Journal of

o50

and Applications

Low Power Electronics

Article

A Self-Contained Startup Charging Circuit for Energy-Harvesting
Batteryless IoT Devices

Michelle Libang "*, Kriz Kevin Adrivan 2, Jefferson A. Hora 2*{%, Charade G. Avondo !, Robert M. Comaling ?,

Xi Zhu 3 and Yichuang Sun *

check for

updates
Received: 19 October 2025
Revised: 10 December 2025
Accepted: 16 December 2025
Published: 18 December 2025

Citation: Libang, M.; Adrivan, KK,;
Hora, J.A.; Avondo, C.G.; Comaling,
R.M.; Zhu, X.; Sun, Y. A Self-Contained
Startup Charging Circuit for Energy-
Harvesting Batteryless IoT Devices. |.
Low Power Electron. Appl. 2025, 15, 71.
https:/ /doi.org/10.3390/
jlpeal5040071

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Xinyx Design Consultancy and Services Inc., Muntinlupa City 1781, Philippines;
rccomaling@xinyxdesign.com (R.M.C.)

Center for Integrated Circuits Design, Mindanao State University-Iligan Institute of Technology (MSU-IIT),
Iligan City 9200, Philippines; krizkevin.adrivan@g.msuiit.edu.ph

3 School of Electrical and Data Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007,
Australia; xi.zhu@uts.edu.au

School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9EU, UK;
y.sun@herts.ac.uk

*  Correspondence: mllibang@xinyxdesign.com (M.L.); jefferson.hora@g.msuiit.edu.ph (J.A.H.)

Abstract

This paper presents a self-contained startup charging circuit designed for energy-harvesting
batteryless IoT devices. The proposed circuit consists of a current-biasing block, a cur-
rent mirror, a reference voltage generator, and a comparator circuit. The current-biasing
circuit drives the current mirror, which supplies the charging current to the energy stor-
age element. Simultaneously, the reference voltage generator—also biased by the current
source—produces a stable DC reference voltage. When the energy storage device (e.g., a
supercapacitor) lacks sufficient charge, the comparator enables the charging path by activat-
ing the current-biasing and mirror circuits. Once adequate energy is stored, the comparator
disables these circuits to prevent overcharging. This self-contained solution is intended to
autonomously initialize and manage the cold-start charging process in energy-harvesting
systems without relying on external controllers. This paper highlights the circuit archi-
tecture and validated performance, demonstrating a charging current of up to 27 mA, a
reference voltage of 700 mV, and an operating range from 0.9 V to 1.8 V across a temperature
range of —40 °C to 85 °C.

Keywords: startup charging circuit; self-contained charger; energy harvesting; batteryless
IoT devices

1. Introduction

In batteryless Internet of Things (IoT) devices, energy-harvesting systems rely heavily
on supercapacitors as energy storage elements due to their high power density, rapid
charging capability, and long cycle life [1-4]. However, efficiently charging supercapacitors,
especially under cold-start conditions when the device has no pre-existing energy, remains
a significant design challenge. To address this, several previous works have proposed low-
power and cold-start charging circuits for various types of energy harvesters [5-10]. Energy
harvesting itself is essential for batteryless IoT devices, where ambient sources such as RF,
thermal, and mechanical vibrations are converted into usable electrical energy [11-13].

The charging circuit must operate reliably with low input power, avoid the need for
external controllers, and ensure seamless startup across varying environmental conditions.

J. Low Power Electron. Appl. 2025, 15, 71

https://doi.org/10.3390/jlpeal5040071


https://doi.org/10.3390/jlpea15040071
https://doi.org/10.3390/jlpea15040071
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-9323-1518
https://orcid.org/0000-0001-8352-2119
https://doi.org/10.3390/jlpea15040071
https://www.mdpi.com/article/10.3390/jlpea15040071?type=check_update&version=2

J. Low Power Electron. Appl. 2025, 15,71 20f13

Moreover, the charging circuit plays a critical role in the entire system’s operation; it
determines how quickly and efficiently the IoT node can become active, respond to sensed
data, and maintain energy autonomy [14-17]. Any inefficiency or dependence on external
control can compromise system performance, especially in intermittent or unpredictable
energy environments. Therefore, developing a robust and efficient charging circuit that is
self-starting and self-contained is essential to enabling practical and scalable deployment
of batteryless IoT solutions.

In most existing designs, the charging circuit requires an external current source and
reference voltage to operate effectively [18]. This paper presents a self-contained charging
circuit with internal means for generating both the bias current and reference voltage. This
design eliminates the need for external control elements, enabling autonomous startup and
improving energy efficiency for batteryless IoT applications.

This paper [19-23] discloses a device with an external nano-watt bandgap voltage
reference circuit with a six-stage PTAT voltage generator, where the stages, each equipped
with a differential pair and current mirror, are cascaded in such a way that produces
sufficient positive temperature coefficients. The disclosure also provides a separate nano-
ampere current reference circuit that serves as the current source for the charging circuit.
Crucially, such use of an external current source and a voltage reference circuit results in a
complex circuit design that requires a substantial physical area when manufactured.

The works presented in [24,25] describe a startup circuit that (i) forces an arbitrary
bias-generating circuit into a steady-current state during startup by conducting charging
current from an external current source and (ii) disconnects the external source afterward
using switching means. When such an approach is adapted to charging circuits for energy
storage devices, it inherits key design limitations, most notably, the dependence on an
external current source.

In contrast, the circuit proposed in this work is self-contained, integrating all essential
functions—biasing, voltage reference generation, and switching control—into a single
autonomous block. This design simplifies system integration and enables reliable cold-
start operation in batteryless IoT systems. The objective of this paper is to address and
overcome the limitations of previous approaches by eliminating the need for external
control elements.

The rest of this paper is organized as follows. Section 2 presents the design and archi-
tecture of the proposed self-contained charging circuit. Section 3 discusses the simulation
results, including corner and Monte Carlo analyses, validating the circuit’s performance
under various operating conditions. Section 4 details the post-simulation evaluation and
actual chip measurement results. Finally, Section 5 concludes this paper by summariz-
ing the key contributions and highlighting the advantages of the proposed design for
energy-harvesting applications.

2. Proposed Charging Circuit

Figure 1 illustrates the role and architecture of the proposed self-contained charging
circuit within an energy-harvesting system. Figure 1a shows a system-level diagram where
multiple energy sources (thermal, solar, and RF) are funneled through an energy converter
to power a load. The proposed startup charging circuit is used to charge a supercapacitor,
providing a reliable energy buffer for cold-start conditions [5].

Figure 1b presents the internal block diagram of the proposed charging circuit. Unlike
conventional designs, this implementation integrates all critical functions—a startup circuit,
current biasing, reference voltage generation, a current mirror, a comparator, and an output
buffer—into a single autonomous module. This self-contained architecture enables reliable
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cold-start operation without the need for external biasing or reference inputs, thereby
enhancing integration and suitability for batteryless IoT applications.

1

| :

1 Startup 1

: Chgrgi_ng > Supercapacitor | 1

| Circuit 1

EH1 | r 1
(Thermal Energy) | [__________________.'

4

EH2 P i
Energy Converter o ower Mangement Unit
(Solar Energy) > vy q (DC-DC conversion)

EH1
(RF Energy)
C)
Buffer
VsC
Current
start-up | | reference Reference- Current
circuit circuit || voltage —| mirror Buffer
generator circuit i
Comparator
(b)

Figure 1. (a) System-level diagram of an energy-harvesting application incorporating the proposed
startup charging circuit to charge a supercapacitor [5]. (b) Block diagram of the proposed self-
contained charging circuit, showing its main functional components, including the startup circuit,

internal biasing, reference generation, current mirror, comparator, and output buffer.

Previous startup charging circuits, such as those presented in [19], typically rely on
external components, such as a high-voltage pump (Vpump), a fixed reference voltage
(Vyef), and external bias sources to enable operation. These dependencies pose critical
limitations in energy-harvesting applications, particularly during cold-start conditions
where no external energy sources are guaranteed at startup.

In contrast, the circuit proposed in this work is fully self-contained, integrating in-
ternal current biasing, voltage reference generation, and comparator control into a single
autonomous block. This architecture eliminates the need for any external startup assis-
tance, thereby enabling reliable cold-start operation and simplifying system integration in
batteryless IoT devices. The self-contained design directly addresses the key challenges of
energy-autonomous systems by ensuring that all essential charging functions are internally
generated and managed.

Figure 2 shows the simplified schematic of the proposed charging circuit. The start-up
circuit transistors are labeled as SU1, SU2, and SU3, which provide the initial bias to the
current-biasing circuit through the gate of SU2 and the drain of SU3. The current-biasing
circuit generates the current reference for the entire block. The fixed DC reference voltage
generated at the reference voltage is fed to the comparator circuit.
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Figure 2. The proposed self-contained charging circuit for energy-harvesting batteryless IoT devices.

Resistor Rv and transistor RV2 are configured to serve as PTAT and CTAT generators,
respectively, such that the voltage Vs is temperature-insensitive. Rv and RV2 are scaled in
size and parameters so that their linear temperature coefficients are equal in magnitude
and opposite in sign. Such a configuration of the reference voltage generator enables the
charging circuit of this paper to forego other components (such as a six-stage PTAT voltage
generator, as in the prior work) and, consequently, minimize the layout area.

The current mirror circuit receives current from the current-biasing circuit through
CM1, mirrors to CM3, and generates a charging current at the Vg terminal. Under normal
operation, the current-biasing circuit generates a constant current, which translates to a
bias voltage at Vbias. Transistor CM1 then mirrors the drain current at CB3 through Vbias.
Similarly, the drain current at CM1 is mirrored to CM2 and CM3.

When charging the energy storage device, the drain voltage at CM3 or the voltage
Vsc of the energy storage device ramps up from zero (i.e., at zero charge) to the reference
voltage Vs (i.e., at sufficiently high or full charge). When the energy storage is fully
charged so that its voltage Vgc surpasses the reference voltage V.., the comparator circuit
outputs a signal that activates the shutdown transistors (SD1 and SD2) and pulls the gates
of CM3 and CM2, disabling the entire charging circuit in a standby state. The charging
circuit is now uncoupled from the energy storage device and will stop the charging current.
The charging circuit remains disabled until the voltage Vsc of the energy storage device is
less than the reference voltage V.

In this paper, the reference voltage achieves a value of 700 mV with minimal swing
under varying process parameters, supply voltages, and operating temperatures. It is
designed to operate at a supply voltage ranging from 900 mV to 1.9 V and an operating tem-
perature ranging from —40 °C to 85 °C. The charging current reaches 27 mA, considering
the worst-case slow—slow corner simulation. The proposed charging circuit is implemented
using the 22 nm fully depleted silicon-on-insulator (FDSOI) technology and is integrated
into a working energy storage harvesting system.

The SOI process was selected for its excellent performance not only in analog circuits but
also in RF circuits, enabling future fully integrated system-on-chip (SoC) solutions [26-31].

3. Simulation Results and Discussion

Circuit simulation was performed to verify the performance of the design while
considering the target specification shown in Table 1. As part of the requirements, the
design should operate in the AVpp minimum voltage of 0.9 V and up to the maximum
supply voltage of 1.8 V. The charging current across the supercapacitor (SC) is expected to
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be from 1 mA to 50 mA, including worst-case conditions. The supercapacitor voltage (Vsc)
full charge should be from 700 mV to 900 mV.

Table 1. Target specification of proposed charging circuit.

Parameters Symbol  Minimum = Typical Maximum  Unit
Supply voltage AVpp 0.9 - 1.8 \Y%

SC charge current iCharge 1 20 50 mA
Reference voltage Vet 0.7 0.75 0.8 A%
Supercapacitor voltage Vsc 0.6 0.7 0.8 \%

3.1. Corner Simulation Evaluation

Using a block simulation setup, the behavior of the charging circuit was tested. In a
typical simulation, the transient analysis ran from Os to 5000 s at 25 °C for a nominal model.
Figure 3 shows the typical simulation waveform plot of Vsc, Vcomp, and the charging
current, showing that they meet the target specifications.
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Figure 3. Typical simulation results for Vpp = 1.0 V.

As shown in Figure 3, the full battery voltage was measured at the stable state of the
Vsc pin, which was also connected to the supercapacitor, after the ramp-up or the charging
time. The Vcowmp signal was “high” at the beginning of the ramp and toggled to “low” after
it detected the battery full in the Vgc pin, where the Vgc voltage surpassed the V¢ voltage
at the comparator.

The block was also tested for the maximum Vpp of 1.8 V and typical conditions for tem-
perature and process parameters. Figure 4 shows the resulting graph for these conditions.

Further verification through corner simulation was performed to confirm the func-
tionality of the proposed charger block. Table 2 presents the tabular data summarizing the
results of the corner simulation.

Corner simulations were tested using three temperature variations (—40 °C, 25 °C, and
85 °C), different model variations (slow, typical, and fast), and two levels of Vpp (1.0 V and
1.8 V). All results were passed and within the target specifications. No abnormal response
was observed.
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Figure 4. Typical simulation results for Vpp = 1.8 V.

Table 2. Corner simulation results.

For Vpp =10V For Vpp =18V
Parameters ; 3 Unit
Min. Typ. Max. Min. Typ. Max.
SC charge current 3.16 3.98 478 1875 2321 2781 mA
SC voltage 0.576 ~ 0.700 0.809 0.639 0.765 0.890 \%

The proposed charger block is intended for ultra-low-power energy-harvesting IoT
nodes powered by photovoltaic (PV), thermoelectric (TEG), and RF sources, where the
available input power typically ranges from sub-puW to a few tens of pW. In such systems,
minimizing standby leakage is essential to ensure efficient energy accumulation and reliable
cold-start behavior. The measurement results show that the shutdown quiescent current
of the proposed design is 317.8 nA at Vpp = 1.0 V and 25 °C. Figure 5 presents the typical
simulation waveform used to evaluate the shutdown current, where the quiescent current
is calculated using the equation

Io = Vpp Current — SC Charge Current

measured during the shutdown mode. This performance lies within the acceptable range (<500
nA) for PV/TEG/RF energy-harvesting applications and is close to the preferred target (~300
nA) for high-efficiency autonomous sensor nodes. The low leakage achieved ensures that
the charger block does not significantly degrade the harvested energy during sleep periods,
thereby supporting long-term autonomous operation of ultra-low-power IoT systems.
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Figure 5. Typical simulation results of IQ in standby mode at Vpp = 1.0 V.
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3.2. Monte Carlo Simulation Results

To validate the robustness of the proposed charging circuit design, a Monte Carlo
simulation was executed. The simulation was performed under the minimum and max-
imum conditions of temperature (—40 °C and 85 °C), two Vpp values (1.0 V and 1.8 V),
sampling of 200 runs, and using the mismatch variation option. Table 3 summarizes the
Monte Carlo simulation results separated by the Vpp value. All results are within the
target specifications.

Table 3. Statistical summary of Monte Carlo simulation results under different Vpp conditions.

Parameter Min. Max. Mean Median Std. Dev.  Unit
For Vpp=1.0V
SC charge current 3.79 4.04 3.91 3.90 0.65 mA
SC voltage 0.571 0.717 0.642 0.638 0.57 \Y
For Vpp =18V
SC charge current 23.02  25.70 24.35 24.34 1.15 mA
SC voltage 0.751 0.889 0.822 0.821 0.057 \Y%

Figure 6 further illustrates the histogram distributions of the SC charge current and
SC voltage under both minimum and maximum conditions, confirming the consistency of
the circuit’s performance across variations.
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Figure 6. Monte Carlo histogram for (a) minimum condition at Vpp = 1.0V, (b) maximum condition
at Vpp = 1.0V, (¢) minimum condition at Vpp = 1.8 V, and (d) maximum condition at Vpp = 1.8 V.
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4. Evaluation Results and Post-Simulation
4.1. Performance Comparison

Table 4 presents a comparative analysis of the proposed self-contained charging circuit
against the state-of-the-art energy-harvesting solutions. Unlike traditional designs that rely
heavily on charge pumps or complex multi-stage rectification, this work demonstrates a
self-contained charging topology capable of delivering a significantly higher output current
of 25 mA, with a modest output voltage of 0.7-0.8 V, making it well-suited for low-voltage
supercapacitor charging in batteryless IoT systems. Prior works, such as those in [15,19,20],
exhibit lower current outputs ranging from 10 pA to 395 pA, primarily due to limitations
imposed by their charge pump-based or rectifier-based architectures. Moreover, while
earlier studies used older CMOS technologies (down to 0.18 um), this work achieved its
performance with a 22 nm FDSOI process, emphasizing its scalability and integration
potential. The results validate the effectiveness of a fully self-contained circuit in delivering
high current without relying on auxiliary power stages or external control logic.

Table 4. Comparison of the proposed circuit with published works.

Work Input Voltage Output Voltage = Output Current Power Conversion Topology Technology
[15] 018V 0.74V 10 A Charge-pump with boost 65 nm CMOS
converter
DTCMOS
[19] 055V 1.26' V 310 pA Differential-drive two-stage 0.18 pum CMOS
charge pump
[20] 05V 13V 395 LA Differential-drive multistage 0.18 um CMOS
rectifier
[25] 5V 42V 700 mA Dual-mode integrated 0.18 um CMOS
charge-pump charger
This work 1-1.8V 0.7-0.8V 25 mA Self-contained charging 22 nm FDSOI

topology

Furthermore, the 22 nm FDSOI process enhances circuit performance through reduced
leakage, tighter threshold control, and improved device matching, enabling reliable cold-
start operation and high charging currents in a compact layout. In contrast, implementing
the design in older CMOS nodes (0.18 um or 65 nm) would incur higher leakage and
standby power, reducing efficiency during low-energy periods typical of batteryless IoT
systems and requiring additional design overhead to meet comparable leakage targets.

4.2. Post-Simulation Results

The functionality of the charging circuit was evaluated under different temperature
variations, Vpp, and using five samples. Since the proposed design was a stand-alone
block, the setup was simplified and tested by activating the charging circuit only by
supplying Vpp.

Figure 7 shows the evaluation results of the actual chip testing of chips 6 to 10, labeled
as C6 to C10 in the graph, and the post-simulation at 25 °C. As shown in the figure, there is
no significant difference observed comparing the post-simulation and the measurement of
the five samples tested.

Figure 8 shows the comparison between the actual chip testing and the post-simulation
results across —35 °C, 25 °C, and 100 °C. As observed, the simulated output slightly
overestimated the measured Vgc, but the temperature trend was consistent, confirming
reliable behavior under varying thermal conditions [5-9].
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Figure 7. Supercapacitor voltage (Vsc) measurement. Actual chip testing of 5 samples compared
with post-simulation at 25 °C.
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Figure 8. Supercapacitor voltage (Vsc) measurement. Actual chip testing of chip 8 compared with
post-simulation at three temperatures.

4.3. Chip Layout and Implementation

Figure 9a shows the layout of the charging core, designed and implemented in the
22 nm FDSOI technology. It highlights the transistor-level design of key components
such as power switches, capacitors, and control circuitry, all optimized for efficient energy
transfer. Figure 9b presents the full-chip layout, with the entire energy-harvesting system,
including the charging circuit, occupying a total area of 1000 um x 400 pm. The design
is intended for packaging in a QFN40 (5 mm x 5 mm) package. This layout illustrates
the system-level integration of the proposed charging circuit, including its connections to
power management, energy storage, and control blocks, with routing carefully optimized
to minimize parasitic losses. Figure 9c shows the chip die micrograph, illustrating the fabri-
cated silicon layout of the charging circuit with visible pad placements and key functional
blocks. Finally, Figure 9d shows the testing set-up with a DC power analyzer and a thermal
chamber for performance validation and measurement.
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Figure 9. Chip layout and implementation: (a) charging core layout, (b) full-chip layout of the
energy-harvesting system with integrated charging circuit, (¢) chip die micrograph, and (d) testing
set-up with DC power analyzer and thermal chamber.

5. Conclusions

This paper presented a self-contained charging circuit designed for energy-harvesting
systems. The proposed design eliminates the need for external current and voltage ref-
erences by integrating a current-biasing circuit and a temperature-insensitive reference
voltage generator. A simplified yet effective control mechanism using a comparator circuit
enables autonomous switching between active charging and standby states, optimizing
energy usage.
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Simulation results, including typical, corner, and Monte Carlo analyses, confirm the
circuit’s robustness across a wide range of process, voltage, and temperature variations.
The charging current meets the target specifications, and the reference voltage remains
stable across operating conditions. Furthermore, the post-layout and actual chip testing
show strong agreement with the simulation results, validating the design’s functionality
and reliability in a fabricated silicon implementation.

Overall, the proposed charging circuit demonstrates high efficiency, compactness, and
suitability for integration into low-power energy-harvesting applications, such as systems
utilizing supercapacitors for energy storage [32-36].
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