deviation 

from a baseline value, typically the average prediction 

across the dataset. The sum of all feature contributions, 

expressed as Shapley values, reconstructs the model's 

output for a given instance. The Shapley value for a feature 

𝑖 is given by: 

 

𝜑𝑖 =  ∑
|𝑆|! . (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆⋃{𝑖} (𝑥𝑆⋃{𝑖})

𝑆⊆𝐹 \{𝑖}

− 𝑓𝑆
(𝑥𝑆

)] 

 

where, 

• 𝐹  is the full set of features, 

• 𝑆 is any subset of 𝐹  that does not include feature 𝑖, 

• 𝑓𝑆⋃{𝒊}.(𝑥𝑆⋃{𝑖} ) is is the output when feature 𝑖 added 

to 𝑆, 

• 𝜑𝑖 quantifies the average contribution of feature 𝑖 

across all possible subsets. 

The difference 𝑓𝑆⋃{𝑖} (𝑥𝑆⋃{𝑖}) − 𝑓𝑆
(𝑥𝑆

)  represents the 

added influence of feature 𝑖  when combined with the 

feature set 𝑆. The weighting factor 
|𝑆|! .(|𝐹|−|𝑆|−1)!

|𝐹|!
  reflects 

the number of permutations where subset 𝑆 appears before 

feature 𝑖 in the ordering of features. Calculating the exact 

Shapley values involves evaluating the model on a large set 

of feature combinations which can become 

computationally expensive as the number of features 

increases [15]. To address this, approximation algorithms 

are commonly used. Kernel SHAP [6] is a widely used 

model-agnostic method that estimates Shapley values 

through weighted linear regression. For models with a tree-

based structure, such as the Random Forest classifier used 

in our work, a more efficient algorithm called Tree SHAP 

[7] is suitable and provides exact values for this class of 

models. 

In this study, we apply SHAP to explain the decisions 

of a machine learning classifier used for touch stroke 

biometric authentication. We cross-verify feature 

contributions from Random Forest’s traditional feature 

importances and gain a more reliable understanding of how 

model outputs are formed. 

B. Touch-Stroke Biometrics 

In this section, we consider the biometrics pipe-line for 

touch-stroke dynamics. 

1) Antal Dataset. This study utilises the Antal 

dataset[8], a  touch screen interaction database comprising 

231,371 user-device interaction entries. These were 

collected from 71 users over a four-week period using eight 

different mobile devices, including both tablets and 

smartphones with varying screen sizes. Two tasks were 

involved: 

(i) Reading activity, involving vertical scrolling 

strokes through text. 
(ii) Image gallery navigation, requiring horizontal 

swipes to select a favourite picture. 

The dataset is organised into three main files:  

• raw_data.csv: Contains stroke-level touch 
information, including device_id, user_id, 

timestamp, action (0 = touch down, 1 = touch up, 2 
= touch move), touch coordinates, pressure, and 

finger area. 
• devices.csv: Lists technical specifications for each 

device, including device_id, screen density, 

resolution, OS version, and screen DPI values (x-
dpi, y-dpi). 

• users.csv: Provides user demographic data and 

information on touchscreen experience levels. 

2) Pre-processing and Feature Engineering  

The Antal dataset displays a pronounced orientation 

bias of mobile devices held by users: 226,058 entries 
(97.7%) were recorded in portrait mode, compared to just 

5,313 entries (2.3%) in landscape mode. This imbalance 
reflects natural user preferences and ergonomics, as 

participants were allowed to use their devices freely , 
mirroring everyday mobile usage. However, the disparity 

presents challenges when comparing touch dynamics 

across orientations. To address this, the dataset was split by 
device orientation, allowing tailored analyses and 

recognising that user interaction behaviour can differ 

significantly between portrait and landscape modes. 

Following practices in recent studies on touch-stroke 
dynamics [9, 10] a series of pre-processing steps were 

implemented to ensure data quality and consistency, 

including missing values detection, outliers removal 
removing 15% of the original data ,  data normalisation and 

balancing datasets using under sampling to avoid model 
bias[11]. An initial sampling adequacy analysis revealed an 

uneven distribution of swipes across devices. Using pivot 
table analyses (samples/device and users/device), and 

further refining by samples/activity and users/activity, a  
working subset was established consisting of 65 swipes per 

user across 10 devices. 

For feature engineering, we adopted two key methods to 
enrich the data with dynamic interaction metrics. Drawing 

on insights from [12] which highlights influential features 
in touch-stroke dynamics, we derived both velocity and 

acceleration features at the level of individual touch points 
and entire swipes. These included: 

• Point-to-point velocity and acceleration, 



• Overall swipe velocity and acceleration. Median 
velocity of the last three points of each swipe 

(velocity_last_3_pts), 
• Median acceleration of the first five points of each 

swipe, 
• 20th, 50th, and 80th percentiles of pairwise velocity 

and acceleration, 

• Deviations from the end-to-end swipe line, 

measured at the same percentiles (20th, 50th, 80th). 

3) Touch-Stroke Dynamics of Users. In the context of 

this study, variations in user swipe behaviour across tasks 

and devices based on sensor-derived and engineered 

features are used to interpret user interactions. Fig.2  

illustrates swipe patterns of 12 users during two activities 

when device is held in portrait mode. In the image gallery 

task (Fig. 2a), swipe-up and swipe-move events are widely  

distributed, reflecting diverse user interactions, while 

swipe-down events cluster lower on the screen, likely due 

to thumb reach. In the reading task (Fig. 2b), swipe 

behaviour is more structured: swipe-up endpoints are 

concentrated, swipe-downs are centrally initiated, and 

swipe-move trajectories are predominantly linear and 

vertical. These task-specific patterns highlight the 

contextual nature of touch dynamics, with implications for 

adaptive interfaces and behavioural biometrics. 

 
a) Image Gallery Viewing 

 
b) Reading Activity 

Fig.  1. Swipe Pattern of Selected Users Across All Devices Based on 

Activity (Portrait Mode)  

Similarly, Fig.3 compares swipe trajectories across 

activities on the same device. During gallery browsing 

(Fig. 3a), swipes exhibit a  strong horizontal spread, 

reflecting lateral navigation, with users varying between 

clustered and dispersed patterns. In reading (Fig. 3b), 

swipes are predominantly vertical, aligning with scrolling, 

with swipe length and occasional horizontal shifts 

indicating reading pace and re-engagement. These 

contrasts underscore the behavioural richness and task-

adaptive nature of touch interactions, supporting user 

modelling and authentication. 

4) Feature Correlation. We establish a baseline using 

a Random Forest classifier to assess feature importance 

across portrait and landscape modes. Orientation-specific 

differences emerge, with some features consistently ranked 

high, though discrepancies limit definitive conclusions. 

Complementary correlation analysis (Fig. 4) reveals strong 

associations especially among swipe distance, velocity, and 

vertical coordinates, highlighting the influence of 

interaction geometry. A recurring negative correlation 

between swipe duration and velocity across both modes 

underscores the role of temporal dynamics. These insights 

form a foundation for subsequent explainability 

assessments, linking model behaviour to orientation- and 

task-dependent user traits. 

 
a) Image Gallery Viewing

 
b) Reading Activity 

Fig.  2. Swipe Patterns of Users on the Same Device  

 
c) Portrait Mode 

 
d) Landscape Mode 

Fig.4. Cross Correlation Feature Matrices  
 



5) Initial Model Performance. Random Forest models 

were trained on balanced subsets of the data for both 

portrait and landscape orientations. The initial results 

showed promising accuracy, with the portrait model 

achieving an accuracy of approximately 91.21% and the 

landscape model achieving approximately 82.93%. 

III. XAI MODEL INTERPRETATIONS 

In this Section, we present the application of SHAP to 
interpret the Random Forest models trained on the touch-

stroke dynamics data. We analyse explanation outputs for 

both correctly and incorrectly classified samples from the 
combined portrait and landscape orientations to uncover 

feature influences on model decisions.  

A. SHAP Interpretations 

The primary use of SHAP is to explain the feature 

importance and contributions of different features to the 

predictions made by the trained Random Forest models for 

both the balanced portrait and balanced landscape datasets. 

The Mean Absolute SHAP Importance (MASI) for a 

feature is the average magnitude of the SHAP values for 

that feature across all the instances in the sample test set 

and averaged across all possible output classes as shown in 

Figs. 7(a) and 7(b). Features with higher MASI are 

considered more important by the SHAP method because 

they have a larger average impact on the model's output. 

Key inferences made are: 

• Key Discriminators: finger_area,pressure 

and swipe_distance have high SHAP 

importances in both plots, it reinforces the idea that 
features such as these are consistently important 

characteristics for user identification, regardless of 
orientation. 

• Orientation-based Importance: Features that are 
ranked high in the Portrait plot but lower in the 

Landscape plot are more important for user 

identification in portrait mode and vice-versa. 

Relative importance of features such as x_cord 
and various velocity/acceleration metrics, shifted 

significantly between orientations.  

B. Local Interpretability with SHAP 

As a next step, we analyse specific instances of 

correctly and misclassified test samples using SHAP and 

compare the RF and SHAP importances numerically. 

Using these findings will guide feature removal. The 

natural next step would be to evaluate the performance of 

the models after removing the low-importance features to 

see if this simplification improves or maintains accuracy.  

Table I shows the top 5 features with the largest positive 

and negative impact on the prediction for each specific 

instance. In effect, it reveals the most influential features in 

the model's decision for a swipe.  

For a  correctly classified instance, the features with 

large positive SHAP values are the ones that strongly 

supported the correct user's class. Features with negative 

SHAP values for the correct class might have suggested a 

different user, but their combined impact was outweighed 

by the positive contributions. 

For a  misclassified instance, the features with large 

positive SHAP values are those that strongly supported 

the incorrect predicted user's class. Features with negative  

 

 
Fig. 7. SHAP Summary plots of overall feature importances for the 
models separated by orientation. Top-Portrait, Bottom-Landscape 

 
TABLE I.  TEST INSTANCES FOR SHAP LOCAL INTERPRETATION 
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0.05 
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-0.00007 

-0.0006 
0.0011 

 

SHAP values for the predicted class were pushing the 

prediction away from that incorrect user, but their impact  

was not strong enough to overcome the positive influences 

towards the wrong class. 

Comparing the features and their SHAP values between 

correctly and misclassified instances can help understand 

why the model made an error in the latter case. For 

example, if a  feature that usually has a strong positive 

SHAP value for a user's correct class has a negative or 

much smaller positive value in a misclassified instance of 



that same user, it might indicate an unusual swipe pattern 

for that user or a pattern that is very similar to another user 

for that specific feature.  

Mean Absolute SHAP Values (MASV): The Mean 

Absolute SHAP value for a feature represents its average 

magnitude of impact on the model's output across the 

sampled dataset. A higher value means the feature has a 

greater overall influence on the model's predictions. Table 

II shows the Mean Absolute SHAP Importances for both 

Portrait and Landscape orientations (sorted by importance 

within each orientation). We can infer that the MASV 

importances give us a good overall sense of which features 

the models are leveraging most heavily to distinguish  

between users in each orientation, averaged across the 

dataset. 

• Consistency: finger_area and swipe_distan

ce appear to be important in both orientations, 

suggesting they are generally strong discriminators 

regardless of how the phone is held. pressure also 
seems relatively important in both.  

• Orientation Differences: As expected, y_cord is 

more important in Portrait than in Landscape, 

while x_cord appears somewhat more important 

in Landscape (though not as dominant 

as y_cord in Portrait). Several velocity and 

acceleration feature also show shifts in importance 
between orientations.  

• Lower Importance Features: Features like 
point_velocity, point_acceleration, 

and point_t_diff consistently have very low 

MASV in both orientations and therefore consider 

them for removal. 

TABLE II.  MASV IMPORTANCES FOR THE DATASET 

Portrait Orientation Landscape Orientation 

 

Top Features MASV X 10
-2

 Top Features MASV X 10
-

2
 

finger_area 
swipe_dist 
y_cord 

pressure 
x_cord 

-0.59 
-0.49 
-0.44 

-0.36 
-0.30 

swipe_dist 
80pw_vel 
finger_area 

swipe_dur 
pt_t_diff 

-0.03 
-0.03 
-0.03 

-0.02 
-0.001 

C. Comparison of MASV with traditional RF feature 

importances 

Let's compare the normalised Mean Absolute SHAP 

importances with the traditional Random Forest  (RF) 

feature importances as shown in Fig.8. The following can 

be inferred:  

• General Agreement on Top Features: For both 

Portrait and Landscape, both RF and SHAP generally 
agree on many of the top-ranked features. Features 

like swipe_distance, finger_area, swipe_d

uration, and pressure tend to be ranked highly by 

both methods in their respective orientations. This 
agreement strengthens the conclusion that these 

features are truly important for user authentication. 
• Differences in Relative Importance: While agreeing 

on which features are important, the methods often 
disagree on their precise relative importance. In 

Portrait mode, SHAP assigns noticeably higher 

relative importance to finger_area and y_cord 

compared to RF. In Landscape mode, SHAP assigns 
higher relative importance to swipe distance and finger 

area compared to RF. RF assigns higher relative 

importance to pressure and median 

velocity_last_3_points. 

• Potential Reasons for Disagreements: These 
disagreements can arise because: 

o Traditional RF importance is based on impurity 
reduction in the trees, while SHAP considers the 

feature's contribution to the prediction for each 

instance. 
o SHAP can capture interaction effects between 

features, which might give higher importance to 
features involved in complex relationships that RF 

importance might not fully reflect. 
o The specific structure of the trained Random 

Forest ensemble can influence RF importance. 

• Orientation-Specific Comparison: 

o Portrait: SHAP seems to emphasize features 

like finger_area and y_cord more strongly 

relative to other features compared to RF. 

o Landscape: Both methods see swipe distance 

and finger_area as highly important. There are 

the differences in the ranking of other features 

like pressure and velocity features. 

 
 

 
Fig.8.  Normalised MASV for Portrait and Landscape Modes 
 

In summary, the comparison shows a good level of 

agreement between RF and SHAP on the overall most 

important features, increasing confidence in their 

relevance. However, SHAP provides a slightly different 

perspective on the relative importance, potentially 

highlighting features involved in interactions or with non-

linear effects more prominently. 

IV. PERFORMANCE IMPROVEMENT FROM FEATURE SET 

PRUNING 

Next, we aim to choose representative features from 

groups of correlated ones, guided by their SHAP 

importance. We can directly use the insights from the 

existing heatmaps in Fig. 4 to identify highly correlated 

feature groups as follows: 

• We can see clusters of features with high positive 

or negative correlations (values close to +1 or -1). 



• The percentile features (e.g., pairwise 

acceleration, pairwise velocity, deviation from 

end-to-end) are highly correlated with each other. 

• swipe_distance and swipe velocity showed a 

moderate positive correlation, while swipe 

duration and swipe velocity showed a moderate 

negative correlation. 

A. Feature Set Pruning Based on a Concensus Mechanism  

From the correlation map in Fig.4, we can select a 

representative feature from each group using a common 

correlation threshold of 0.8 to identify highly correlated 

features. Within each group of features with absolute 

correlation greater than this threshold, we select the feature 

with the highest average Mean Absolute SHAP importance 

across both Portrait and Landscape orientations. Features 

not highly correlated with any others will also be included. 

This process ensures that we remove features that 

were individually deemed low importance by both RF and 

SHAP, regardless of whether they were correlated with 

other features. Even if multiple features in a correlated 

group have relatively high importance, keeping all of them 

can introduce redundancy and multicollinearity, which can 

sometimes affect model stability or interpretability. This 

step aims to keep only the most important 

representative from each correlated group, ensuring the 

retained features are both important (by SHAP) and less 

redundant (by addressing correlation). This mechanism has 

reduced the feature set from 22 to 18 features.  

B. Model Performance with Reduced Features 

Re-evaluating the Random Forest models on the dataset 

with reduced features showed that removing these low-

importance features did not degrade performance. Instead, 

the accuracy slightly increased for the portrait model (to 

approximately 91.34%) and significantly increased for the 

landscape model (to approximately 90.24%). This 

demonstrates that the removed features were likely 

contributing noise or were less informative for the 

classification task, and their removal improved model 

efficiency and performance, particularly in the landscape 

orientation. 

 
TABLE III.  CLASSIFICATION ACCURACY COMPARISON 

Feature Set Accuracy-Portrait Accuracy-Landscape 

Original 0.912109 0.829268 

Reduced 0.913373 0.902439 

V. CONCLUSION AND FURTHER WORK 

This work demonstrated the significant impact of phone 

orientation on the effectiveness of swipe-based user 

authentication. Through the application of SHAP analysis, 

we identified the key features influencing user 

classification in both portrait and landscape orientations, 

providing valuable insights into the underlying patterns. A 

notable contribution is the finding that removing features 

deemed low importance by SHAP analysis can lead to 

improved Random Forest model accuracy, particularly for 

landscape swipe data, suggesting that a more focused 

feature set can enhance performance. 

For further work, it would be beneficial to compare the 

performance of other machine learning models and explore 

alternative feature selection techniques to potentially 

achieve even higher accuracies. A crucial next step is to 

investigate the models' ability to generalise across different 

devices and orientations, which is essential for real-world  

applicability. Additionally, incorporating the temporal 

dynamics of swipe data and validating the findings on 

larger and more diverse datasets would strengthen the 

conclusions and broaden the scope of the research. 
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