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Abstract— This paper presents an XAl-based framework
for touch-stroke behavioral biometrics. Initially, a Random
Forest classifier is trained to perform user classification, and
feature importances are derived from the model's internal
metrics. Subsequently, SHAP explanations are applied to
obtain model-agnostic feature attributions. A comparison
between the two approaches is then conducted to identify
consistent patterns of feature relevance, informing the
decision to exclude redundant or less influential features. The
findings underscore the potential of integrating XAI into
behavioral biometrics to enhance transparency and user
trust.
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[. INTRODUCTION

Biometric authentication systems are increasingly
valued forproviding secure and user-friendly identification
methods. Amongvarious biometric modalities, touch-stroke
dynamicsare emerging as a promising approach, capturing
unique behavioural patterns from user interactions with
touch devices. This modality is particularly well-suited for
continuous authentication in high-security contextssuch as
mobile banking and healthcare.

Inparallel, the field of eXplainable Al (XAI) is gaining
momentum, aimingto make Al modeldecisions transparent
and interpretable. Within biometric authentication, XAl
plays a critical role in addressing the black box nature of
machine learning models, fostering trust and accountability
amongusers and stakeholders. This is especially relevant as
regulatory and ethical frameworks increasingly demand
explainability in Al-driven systems.

A generic biometric authentication system incorporating
Explainable Al (XAI) is shown in Fig. 1. Such a system
integrates two interrelated concepts: explainability, which
refers to understanding an algorithm’s internal design,
training, and decision-makingprocess; and interpretability,
which focuses on presenting those insights in a human-
understandable, cause-and-effect manner.

One emerging behavioural biometric modality that
stands to benefit from XAI is touch-stroke biometrics. This
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Fig.1 Explainability and Interpretability fora Machine Learning Model[1]

technique analyses how users’ swipe, tap, or interact with
touchscreens to authenticate their identity. It is a relatively
recent area of research, gaining traction due to the
increasing ubiquity of touchscreen devices. Touch strokes
are defined as sequences captured by a device’s touch
sensors during user interaction [2]. Due to the
distinctiveness of human musculoskeletal structures,
individuals produce unique movement patterns [3]allowing
for the extraction of digital signatures from touch points or
keystrokes captured through built-in sensors [4]. Prior work
in this area includes mobile signature verification using
handheld devices [5], often examiningthe influence of data
acquisition methods and classifiers such as Hidden Matkov
Models (HMMs) across different datasets. Frank et al. [4]
explored K-Nearest Neighbours (KNN) and kernel-based
Support Vector Machines (SVM), while Serwadda etal. [6]
carried out a benchmark of 10 different classifiers. These
studies collectively highlight the potentialof touch gestures
as a reliable biometric modality.

To the best of our knowledge, there has been no prior
work in eXplainable Al (XAI) specifically addressing
touch-stroke dynamics. By focusing on the nuances of touch
dynamics and the unique behavioural traits they capture, we
can enhance the transparency, trust, and usability of
biometric authentication systems. We introduce methods for
feature attribution, visualisation, and user-specific
explanations that build upon existing XAI techniques,
tailored specifically for the touch-stroke domain. This
contribution is a first step towards providing insights for



robust solutions in the field of touch-stroke biometric
authentication.

The rest of the paperis organised as follows: In Section
I1, we introduce a model-agnostic explanation technique
namely SHAP. In addition, touch-stroke biometric modelis
described for SHAP to generate explanations of the
classifier. Section I1I provides a detailed explanation of the
results generated against the ground truth and validated by
cross correlation and manual feature importance
extractions. Section IV shows classifier performance
improvement through a pruned set of features. Section V
provides conclusion and further work.

II. METHODOLOGY

A. SHAP — Local Interpretability of Predicitve Models

SHapley Additive exPlanations (SHAP) [7] provides a
well-established approach for assigning a numerical value
to represent each feature’s contribution to a specific model
prediction. The model output is interpreted as a deviation
from a baseline value, typically the average prediction
across the dataset. The sum of all feature contributions,
expressed as Shapley values, reconstructs the model's
output fora given instance. The Shapley value for a feature
iis given by:
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where,
e F is the full set of features,
e Sis anysubsetof F thatdoes not include feature i,
. fSU{i}.(xSU{L'}) is is the output when feature i added
to S,
e @; quantifies the average contribution of featurei
across all possible subsets.
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feature set S. The weighting factorT reflects
the numberof permutations where subset S appears before
feature i in the ordering of features. Calculating the exact
Shapley valuesinvolves evaluatingthe modelon a large set
of feature combinations which can become
computationally expensive as the number of features
increases [15]. To address this, approximation algorithms
are commonly used. Kernel SHAP [6] is a widely used
model-agnostic method that estimates Shapley values
through weighted linear regression. For models with a tree-
based structure, such as the Random Forest classifier used
in our work, a more efficient algorithm called Tree SHAP
[7] is suitable and provides exact values for this class of
models.

In this study, we apply SHAP to explain the decisions
of a machine learning classifier used for touch stroke
biometric authentication. We cross-verify feature
contributions from Random Forest’s traditional feature
importances and gain a more reliable understandingofhow
model outputs are formed.

B. Touch-Stroke Biometrics

In this section, we consider the biometrics pipe-line for
touch-stroke dynamics.

1) Antal Dataset. This study utilises the Antal
dataset[8], a touch screen interaction database comprising
231,371 user-device interaction entries. These were
collected from 71 users overa four-week period using eight
different mobile devices, including both tablets and
smartphones with varying screen sizes. Two tasks were
involved:

(i) Reading activity, involving vertical scrolling

strokes through text.

(i) Image gallery navigation, requiring horizontal

swipes to select a favourite picture.

The dataset is organised into three main files:

e raw _data.csv: Contains stroke-level touch
information, including device id, user id,
timestamp, action (0 = touch down, 1 = touchup, 2
= touch move), touch coordinates, pressure, and
finger area.

o devices.csv: Lists technical specifications for each
device, including device id, screen density,
resolution, OS version, and screen DPI values (x-
dpi, y-dpi).

e users.csv: Provides user demographic data and
information on touchscreen experience levels.

2) Pre-processing and Feature Engineering

The Antal dataset displays a pronounced orientation
bias of mobile devices held by users: 226,058 entries
(97.7%) were recorded in portrait mode, compared to just
5,313 entries (2.3%) in landscape mode. This imbalance
reflects natural user preferences and ergonomics, as
participants were allowed to use their devices freely,
mirroring everyday mobile usage. However, the disparity
presents challenges when comparing touch dynamics
across orientations. To address this, the dataset was split by
device orientation, allowing tailored analyses and
recognising that user interaction behaviour can differ
significantly between portrait and landscape modes.

Following practices in recent studies on touch-stroke
dynamics [9, 10] a series of pre-processing steps were
implemented to ensure data quality and consistency,
including missing values detection, outliers removal
removing 15% ofthe original data, datanormalisation and
balancing datasets using under sampling to avoid model
bias[11]. An initial samplingadequacy analysisrevealed an
uneven distribution of swipes across devices. Using pivot
table analyses (samples/device and users/device), and
further refining by samples/activity and users/activity, a
working subset was established consisting of 65 swipes per
user across 10 devices.

For feature engineering, we adopted two key methods to
enrich the data with dynamic interaction metrics. Drawing
on insights from [12] which highlights influential features
in touch-stroke dynamics, we derived both velocity and
acceleration features at the level of individual touch points
and entire swipes. These included:

e Point-to-point velocity and acceleration,



e Overall swipe velocity and acceleration. Median
velocity of the last three points of each swipe
(velocity last 3 pts),

e Median acceleration of the first five points of each
swipe,

e 20th,50th,and 80th percentiles of pairwise velocity
and acceleration,

e Deviations from the end-to-end swipe line,
measured at the same percentiles (20th, 50th, 80th).

3) Touch-Stroke Dynamics of Users. In the context of
this study, variations in user swipe behaviour across tasks
and devices based on sensor-derived and engineered
features are used to interpret user interactions. Fig.2
illustrates swipe patterns of 12 users during two activities
when device is held in portrait mode. In the image gallery
task (Fig. 2a), swipe-up and swipe-move events are widely
distributed, reflecting diverse user interactions, while
swipe-down events cluster lower on the screen, likely due
to thumb reach. In the reading task (Fig. 2b), swipe
behaviour is more structured: swipe-up endpoints are
concentrated, swipe-downs are centrally initiated, and
swipe-move trajectories are predominantly linear and
vertical. These task-specific patterns highlight the
contextualnature of touch dynamics, with implications for
adaptive interfaces and behavioural biometrics.

Image Gallery Action - Swipe Pattems - Users: [76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88]
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a) Image Gallery Viewing
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b) Reading Activity
Fig. 1. Swipe Patternof Selected Users Across All Devices Based on
Activity (Portrait Mode)

Similarly, Fig3 compares swipe trajectories across
activities on the same device. During gallery browsing
(Fig. 3a), swipes exhibit a strong horizontal spread,
reflecting lateral navigation, with users varying between
clustered and dispersed patterns. In reading (Fig. 3b),
swipes are predominantly vertical, aligning with scrolling,
with swipe length and occasional horizontal shifts
indicating reading pace and re-engagement. These
contrasts underscore the behavioural richness and task-
adaptive nature of touch interactions, supporting user
modelling and authentication.

4) Feature Correlation. We establish a baseline using
a Random Forest classifier to assess feature importance
across portrait and landscape modes. Orientation-specific
differences emerge, with some features consistently ranked

high, though discrepancies limit definitive conclusions.
Complementary correlation analysis (Fig. 4) reveals strong
associations especially amongswipe distance, velocity, and
vertical coordinates, highlighting the influence of
interaction geometry. A recurring negative correlation
between swipe duration and velocity across both modes
underscores the role of temporaldynamics. These insights
form a foundation for subsequent explainability
assessments, linking model behaviour to orientation- and
task-dependent user traits
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Fig. 2. Swipe Patterns of Users on the Same Device
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5) Initial Model Performance. Random Forest models
were trained on balanced subsets of the data for both
portrait and landscape orientations. The initial results
showed promising accuracy, with the portrait model
achieving an accuracy of approximately 91.21% and the
landscape model achieving approximately 82.93%.

III.  XAI MODEL INTERPRETATIONS

In this Section, we present the application of SHAP to
interpret the Random Forest models trained on the touch-
stroke dynamics data. We analyse explanation outputs for
both correctly and incorrectly classified samples from the
combined portrait and landscape orientations to uncover
feature influences on model decisions.

A. SHAP Interpretations

The primary use of SHAP is to explain the feature
importance and contributions of different features to the
predictions made by the trained Random Forest models for
both the balanced portrait and balanced landscape datasets.
The Mean Absolute SHAP Importance (MASI) for a
feature is the average magnitude of the SHAP values for
that feature across all the instances in the sample test set
and averaged across all possible output classes asshown in
Figs. 7(a) and 7(b). Features with higher MASI are
considered more important by the SHAP method because
they have a larger average impact on the model's output.
Key inferences made are:

o Key Discriminators: finger area,pressure
and swipe distance have high SHAP
importances in both plots, it reinforces the idea that
features such as these are consistently important
characteristics foruser identification, regardless of
orientation.

e Orientation-based Importance: Featuresthatare
ranked high in the Portrait plot but lower in the
Landscape plot are more important for user
identification in portrait mode and vice-versa.
Relative importance of features such as x cord
and various velocity/acceleration metrics, shifted
significantly between orientations.

B. Local Interpretability with SHAP

As a next step, we analyse specific instances of
correctly and misclassified test samples using SHAP and
compare the RF and SHAP importances numerically.
Using these findings will guide feature removal. The
natural next step would be to evaluate the performance of
the models after removing the low-importance features to
see if this simplification improves or maintains accuracy.
Table I shows the top 5 features with the largest positive
and negative impact on the prediction for each specific
instance. In effect, it reveals the most influential features in
the model's decision for a swipe.

For a correctly classified instance, the features with
large positive SHAP values are the ones that strongly
supported the correct user's class. Features with negative
SHAP values for the correct class might have suggested a
different user, but their combined impact was outweighed
by the positive contributions.

For a misclassified instance, the features with large
positive SHAP values are those that strongly supported
the incorrect predicted user's class. Features with negative

Mean Absclute SHAP Feature Importances (Balanced Portrait Model)

@004 a.005 0.008

2001 Q002 0,003
Mean Absolute SHAP Importance

Mean Absolute SHAP Feature Importances (Balanced Landscape Model)

0,000 0005 0.010 0015 0020 0025 0630 0035 0020
Mean Absclute SHAP Impertance

Fig. 7. SHAP Summary plots of overall feature importances for the
models separated by orientation. Top-Portrait, Bottom-Landscape

TABLE L TESTINSTANCES FOR SHAP LOCAL INTERPRETATION
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SHAP values for the predicted class were pushing the
prediction away from that incorrect user, but their impact
was not strong enough to overcome the positive influences
towards the wrong class.

Comparingthe features and their SHAP values between
correctly and misclassified instances can help understand
why the model made an error in the latter case. For
example, if a feature that usually has a strong positive
SHAP value for a user's correct class has a negative or
much smaller positive value in a misclassified instance of




that same user, it might indicate an unusual swipe pattem
for thatuser or a pattern thatis very similar to anotheruser
for that specific feature.

Mean Absolute SHAP Values (MASV): The Mean
Absolute SHAP value for a feature represents its average
magnitude of impact on the model's output across the
sampled dataset. A higher value means the feature has a
greater overall influence on the model's predictions. Table
IT shows the Mean Absolute SHAP Importances for both
Portrait and Landscape orientations (sorted by importance
within each orientation). We can infer that the MASV
importances give us a good overall sense of which features
the models are leveraging most heavily to distinguish
between users in each orientation, averaged across the
dataset.

e Consistency: finger area andswipe distan
ce appear to be important in both orientations,
suggesting they are generally strong discriminators
regardless of how the phone is held. pressure also
seems relatively important in both.

e Orientation Differences: As expected,y cord is
more important in Portrait than in Landscape,
while x_cord appears somewhat more important
in Landscape (though not as dominant
asy cord in Portrait). Several velocity and
acceleration feature also show shifts in importance
between orientations.

e Lower Importance Features: Features like
point velocity, point acceleration,
andpoint t diff consistently have very low
MASYV in both orientations and therefore consider
them for removal.

TABLE II. MASYV IMPORTANCES FOR THE DATASET

Portrait Orientation Landscape Orientation

Top Features |IMASV X 107 Top Features %V[ASVX 10°
finger _area  [-0.59 swipe_dist -0.03
swipe_dist -0.49 80pw_vel -0.03

y_cord -0.44 finger area -0.03

pressure -0.36 swipe dur -0.02

x cord -0.30 pt t diff -0.001

C. Comparison of MASV with traditional RF feature

importances

Let's compare the normalised Mean Absolute SHAP
importances with the traditional Random Forest (RF)
feature importances as shown in Fig.8. The following can
be inferred:

e General Agreement on Top Features: For both
Portrait and Landscape,both RF and SHAP generally
agree on many of the top-ranked features. Features
like swipe distance, finger area, swipe d
uration, and pressure tend to be ranked highly by
both methods in their respective orientations. This
agreement strengthens the conclusion that these
features are truly important for user authentication.

e Differences in Relative Importance: While agreeing
on which features are important, the methods often
disagree on their precise relative importance. In
Portrait mode, SHAP assigns noticeably higher
relative importance to finger area andy cord
compared to RF. In Landscape mode, SHAP assigns
higher relative importance to swipe distance and finger

areca compared to RF. RF assigns higher relative

importance  to pressure and  median

velocity last 3 points.
e Potential Reasons for Disagreements: These
disagreements can arise because:

o Traditional RF importance is based on impurity
reduction in the trees, while SHAP considers the
feature's contribution to the prediction for each
instance.

o SHAP can capture interaction effects between
features, which might give higher importance to
features involved in complex relationships that RF
importance might not fully reflect.

o The specific structure of the trained Random
Forest ensemble can influence RF importance.

e  Orientation-Specific Comparison:

o Portrait: SHAP seems to emphasize features
like finger area andy cord more  strongly
relative to other features compared to RF.

o Landscape: Both methodssee swipe distance
and finger area ashighly important. Thereare
the differences in the ranking of other features
like pressure and velocity features.

Normalized Feature Impertance Comparison [Portrait: AF vs SHAP)

o

Fig.8. Normalised MASV for Portrait and Landscape Modes

In summary, the comparison shows a good level of
agreement between RF and SHAP on the overall most
important features, increasing confidence in their
relevance. However, SHAP provides a slightly different
perspective  on  the relative importance, potentially
highlighting features involved in interactions or with non-
linear effects more prominently.

IV.  PERFORMANCE IMPROVEMENT FROM FEATURE SET
PRUNING

Next, we aim to choose representative features from
groups of correlated ones, guided by their SHAP
importance. We can directly use the insights from the
existing heatmapsin Fig. 4 to identify highly correlated
feature groups as follows:

e We can see clusters of features with high positive

or negative correlations (values close to +1 or -1).



e The percentile features (e.g., pairwise
acceleration, pairwise velocity, deviation from
end-to-end) are highly correlated with each other.

e swipe distance andswipe  velocity showed a
moderate positive  correlation, while swipe
duration and swipe velocity showed a moderate
negative correlation.

A. Feature Set Pruning Based on a Concensus Mechanism

From the correlation map in Fig4, we can select a
representative feature from each group using a common
correlation threshold of 0.8 to identify highly correlated
features. Within each group of features with absolute
correlation greater than this threshold, we select the feature
with the highest average Mean Absolute SHAP importance
across both Portrait and Landscape orientations. Features
nothighly correlated with any others will also be included.
This process ensures that we remove features that
were individually deemed low importance by both RF and
SHAP, regardless of whether they were correlated with
other features. Even if multiple features in a correlated
group haverelatively high importance, keeping all of them
can introduce redundancy and multicollinearity, which can
sometimes affect model stability or interpretability. This
step aims to keep only themost important
representative from each correlated group, ensuring the
retained features are both important (by SHAP) and less
redundant (by addressing correlation). This mechanism has
reduced the feature set from 22 to 18 features.

B. Model Performance with Reduced Features

Re-evaluatingthe Random Forest models on the dataset
with reduced features showed that removing these low-
importance features did not degrade performance. Instead,
the accuracy slightly increased for the portrait model (to
approximately 91.34%)and significantly increased for the
landscape model (to approximately 90.24%). This
demonstrates that the removed features were likely
contributing noise or were less informative for the

classification task, and their removal improved model
efficiency and performance, particularly in the landscape
orientation.

TABLE II1. CLASSIFICATION ACCURACY COMPARISON

Feature Set Accuracy-Portrait Accuracy-Landscape
Original 0.912109 0.829268
Reduced 0.913373 0.902439

V.  CONCLUSION AND FURTHER WORK

This work demonstrated the significant impact of phone
orientation on the effectiveness of swipe-based user
authentication. Through the application of SHAP analysis,
we identified the key features influencing user
classification in both portrait and landscape orientations,
providing valuable insights into the underlying patterns. A
notable contribution is the finding that removing features
deemed low importance by SHAP analysis can lead to
improved Random Forest model accuracy, particularly for
landscape swipe data, suggesting that a more focused
feature set can enhance performance.

For further work, it would be beneficial to compare the
performance of othermachine learningmodels and explore
altemative feature selection techniques to potentially
achieve even higher accuracies. A crucial next step is to
investigate the models' ability to generalise across different
devices and orientations, which is essential for real-world
applicability. Additionally, incorporating the temporal
dynamics of swipe data and validating the findings on
larger and more diverse datasets would strengthen the
conclusions and broaden the scope of the research.
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