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Abstract

Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency,
holds significant promise for vehicle-to-everything (V2X) communications. However, it
faces challenges such as high propagation losses and limited coverage in dense urban
vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues by
enhancing mmWave signal paths around obstacles, thereby maintaining reliable communi-
cation. This paper introduces a novel Contextual Multi-Armed Bandit (C-MAB) algorithm
designed to dynamically adapt beam and IRS selections based on real-time environmental
context. Simulation results demonstrate that the proposed C-MAB approach significantly
improves link stability, doubling average beam sojourn times compared to traditional
SNR-based strategies and standard MAB methods, and achieving gains of up to four times
the performance in scenarios with IRS assistance. This approach enables optimized re-
source allocation and significantly improves coverage, data rate, and resource utilization
compared to conventional methods.

Keywords: mmWave; V2X; RIS; machine learning; multi-armed bandit

1. Introduction
The advent of millimeter-wave (mmWave) technology has sparked a transformative

wave in next-generation wireless communication. In this dynamic landscape, Vehicle-to-
Everything (V2X) communication emerges as a pivotal force poised to reshape the future of
transportation systems [1]. By enabling seamless interaction among vehicles, infrastructure,
pedestrians, and other road users, V2X holds the promise of fostering safer, more efficient,
and smarter transportation networks [2]. However, leveraging mmWave for V2X introduces
significant challenges due to the high-frequency nature of mmWave signals, including
increased propagation loss, susceptibility to interference, and mobility constraints [3]. Ad-
ditionally, mmWave small cells operate with highly directional narrow beams to maintain
high data rates, but this results in frequent beam switching and handovers as vehicles
rapidly move between beam sectors, adding further complexity to maintaining stable and
reliable communication.

To fully harness mmWave’s potential for V2X communication, researchers and en-
gineers are delving into innovative solutions aimed at enhancing signal propagation,
coverage, and reliability. One particularly promising avenue gaining momentum is the in-
tegration of Intelligent Reflecting Surfaces (IRSs) into mmWave V2X systems [4]. Outfitted
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with passive reflecting elements, these surfaces excel at redirecting signals when a direct
link between User Equipment (UE) and a mmWave Base Station (BS) is obstructed [5]. IRS
technology emerges as a focal point in the research community, holding the potential to
significantly boost spectral efficiency and expand communication range [6].

The efficacy of IRS-assisted mmWave V2X communication hinges not only on deploy-
ing IRSs but also on tailoring their functionality to the specific demands and dynamics of
the mmWave V2X environment [7]. Context-awareness becomes paramount in this context,
enabling the system to dynamically respond to real-time changes in vehicular mobility,
traffic patterns, and environmental conditions [8]. Employing context-aware beam selec-
tion strategies alongside IRS technology proves instrumental in enhancing communication
quality and coverage, minimizing latency, and ensuring the reliability of mmWave V2X
communication across diverse scenarios [9].

2. Related Works
Beam management and selection, a fundamental aspect of IRS-assisted mmWave

V2X systems, have been at the forefront of investigation. However, efficiently managing
the beams in such systems, especially coordinating between the BS and IRS for two-hop
transmission, is challenging. Several papers have contributed novel approaches to this
domain, enhancing the efficiency of mmWave V2X communication. A comprehensive
survey by [10] offers a broad overview of IRS applications in vehicular communications,
both ground-based and aerial, highlighting the potential and challenges of IRS-aided 6G
vehicular communications. Additionally, ref. [11] discusses various use case scenarios for
IRS-enabled V2X communications, particularly focusing on vehicular edge computing and
IRS-enabled drone communications to minimize vehicle computational time.

A machine learning-based approach proposed in [12] includes two phases: situational
and mobility awareness. In the situational awareness phase, a model at the BS predicts the
optimal IRS setup for a UE’s location. The mobility awareness phase, at the UE, predicts UE
mobility. This allows for predicting the optimal IRS configuration, and significantly reduces
system overhead during initial access. In highly dynamic scenarios, it achieves higher spec-
tral efficiency by using predicted UE locations. Leveraging location information, ref. [13]
examines the impact of prior location data on channel parameter estimation in IRS-aided
mmWave MIMO (Multiple-Input Multiple-Output) systems. It presents directional training
beams based on rough location data and employs atomic norm minimization for channel
parameter extraction. The authors of [14] introduce real-time software-controlled IRSs and
examine their optimal placement in wireless networks, addressing reliability requirements
for V2X communications. Furthermore, ref. [15] introduces a deep reinforcement learning
algorithm for beamforming optimization in mmWave vehicle-to-infrastructure (V2I) com-
munication systems. This novel algorithm tackles the non-convex and time-varying nature
of joint beamforming matrix optimization for the BS and the IRS. The results demonstrate
substantial network performance improvement, especially in dense V2I network scenarios.

One approach, as proposed in [16], introduces multi-beam training methods for IRS-
assisted multiuser communication, designed to reduce training time without compromising
passive beamforming performance. It achieves this by partitioning IRS elements into sub-
arrays and implementing a multi-beam codebook, thus enabling efficient beam direction
control for different users. Ref. [17] explores the use of IRSs in a millimeter-wave vehicular
communication network, introducing schemes to reduce channel estimation overhead and
considering rate maximization in the uplink. Lastly, the study in [18] employs IRSs to
mitigate Inter-Cell Interference (ICI) by using graph theory to minimize beam collisions.
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Our Contributions

These research findings collectively underscore the evolving landscape of IRS-assisted
mmWave V2X communication, emphasizing innovation in beam management and selection
as a key enabler for its widespread adoption and the improvement in next-generation
vehicular communication systems. In addition, these traditional beam selection strategies
in vehicular mmWave networks often rely on instantaneous signal strength or static location
mapping, which do not reflect future link duration or vehicle mobility patterns. As a result,
they tend to cause frequent handovers and unstable links. In contrast, our proposed
context-aware framework predicts longer-lasting beam assignments based on high-level
contextual factors, reducing switching events and improving average link duration. In this
paper, we proposea Context-aware Multi-Arm Bandit (C-MAB)-based beam selection for
IRS-assisted vehicular communication by incorporating vehicle mobility context under a
realistic vehicular mobility environment. The aim is to establish long-lasting connections,
unlike signal strength-based approaches for end-to-end V2I communication. Note that,
unlike standard C-MAB models, our approach considers a spatiotemporal environment
where vehicle mobility and shared beam resources create interaction between decisions.
While most C-MABs assume static user contexts and independent arm outcomes, our
setting involves overlapping beam coverage, prioritized scheduling, and varying mobility
patterns. Therefore, we define reward as the total connection time achieved under a beam,
conditioned on the vehicle’s context and future trajectory. This formulation aligns more
closely with real-world beam stability concerns and differentiates our work from typical
bandit designs that focus only on immediate signal gain or throughput. The following
describes the main contributions of this paper.

• Context-driven beam and IRS selection: We introduce a novel approach that leverages
a range of contextual factors to enhance the beam and IRS selection process. By
considering variables such as vehicle mobility information (e.g., travel directions and
relative locations) and traffic light information, we improve the beam and IRS selection
process to enable longer-lasting connections. This context-aware selection approach
not only improves the overall connectivity quality but also extends the connection time,
a critical factor in V2X communication, especially for mission-critical applications.

• Predictive testing tool for IRS locations: Recognizing the importance of IRS placement
in achieving optimal signal reflections, we offer a practical tool for assessing the ef-
fectiveness of IRS locations. This tool empowers network planners and engineers
to simulate IRS deployments and assess their impact on signal propagation before
actual implementation. By doing so, we mitigate the risk of suboptimal IRS place-
ment, thereby enhancing the overall performance and robustness of mmWave V2X
communication systems.

• Utilization of traffic light waiting times: This is the first work to incorporate waiting times
at traffic lights as contextual data for predicting beam sojourn times in IRS-assisted
V2I communication. This predictive insight allows for the development of proactive
mobility and resource management strategies. By factoring in traffic light cycles, we
can optimize beam switching, resource allocation, and mobility planning, ensuring
that the V2I communication system remains seamless and uninterrupted, even in
stop-and-go traffic scenarios. Note that the traffic light status can be acquired through
standard V2X interfaces supported by modern infrastructure. Traffic controllers
broadcast phase and timing information (e.g., current light status, remaining time,
next transition) using SPaT messages [19]. These data can be received directly by
the base station via wired connectivity or wirelessly via Roadside Units (RSUs) that
act as V2I relays. In addition, vehicles can share their perception of the traffic light
status through Cooperative Awareness Messages (CAMs) or Basic Safety Messages
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(BSMs), which include location, speed, heading, and, in some cases, braking events
that suggest deceleration due to traffic light stops. These standardized messages allow
the base station to build a synchronized and real-time environmental context, which
includes the dynamic state of the traffic signal affecting each vehicle’s route.

In summary, our contributions encompass not only context-aware beam and IRS
selection for prolonged connection times but also a practical testing tool to optimize
IRS deployment strategies. Moreover, by harnessing waiting times at traffic lights as
predictive context, we enable the development of proactive strategies to enhance mobility
management and resource allocation in mmWave V2X communication. These innovations
collectively pave the way for more robust, reliable, and efficient vehicular communication
systems, crucial for the advancement of smart and safe transportation networks. The
remainder of this paper is organized as follows: Section 2 describes the considered scenario
and formulation of the beam selection problem. In Section 3, the C-MAB based beam
selection algorithm is elaborated. The experimental results are explained in Section 4 to
show the effectiveness of our proposed algorithm. Finally, we draw important conclusions
in Section 5.

3. Scenario Setup and Problem Formulation
We examine a mmWave small cell designed to improve throughput performance

and network capacity for downlink transmission. The small cell BS under consideration
is equipped with an antenna array directed along predefined orientations, though the
number of radio frequency (RF) chains is fewer than the number of antennas. Each antenna
may consist of multiple elements that form a beam directed towards a specific region. As
described in [20], the coverage area of a beam, or beam sector, is ideally spatially separated.
Given the limited RF chains, only a subset of antennas can be activated for downlink at
any time.

The scenario is depicted in Figure 1. The mmWave base station (mmBS), located in
central London, UK, is equipped with 12 antennas oriented to ensure broad coverage. Due
to a limited number of RF chains, the mmBS can activate up to four beams simultaneously,
supporting a maximum of four vehicles at once. Beam coverage is determined by the
vehicle’s presence within a beam’s geometric footprint and the achieved SNR meeting
the threshold for link activation. We adopt a two-slope path loss model to distinguish
line-of-sight (LOS) and non-line-of-sight (NLOS) propagation. If the estimated SNR falls
below a threshold (e.g., 2 dB), coverage is not considered valid. The data rate is modeled as
a constant value during beam association, consistent with baseline mmWave assumptions
and to isolate the impact of connection time from PHY-layer variations. Resource utilization
reflects the number of active beams simultaneously serving distinct vehicles, constrained by
beamforming hardware limits (i.e., max four beams). A higher beam sojourn time implies
better utilization per beam, as it reduces frequent reconfigurations and idle slots.

To further enhance signal coverage and alleviate potential blockages in the urban
environment, several IRS nodes are strategically deployed within the area. These IRS nodes
dynamically reconfigure signal propagation paths, improving beam delivery in NLOS
conditions. Note that the illustrated sector areas are approximate; actual coverage depends
on the channel model, antenna configuration, and IRS-assisted reflections.
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Figure 1. A scenario of a network which consists of a mmBS with 12 beam sectors and multiple IRS
nodes shown on a real-world map of around Bedford Square in London.

This work assumes a carrier frequency of 28 GHz, which has been widely adopted
in 5G NR-based mmWave V2X studies [21–23]. While traditional DSRC (Dedicated Short-
Range Communications) and C-V2X (Cellular V2X) systems operate in the 5.9 GHz band,
the 3GPP n257 (26.5–29.5 GHz) is considered a promising band for ultra-high data rate
and low-latency vehicular applications, particularly in urban environments with managed
infrastructure and directional communication. The adjacent 26 GHz band (n258) is already
approved for V2X use in Europe [22]. Field trials such as autonomous beam-steered
measurement campaigns [23] further validate the viability of the 28 GHz bands for vehicular
communications. Thus, we consider 28 GHz mmWave communication with its path loss
model [21] expressed as:

PL(d) = PL(d0) + 10n log10(d/d0) + Xg. (1)

Here, d refers to the distance between the mmBS and vehicle antennas in meters while
Xg represents the channel fading (excluded in our analysis), and PL(d0) denotes the free
space path loss (FSPL) in decibels (dBs). The FSPL depends on the carrier frequency fc,
and is given by 10 log10((4πd0 fc/c)2), with d0 = 1 m. We assume a 5 m height difference
between the BS and the vehicle, such that the 2D distance d̂ between two points is related
to d as d =

√
d̂2 + 52.

Assuming that vehicles have steerable beam antennas capable of tracking the BS, the
signal-to-noise ratio (SNR) for a vehicle being served is given by:

SNR = p0 − PL(d) + Gtx + Grx − N, (2)
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where p0 represents the reference power which is the received power at a reference distance
of d0 = 1 m. Gtx and Grx are the transmitter and receiver antenna gains, respectively, N is
the noise, including thermal noise and the receiver noise figure.

As aforementioned, the deployment of mmWave small cells for V2X communication
introduces a distinct challenge, as narrow beams are used. The short time a vehicle is
present within a beam’s coverage results in frequent handovers and increased signal
overhead. In addition, due to the fluctuating nature of the channel caused by vehicle
mobility, a more conservative approach-using a fixed, robust modulation scheme may
be more suitable than an adaptive modulation scheme. Thus, we assume the BS uses a
constant, resilient modulation scheme, regardless of the reported SNR. To maximize data
transmission in downlink, the radio resource allocation strategy should prioritize vehicles
that stay within the beam for the longest periods.

Let R denote the fixed data rate assigned to each beam when serving a vehicle within
its beam sector. Vehicles that leave the beam sector experience a zero data rate. Consider
a set B(t) of available beams from the mmWave small cell BS at time t, where |B(t)| can
be at most 4, representing the maximum number of simultaneously active beams. Let
Ri(t) denote the transmission rate of beam i at time t, where Ri(t) = R if a vehicle is
being served, and Ri(t) = 0 during handovers, when waiting data from the macro BS, or
when no vehicle is within the beam’s coverage. The objective of the proposed resource
allocation strategy is to maximize the total data transmission across all beams over a given
time period T. Minimizing handovers is crucial to achieving this goal, as each handover
introduces a data transmission interruption. Let Si represent the number of serving vehicle
switches for beam i during T and let Tij denote the sojourn time of jth vehicle served by
beam i. By maximizing the vehicle sojourn time within a beam sector, the frequency of
handovers is reduced, thereby increasing overall transmission time. Consequently, the
resource allocation problem can be formulated as:

max

 ∑
i∈B(t)

∫ T

0
Ri(t)dt

 or max

 ∑
i∈B(t)

Si

∑
j=1

Tij

. (3)

To maximize data transmission, the mmBS utilizes all available beams. When a vehicle
receives service within a beam sector, the corresponding beam becomes unavailable for
other vehicles, and the BS selects another beam from the available set to serve a new vehicle.
The BS can either select a vehicle at random or prioritize the vehicle with the highest SNR.
However, as we will demonstrate, the conventional strategy of selecting the vehicle with
the highest SNR may not be optimal for mmWave vehicular networks due to the narrow
beamwidth and frequent handovers. Given the restricted mobility of vehicles within urban
street layouts, we propose leveraging vehicle mobility information as an indirect indicator
of the street’s topology. By constructing vehicle profiles based on their mobility patterns,
this contextual information can be utilized for beam selection. Mobility data, such as vehicle
orientation, position, and distance from the BS (obtained through local measurements or
timing advance), can be employed to enhance the efficiency of beam assignment.

4. Proposed Contextual Multi-Armed Bandit Learning Design
In our previous work [24,25], we demonstrated the effectiveness of the Contextual

Multi-Armed Bandit (C-MAB) algorithm in optimizing beam-level communication in
mmWave vehicular networks. Based on this, our subsequent study [26] extended C-MAB
to relay-assisted V2V-based V2X communication strategies, emphasizing the importance of
contextual information in dynamic environments. These studies highlighted how factors
such as road layout and blockages significantly impact connectivity, which requires careful
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selection of contextual data to improve decision making [24,26]. In this paper, we study
a new environment by incorporating IRSs into vehicular communication, addressing the
challenges posed by dynamic blockages and harsh propagation conditions in mmWave
networks. Unlike relays, IRS extends coverage passively and efficiently but faces key
challenges: it lacks signal amplification, limiting effectiveness in weak links; requires con-
tinuous phase shift adaptation to vehicle mobility; and demands precise beam alignment,
making real-time coordination complex. Additionally, IRS placement is constrained by
existing infrastructure, requiring strategic positioning for optimal coverage. To tackle
these challenges, we incorporate diverse contextual factors—such as vehicle travel direc-
tion, mmBS location, and traffic light information—into contextual learning algorithm
for optimized beam selection, ensuring stable and prolonged connections. Our approach
strategically leverages IRSs to enhance vehicular communication while mitigating their
limitations, enabling robust and adaptive connectivity in dynamic urban environments.
The following seven contexts are incorporated into the proposed C-MAB framework to
enhance beam selection and connectivity:

• Vehicle Travel Direction: {North, East, South, West};
• Vehicle Travel Direction with respect to mmBS: {Towards, Away};
• Vehicle distance to mmBS: {Close, Mid, Far};
• Traffic light status: {Red, Green};
• Remaining time for traffic light color change: {Small, Mid, Big};
• Vehicle Travel Direction with respect to traffic light: {Towards, Away};
• Vehicle distance to traffic light: {Close, Mid, Far}.

The algorithm utilizes seven distinct contextual features, each represented by a single
character. These characters are concatenated into a seven-character string that encodes
the complete context. Each character corresponds to one specific context, capturing its
current discrete state. For instance, a context string “SFTRSFT” represents a vehicle that
is traveling South (S), is Far (F) from the mmBS, and moving Towards (T) it; while the
nearest traffic light is Red (R), has a Small (S) remaining time before switching, and the
vehicle is Far (F) and moving Towards (T) the light. This context representation balances
environmental richness with computational efficiency, enabling intelligent and adaptive
beam–IRS decision-making in highly dynamic vehicular environments.

The proposed C-MAB algorithm is designed to integrate IRS-assisted links, ensuring
improved coverage and seamless beam allocation in obstructed environments. To mitigate
blockages, IRSs are employed to extend coverage to vehicles experiencing connectivity
disruptions, leveraging V2I communication when needed, as illustrated in Figure 2. By
intelligently selecting direct or IRS-assisted transmission, the algorithm enhances overall
network reliability and connectivity in dense urban settings. It is important to note that,
unlike active antenna arrays or smart antennas, IRS units do not require RF chains or power-
hungry circuitry, which makes them highly energy-efficient and cost-effective. However,
this also introduces certain limitations. First, since IRS elements only reflect incoming
signals, they depend heavily on favorable deployment geometry—that is, they must be
positioned where they can effectively “see” both the BS and the vehicle. In addition,
due to path loss from two-hop reflection (BS→IRS→UE), IRS-assisted links often require
stronger incident signals or tighter phase alignment to be beneficial compared to direct
line-of-sight links. In this work, we adopt the widely used assumption of quasi-static phase
configurations for the IRS, consistent with prior works [27]. The IRS is pre-configured to
reflect signals toward designated zones based on its physical orientation and deployment
geometry. The current algorithm does not perform real-time phase shift optimization
but rather selects among available beam–IRS combinations based on learned context-
specific rewards. This abstraction allows us to focus on the high-level contextual beam
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selection problem without entangling it with the physical-layer phase design. However, in
practice, the integration of dynamic IRS control—particularly under high-mobility vehicular
scenarios—is an open challenge and represents a valuable direction for future work.

Figure 2. IRS-assisted beam communication under blockages. The dotted red line with a cross symbol
represents a blocked (NLOS) path between the mmBS and the vehicle UE.

Algorithm 1 presents the C-MAB algorithm designed for a communication scenario
where a BS with with B beams and S distributed IRSs serve vehicles in a dynamic envi-
ronment. The objective is to optimize beam and IRS selection by leveraging contextual
information (c), as detailed in this section, to enhance decision-making. To give an example
of operation of the C-MAB algorithm, let C represent the set encompassing all possible
contextual information, and ⟨b, s, c⟩ denote an ordered triple consisting of beam b, IRS
s, and context c. The system records rewards for all combinations of beams, IRSs, and
contexts, forming the set QC = {q⟨b,s,c⟩|b ∈ B, s ∈ S , c ∈ C}. When a beam bi and an
IRS si are selected for transmission at time t, an instantaneous context ci(t) is observed.
Subsequently, after a vehicle service duration of ∆t, the reward qi(t + ∆t) associated with
the current context is measured. This reward is then utilized to update the average reward
value of context ci(t) using the formula:

q̄ci (t + ∆t) =
q̄ci (t) · nci (t) + qi(t + ∆t)

nci (t) + 1
, (4)

where nci (t) represents the number of times the current context has been observed in
the past.

The learning strategy adopts an exploration-first approach. The algorithm initializes
parameters, including expected rewards (Qs

b(c)) and observation counts (Ns
b(c)), for all

beam–IRS configurations. In the exploration phase, a subset of beams is activated randomly,
and vehicles are also selected randomly based on observed contexts. Depending on beam
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availability, transmission occurs directly or via an IRS. The system updates expected
rewards and observation counts through a weighted update rule to adapt to changing
conditions. Transitioning to the exploitation phase after a specified number of exploration
rounds, the algorithm intelligently selects the top K beams with the highest expected
rewards. For each active beam, the algorithm determines the optimal transmission mode
(direct or IRS-assisted) to maximize rewards. Upon connection loss due to blockage or
vehicle movement, the reward values for each context–beam–IRS triplet are updated to
optimize long-term performance.

Algorithm 1 Contextual MAB for Beam and IRS Selection

1: Input: Number of beams B, Number of IRSs S, Contexts C, Exploration rounds Te,
Maximum active beams K, Counter for observed (beam,context) pair N

2: Initialize: Qs
b(c)← 0 and Ns

b(c)← 0 for all b ∈ [1, B], s ∈ [1, S], and c ∈ C
3: procedure EXPLORATION
4: while t ≤ Te do
5: Observe context ct
6: Randomly activate a set of beams Kt from B
7: Randomly select vehicle vt based on ct
8: if There exists bt ∈ Kt such that Beam bt can reach vt then
9: Transmit directly via Beam bt

10: Record reward rt
11: else
12: Joint transmission via IRS
13: Record reward rt
14: end if
15: Update Nst

bt
(ct)← Nst

bt
(ct) + 1

16: Update Qst
bt
(ct)← Qst

bt
(ct) +

1
Nst

bt
(ct)
· rt

17: end while
18: end procedure
19: procedure EXPLOITATION
20: while t > Te do
21: Observe context ct
22: Select a beam b with highest Qs

b(ct) values for active transmission
23: for Active Beam bt do
24: if Beam bt can reach vt then
25: Transmit directly via Beam bt
26: Record reward rt
27: else
28: Joint transmission via IRS
29: Record reward rt
30: end if
31: Update Nst

bt
(ct)← Nst

bt
(ct) + 1

32: Update Qst
bt
(ct)← Qst

bt
(ct) +

1
Nst

bt
(ct)
· rt

33: end for
34: end while
35: end procedure

5. Results and Discussion
In the section, we present experimental results for the proposed C-MAB machine

learning based beam selection. The scenario considered for experiment is presented in
Figure 1, with the system parameters outlined in Table 1. In this scenario, we consider a
standalone single mmBS with 12 beams. At any given time, the BS can only activate four
beams for service. Vehicles are created and absorbed at certain locations on the map. Those
locations are the main entrance point to the city and the exit point from the city. Moreover,
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we also included several main parking spots in the city as vehicle creation and absorption
locations. A pair of vehicle creation and absorption locations is used to create a route
simulating a vehicle either passing through the city, entering to or exiting from the city.
We use A-STAR path finding algorithm [28] to establish the route for vehicles. We assume
that each of these vehicles requires downlink data service when entering the small cell. In
our simulation, there are 50 vehicles which continuously travel on the map. We simulate
three hours of operation, during which the base station begins with full exploration for
learning, and then it switches to full exploitation after the first 50% of the simulation time.
As the Explore-First strategy stops triggering exploration after the learning phase, this
enables us to focus on the study of learning effectiveness acquired during the learning
phase. The key simulation parameters used in our experiments are summarized in Table 1.
Experiments are conducted via our own developed Python Mobility Simulation Platform
(PyMoSim, version 0.8.10). The detailed documentation of PyMoSim, along with example
usage scenarios, is publicly accessible at https://github.com/cfoh/pymosim-doc, accessed
on 22 June 2025. We plan to release the full source code of PyMoSim and our scenario setup
code in the near future).

The proposed C-MAB algorithm is selected for its lightweight, model-free nature,
which makes it well-suited for real-time decision-making at the network edge. Unlike
deep reinforcement learning (DRL) methods, which require large training datasets, exten-
sive tuning, and high computational resources, C-MAB learns directly from interactions
with the environment. This allows it to rapidly adapt to evolving contexts (e.g., vehicle
movement, traffic light transitions) without prior training or simulation. C-MAB is also
advantageous over location prediction or trajectory estimation methods, which typically
rely on accurate positioning data and historical mobility patterns. Instead, our approach
uses high-level context information—such as proximity and direction relative to mmBS or
traffic lights—making it robust even in GPS-challenged environments. However, C-MAB
also has limitations. Its performance can degrade in large or continuous context spaces due
to the need to estimate a reward for every context–action pair. Additionally, C-MAB does
not capture long-term or delayed rewards, which could limit its performance in sequen-
tial decision tasks with temporal dependencies. To address such scenarios, future work
may explore hierarchical or hybrid learning frameworks capable of modeling temporally
extended behavior.

The proposed algorithm does not directly estimate or rely on channel coherence
time, but rather focuses on link-level stability through the observed beam sojourn time.
At mmWave frequencies, where highly directional transmissions are used, the concept
of beam coherence time becomes more critical than traditional channel coherence time.
Beam coherence time denotes the interval during which a beam remains aligned with a
moving user before misalignment occurs and is typically an order of magnitude longer
than the channel coherence time. As argued in [29], frequent realignment based on channel
coherence intervals introduces excessive overhead; instead, beam realignment should occur
on the timescale of the beam coherence time to maintain efficient operation. In our model,
beams are fixed with a 30° beamwidth, which inherently allows for longer beam coherence
times. Beam reselection is triggered only when a user exits the beam sector or when the SNR
falls below a defined threshold. This design choice reduces the need for frequent physical
layer realignment and is well suited for urban vehicular speeds between 30 and 50 km/h
(approximately 8–13.8 m/s). Under such conditions, beam coherence times are typically on
the order of seconds, allowing our algorithm sufficient temporal margin to learn and select
stable beam associations. Even under higher mobility, the C-MAB framework successfully
identifies long-lasting beam–IRS paths, improving robustness to short beam coherence
intervals and reducing control overhead associated with frequent beam association.

https://github.com/cfoh/pymosim-doc
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Table 1. Simulation parameters.

Parameter Value

Number of beams per mmBS (Nb) 12
Carrier Frequency ( fc) 28 GHz
Transmit power 30 dBm for BS/23 dBm for vehicles
Path loss exponent (LOS/NLOS) 1.9/3.8
Noise power −90dBm
Vehicle Speed 30–50 km/h
Traffic light duration (Light1/Light2) 22/18 s
Simulation time 3 h
Sampling time slot 0.1 s
Simulation area 800 m × 450 m

5.1. Effectiveness of C-MAB on Connection Time

We conducted a comparative analysis of the C-MAB algorithm against classical MAB,
Best-SNR, and random beam selection schemes, focusing on the average beam sojourn
time. In the Best-SNR approach, the base station opts for a vehicle reporting the strongest
received signal strength in a greedy manner. In our C-MAB, we leverage our contextual
framework stated in Section 4. The beam sojourn time performance among the considered
schemes is compared in Figure 3. After the exploration phase, C-MAB exhibits a notable
increase, while MAB demonstrates only a slight uptick in mean beam sojourn time. This
disparity is attributed to C-MAB’s proficiency in leveraging contextual information for
decision-making, enabling it to outperform MAB by a factor of two, and significantly more
when contrasted with Best-SNR and random selection schemes.

Figure 3. Average beam sojourn time performance of different beam selection schemes.

In Figure 4, the beam sojourn time performance of the proposed C-MAB is illustrated
for all beams. Following the exploration phase, there is a notable increase in the mean
beam sojourn time for most beams as the algorithm transitions into exploration. This
phenomenon is attributed to the increased utilization of certain beams in specific contexts,
leading to longer beam sojourn times during the learning phase. Notably, Beam-8, Beam-5,
and Beam-3, along with Beam-10 and Beam-6, exhibit enhanced mean beam sojourn times.
The scenario portrayed in Figure 1 is in line with this observation, where the shaded areas



Sensors 2025, 25, 3924 12 of 16

for these beams predominantly represent extended road coverages due to IRSs and higher
line-of-sight (LOS) instances owing to fewer obstructions.

Figure 4. Average beam sojourn time of twelve beams with C-MAB.

Similar observations can be deduced from Figure 5, which illustrates the total utiliza-
tion ratio of each beam throughout the exploration and exploitation phases. During the
exploration phase, initial beam–sector selections are randomized across sectors. Sectors 2,
12, 11, and 1 exhibit an extremely low selection frequency due to inherently minimal ve-
hicle traffic and shorter connection range due to weak received signal strength. Sector 4
similarly experiences limited selection since it lacks IRS deployment, compelling vehicles
traveling north to primarily rely on extended coverage from neighboring Sector 3, which
benefits significantly from IRS support. Sectors 7 and 9 display higher selection rates during
exploration due to heavy traffic on the main road; however, their selections drastically
shrink during exploitation due to short sojourn times. In contrast, Sector 3 experiences
a substantial increase in connection frequency during the exploitation phase, driven by
the synergistic effect of extended signal coverage from IRS deployment and prolonged
connectivity opportunities resulting from vehicles frequently stopping and waiting at
adjacent traffic lights. The C-MAB algorithm dynamically adjusts beam–sector selection
by prioritizing sectors that offer longer and more stable connection times during the ex-
ploitation phase, hence responding effectively to contextual conditions. It intelligently
considers IRS presence and infrastructure placement, consistently selecting sectors with
durable, high-quality connections while systematically deprioritizing sectors characterized
by transient, unstable connections. Consequently, the proposed C-MAB adeptly deal with
environmental and mobility dynamics by aligning specific contexts with available beams
to maximize rewards.

The C-MAB framework is computationally lightweight, making it amenable to real-
time implementation at base stations or edge servers. At each decision epoch, the algorithm
performs a lookup in the reward table indexed by the current context and selects the
beam–IRS pair with the highest historical average. Assuming a bounded context space
(e.g., 36 combinations from 3 distance bins × 3 directions × 2 traffic states), the table remains
compact. No gradient updates or offline training are required. We empirically observe
rapid convergence: Figure 3 shows that the proposed C-MAB outperforms the classical
MAB by a factor of two only after 5000 s of exploration time. To further improve efficiency,
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future extensions may apply context pruning strategies that remove low-utility or rare
contexts from the table, thus focusing learning on high-value decision regions.

(a) (b)

Figure 5. Connection frequency distribution across different beam sectors during (a) the exploration
phase and (b) the exploitation phase after decision given by C-MAB algorithm.

5.2. The Impact of IRSs on Connection Time

The performance of C-MAB with and without IRS is also shown in Table 2. We assume
that an IRS can reflect one of the beams from a BS in a 180 degree perimeter based on its
orientation, which is fixed, providing coverage to one vehicle. Even though the IRS is
passive and thus incurs in more path loss, when strategically placed they achieve more
than a doubling in average connection time with the traditional greedy approach. This
is because it is difficult for a BS to be in LoS with more than one optimum connection
area, such as the waiting zone of a traffic light or a blind spot. Therefore, by using the
IRS as a “mirror”, these spots become “visible” to the BS. When paired with a C-MAB
algorithm, the new connection options can be more intelligently exploited, resulting in
more than a quadrupling of connection time. The proposed algorithm achieves this result
by “memorizing” the conditions that lead to the longest and shortest connection times.
Therefore, we try to avoid connections to vehicles that find themselves in conditions that
might lead to short connections and choose instead those vehicles with conditions prone to
long connections.

Table 2. The impact of IRS usage on connection time with comparison of average connection time (in
seconds) during exploration and exploitation phases with and without IRS assistance.

Case Exploration Explotation

With IRS 5.78 13.51
Without IRS 2.28 3.28

5.3. The Impact of the Traffic Light Context on Connection Time

Our simulation has generated various insightful examples, some of which are straight-
forward while others are more subtle. Generally, vehicles approaching a red traffic light
tend to have longer connections compared to those approaching green lights. However,
multiple context variables and numerous connection points are evaluated simultaneously,
creating interactions that can amplify or diminish individual effects, thus increasing the
complexity of the analysis. Figure 6 specifically evaluates the combined contexts related
to traffic lights. To produce this figure, simulation data was processed by calculating the
average connection duration for each combination of contexts observed. The range be-
tween the shortest and longest bars indicates the discriminatory power of these combined
contexts—wider variations signify stronger predictive capabilities. For instance, the bar
with the longest average connection time corresponds to a scenario labeled “Green, Small,
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Away, Far”, reaching approximately 24 s, although intuitively a vehicle moving away from
a green light that is about to change does not have a relationship directly. This result
emerges, in the considered scenario where two traffic lights are at the end main road, when
a vehicle moving away from one traffic light is simultaneously approaching another traffic
signal at the opposite end of the main road and eventually waits at the second light for an
extended period.

Figure 6. The impact of the traffic light on connection time.

Conversely, scenarios positioned at the shorter end of the chart, such as “Green,
Mid, Towards, Close,” yield predictably shorter connection durations due to vehicles
swiftly passing through a green light without stopping. A representative middle-range
scenario, for example, the eighth-longest bar (“Red, Big, Towards, Close”), illustrates a
vehicle approaching a nearby red traffic signal that will remain red for a longer time, thus
extending the connection duration slightly beyond the waiting time at the light. These
nuanced findings underline the value of leveraging machine learning to determine, through
iterative exploration, which combinations of contexts genuinely maximize connectivity
performance. Rather than relying solely on intuitive assumptions, this empirical approach
ensures that subtle yet critical interactions between multiple contextual variables are
effectively identified and utilized.

6. Conclusions
As new technologies constantly emerge to improve the future generation networks,

some existing techniques in mobility management may become under-performing which
directly challenge the overall network performance. Research interests in mobility manage-
ment will be renewed to seek for improved solutions or novel solutions to integrate with
the emerging technologies. The use of IRSs immediately challenge the beam-based mobility
management by creating more complex multi-cell multi-IRS scenarios where multi-point
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beam switching will become a major problem and require new techniques and analytical
approaches to maintain connectivity across the various network attachment points.

In scenarios with large networks high density of BSs, IRSs, and vehicles, the action
space expands to include multi-beam–IRS combinations. This can be accommodated
by extending the reward table and leveraging spatial grouping of IRS regions to reduce
complexity. The proposed C-MAB framework is also highly scalable and remains compu-
tationally feasible under increasing vehicle density. As more vehicles enter the network,
the frequency of context–beam interactions rises, which accelerates convergence and en-
hances learning robustness. The algorithm remains efficient due to its context-conditioned
structure, which naturally partitions the learning problem. Exploring more sophisticated
coordination among IRS panels, including shared context features, is part of our ongoing
and future research.
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