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Abstract—In constructing memristive neural networks, mem-
ristors’ intrinsic memory and synapse plasticity characteristics
endow the neural networks with complex nonlinear dynamics.
However, discrete memristive neural networks with grid multi-
structure/scroll-like attractors have not been reported. In this
work, a novel discrete memristive Hopfield neural network
(DMHNN) is presented by coupling a discrete memristor sim-
ulating the mutual synapse into a Hopfield neural network.
Multi-structure/scroll-like hyperchaotic attractors are revealed
under the control of coupling strength. Interestingly, by adjust-
ing the network parameters, the system can generate diverse
grid-structure/scroll-like attractors with different arrangements,
which is a chaotic behavior that previous discrete neural net-
works do not possess. For different sets of network parameters,
DMHNN can exhibit multidirectional initial offset-boosting phe-
nomena and can control an arbitrary number of coexisting ho-
mogeneous attractors. FPGA-based hardware circuit is designed,
and grid multi-structure/scroll-like attractors are successfully
implemented. Furthermore, DMHNN is applied to a pseudo-
random number generator (PRNG) to evaluate its randomness
performance.

Index Terms—Discrete memristor, Hopfied neural network,
grid multi-structure/scroll-like attractors, initial offset-boosting,
PRNG.

I. INTRODUCTION

AS the fourth basic circuit element, the memristor holds an
important position in the field of new electronic devices

due to its unique synapse-like and memory characteristics [1].
This component not only provides the physical realization
foundation for in-memory computing architectures [2] and
neuromorphic engineering [3], but also demonstrates its dis-
tinct advantages in scenarios such as chaotic encryption [4],
[5] and secure communication [6], [7]. In recent years, the
study of memristors has expanded from the continuous domain
to the discrete domain. Compared to continuous memristors,
discrete memristors applied to low-dimensional chaotic maps
exhibit superior dynamical complexity and realize complicated
chaotic oscillations with simpler structures [8], [9]. Besides,
their mathematical representation makes them particularly
prominent in terms of digital system compatibility [10], [11].
Consequently, discrete memristors have become a central
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topic in the field of nonlinear dynamics theory and artificial
neural networks [12]–[14]. Lai et al [15] introduced four
ideal discrete memristors, and four hyperchaotic maps were
constructed by adding an oscillatory term to them. The com-
plicated dynamical behaviors were found, including coexisting
bistable attractors, symmetrically coexisting attractors, and
coexisting homogeneous and heterogeneous attractors. Li et al
[16] proposed a 2-lobe discrete corsage memristor character-
ized by the nonvolatility, bistability, and odd-symmetric locally
active region. The neuron map coupled by this memristor
exhibits multiple symmetric periodic and chaotic attractors, as
well as offset-boosted coexistence behaviors. Yuan et al [17]
constructed high-dimensional discrete memristive maps with
different topologies by coupling multiple discrete memristors,
significantly improving parameter space and chaotic range.

Research on the information processing mechanism of neu-
ral networks based on the dynamics perspective provides a
key entry point for revealing the essential laws of human
brain cognition [18], [19]. With the flourishing development
of computational neuroscience, a series of artificial neural
network models grounded in the electrophysiological proper-
ties of biological neurons emerged one after another. Among
them, the Hopfield neural network (HNN) distinguished itself
as a paradigmatic research subject in both neuroscience and
nonlinear dynamics, owing to its distinctive associative mem-
ory mechanism and characteristics of global stability. Lin et
al [20] presented a memristive HNN with three memristive
systems, which can produce grid multi-butterfly attractors and
plane coexisting multi-butterfly attractors under the combined
action of three memristors. Zhang et al [21] coupled the
memristors with a HNN, and a multidirectional multidouble-
scroll memristive HNN with countless coexisting multidouble
scroll attractors was constructed. Yu et al [22] introduced
a novel four-dimensional fractional-order memristive HNN
to simulate induced current, demonstrating the dynamics of
transient chaos and coexisting attractors. Discrete chaotic maps
have low time consumption and show chaos and hyperchaos
in low dimensions [23]. Therefore, discrete HNNs have also
attracted the attention of researchers. Bao et al [24] proposed
a discrete two-neuron HNN with sine activation functions, and
special polyhedral hyperchaotic attractors were discovered.
Bao et al [25] constructed a two-heterogeneous-neuron HNN
with multifolded hyperchaotic attractors by further exploring
the two-dimensional discrete HNN. Wei et al [26] employed a
discrete memristor to mimic a self-synapse and added it into
a two-dimensional HNN, resulting in the appearance of multi-
ringlike attractors, hyperchaos, periodic offset, and coexistence
of infinite attractors. Bao et al [27] integrated a discrete
memristor with a multi-segment state function into a two-
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neuron HNN, which is capable of producing multi-stripe/wave
hyperchaotic attractors, and also has different numbers of
coexisting attractors.

Existing research demonstrates that continuous multi-
scroll/multi-structure attractors [28], [29] can be generated
through the strategic incorporation of additional 2-index
saddle-focus equilibrium points within the system, typically
implemented via piecewise nonlinear functions or functionally
equivalent memristive elements. Compared to multi-scroll at-
tractors, the topology of multi-structure attractors is irregularly
shaped, which makes their phase trajectories more intricate,
thus multi-structure attractors have a higher dynamical com-
plexity [29]. In the discrete domain, we have also identi-
fied the existence of attractors similar to continuous multi-
scroll/structure attractors. So far, discrete multi-cavity attrac-
tors [30], multi-vortex-like attractors [31], multi-layer attrac-
tors [32], multi-ringlike attractors [26], and multi-stripe/wave
attractors [27] have been uncovered. However, these discrete
attractors only produce multiple attractors in a single direction
without the control of external functions. The complicated
discrete grid attractors have still not been reported in neural
networks. Therefore, it is particularly important to construct
a discrete neural network with grid multi-structure/scroll-like
attractors.

Inspired by the above outline, this paper presents a dis-
crete memristive HNN, which is constructed by coupling a
discrete cosine memristor to a two-neuron HNN. The system
can generate diverse grid multi-structure/scroll-like attractors,
and exhibit multidirectional initial offset-boosting behavior,
including 1-direction, 2-direction, and 3-direction.

The main contributions of this work are summarized as
follows:

1) A novel DMHNN is proposed by coupling a discrete
cosine memristor mimicking a mutual synapse into a two-
neuron HNN. Theoretical analysis and numerical simulations
show that the system is characterized by numerous fixed
points, hyperchaos, and state transitions.

2) Under the control of the coupling strength, multi-
structure/scroll-like attractors with different topologies are
generated. By adjusting the network parameters, rare grid-
structure/scroll-like attractors emerge in the phase plane, en-
compassing both ordered and disordered types.

3) Unlike previous continuous chaotic systems that rely on
multiple memristors to achieve multidirectional initial offset-
boosting, the system can exhibit this behavior in 1-, 2-, and 3-
directions. Moreover, its three-dimensional spatial initial offset
capability is absent in existing discrete chaotic systems.

4) The FPGA-based DMHNN hardware circuit was de-
signed, and the experimental results of its grid multi-
structure/scroll-like attractors are consistent with the numerical
results. In addition, DMHNN is applied to PRNG, and the test
results demonstrate that DMHNN can produce high-quality
random numbers.

The rest of this paper is organized as follows. Section
II presents a discrete memristor and constructs a DMHNN.
Section III investigates the Lyapunov exponent (LE) spec-
tra and bifurcation diagrams (BDs) for network parameters,
grid multi-structure/scroll-like attractors, and multidirectional
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Fig. 1: Multi-structure and multi-scroll attractors in continuous
and discrete domains. (a) Continuous 3-structure. (b) Continu-
ous 3-scroll. (c) Discrete 3-structure. (d) Discrete 3-scroll-like.

initial offset-boosting behavior. Section IV implements the
DMHNN hardware circuit using FPGA. Section V designs a
DMHNN-based PRNG and evaluates its randomness. Section
VI summarizes the paper.

II. MATHEMATICAL MODELING OF DMHNN

This section describes the difference between multi-
structure attractors and multi-scroll attractors. Besides, a three-
dimensional DMHNN is constructed by coupling a discrete
memristor as a synapse to a discrete bi-neuron Hopfield neural
network, and investigates the fixed points and stability of
DMHNN.

A. Multi-structure Attractor and Multi-scroll-like Attractor

To verify that multi-structure attractors exhibit more com-
plex dynamics than multi-scroll attractors, we conduct a
comparative analysis to elucidate their topological and dy-
namic trajectory differences. Fig. 1 presents multi-structure
and multi-scroll attractors in continuous and discrete domains.
Comparing Fig. 1(a) and (b), we can clearly see that the
topology of multi-structure attractors is not formed in a
scroll shape, and their internal structure is more intricate.
Moreover, the phase trajectory of multi-structure attractors
exhibits greater randomness within the attractor region and
covers a more extensive range. Consequently, multi-structure
attractors possess higher dynamical complexity.

This study unveils the existence of multi-structure and
multi-scroll-like attractors in the discrete domain, as illustrated
in Fig. 1(c) and (d). It can be found that discrete multi-
structure attractors have a special topology, and their trajectory
jumps randomly between different structures, which is similar
to the characteristics of continuous multi-structure attractors.
Similarly, discrete multi-scroll-like attractors maintain the fun-
damental features of continuous multi-scroll attractors.

B. Modeling of Discrete Memristor

In the time domain, the memristors are categorized into
continuous and discrete memristors. According to circuit the-
ory completeness, continuous memristors were first defined by
Chua, and discrete memristors were obtained by discretizing
continuous memristors using the Euler difference method.
Based on the state stability, repeatability, and fast compu-
tational efficiency of the discrete memristors, we propose a
discrete memristor model, which is mathematically defined as
follows: {

in = W (φn)vn = cos(φn)vn

φn+1 = φn + ηvn − sin(φn)
(1)
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Fig. 2: Voltage-current pinched hysteresis loops of the discrete
memristor (1). (a) Frequency-dependent hysteresis loops with
ω = 0.3, 0.6, and 0.9. (b) Amplitude-dependent hysteresis
loops with A = 0.8, 0.9, and 1. (c) Memristor parameter-
dependent hysteresis loops with η = 1, 1.25, and 1.45.

where in, vn, and φn denote the n-th iteration values of
the discrete current, voltage, and internal state, respectively.
W (φn) = cos(φn) represents the discrete memductance, and
η is the parameter of the discrete memristor.

A sinusoidal voltage source vn = A sin(ωn) is employed
at the input of the discrete memristor (1) to analyze the
voltage-current hysteresis hoop of the memristor and validate
whether it satisfies the characteristics of the memristor. Fixed
A = 1 and η = 1.25, the pinched hysteresis loops related
to frequencies ω = 0.3, 0.6, and 0.9 are presented in Fig.
2(a). By selecting ω = 0.3 and η = 1.25, the hysteresis
loops corresponding to amplitudes A = 0.8, 0.9, and 1 are
depicted in Fig. 2(b). When A = 1 and ω = 0.3, the memristor
parameter-dependent hysteresis loops for η = 1, 1.25, and
1.45 are shown in Fig. 2(c). It can be seen from Fig. 2 that
the hysteresis loops of the discrete memristor (1) shrink with
increasing frequency ω and enlarge with increasing amplitude
A, conforming to the definition of the discrete memristors.
Meanwhile, the memristor parameter η affects the features of
the memristor.

The above results verify that this discrete memristor in-
herently inherits and maintains the memory, nonlinearity,
and synaptic-like characteristics of its continuous counterpart
[33]. To construct a discrete memristive neural network with
complex dynamic behaviors, this study employs the memristor
to emulate a neural synapse and couples it into a discrete
Hopfield neural network.

C. Modeling of DMHNN

The discrete Hopfield neural network originates from the
discretization of the continuous Hopfield neural network,
which is described in mathematical form as:

xi(n+ 1) = (1− h

CiRi
)xi(n) +

h

Ci

n∑
j=1

wijVj +
hIi
Ci

(2)

where h is an iteration step. Ci, Ri, and Ii are the membrane
capacitance, the membrane resistance, and the external excita-
tion current, respectively. xi denotes the membrane potential
of neuron i. wij represents the connection weights between
neuron i and neuron j. And Vj is the nonlinear activation
functions.
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Fig. 3: Specific network topological connection of the
DMHNN.

Without loss of generality, Ci = 1, Ii = 0, and h = 1.
α = 1 − 1

Ri
, stands for the internal decay. Thus, the discrete

Hopfield neural network (2) can be converted to:

xi(n+ 1) = αxi(n) +

n∑
j=1

wijVj (3)

To explore grid multi-structure/scroll-like attractors in the
discrete neural network, we replace the weight from neuron
1 to neuron 2 in the discrete bi-neuron Hopfield neural
network by the discrete memristor (1), and the specific network
topological connection is shown in Fig. 3. According to the
neural network structure in Fig. 3, the model expression of
DMHNN can be derived as:

xn+1 = αxn + w11 sin(xn) + k sin(yn) cos(zn)

yn+1 = βyn + w21 sin(xn) + w22 sin(yn)

zn+1 = zn + η sin(yn)− sin(zn)

(4)

where the weights w11 and w22 are both fixed at -1, and k
represents the coupling strength. α and β represent the internal
decay coefficients of neuron 1 and neuron 2, respectively. To
account for the inherent heterogeneity commonly observed
among homogeneous neurons in biological neural networks
[34], α and β can be assigned different values.

D. Fixed Points and Stability Analysis

The stability of a discrete chaotic map can be determined by
analyzing its fixed points. We assume that the fixed point of
DMHNN is P (X,Y, Z), then the fixed point P is the solution
of the following equation:

X = αX − sinX + k sinY cosZ

Y = βY + w21 sinX − sinY

Z = Z + η sinY − sinZ

(5)

When the fixed point P = (0, 0, ξ), the equation (5) can be
rewritten as:

ξ = ξ − sin ξ (6)

apparently, we can compute that ξ = uπ (u = 0,±1,±2, · · · )
are the solutions of Eq.(6). As a result, (0, 0, uπ) are all fixed
points of DMHNN.

Set the parameters α = 1 and β = 1, it can be deduced that
the fixed points P = (mπ, nπ, lπ), (m, n, and l are integers)
are all the solutions of Eq.(5), thus DMHNN has infinite fixed
points.

The eigenvalues of the Jacobian matrix at the fixed point
determine the stability of the discrete chaotic systems. If all
absolute eigenvalues are less than 1, the fixed point is stable;
if any absolute eigenvalue greater than 1, the fixed point is
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TABLE I: PARAMETERS, FIXED POINTS, EIGENVALUES, AND STABILITY OF DMHNN

Parameters Fixed Points Eigenvalues Stability

(α, β, k, w21, η) = (1, 0.5, 2.49, 4, 1.25)
(0, 0, uπ), u = 0,±2,±4, · · · 0, -3.4158, 2.9158 unstable

(0, 0, uπ), u = ±1,±3,±5, · · · 2,−0.2500± 3.1460i unstable

(α, β, k, w21, η) = (1, 1, 2.6,−2.2, 1)

(0,0,0) 0,0± 2.3917i stable

(π, 0, 0) 0, -1.5923, 3.5923 unstable

(0, π, 0) 0, 3.5923, -1.5923 unstable

(0, 0, π) 2, 2.3917, -2.3917 unstable

...
...

...

unstable. Thereby, the Jacobian matrix at the fixed point P
can be described as:

JP =

 α− cosX k cosY cosZ −k sinY sinZ
w21 cosX β − cosY 0

0 η cosY 1− cosZ

 (7)

we solve Eq.(7) using numerical simulation, and the eigenval-
ues and stability of the Jacobian matrix at these fixed points
are listed in Table I.

III. COMPLEX DYNAMICS ANALYSIS

In this section, we systematically investigate the effects of
coupling strength k, internal decay coefficient β, weight w21,
and memristor internal coefficient η on the system dynamics,
and determine appropriate value ranges for these network
parameters. Based on these parameter ranges, we conducted
fine-grained parameter sampling and adjustment to accurately
capture and document a series of newly discovered dynamic
phenomena, including grid multi-structure/scroll-like attractors
and multidirectional initial offset-boosting behaviors. In the
subsequent research, the internal decay coefficient α, weights
w11, and w22 are fixed to 1, -1, and -1.

A. LE Spectra and BDs for Network Parameters

The network parameters have a significant impact on the dy-
namics of DMHNN, we set the initial values as (x0, y0, z0) =
(0.1, 0.1, 0.001), and investigate the LE spectra and BDs con-
cerning the coupling strength k and internal decay coefficient
β. Fig. 4 illustrates the corresponding simulation results, and
other network parameter values are marked in detail. For
the computation of LEs, we adopted the QR decomposition-
based Jacobian matrix method, which is versatile, fast, and
numerically accurate [35].

We can discover from Fig. 4 that DMHNN exhibits hyper-
chaotic behavior under the control of two network parameters.
The complicated behaviors of periodic, quasi-periodic, chaotic,
and periodic windows are present in Fig. 4(a) and (c). At
thesame time, the emergence of anti-period doubling and
period doubling can be observed in Fig. 4(c2). Furthermore,
the results of Fig. 4(b) and (d) show that the system is in a
hyperchaotic state except for the periodic window. The region
highlighted by the bright cyan box has the state transition





(a1) 

(a2) 

(b1) 

(b2) 

(c1) (d1) 

(c2) (d2) 

21( , , ) (0.5,4,1)w  
21( , , ) (2,4,1)k w  

( , , ) (2,0.5,1)k    21( , , ) (2,0.5,4)k w 

Fig. 4: Network parameter-relied LE spectra and BDs. (a)
For (β,w21, η) = (0.5, 4, 1), numerical simulation plots with
k ∈ [0, 3]. (b) For (k,w21, η) = (2, 4, 1), numerical simulation
plots with β ∈ [0.5, 1]. (c) For (k, β, η) = (2, 0.5, 1),
numerical simulation plots with w21 ∈ [−4, 4]. (d) For
(k, β, w21) = (2, 0.5, 4), numerical simulation plots with
η ∈ [1, 1.45].

phenomenon in Fig. 4(b). When β = 0.962 is selected, the
corresponding iteration sequence of state variable x and x-z
phase portrait are depicted in Fig. 5. The transition from a
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00 Fig. 5: The x-sequence and x-z phase portrait for β = 0.962.
(a) Iteration sequence of state variable x. (b) x-z phase portrait.

(a) (b) (c) 

(d) (e) (f) 

Fig. 6: Multi-structure attractors of the DMHNN with different
k values for (β,w21, η) = (0.5, 4, 1.25) and iteration time
N = 50000. (a) 1-structure attractor with k = 2.49. (b) 2-
structure attractor with k = 2.494. (c) 3-structure attractor
with k = 2.5. (d) 4-structure attractor with k = 2.5012. (e)
5-structure attractor with k = 2.5018. (f) 6-structure attractor
with k = 2.5063.

chaotic attractor to a periodic state can be clearly seen.

B. Grid Multi-structure/scroll-like Attractors

Fixing the initial values (x0, y0, z0) = (0.1, 0.1, 0.001)
and iteration time N = 50000, grid multi-structure/scroll-like
attractors generated by DMHNN are analyzed by employ-
ing phase portraits, LE spectra and BDs, and bi-parameter
LE planes. First, we take the parameters as (β,w21, η) =
(0.5, 4, 1.25), and select eight values of the coupling strength
k. The multi-structure attractors produced in the x-y plane
are present in Fig. 6. As can be seen in Fig. 6, 1-structure
to 6-structure attractors are unveiled. Meanwhile, we can also
observe that the topology of this type of attractor is solid.
Second, the parameters (β,w21, η) are chosen as (1,-2.2,1),
the coupling strength k is used as the adjustable parameter,
and different numbers of scroll-like attractors are illustrated
in Fig. 7. We can see that the structural center of this type
of attractor is hollow, which has similar topological feature
and dynamic behavior to the continuous multi-scroll attractors.
The dynamic properties of these multi-structure/ scroll-like
attractors are evaluated as depicted in Fig. 8. From the LE
spectra and BD of Fig. 8, it can be concluded that the attractors
in Fig. 6 and 7 are hyperchaotic.

Next, when the internal decay β = 0.5 and the weight
w21 = 3, the grid-structure attractors can be obtained in the
x-z plane under different values of the coupling strength k and
the memristor parameter η, as shown in Fig. 9. The arrange-
ment of grid-structure attractors in Fig. 9(a)-(c) is ordered,

(a) (b) (c) 

(d) (e) (f) 

Fig. 7: Multi-scroll-like attractors of the DMHNN with differ-
ent k values for (β,w21, η) = (1,−2.2, 1) and iteration time
N = 50000. (a) 1-scroll-like attractor with k = 2.6. (b) 2-
scroll-like attractor with k = 2.613. (c) 3-scroll-like attractor
with k = 2.617. (d) 4-scroll-like attractor with k=2.6216. (e)
5-scroll-like attractor with k=2.6241. (f) 6-scroll-like attractor
with k = 2.6253.

 

 
 

  

(b2) 

(b1) (a1) 

(a2) 

Fig. 8: LE spectra and BDs with respect to k. (a) LE spectrum
and bifurcation related to k for (β,w21, η) = (0.5, 4, 1.25).
LE spectrum and bifurcation related to k for (β,w21, η) =
(1,−2.2, 1).

and Fig. 9(d)-(f) exhibit disordered grid-structure attractors.
Finally, the parameters (β,w21, η) is set to (1,1.95,1), and the
disordered grid-scroll-like attractors appear in the x-y plane
under the influence of the coupling strength k, as shown in Fig.
10. Compared to the attractor topology in Fig. 7, the attractor
structure of Fig. 10 is evolved, attributed to the variation in
network parameters. It is noteworthy that when the iteration
time N is further increased to over 50,000, the number of grid
multi-structure/scroll-like attractors correspondingly increases.
This phenomenon arises from the adopted cosine discrete
memristor model and the sine activation function used in the
neural network. Unlike chaotic systems that rely on external
piecewise-linear functions to generate regular grid attractors by
precisely positioning equilibrium points, the disordered grid
attractors shown in Figs. 9 and 10 are dynamic outcomes
that emerge naturally through the adjustment of network
parameters. Due to the system’s high sensitivity to parameter
variations, its trajectory in phase space undergoes continu-
ous stretching and folding. This dynamic process alters the
spatial positions and topological structures of these attractors,
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(a) (b) (c) 

(d) (e) (f) 

Fig. 9: Grid-structure attractors of the DMHNN with different
values of k and η for (β,w21) = (0.5, 3) and iteration time
N = 50000. (a) 2× 2-structure attractor with k = 2.383 and
η = 1.41. (b) 2 × 3-structure attractor with k = 2.398 and
η = 1.41. (c) 3 × 3-structure attractor with k = 2.394 and
η = 1.425.(d) 1+2+1+1-structure attractor with k = 2.386
and η = 1.43. (e) 2+4-structure attractor with k = 2.396 and
η = 1.449. (f) 1+2+3-structure attractor with k = 2.385 and
η = 1.435.

(a) (b) (c) 

Fig. 10: Grid-scroll-like attractors of the DMHNN with differ-
ent k values for (β,w21, η) = (1, 1.95, 1) and iteration time
N = 50000. (a) 1+3+2-scroll-like attractor with k = 2.144. (b)
3+1+1+3-scroll-like attractor with k = 2.146. (c) 2+4+4+3+1-
scroll-like attractor with k = 2.15.

thereby generating such disordered arrangements that reflect
the intricate dynamical behavior and parameter sensitivity of
DMHNN. Bi-parameter LE maps in Fig. 11(a) display that
LE1 and LE2 are positive within the parameter ranges of
k ∈ [2.37, 2.42] and η ∈ [1.4, 1.45]. This result indicates
that grid-structure attractors in Fig. 9 exhibit hyperchaotic
characteristics. Furthermore, the LE spectrum and bifurcation
diagram with respect to k in Fig. 11(b) confirm that the grid-
scroll-like attractors in Fig. 10 are all chaotic.

To summarize, we can detect from Figs. 6 and 7 that the
structure attractor traverses a wider range than the scroll-like
attractor, deducing that the ergodicity of structure attractors is
better. Under the control of only one memristor, the system
can produce grid-structure/scroll-like attractors, unlike pre-
vious memristive neural networks that required the exertion
of multiple memristors or nonlinear functions to achieve the
behavior. Additionally, Figs. 6-11 show that the four types of
attractors generated by DMHNN reflect complex dynamical
characteristics.

C. Multidirectional Initial Offset-boosting Behavior

The initial offset-boosting behavior is a unique multistability
phenomenon that makes homogeneous attractors at differ-
ent positions coexist by changing the initial values [36].
Based on the proposed DMHNN , the system can exhibit

 

 

 

(a1) 

(a2) (b2) 

(b1) 

LE1 

LE2 

 
 

Fig. 11: Dynamical behavior of DMHNN under the network
parameters (k, β, w21, η). (a) Bi-parameter LE maps related
to k and η for (β,w21) = (0.5, 3). (b) LE spectrum and
bifurcation related to k for (β,w21, η) = (1, 1.95, 1).

the initial offset coexistence dynamics in multiple directions
for different groups of network parameters. First, when the
parameters (k, β, w21η) = (2.48, 0.5, 4, 1.25) and the initial
values (x0, y0, z0) = (x0, 0.1, 0.001), the structure attractor
undergoes the shifting behavior in the x-direction under the
influence of x0, as shown in Fig. 12. Combining the numerical
results of the initial value x0-dependent LE spectrum and BD
in Fig. 13, the LE spectrum remains essentially unchanged,
and the same blocks of the bifurcation plot are located
in the x-direction in a staircase form, which further con-
firms the initial offset-boosting characteristic. Second, fixing
(k, β, w21η) = (2, 0.5, 4, 1) and y0 = 0.1, attractors with the
identical structure coexist in an ordered arrangement within the
x-z plane for different values of x0 and z0, as depicted in Fig.
14(a). By rationally selecting x0 and z0, these attractors can
be effectively controlled to distribute in different regions. The
basin of attraction in Fig. 14(b) presents the range of initial
values corresponding to attractors at the same position. When
the initial values x0 and z0 are increased by offsets of 2mπ and
2nπ, respectively (where m and n are integers), the iterative
sequences x and z of the system correspondingly produce
offsets of 2mπ and 2nπ. This regularity causes attractors
with identical topology but different spatial positions to be
regularly distributed across the x-z plane, thereby forming
the coexistence of homogeneous attractors. Hence, it can be
seen that the system can demonstrate the offset phenomenon
in the bi-direction. Finally, when the network parameters
(k, β, w21, η) = (2.5, 1,−2.2, 1) are taken, and multiple
sets of initial values (x0, y0, z0) are set, scroll-like attractors
maintain coexistence in the three dimensional x-y-z space, as
illustrated in Fig. 15(a)-(c). This behavior indicates that the
system has offset properties in the x, y, and z directions, and
the corresponding initial value-related BDs are plotted in Fig.
15(d)-(f), validating the intrinsic tri-directional initial offset-
boosting capability of DMHNN.

The multidirectional initial offset-boosting behavior uncov-
ers the coexistence of innumerable homogeneous attractors in
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Fig. 12: Uni-directional initial offset-boosting behavior
of DMHNN for (k, β, w21, η) = (2.48, 0.5, 4, 1.25) and
(x0, y0, z0) = (x0, 0.1, 0.001).

 

 

(a) (b) 

Fig. 13: Initial value x0-dependent LE spectrum and bi-
furcation with (k, β, w21, η) = (2.48, 0.5, 4, 1.25) and
(x0, y0, z0) = (x0, 0.1, 0.001). (a) LE spectrum. (b) BD.

 

 (a) (b) 

Fig. 14: Bi-directional initial offset-boosting behavior of
DMHNN for (k, β, w21, η) = (2, 0.5, 4, 1) and y0 = 0.1. (a)
Coexistence of 3× 3 attractors in the x-z plane. (b) Basin of
attraction with respect to x0 and z0.

multiple directions, further reflecting the intricate coexisting
dynamics of DMHNN.

IV. FPGA HARDWARE IMPLEMENTATION

Digital circuits have the advantages of excellent stability,
flexibility, reconfigurability, and parallel processing. Notably,
discrete chaotic maps possess intrinsic discretized charac-
teristics that render them naturally compatible with digital
circuit architectures. To experimentally validate the feasibil-
ity of hardware realization for the proposed DMHNN sys-
tem, we employ FPGA technology to design the hardware
circuit. The hardware devices adopted include the Xilinx
xc7z020clg400-1 development board, the AD9767 digital-to-
analog converter (ADC), and the oscilloscope. In addition,
Verilog HDL language is employed for programming in vivado
software environment. A 32-bit fixed point format consisting
of 1 sign bit, 6 integer bits, and 25 decimal bits defines
the network parameters and variables of the DMHNN. The

(a) (b) (c) 

(d) (e) (f)

Fig. 15: Tri-directional initial offset-boosting behavior of
DMHNN for (k, β, w21, η) = (2.5, 1,−2.2, 1). (a) Coexis-
tence of 2 × 2 × 2 attractors. (b) Coexistence of 3 × 2 × 2
attractors. (c) Coexistence of 2 × 3 × 2 attractors. (d) Initial
value x0-related BD. (e) Initial value y0-related BD. (f) Initial
value z0-related BD.
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Fig. 16: Overall hardware design flowchart of FPGA-based
DMHNN.

overall hardware design flowchart is presented in Fig. 16,
where the 32-bit output signals of the DMHNN block must be
intercepted into 14-bit digital signals as the input signals of the
AD9767 ADC. The final output signals after digital to analog
conversion are captured by the oscilloscope and the simulation
result of the corresponding attractor is subsequently observed.

This FPGA design operates at a clock frequency of 50 MHz.
Under this configuration, a single iteration requires 1840 ns
to complete, corresponding to 92 clock cycles. The sine and
cosine functions are implemented using the rotation mode of
the CORDIC algorithm [37]. Its core is the following unified
iterative equation: Ui+1 = kn(Ui − µσi2

−iVi)
Vi+1 = kn(Vi + σi2

−iUi)
Wi+1 = Wi − σiθi

(8)

kn =

n−1∏
i=0

√
1 + µ2−2i (9)

θi =

 arctanh(2−i), ifµ = −1
2−i, ifµ = 0
arctan(2−i), ifµ = 1

(10)

where kn denotes the scale factor, and n is the number of
iterations. σi and θi represent the rotation direction and angle
value for the i-th iteration, respectively. When computing
the sine and cosine functions, µ is set to 1. The algorithm
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Fig. 17: Hardware experiment results of grid multi-
structure/scroll-like attractors. (a) Multi-structure attractors.
(b) Multi-scroll-like attractors. (c) Grid-structure/scroll-like
attractors.

employs successive pseudo-rotations to make the actual angle
progressively approximate the target angle θ. The final outputs
for the sine and cosine values are given by sin(θ) ≈ Vn+1 and
cos(θ) ≈ Un+1.

In the circuit design process, we fixed the initial values as
(0.1,0.1,0.001) and selected multiple sets of network param-
eters as examples. The experiment results of the correspond-
ing multi-structure, grid structure, multi-scroll-like, and grid
scroll-like attractors are shown in Fig. 17. Comparing with
the numerical results in Figs. 6(b)-(d), 7(b)-(d), 9(b) and (e),
and 10(a), it can be seen that they are basically consistent,
which confirms the correctness of the FPGA-based DMHNN
hardware circuit.

V. APPLICATION IN PRNG

Chaotic signals generated by chaotic systems have unpre-
dictability and initial value sensitivity, which satisfy the con-
struction requirements of PRNG. The core technical indices
of PRNG depend on the chaotic system’s randomness qual-
ity, which is essentially determined by its chaotic dynamics
properties. Thus, we select some indicators to evaluate the
performance of multi-structure/scroll-like DMHNN (MS/SL-
DMHNN), including information entropy (IE), conditional
entropy (CE), dispersion entropy (DE), fuzzy entropy (FE)
, and Kaplan-Yorke dimension (DKY). In the test process,
the length of the chaotic sequence to be estimated is 10000.
Table II shows the performance results of MS/SL-DMHNN
and other chaotic maps. The parameters and initial values of
the MS/SL-DMHNN are selected from configurations capable
of generating 3-structure/scroll-like attractors, corresponding
to the settings in Fig. 6(c) and Fig. 7(c), respectively. The
parameters and initial conditions of the other chaotic maps
listed in the table are directly cited from their respective
original literature. All models selected for comparison are
ensured to be in a verified chaotic or hyperchaotic state. As can
be seen from Table II, the chaotic performance of the multi-
structure attractor is better than the multi-scroll-like attractor,

and the multi-structure attractor has the best entropy indicators
in all aspects. Moreover, compared to other chaotic maps, the
IE, CE, and FE of MSL-DMHNN are better, and only the
DE is smaller than the chaotic maps proposed by reference
[12] and [27]. As a result, these evaluation results indicate
that MS/SL-DMHNN has good randomness and is suitable
for PRNG application.

The number of multi-structure/scroll-like attractors in-
creases along the x-direction, indicating that the x-sequence
produced by the system exhibits richer dynamical prop-
erties. Therefore, we selected the x-sequences from the
MS/SL-DMHNN for the generation of pseudo-random num-
bers (PRNs), which demonstrates the application potential of
these two types of attractors in PRNGs. Before generating
PRNs, the system must execute an initialization process: First,
DMHNN is pre-run to produce a chaotic sequence X =
{x1, x2, · · · , xn pre} and compute its minimum value min(X).
Subsequently, during the formal PRNG phase, this predefined
min(X) value is used to perform a normalization transforma-
tion on each state value xn (n = 1, 2, 3, · · · , n pre). The
required binary sequence Pn is generated by the following
equation:

Pn = ⌊M × (xn + abs(min(X)))⌋ mod N (11)

where ⌊·⌋ stands for a downward rounding operation, M =
1011, and N = 28. Hence, each xn can be converted to an
8-bit binary number Pn, and the subsequent combination of
the binary numbers to form PRNs P . The sequence number
and length of PRNs P are 128 and 106.

To verify that the designed PRNG is capable of generating
reliable PRNs, a complete hardware platform was constructed
based on the DMHNN hardware circuit implemented in
Section IV and the PRNs generation method described by
Eq. 11. This platform is illustrated in Fig. 18. The relevant
code was programmed using Verilog HDL within the Vivado
environment. After synthesis and simulation, it was down-
loaded to the Xilinx xc7z020clg400-1 chip. Subsequently,
the output signal was transmitted to an oscilloscope via the
digital-to-analog converter AD9767, ultimately enabling the
capture and observation of the generated PRN stream. Fig.
19(a) shows the pseudo-random sequence generated based
on this FPGA platform. A comparison with the numerical
simulation results in Fig. 19(b) demonstrates a high degree
of consistency between the two, successfully achieving the
expected PRN stream. Therefore, the experiment confirms
that the proposed DMHNN system and the PRNs generation
method can effectively produce stable and reliable PRNs on a
finite-precision FPGA hardware platform.

In this experiment, we employ the NIST SP800-22 test set
for assessing PRNs P . This test set contains 15 evaluation
items which are used to detect the randomness and quality
of the binary sequences generated by PRNG. The pass rate
and P-valueT of each evaluation item measure the randomness
of the tested sequence, and a larger P-valueT means that the
sequence is more random on this evaluation item. The standard
values of pass rate and P-valueT for this test are set at 0.9609
and 0.0001. Furthermore, the parameters and initial values of
MS/SL-DMHNN are given in Table II.
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TABLE II: PERFORMANCE RESULTS OF DIFFERENT CHAOTIC MAPS

Chaotic Maps Parameters Initial Values IE CE DE FE DKY

MS-DMHNN (k, β, w21, η) = (2.5, 0.5, 4, 1.25) (0.1,0.1,0.001) 5.6321 2.1323 2.1304 1.6624 2.7065
MSL-DMHNN (k, β, w21, η) = (2.617, 1,−2.2, 1) (0.1,0.1,0.001) 5.3027 1.8802 2.0125 1.5462 2.2881
Zhang [12] (a, b, k1, k2) = (0.24, 4, 1, 1) (0.1,0.1,0.1) 5.1470 1.7490 2.0629 1.3386 3.0000
Bao [24] (µ, g11, g12, g21, g22) = (0.8, 3, 3,−2, 2) (0.1,0.1) 5.0907 1.5771 1.8104 1.1334 2.0000
Wei [26] (a, b, k, w12, w21, w22) = (0.5, 0.5, 0.281,−2.75, 2, 2) (1,1,1) 4.3066 1.2210 1.8413 0.8971 1.6704
Bao [27] (µ, g21, g22, ε,M) = (0.5,−4, 4, 0.5, 1) (10−6, 10−6, 0) 5.0371 1.6875 2.1249 1.4156 2.4150
Fan [31] (a0, a1, a2, b0, b1, b2) = (−0.985, 0.83, 0.14, 1.3, 0.1, 1) (0.1,0.1,0.1) 4.7525 1.5572 1.8777 0.7563 2.1500
Wang [32] (a, b, c, d, k1, k2) = (−0.84,−0.1,−0.1, 1, 1.87, 0.37) (-1,0,1) 5.2550 1.7808 1.9436 1.2720 2.1517
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Fig. 18: PRNG implementation based on an FPGA hardware
platform.
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) 

Fig. 19: Comparison of PRNs generated by an FPGA hardware
platform and numerical simulation. (a) Results from FPGA
hardware implementation. (b) Results from numerical simula-
tion.

Table III lists the test results of MS/SL-DMHNN PRNG.
It can be observed that the pass rate and P-valueT of the
two evaluated sequences are greater than the standard values.
This implies that MS/SL-DMHNN has complicated chaotic
dynamics and generates high-quality randomness numbers.
Therefore, the proposed DMHNN can be further applied to
secure communication, image encryption, and video encryp-
tion.

VI. CONCLUSION

This paper integrates a novel consine discrete memristor
into a Hopfield neural network, whereby a three-dimensional
discrete memristive Hopfield neural network is proposed.
Theoretical analysis yields that DMHNN has countless fixed
points. LE spectra and BDs for network parameters are stud-
ied, demonstrating the hyperchaotic and state transition be-
havior. Different numbers of structure/scroll-like hyperchaotic

TABLE III: NIST TEST RESULTS OF THE PRNs GENER-
ATED BY MS/SL-DMHNN

No. Sub-tests
MS-DMHNN MSL-DMHNN

Pass rate P-valueT Pass rate P-valueT

01 Frequency 1.0000 0.3925 0.9844 0.5681

02 Block Frequency 1.0000 0.8043 1.0000 0.7231

03
Cum. Sums*(F) 0.9922 0.6025 0.9766 0.2229

Cum. Sums*(R) 1.0000 0.9220 0.9844 0.7061

04 Runs 0.9922 0.4686 0.9922 0.3641

05 Longest Runs 0.9844 0.2536 0.9766 0.8486

06 Rank 1.0000 0.2229 0.9922 0.3242

07 FFT 0.9922 0.2328 1.0000 0.0034

08 Non-Ovla. Temp.* 0.9895 0.4285 0.9902 0.4296

09 Ovla. Temp. 0.9922 0.6545 1.0000 0.6025

10 Universal 1.0000 0.2873 0.9844 0.8043

11 Appr. Entropy 0.9922 0.1223 1.0000 0.5681

12 Ran. Exc.* 0.9969 0.4760 0.9918 0.4223

13 Ran. Exc. Var.* 0.9944 0.5391 0.9978 0.3001

14
Serial(1st) 0.9766 0.2041 0.9922 0.5174

Serial(2nd) 0.9766 0.6198 0.9922 0.6371

15 Linear complexity 0.9922 0.3505 0.9844 0.8623

Success No. 15/15 15/15 15/15 15/15

Note: *The average result of multiple subtests is reported.

attractors are generated by adjusting the coupling strength k.
Under the influence of only one memristor, complex grid-
structure hyperchaos and grid-scroll-like chaos emerge in the
phase plane. It is more flexible and resource-efficient than the
method of coupling multiple memristors and imposing external
nonlinear functions. By modifying the network parameters,
the initial offset-boosting behavior is revealed in the single,
double, and triple directions. Numerical simulations confirm
the coexistence of numerous homogeneous attractors in multi-
ple directions. To verify the feasibility of the hardware imple-
mentation, the DMHNN hardware circuit is constructed using
FPGA, and the experimental results are in agreement with the
numerical results. Besides, DMHNN is employed in PRNG,
where multi-structure/scroll-like hyperchaotic sequences are
evaluated in the NIST test set, and its results indicate that
DMHNN can produce high-quality random numbers. In future
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work, we apply DMHNN in practical engineering scenarios,
such as secure communication, data encryption transmission,
and image encryption. Meanwhile, we will further explore
high-dimensional multi-structure discrete memristive neural
network with multiple positive LEs.
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