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Abstract

Background and 
Aims

Patients with acute coronary syndromes (ACS) are at high ischaemic risk to which cholesterol, inflammation, and yet-to-be- 
identified pathways jointly contribute. The junctional protein associated with coronary artery disease (JCAD) drives incident 
cardiovascular events by acting on coagulation and fibrinolysis. This study aimed to assess whether JCAD serves as a novel 
marker of or target to address residual risk.

Methods In the discovery cohort (SPUM-ACS; n = 4787), ACS patients at residual lipid risk [RLR; on-statin LDL cholesterol (LDL-c) 
≥70 mg/dL or ≥1.8 mmol/L], residual inflammatory risk [RIR; on-statin high-sensitivity C-reactive protein (hs-CRP) 
≥2.0 mg/L], or both (RILR; on-statin LDL-c ≥70 mg/dL and hs-CRP ≥2.0 mg/L) were identified and compared with propen
sity-score matched controls. Contributions of hs-CRP, LDL-c and JCAD to recurrent major adverse cardiovascular events  

* Corresponding authors. Tel: +44 (0) 7502 008 487, Fax: +44 (0)20 7351 8473, Email: t.luescher@rbht.nhs.uk (T.F.L.); Tel: +39 010 353 8694, Fax: +39 010 3538638, Email: luca.liberale@ 
unige.it (L.L.)
† These authors contributed equally to the study.
‡ These authors jointly directed the study.
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

European Heart Journal (2025) 00, 1–15 
https://doi.org/10.1093/eurheartj/ehaf979

CLINICAL RESEARCH 
Vascular biology and medicine

https://orcid.org/0000-0002-8245-7287
https://orcid.org/0000-0003-1875-0160
https://orcid.org/0000-0003-0811-7679
https://orcid.org/0000-0003-2957-4078
https://orcid.org/0000-0003-4358-6411
https://orcid.org/0000-0003-0019-0273
https://orcid.org/0000-0003-0824-3026
https://orcid.org/0000-0003-2441-5799
https://orcid.org/0000-0003-3052-9493
https://orcid.org/0000-0002-1666-2266
https://orcid.org/0000-0002-9286-1451
https://orcid.org/0000-0003-0823-8729
https://orcid.org/0000-0002-5259-538X
mailto:t.luescher@rbht.nhs.uk
mailto:luca.liberale@unige.it
mailto:luca.liberale@unige.it
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/eurheartj/ehaf979


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(MACE) were analysed. In an independent cohort (RISK-PPCI study; n = 496), effects of JCAD on endogenous coagulation 
and fibrinolysis were gauged, and JCAD–MACE associations were externally validated.

Results At 1 year, patients at RLR, RIR, or RILR were at higher MACE risk as compared to controls [hazard ratio (HR), 1.55, 95% 
confidence interval (CI) 1.08–2.23; HR 1.80, 95% CI 1.24–2.61; and HR 1.75, 95% CI 1.12–2.75, respectively]. In those at 
RLR, MACE risk rose with increasing hs-CRP and JCAD, respectively, in uni- (HR per log2 increase, 1.17, 95% CI 1.06– 
1.30; HR 1.29, 95% CI 1.03–1.62) and multivariable-adjusted models [adjusted (a)HR 1.16, 95% CI 1.03–1.30; aHR 1.27, 
95% CI 1.01–1.60]. In those at RIR, MACE risk increased 1.28-fold per log2 increase in JCAD (HR 1.28, 95% CI 1.03– 
1.59), which prevailed in multivariable-adjusted models (aHR 1.31, 95% CI 1.04–1.65). Similarly, in patients at RILR, 
MACE risk increased almost linearly with increasing JCAD (HR 1.45, 95% CI 1.09–1.92), independently of potential confoun
ders (aHR 1.47, 95% CI 1.11–1.97). Plasma levels of JCAD correlated positively with proxies of impaired endogenous fibrin
olysis, with the JCAD–MACE association being similarly observed in the external validation cohort.

Conclusions Acute coronary syndrome patients at RLR, RIR, or both are at high ischaemic risk. By modulating coagulation and endogen
ous fibrinolysis, JCAD represents a promising candidate to address the high residual risk that persists in ACS patients re
ceiving guideline-recommended care.

ClinicalTrials.gov
Identifiers

NCT01000701, NCT02562690
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Structured Graphical Abstract

Can JCAD, a protein implicated in coagulation and fibrinolysis, serve as a novel biomarker or therapeutic target to reduce residual risk in 
patients with acute coronary syndromes (ACS) despite guideline-recommended therapies?

Among ACS patients at residual lipid (on-statin LDL-c ≥1.8 mmol/L), inflammatory (on-statin hs-CRP ≥2.0 mg/l), or combined risk 
(on-statin LDL-c ≥1.8 mmol/L and hs-CRP ≥2.0 mg/l), higher JCAD plasma levels were independently and consistently linked to increased 
risk of recurrent major adverse cardiovascular events, with JCAD plasma levels correlating positively with proxies of impaired
endogenous fibrinolysis.

JCAD represents a promising target to address residual cardiovascular risk in patients with a recent ACS, underscoring the need for 
therapies beyond LDL-c and hs-CRP lowering.

Key Question

Key Finding

Take Home Message

Genomic and experimental evidence implicate the junctional protein associated with coronary artery disease (JCAD) in cardiovascular disease. In pa
tients with ACS from the SPUM-ACS cohort (n = 4787), those with residual lipid, inflammatory, or combined risk showed higher cumulative inci
dence of major adverse cardiovascular events (MACE). Elevated plasma levels of JCAD independently predicted MACE across all residual risk groups 
and correlated positvely with impaired fibrinolysis in an external validation cohort (RISK-PPCI; n = 496). JCAD is a novel marker of and potential 
therapeutic target for residual risk after a recent ACS. ACS, acute coronary syndromes; GWAS, genome-wide association study; hs-CRP, high-sen
sitivity C-reactive protein; LDL-c, LDL cholesterol; MACE, major adverse cardiovascular events; PAI-1, plasminogen activator inhibitor-1; si, small 
interfering RNA; TAFI, thrombin activatable fibrinolysis inhibitor; TF, tissue factor.

Keywords Acute coronary syndromes • Atherosclerosis • Residual risk • Inflammation • Lipids • hs-CRP • LDL-c • JCAD • 
KIAA1462 • Junctional protein associated with coronary artery disease

Introduction
Owing to the broad implementation of early revascularization strat
egies combined with highly effective secondary prevention measures, 
outcomes of patients with acute coronary syndromes (ACS) have 

improved steadily over the last decades.1–8 Nonetheless, a consider
able proportion of ACS patients receiving guideline-recommended 
care remains at high residual cardiovascular risk, to which choles
terol, inflammation, and yet-to-be-identified pathways jointly con
tribute.9–11
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As early as 1994, the landmark 4S trial provided strong evidence that 
statin-induced LDL cholesterol (LDL-c) lowering over a 6-year period 
results in a substantial risk reduction of major adverse cardiovascular 
events (MACE) when compared with placebo.12 More than two dec
ades later, stimulated by the discovery of proprotein convertase subti
lisin/kexin type 9 (PCSK9),13,14 the FOURIER trial showed that the 
ischaemic risk can be further reduced by roughly 15% through aggres
sive LDL-c lowering by PCSK9 inhibition on a background of statin ther
apy.15 Similar results were obtained in the more recently conducted 
ODYSSEY OUTCOMES trial.16

Almost simultaneously, based on experimental and clinical data,17–19

the CANTOS and subsequently the COLCOT and LoDoCo trials 
showed that anti-inflammatory remedies acting downstream of the 
NLRP3 inflammasome provided additional clinical benefit.8 In 
CANTOS, patients with a recent ACS randomized to 150 mg canakinu
mab (a monoclonal antibody targeting interleukin-1β) experienced a 
roughly 15% risk reduction in MACE when compared with placebo 
over a median follow-up of 3.7 years, notably independent of lipid-level 
lowering.5 Similarly, in stabilized ACS patients, colchicine 0.5 mg daily 
led to a 23% relative risk reduction of MACE in COLCOT7 and 31% 
in LoDoCo2.6 Yet, the recently published CLEAR-SYNERGY trial 
does not support the use of this non-specific anti-inflammatory agent 
in the acute setting.20,21 Although its interpretation is limited by several 
factors—including early drug administration, high treatment discon
tinuation, recruitment of mainly ST-elevation myocardial infarction 
(STEMI) patients, and challenges related to the COVID-19 pandemic 
—the lack of therapeutic benefit reinforces the need to explore alter
native and more specific targets in this high-risk population.21,22

Initially identified by genome-wide association studies (GWAS),23,24

the junctional protein associated with coronary artery disease (JCAD) 
drives arterial thrombus formation and incident cardiovascular events 
independently of traditional risk factors.23,24 As suggested by experi
mental studies,25 this may occur via the modulation of coagulation 
and fibrinolysis, the latter being strongly linked to ischaemic events 
and residual risk in patients with a recent ACS.10

Herein, we aimed to characterize ACS patients at residual lipid risk 
(RLR), residual inflammatory risk (RIR), or both (RILR), and to define 
the role of JCAD as a potential mediator of the persisting ischaemic 
risk in patients with a recent ACS.

Methods
Study participants
The SPUM-ACS study is a multicentre, prospective cohort study in which a 
total of 4787 patients with a main diagnosis of ACS were recruited, as de
scribed previously.26–33 Briefly, patients aged ≥18 years with a main diagno
sis of ACS presenting to one of the four major university hospitals in 
Switzerland (Zurich, Bern, Geneva, and Lausanne) were included. Patients 
with severe physical disability, dementia, or life expectancy <1 year (for 
non-cardiac reasons) were not eligible for inclusion. RLR was defined as on- 
treatment LDL-c ≥70 mg/dL (≥1.8 mmol/L), while RIR was defined as on- 
treatment high-sensitivity C-reactive protein (hs-CRP) ≥2.0 mg/L at the 
time of initial presentation, as reported previously.34 Patients meeting 
both criteria [on-treatment LDL-c ≥70 mg/dL (≥1.8 mmol/L) and hs-CRP 
≥2.0 mg/L] were classified as being at residual RILR. The RISK-PPCI study 
is a single-centre (Lister Hospital, Hertfordshire, UK), prospective cohort 
study in which ACS patients undergoing thrombotic status assessment 
prior to primary percutaneous coronary intervention (PCI) were recruited, 
with its study design and in- and exclusion criteria being detailed else
where.10 In brief, consecutive patients presenting with STEMI were eligible 
for study inclusion. RISK-PPCI study participants were excluded if they 

were already on oral anticoagulation, had known coagulation disorders, 
sepsis, platelet count <108/µL, haemoglobin <8 g/dL, active malignancy, 
or were unable to take dual antiplatelet therapy. Patients included in 
SPUM-ACS and RISK-PPCI were treated according to current guideline re
commendations, which includes a loading dose of antithrombotic therapy 
prior to coronary angiography. All study participants provided written in
formed consent; a deferred consent strategy was used in RISK-PPCI study 
participants. Study protocols adhered to the Declaration of Helsinki and 
were approved by the institutional review boards.

Quantification of biomarkers and proxies of 
coagulation and fibrinolysis
Levels of JCAD and hs-CRP levels were assessed in EDTA (ethylenediami
netetraacetic acid)-plasma samples obtained prior to any coronary inter
vention. For the quantification of JCAD, commercially available 
enzyme-linked immunosorbent assays following the manufacturers’ instruc
tions were used (MyBiosource, San Diego, CA, USA), with intra- and inter
assay coefficients of variation being <15%, as reported.25,35 For the 
assessment of hs-CRP, a particle-enhanced turbidimetric immunoassay 
was employed (Roche Diagnostics, Boehringer Mannheim, Indianapolis, 
IN, USA), as reported.26 Similarly, tissue factor (TF), plasminogen activator 
inhibitor (PAI)-1 (both obtained from R&D Systems, Minneapolis, MN, 
USA), and thrombin activatable fibrinolysis inhibitor (TAFI) quantification 
was done by means of enzyme-linked immunosorbent assays 
(MyBiosource, San Diego, CA, USA), with intra- and interassay coefficients 
of variation being <15%, as reported.25 Standard lipid panels were mea
sured in all patients,28 and LDL-c levels were calculated using the 
Sampson equation.28,36 In RISK-PPCI study participants, native non- 
anticoagulated blood drawn prior to PCI was subjected to a validated, 
point-of-care global thrombosis test (GTT) (Thromboquest Ltd, London, 
UK), as described.37 Briefly, the blood sample was introduced into the 
GTT cartridge and endogenous lysis time, i.e. the time required for flow res
toration after an occlusive thrombus as formed under high-shear stress, was 
measured. Inter- and intra-assay coefficients of variation were determined 
by analysing native blood samples from 10 stable patients on 2 occasions, 
48 h apart, with all samples being processed simultaneously. Study person
nel involved in the biomarker measurements were fully blinded to study 
participants’ baseline and outcome data.

Clinical follow-up, adjudication of adverse 
events, and study oversight
SPUM-ACS study participants were followed prospectively up to 1 year 
(clinical visit). Trained study personnel documented baseline data at each 
study site using a centralized data entry system (CARDIOBASE, Clinical 
Trial Unit and Department of Cardiology, University Hospital Bern, Bern, 
Switzerland and Webspirit Systems GmbH, Ulm, Germany). All adverse 
events of the primary and secondary endpoints of the present study 
were adjudicated by an independent clinical endpoint committee consisting 
of three expert cardiologists blinded to study participants’ baseline charac
teristics using pre-specified adjudication forms. Among RISK-PPCI study 
participants, study-specific case record forms were completed during the 
index admission, with patients being followed over a 1-year period, as pre
viously reported.10 Patient recruitment, biomarker measurements, and the 
collection of baseline and event data were overseen by a study committee 
involving expert cardiologists from each participating study centre.

Definition of the primary endpoint and main 
study objectives
The primary endpoint of the current study was MACE during 1-year of 
follow-up, defined as a composite measure of non-fatal myocardial infarc
tion, non-fatal stroke, and cardiovascular death, whichever occurred first. 
The present study aimed to characterize the ischaemic risk of ACS patients 
at RLR, RIR, and RILR, and to study independent associations between 
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individual biomarker levels (i.e. LDL-c, hs-CRP and JCAD) and the primary 
endpoint. Secondary objectives included the study of JCAD plasma levels 
and their associations with proxies of endogenous coagulation/fibrinolysis.

Statistical analysis
Continuous data are shown as median and interquartile range (IQR), and 
categorical data as counts and percentages (%). Patients were classified as 
being at RLR, RIR, or RILR (see Supplementary data online, Figures S1 and 
S2).34 Control patients were identified by nearest neighbour (‘greedy’) 
matching in a 1:1 fashion. To mitigate a potential missing data bias (see 
Supplementary data online, Table S1), propensity score (PS) modelling 
was done on multiply imputed data (n = 20 data sets) within each data
set.38,39 The PS was derived from a priori-defined covariates linked to 
both group assignment and the primary endpoint, including sex, history 
of hypercholesterolaemia, GRACE risk scores, smoking history, a diagnosis 
of diabetes, a history of congestive heart failure, and presence of anterior 
myocardial infarction.29,30,34,40 To assess covariate balance, the standar
dized mean difference was used (Table 1).28,41 To yield most accurate stand
ard errors following PS matching, time-to-event data were modelled using 
complex survey design-based Cox proportional hazard regression models, 
with estimates being pooled according to Rubin’s rules. To plot the prob
ability of MACE during follow-up, Nelson-Aalen curves for one randomly 
chosen dataset were plotted. To test the predictive utility of LDL-c, 
hs-CRP, and JCAD in patients at RLR, RIR, or RILR, uni- and multivariable- 
adjusted Cox proportional hazard regression models were fitted within 
each group accounting for potential confounders, as specified in the figure 
legends. In linear models, biomarker data were log2-transformed (i.e. one 
unit increase corresponds to a doubling in biomarker levels). To model non
linear relationships of biomarker data with the primary endpoint, restricted 
cubic splines were used, with knots fixed at the 25th, 50th, and 75th per
centiles. Discrimination was quantified with Harrell’s concordance index. 
Model adequacy penalizing complexity was assessed with the Akaike infor
mation criterion (AIC), reporting ΔAIC vs baseline and performing 
likelihood-ratio χ2 tests for nested comparisons. We adhered to the prin
ciples outlined by the STROBE initiative and followed the AHA Scientific 
Publication Committee’s recommendations for statistical reporting.42,43 A 
two-tailed P < .05 was deemed statistically significant throughout. All ana
lyses were conducted in R version 4.2.3 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Baseline characteristics of patients at 
residual risk
Among 4787 ACS patients recruited into SPUM-ACS, 892 were iden
tified as being at RLR (on-statin LDL-c ≥70 mg/dL or ≥1.8 mmol/L), 
683 at RIR (hs-CRP ≥2.0 mg/L), and 460 at RILR [LDL-c ≥70 mg/dL 
(≥1.8 mmol/L) and hs-CRP ≥2.0 mg/L] (see Supplementary data 
online, Figures S1 and S2). Baseline characteristics of those at RLR, at 
RIR, and at RILR and their PS-matched controls are provided in 
Table 1. Among patients at RLR, 20.9% were female, with 54.0% being 
≥65 years of age. About 10.3% of these patients had a history of per
ipheral artery disease (PAD), and 6.8% of stroke or transient ischaemic 
attack. Median hs-CRP levels were 2.5 (interquartile range, 1.00–7.50) 
mg/L, while plasma JCAD levels equalled 1.18 (0.46–1.88) ng/mL. Of all 
patients at RIR, 59.6% were ≥65 years of age, with 22.3% being female. 
Median estimated glomerular filtration rate (eGFR) was 81.6 (61.62– 
94.38) mL/min/1.73 m2,44 with 14.3% having a medical history of 
PAD. Median hs-CRP levels were 7.00 (3.55–19.20) mg/L, while 
JCAD plasma levels were 1.05 (0.41–1.91) ng/mL. Of all patients at 
RILR, 53.9% were ≥65 years of age, with 24.6% being female. Median 
eGFR was 83.81 (66.25–96.40) mL/min/1.73 m2, and 12.6% had a 

history of PAD. Median hs-CRP levels were 6.05 (3.50–16.22) mg/L, 
while median JCAD levels were 1.05 (0.42–1.92) ng/mL.

Residual risk and major adverse 
cardiovascular events
Among patients at RLR (on-statin LDL-c ≥70 mg/dL or ≥1.8 mmol/L), 
a total of 77 MACE occurred at 1 year, with a cumulative incidence of 
8.67% [95% confidence interval (CI) 6.80–10.51]. When compared 
with PS-matched controls, patients at RLR had a 1.55-fold increased 
1-year MACE risk [hazard ratio (HR) 1.55, 95% CI 1.08–2.23, 
P = .018] with survival curves starting to disperse as of 4 months after 
the index ACS (Figure 1A). In those at RIR (on-statin hs-CRP ≥ 2.0 mg/ 
L), a total of 83 MACE occurred (cumulative incidence of 12.27%, 95% 
CI 9.76–14.71), transitioning into a HR of 1.80 (95% CI 1.24–2.61; 
P = .0020) for 1-year MACE (Figure 1B). Finally, in those at RILR [on- 
statin LDL-c ≥70.0 mg/dL (≥1.8 mmol/L) and hs-CRP ≥ 2.0 mg/L], 49 
patients experienced MACE at 1 year, corresponding to a cumulative 
incidence of 10.72% (95% CI 7.84–13.52). Relative to PS-matched con
trols, these patients were at 1.75-fold increased MACE risk (HR 1.75, 
95% CI 1.12–2.75; P = .015) (Figure 1C). Similar results were obtained 
when all patients not assigned to residual risk groups were used as con
trols (see Supplementary data online, Figure S3 and Table S2).

Junctional protein associated with coronary 
artery disease predicts major adverse 
cardiovascular events in patients at 
residual risk
In those at RLR, LDL-c levels were not linked to future MACE risk, nei
ther in uni- (HR per log2 increase 0.95, 0.53–1.70; P = .90) nor 
multivariable-adjusted analysis (HR 1.48, 0.73–2.99; P = .30). 
However, both hs-CRP and JCAD were strongly linked to 1-year 
MACE risk in univariable analysis (HR 1.17, 95% CI 1.06–1.30; 
P = .0020; and HR 1.29, 95% CI 1.03–1.62; P = .027, respectively) 
(Figure 2). These associations prevailed in multivariable-adjusted ana
lyses, transitioning into a 1.16- and 1.27-fold increase in MACE risk 
per doubling in hs-CRP [adjusted HR (aHR) 1.16, 1.03–1.30; 
P = .015] and JCAD (aHR 1.27, 1.01–1.60; P = .039), respectively, inde
pendently of conventional risk factors.

Similarly, in those at RIR, LDL-c was not linked to future MACE risk, 
neither in uni- (HR 0.72, 0.51–1.02; P = .062) nor multivariable-adjusted 
analysis (aHR 0.96, 0.60–1.51; P = .80), regardless of LDL-c levels 
(Figure 3). Though a weak association of hs-CRP with MACE risk was 
noted in univariable analysis (HR 1.14, 1.02–1.28; P = .025), this associ
ation did not prevail after adjustment of potential confounders (aHR 
1.11, 0.96–1.28; P = .15). Of interest, however, when compared with 
those at RLR, the JCAD–MACE association was similarly noted in pa
tients at RIR, with MACE risk being increased by 28% per doubling in 
JCAD plasma levels in uni- (HR 1.28, 1.03–1.59; P = .026) and by 31% 
in multivariable-adjusted analysis (aHR 1.31, 1.04–1.65; P = .022), 
respectively.

In those at RILR, neither LDL-c nor hs-CRP was linked to MACE risk 
in uni- (HR 0.81, 0.38–1.74; P = .60; and 1.15, 0.98–1.36; P = .090) or 
multivariable-adjusted analysis (aHR 1.06, 0.41–2.75; P = .99; and 
1.11, 0.92–1.35; P = .30), irrespectively of plasma LDL-c or hs-CRP le
vels (Figure 4). Notably, however, JCAD retained strong predictive util
ity also in this high-risk population, transitioning into a 1.45-fold 
increased MACE risk per doubling in JCAD plasma levels (HR 1.45, 
1.09–1.92; P = .010). Similar observations were made in multivariable- 
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adjusted analysis accounting for potential confounders, with a doubling 
in JCAD plasma levels reflecting into a 47% increase in MACE risk at 1 
year (HR 1.47, 1.11–1.97; P = .0080). In sensitivity analyses, the associ
ation between JCAD and 1-year MACE risk was independent of pre
hospital delay, prior use of antiplatelet therapy or (direct) oral 
anticoagulants (see Supplementary data online, Figure S4). The JCAD– 
MACE association was confined to patients at RLR, RIR, or RILR but 
was not observed in control patients not at residual risk (see 
Supplementary data online, Figure S5). When added to a baseline pre
diction model, none of the biomarkers tested (i.e. JCAD, hs-CRP, 
LDL-c) resulted in improved discriminatory performance; however, 
the numerically largest increase in Harrell’s C across all residual risk 
groups was observed when JCAD was included (see Supplementary 
data online, Tables S3 and S4).

Junctional protein associated with coronary 
artery disease links to impaired 
endogenous fibrinolysis and major adverse 
cardiovascular events
The junctional protein associated with coronary artery disease (JCAD) is 
causally involved in atherosclerosis,45,46,47 driving atherothrombotic 
events predominantly by modulating coagulation and fibrinolysis.25 In 
ACS patients recruited in the RISK-PPCI study undergoing the auto
mated point-of-care GTT (patient characteristics are provided in the 
Supplementary data online, Table S5), high JCAD plasma levels showed 
a monotonic relationship with accentuated TF (ρ = 0.23, P = .0061), 
TAFI (ρ = 0.33, P < .0001) and PAI-1 plasma levels (ρ = 0.19, P  
= .022) (Figure 5). Aligning with the above, JCAD correlated positively 
with baseline lysis time (ρ = 0.23, P = .0060), an important determinant 
of ischaemic risk.10 The associations between JCAD and TF, TAFI, and 
lysis time were independent of renal function, as estimated by glomeru
lar filtration rate, and systemic inflammation, as assessed by CRP 
(Figure 6). However, in linear regression analysis adjusting for eGFR 
and/or CRP, only TF, TAFI and lysis time correlated linearly with 
JCAD (Supplementary data online, Table S6). Similar to the data ob
tained in SPUM-ACS, high JCAD levels translated into an increased 
risk of MACE 1 year after the index event in patients undergoing pri
mary PCI (P = .032) (Figure 7; Supplementary data online, Figure S6).

Discussion
Harnessing two independent prospective ACS cohorts from two dif
ferent countries, we show that (i) ACS patients at RLR, RIR, or both 
(RILR), remain at high ischaemic risk, (ii) plasma levels of JCAD, but 
not LDL-c or hs-CRP, associate consistently with MACE risk irrespec
tively of type of residual risk, and (iii) high circulating JCAD independ
ently links to higher levels of pro-thrombotic mediators, impaired 
endogenous fibrinolysis and MACE in prospectively recruited patients 
with ACS (Structured Graphical Abstract).

Of note, patients at RLR, defined as on-statin LDL-c ≥70 mg/dL 
(≥1.80 mmol/L), exhibited 55% higher risk of MACE risk when com
pared with PS-matched controls. Similarly, those at RIR (hs-CRP 
≥2.0 mg/L) as well as those at RILR (both LDL-c ≥70 mg/dL and 
hs-CRP ≥2.0 mg/L) had 1.8- and 1.75-fold higher hazards of 1-year 
MACE, respectively, relative to control patients. Statins reduce levels 
of both hs-CRP and LDL-c which is associated with lower MACE 

A

B

C

Figure 1 Risk of major adverse cardiovascular events among patients 
at residual risk relative to PS-matched controls. (A) RLR refers to re
sidual lipid risk (on-statin LDL-c ≥70 mg/dL or ≥1.8 mmol/L). (B) RIR 
refers to residual inflammatory risk (on-statin hs-CRP ≥2.0 mg/L). (C) 
RILR refers to residual inflammatory and lipid risk (LDL-c ≥70 mg/dL 
or ≥1.8 mmol/L) and hs-CRP ≥2.0 mg/L). Right-censored observations 
are indicated as tick marks. The PS was calculated based on predefined 
covariates associated with both group assignment and ischaemic out
comes, including sex, history of hypercholesterolemia, GRACE risk 
scores, smoking status, presence of diabetes, history of congestive heart 
failure, and anterior myocardial infarction. Hazard ratios were obtained 
by complex-survey based proportional hazard regression models run 
on multiply imputed data (n = 20), with estimates being pooled accord
ing to Rubin’s rules. ACS, acute coronary syndrome; CI, confidence 
interval; HR, hazard ratio; RIR, residual inflammatory risk; RLR, residual 
lipid risk; RILR, residual inflammatory and lipid risk; MACE, major ad
verse cardiovascular events
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risk, but both biomarkers contribute independently to overall ischaemic 
risk.48,49,50 Aggressive LDL-c lowering leads to a relative risk reduction 
in MACE (with each 1.0 mmol/L reduction corresponding to an annual 
MACE risk reduction of ∼20%),51 but ∼1 out of 20 stabilized patients 
achieving a median LDL-c <50 mg/dL (<1.4 mmol/L) still experiences 
MACE during 1 year of follow-up.15,16 The lack of predictive value of 
hs-CRP in patients at RIR in the present study contrasts with findings 
from major trials such as PROMINENT, REDUCE-IT, and 
STRENGTH.52–55 This discrepancy may be due to differences in study 
design, distinct patient populations (real-world data vs selected trial 
populations), different in-/exclusion criteria, and post-ACS settings. 
These differences highlight the challenges of translating trial findings 
to broader clinical settings. Indeed, even in patients achieving currently 
recommended LDL-c targets, residual cardiovascular risk remains sub
stantial, with targeted anti-inflammatory agents, including interleukin-6 
inhibitors (e.g. ziltivekimab), being currently under evaluation.56 In the 
combined residual risk group (RILR), neither LDL-c nor hs-CRP were 
independently associated with MACE, and the incidence of events 
was slightly lower than in the RIR group. This may reflect population 

heterogeneity, as well as the distinct biological timelines of risk modu
lation: while inflammation may exert short-term effects on event risk, 
the benefits of LDL-c lowering typically accumulate over longer peri
ods, as shown in ODYSSEY OUTCOMES, FOURIER, and 4S 
trials.12,15,16 The 1-year follow-up may therefore have favoured the de
tection of inflammatory over lipid-mediated effects. Additionally, the 
use of dichotomized baseline cut-offs for risk definition may limit the 
ability to capture complex interactions between these pathways. 
Collectively, these findings highlight the currently unmet need for novel 
targets to further reduce residual risk, particularly in those exceeding 
guideline-recommended LDL-c thresholds despite optimal medical 
therapy.2,47

Besides residual lipid and inflammatory risk, other key contributors 
to residual risk in patients with established atherosclerotic cardiovascu
lar disease include triglycerides, lipoprotein(a), diabetes, and thrombot
ic risk.11 The latter stands out as no single biomarker of residual 
thrombotic risk is recommended by guidelines, and novel targets re
main to be identified to adequately balance ischaemic vs bleeding risks.9

While several biomarkers of thrombotic risk have been evaluated— 

A B

C D

Figure 2 Risk of 1-year MACE according to biomarker levels of lipids, inflammation, and JCAD in patients at RLR (on-statin LDL-c ≥70 mg/dL or 
≥1.8 mmol/L). Multivariable-adjusted three-knot restricted cubic spline curves (with knots fixed at the 25th, 50th, and 75th percentiles) on the associa
tions between LDL-c (A; yellow), hs-CRP (B; red), and JCAD (C; blue) and 1-year MACE risk is shown. Crude and adjusted ratios of the hazard rates for 
each biomarker (mutually adjusted for each other) are shown in (D). Multivariable models include sex, age, JCAD, hs-CRP, and LDL-c. Biomarker data 
were log2-transformed. Note that tilted squares represent HR with line lengths corresponding to 95% confidence intervals. To convert cholesterol 
levels to millimoles per litre, multiply by 0.0259. aHR, adjusted hazard ratio; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; JCAD, junc
tional protein associated with coronary artery disease; LDL-c, LDL cholesterol; MACE, major adverse cardiovascular events
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including TF, PAI-1, D-dimer, soluble urokinase-type plasminogen acti
vator receptor, and platelet-derived microparticles—none are current
ly established for clinical use to guide personalized antithrombotic 
therapy.57–61 Among these, JCAD holds promise as a superior bio
marker of thrombotic residual risk given its dual mechanistic involve
ment in atherosclerosis and thrombosis, as well as its consistent 
association with prothrombotic pathways and ischaemic outcomes in 
ACS patients at high residual risk.

Indeed, our results support the notion that JCAD plasma levels asso
ciate independently with increased MACE risk in ACS patients at RLR, 
RIR, or both (RILR) beyond LDL-c and hs-CRP. Initially identified by 
GWAS, JCAD has been causally implicated in atherosclerosis, vascular 
inflammation, and arterial thrombosis in experimental stud
ies.23,24,25,45,46,62 While JCAD promotes early stages of atherosclerosis 
through the Hippo signalling pathway,62 its effects on thrombosis large
ly depend on the phosphoinositide 3-kinases/Akt pathway.25 While evi
dence on the pro-atherogenic role of intracellular JCAD is growing,23–45

the pathophysiological role of its extracellular and thus circulating 
form remains to be investigated.47 In the present study, JCAD plasma 
levels were independently linked to an increased MACE risk irrespect
ive of residual risk type. Notably, in RISK-PPCI study participants, JCAD 
correlated well with prothrombotic factors, including TF, TAFI, PAI-1, 

and lysis time, the latter representing a potent determinant of ischaemic 
risk.10 This observation aligns with our prior work showing that JCAD 
promotes arterial thrombus formation in mice, with TF and PAI-1 ex
pression being blunted in JCAD-deprived endothelial cells.25 Several 
markers of thrombotic risk, including on-treatment platelet reactivity, 
as assessed by the VerifyNow® assay, and platelet FcγRIIa, are linked 
to heightened ischaemic risk in patients at high residual risk.63,64 Thus 
far, however, platelet-derived biomarkers failed to enter clinical prac
tice. This might be due to several factors, including the notion that is
chaemic risk is not only determined by platelet function, but a 
complex interplay of lipids, inflammation, and cardiometabolic risk fac
tors.9 In this regard, JCAD may represent an unique class of biomarker, 
as it is causally involved in atherothrombosis,23–25,45,46,62 reflecting up
stream endothelial dysfunction rather than isolated platelet (dys-) 
function and reactivity. Indeed, in our experimental work, 
siRNA-mediated JCAD knockdown resulted in improved outcomes 
in models of both arterial thrombosis and stroke.25,35 While additional 
mechanistic studies are warranted, these findings suggest that JCAD 
might not only serve as a risk marker but also a potential therapeutic 
target. Considering that residual risk is increasingly recognized as a 
multifaceted process involving lipid, inflammatory, and thrombotic 
pathways,9,47 comprehensive risk reduction may require a combination 

C D

A B

Figure 3 Predictors of 1-year MACE in patients at RIR (on-statin hs-CRP ≥2.0 mg/L): non-linear associations between LDL-c (A; yellow), hs-CRP (B; 
red), and JCAD (C; blue) and 1-year MACE risk are shown using three-knot restricted cubic spline curves, with knots fixed at the 25th, 50th, and 75th 
percentiles. Crude and adjusted ratios of the hazard rates for each biomarker (mutually adjusted for each other) are shown in (D). Multivariable models 
include sex, age, JCAD, hs-CRP, and LDL-c, with biomarker data being log2-transformed. Note that tilted squares represent HR with line lengths cor
responding to 95% confidence intervals. To convert cholesterol levels to millimoles per litre, multiply by 0.0259. aHR, adjusted hazard ratio; HR, hazard 
ratio; hs-CRP, high-sensitivity C-reactive protein; JCAD, junctional protein associated with coronary artery disease; LDL-c, LDL cholesterol; MACE, 
major adverse cardiovascular events
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of therapies targeting these pathways. While novel agents, including 
emerging lipid-lowering drugs, glucagon-like peptide-1 receptor ago
nists, and sodium-glucose co-transporter 2 (SGLT2) inhibitors have 
changed the management of many cardiometabolic conditions,65–67

both the DAPA-MI and EMPACT-MI trials failed to show a benefit of 
SGLT2 inhibition on hard cardiovascular outcomes in patients with 
ACS.68,69 The optimal duration and intensity of dual antiplatelet therapy 
remain subjects of ongoing debate, and current guidelines increasingly 
advocate for personalized approaches balancing individual thrombotic 
and bleeding risks, with JCAD emerging as a promising biomarker for 
contemporary risk stratification. While, at present, no therapeutic 
strategy exists to target JCAD, well-designed studies are warranted 
to explore whether JCAD modulation can effectively reduce residual 
cardiovascular risk on the background of contemporary management 
strategies.

Strengths and limitations
SPUM-ACS is among the largest prospectively designed multicentre 
ACS cohorts globally with granular phenotyping of recruited patients 

and independent event adjudication by an expert committee compris
ing three board certified cardiologists blinded to baseline characteristics 
using pre-specified adjudication forms.26,29–31 Moreover, biomarker 
measurements (i.e. hs-CRP, JCAD) were done centrally,25,26,35 with 
LDL-c levels derived from the well-validated Sampson equation,28,36 as
suring high data quality. However, potential limitations of this study 
warrant discussion. First, though the SPUM-ACS cohort is among the 
best characterized and largest ACS cohorts worldwide, relatively few 
patients were at RLR, RIR, or both (RILR); thus, a potential selection 
bias cannot be excluded. However, JCAD–MACE associations were 
similarly observed across different subgroups of residual risk, strongly 
arguing against such a systematic error. To avoid model overfit, we re
frained from performing additional subgroup analyses in SPUM-ACS 
stratified by ACS type. Given differences in the pathophysiology of 
STEMI vs non-ST-elevation (NSTE)-ACS,1 future studies would need 
to assess whether the JCAD–MACE associations are similarly observed 
in patients with STEMI vs NSTE-ACS. Second, residual risk groups in 
our study were defined based on lipid and inflammatory markers mea
sured during the index hospitalization, which may be influenced by 
acute-phase responses, including stress-induced fluctuations in LDL-c 

C D

A B

Figure 4 Residual lipid and inflammatory risk [LDL-c ≥70 mg/dL or ≥1.8 mmol/L and hs-CRP ≥2.0 mg/L] and predictors of 1-year MACE: 
multivariable-adjusted three-knot restricted cubic spline curves (with knots fixed at the 25th, 50th, and 75th percentiles) on the associations between 
LDL-c (A; yellow), hs-CRP (B; red), and JCAD (C; blue) with MACE risk 1 year after the index ACS are shown. The crude and adjusted HR for LDL-c, hs- 
CRP, and JCAD (mutually adjusted for each other) are shown in (D). Multivariable models include sex, age, JCAD, hs-CRP, and LDL-c. Note that bio
marker data were log2-transformed. Tilted squares indicate the estimates, with line lengths representing the 95% confidence intervals. To convert chol
esterol levels to millimoles per litre, multiply by 0.0259. ACS, acute coronary syndrome; aHR, multivariable-adjusted hazard ratio; CI, confidence 
interval; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; JCAD, junctional protein associated with coronary artery disease; LDL-c, LDL 
cholesterol; MACE, major adverse cardiovascular events
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and elevations in hs-CRP due to myocardial injury. As such, these mea
surements might not fully reflect steady-state post-treatment levels, 
possibly favouring distinct risk stratification. However, our goal was 
to evaluate the prognostic value of JCAD in real-world ACS patients 
shortly after presentation—when treatment decisions have to be 
made. Future studies with serial biomarker measurements post- 
discharge may help distinguish acute from persistent residual risk and 
clarify potential interactions between biomarker dynamics and 
JCAD-associated MACE risk. Additionally, the herein used LDL-c 
thresholds of 70 mg/dL (≥1.8 mmol/L) were based on earlier guideline 
definitions applicable during the recruitment period; this may limit gen
eralizability to contemporary populations where more stringent LDL-c 
targets (<55 or <70 mg/dL) are recommended, potentially attenuating 
the relative impact of additional biomarkers such as JCAD. Third, 
GTT-derived lysis time data, which reflect procoagulant or impaired fi
brinolytic activity, were unavailable in SPUM-ACS, limiting mechanistic 
insight into thrombotic risk pathways in this cohort. Indeed, the present 
study is subject to any limitation inherent to its design, including these 
methodological limitations as well as residual confounding. To minimize 
a potential confounding effect while avoiding model overfit in the set
ting of marked covariate imbalance,70,71 PS matching was done, with 

the PS being derived from a priori-defined covariates related to both 
group assignment and ischaemic outcomes. To mitigate potential miss
ing data bias, PS matching was performed on multiply imputed data 
(n = 20). Finally, the present investigation was done within cohorts 
mainly comprising Caucasian patients (SPUM-ACS; RISK-PPCI study) 
which may limit the generalizability of the findings to broader, more di
verse populations with different genetic backgrounds and environmen
tal risk factors.

Conclusions
In aggregate, our findings reinforce the urgent need for more aggressive 
secondary prevention strategies in patients with a recent ACS, particu
larly in those with residual lipid and/or inflammatory risk, using novel 
therapeutic strategies. While intensifying of LDL-c lowering therapy, 
combined with targeted anti-inflammatory approaches, may mitigate is
chaemic risk in this high-risk population to some degree, novel targets 
beyond lipids and inflammation deserve focus. In this regard, given its 
mechanistic role in endothelial dysfunction, atherosclerosis, and arterial 
thrombosis,23–25,45 coupled with its consistent associations with MACE 

A B

C D

Figure 5 Spearman correlation between JCAD and features of impaired endogenous fibrinolysis. Correlation between JCAD and (A) TF, (B) TAFI (C ) 
PAI-1, and (D) baseline lysis time, the latter determined by an established point-of-care global thrombosis test. A simple linear regression and 95% con
fidence bands of the best fitted line is plotted. JCAD, junctional protein associated with coronary artery disease; PAI-1, plasminogen activator 
inhibitor-1; TAFI, thrombin activatable fibrinolysis inhibitor; TF, tissue factor
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risk across residual risk types, JCAD represents a promising candidate 
and potential therapeutic target to lower the burden of RLR, RIR, and 
RILR in patients with a recent ACS. Additional studies are warranted to 
explore whether JCAD modulation can effectively reduce ischaemic 
risk in these high-risk patients, irrespective of ACS type and presence 
or absence of residual risk phenotypes.
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