Smart Wing Stall Flutter Alleviation
Reza Moosavi”
School of Physics, Engineering & Computer Science
Department of Engineering & Technology
Centre for Engineering Research
University of Hertfordshire
Hertfordshire, Hatfield, AL10 9AB, UK
Abstract: One of classical aeroelastic phenomenon seriously affecting the performance of
flexible wings at high angle of attack is stall flutter. This work shows that how the stall flutter
phenomenon can be alleviated and eliminated using a small inductor by implementing a
piezoelectric patch. The dynamic responses are calculated to analyze the nonlinear
characteristics of the aeroelastic system. Parametric study has been performed for different
parameters. The main contribution of this work is to represent a way to alleviate or eliminate
the stall flutter on a regular 2D wing by using a passive aeroelastic control including
piezoelectric patches and shunt circuits in which the size of the required inductance is small.
The results indicate a considerable improvement in dynamic aeroelastic behavior of a 2D wing.
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Nomenclature

I, mass moment of inertia

a pitching acceleration

Cq pitching structural damping
a pitching velocity

K, pitching structural stiffness
a pitching angle
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pitch electromechanical coupling

pitch electric charge

pitching moment coefficient

a=x¢/b—1

elastic axis

half span

total lift coefficient

pitch inductance of piezoelectric material

rate of the pitch electrical current

pitch resistance of piezoelectric material

pitch electrical current

pitch capacitance of piezoelectric material

piezoelectric axis

aerodynamic states for unsteady attached flow

potential normal force coefficient time-delayed version ¢!, when xq > Cny»
there is leading edge separation

unsteady trailing edge separation point chordwise position
LEV lift

quasi-steady separation point location time-delayed version, which can affect
only the LEV pitching moment

chord

wind-off equilibrium pitch angle

wind-off natural frequency

horizontal airflow Mach number



At default time step

tr final time

€ Runge-Kutta-Fehlberg tolerance
é event detection tolerance

€ implicit tolerance

a(0) initial pitch angle

a(0) initial pitch velocity

1. Introduction

Nowadays, green aircraft with zero emission is a major priority for the aerospace industry
worldwide, which is more efficient, quieter, and cleaner, with low fuel consumption, pollutants
emission, and operational costs. In this regard, to have low environmental impact and more
sustainable flight, leading aerospace companies such as Airbus and Boeing are trying to study
and design new aircraft with new configurations and characteristics [1]. Most of these advanced
designs include more flexibility in aircraft structures. In some modern designs, in order to
reduce induced drag, wings have long span and made of lighter materials to minimize overall
weight, which cause more flexibility in the structure. Having more flexibility leads to sever
aeroelastic behavior in the vehicle and strong coupling between aeroelastic behavior and flight
dynamics [1, 2].

One of particular interest for aeroelastic investigations is the flutter phenomenon where there
is a challenging problem as modeling post-flutter limit-cycle oscillation (LCO). Flutter is a
common concern in dynamic aeroelasticity that can affect flight dynamics effectively. This
happens when the combine structural and aerodynamics damping becomes negative leading to
a self-induced oscillation on the structure. Having nonlinearities in the aerodynamics and
structure can create LCO, which may lead to structural failure. Therefore, it is crucial to

investigate their occurrence and effects in different flight phases.



The flutter phenomenon can be modeled with linear aerodynamic theories in the frequency
domain such as Theodorsen and Garrick ones [3, 4] and in the time domain with Wagner’s
indicial solution [5]. Since LCOs are very nonlinear, these linear models cannot predict all
possible LCOs and their features accurately. One way to fully predict LCOs is to perform
extensive flight test, which is a time-consuming and expensive attempt. This problem can arise
more in highly flexible aerospace structures like futuristic configurations and designs with
large aspect ratio wings or High-Altitude Long Endurance (HALE). Hence, it is necessary to
have a nonlinear aeroelastic model to predict all possible LCO aspects properly [6].

One of the very specific oscillations in highly flexible aerospace structures can be caused by
dynamic stall. Dynamic stall can lead to stall flutter may seriously affect the performance of
flexible wings, blades, and propellers at high angle of attack. The vibrations resulting from the
fluid and structure interactions can create flutter phenomenon, which results divergent
oscillations with exponentially increasing amplitude. Flow separation does not cause this kind
of flutter and hence occurs more frequently [7]. Using linear potential flow theory, the pitch-
plunge flutter velocities of two degrees of freedom system can be accurately predicted.
However, stall flutter is a nonlinear dynamic aeroelasticity, which includes only one degree of
freedom and dynamic large region boundary layer separation and reattachment, knowing as
dynamic stall. The critical flutter velocity can be strongly under effect of the equilibrium angle
of attack. It has been shown that stall hysteresis correction can help predict stall boundaries
and it is possible to have stall flutter even in a purely pitching mode [8-10]. Due to the
nonlinearity of unsteady aerodynamic loads, stall flutter may present different dynamic
response at different angles of attack and velocities, such as bifurcation, chaotic motion, and
multiple equilibrium states [11-14].

Aerodynamic nonlinearity in dynamic stall can make the critical velocity of stall flutter often

lower than that of couple mode flutter. Creating a strong vortex close to the leading edge,



known as the dynamic stall vortex (DSV), can characterize dynamic stall [15-17]. Transient
additional lift and considerable pitching moment fluctuation can be produced when the DSV
moves downstream [18]. Then the trailing edge can be shed off, which can create full flow
separation over the suction surface. Deep stall may induce pitching oscillation and energy
absorbing from the fluid. LCO with constant amplitude can appear when there are equal energy
harvested and dissipated by damping [19]. Many different response mechanisms of the flow
induced vibration during deep stall can be analyzed determining the wake flow field diagrams
of the trailing edge vortices and the leading edge DSVs [20]. The numerical simulations of
dynamic stall results show that the strength, development, and shedding of the DSV can be
directly affected by the amplitude angle, reduced frequency, equilibrium angle of attack, fluid
flow Mach number, and rotation axis position [21].

Recently, by developing in structural materials rapidly, the aerospace structures become
lightweight and more flexible leading to aggravate the destructiveness of stall flutter. Hence, it
becomes more important to suppress the flutter amplitudes and delay the flutter boundaries.
Since the main reason for stall flutter is the sever pitching moment fluctuation, it is necessary
to investigate how to reduce the aerodynamic loads during dynamic stall [22, 23]. Design of
highly flexible aerospace structures requires avoiding stall flutter; hence, it needs to predict
dynamic stall airloads accurately. Accurate prediction of aeroelastic instabilities and flutter is
very necessary in the performance of aerospace vehicles. To reduce design iterative procedure,
it needs to perform aeroelastic simulations fast and inexpensively specially in rotary-wing
airplanes, which include more complex aeroelastic behavior. An accurate model of the wing or
airfoil section unsteady aerodynamic behavior is a prerequisite to any aeroelastic analysis.
Implementing Computational Fluid Dynamics (CFD) for obtaining aerodynamic load and

Finite Element Method (FEM) for structural dynamics can be expensive and it can require a



considerable run time for some cases even by using High Performance Computing (HPC)
resources.

Having an effective system to control and suppress stall flutter can be a crucial element in the
aeroelastic design of aerospace structures including fixed-wing and rotary-wing aircraft and
flapping-wing micro air vehicle (MAV). The control methods can be passive or active
according to requirement of external energy or not. Due to good adaptability of active control,
it has been widely investigated. The open-loop control has been studied on the rotational
oscillation effect on vortex shedding [24]. Using a rotating oscillating cylinder numerically,
drag can effectively reduce [25]. Other open-loop control methods are blowing/suction [26,
27], a synthetic jet [28, 29], streamwise [30], transverse [31], distributed forcing [32], and
moving surface boundary-layer [33, 34]. Because the open-loop control consumes large
energy, the closed-loop control has been widely investigated due to stronger adaptive ability
and low energy consumption. For feedback control, the optimal control [35, 36] and reduced
order method [37-39] were used in the early stage. Recently, machine learning method is also
implemented for feedback control [40-42]. However, in closed-loop method, control law
design is not simple and it requires to be determined by researchers experience in many cases.
Since passive control can be simple and low cost, it is used to study Vortex Induced Vibration
(VIV). To reduce vibration and drag over a bluff body, different passive control methods are
applied as surface modifications with roughness [43, 44], splitter plates [45-48], tripping wires
[49, 50], grooves [51-53], Strakes [54], and shrouding [55]. Most passive control methods by
changing geometry or the boundary layer characteristics suppress vibration and reduce drag.
Dynamic stall is the phenomenon of periodic separation and reattachment of the flow around a
wing during free or forced oscillations. The dynamic stall main features include a) stall delay,
a rapidly oscillating wing will stall when the instantaneous angle of attack is higher than the

static stall angle, b) leading edge vortex, under certain conditions a large vortical structure is



shed near the leading edge and travels downstream over the airfoil’s surface, c¢) reattachment,
the flow can reattach if the instantaneous pitch angle reduces sufficiently.

The first complete dynamic stall models’ comparison was carried out by Reddy and Kaza with
application to two different aeroelastic systems including the Gormont, Gangwani and Bielawa
model and ONERA model [56, 57]. The ONERA model has been applied to a cantilevered
rectangular wing and the results have been compared to experimental ones by Dunn and
Dugundji [58]. The Gangwani and Bielawa model has been used on a 2D pitching wing by
Price and Keleris [59]. Using the ONERA model, the pitch-plunge wing linear aeroelastic
stability has been studied by Tang and Dowell [60]. The pitch-plunge wing simulations
combined with Gormont’s dynamic stall model have been carried out by Li and Fleeter [61].
Using the ONERA model, a pitch-plunge wing in a pulsing free stream has been studied by
axman and Venkatesan [62]. The ONERA model has been applied to a 2D blade under pitching
and flap-edgewise oscillations by Sakar and Bijl [63]. The pitch-plunge wing has been
simulated with Leishman-Beddoes aerodynamics by Galvanetto et al. [64] and a similar
analysis for low Mach numbers using the Sheng et al. modification to the Leishman-Beddoes
model has been carried out by Shao et al. [65, 66]. Dynamic stall models used by a lot of these
authors undergo very complex bifurcations, leading to chaos in many times [59, 61-64].
However, these bifurcations do not necessarily happen in a physical flow because they were
not verified against experimental results.

The Leishman-Beddoes model can provide the aerodynamic load coefficients as the normal
force coefficient perpendicular to the chord, c,,, the tangential force coefficient along to the
chord, c., and the pitching moment coefficient around the quarter chord, c,,. In the helicopter
community, researchers use routinely the normal and chordwise forces instead of lift; in

contrary of the airplane community which uses usually lift.



We consider a wing with NACA 0012 airfoil section forced to undergo pitch oscillations with
an amplitude of 10° around a mean pitch angle of 12° with reduced frequency k = 0.098 at a
Mach number of 0.3. To present a very specific problem as a 2D wing forced vibration,
dynamic stall models were developed. The most validations of such model are about pitch
oscillation around the quarter-chord. However, they have also been validated experimentally
on linear pitch ramp and some other motions [67-69]. Implementing a semi-empirical dynamic
stall model needs effectively an extrapolation since the model was neither developed nor
validated for motions applied. Assuming the model can be able to present well sinusoidal
pitching motion around the quarter chord, it can also be able to present well all other motions.
Semi-empirical dynamic stall models are usually applied to the helicopter rotor blades
aeroelasticity because of similarity of the rotor blades behavior to dynamic stall models due to
implementing the entire blade sinusoidal motion by the blade root cyclic pitch. This work
presents a new approach using small inductance was not previously presented in the literature
for stall flutter alleviation and elimination.

2. Methodology

2.1.  Smart Wing Dynamic Stall Aeroelastic Simulation

This study investigates the self-excited oscillations of a two-dimensional (2D) smart wing in
uniform flow, as shown in Figure 1. The smart wing is free to pitch, «, about the elastic axis at
a distance x; from the leading edge. The pitch stiffness K, is provided by a spiral spring and
the pitch damping C, is presented by a torsional damper. Using the Lagrange’s equations and

Kirchhoff’s law, the smart wing equations of motion can be written as [66, 67, 70]

1 1
ol + Catt + Koot = B0, = 5 pUc? (Cm to(at 1/2)Cn>

.. . 1 (1)
Laqa + Raqa + _Qa - Ba(xf - xp)a = 0

Cpa

where its parameters are defined as below



Table 1 Parameters for smart wing equations of motion

I, Mass moment of inertia

a Pitching acceleration

C, Pitching structural damping

a Pitching velocity

K, Pitching structural stiffness

a Pitching angle

Ba Pitch electromechanical coupling

q. Pitch electric charge

Cm Pitching moment coefficient

a a=xs/b—1

Xf Elastic axis

b Half span

Cn Total lift coefficient

L, Pitch inductance of piezoelectric material
G, Rate of the pitch electrical current

R, Pitch resistance of piezoelectric material
q, Pitch electrical current

Cpa Pitch capacitance of piezoelectric material
Xp Piezoelectric axis

Assuming x; to x;, as the aerodynamic load states which are explained later and x;5 = «,
X14 = G, X15 = a, and x;6 = q,, EQ. (1) is written as first-order differential equations, as

follows



C K 1

rJ.C13 = __ax13 - _ax15 + &xlﬁ - —,DUZC Cn/COS a
I, I, I, 2
R 1 1

| X14 = __ax14 — = X16 T+ ﬁ_a(xf - xp)x15 + _PUZC(CCm +b(a+1/2)cy,) (2)
L, Cpala L, 2

X15 = X13
\X16 = X124

The new form of the equation of motion can be written
x = f(x,X) 3)

because of having nonlinear function of a.

3. Dynamic Stall Aerodynamic Model

In this work, the Leishman-Beddoes model has been applied to a general pitching aeroelastic
smart structure by using the effective angle of attack & as the angle between the total chordwise

velocity and the total upwash at the quarter-chord, as follows [64, 70]

Usina +h —b(a+1/2)ad
&=tan‘1< sina cosa —b(a+1/ )a) @

Ucosa — hsina
where U is the free-stream airspeed, « is the pitching angle, i is the plunge velocity, b is the
half chord, a = x/b — 1, x¢ elastic axis, and « is the pitching velocity. In other words, using
the angle of the triangle whose perpendicular sides are U,. and U,,, & can be calculated as shown

in Figure 1.

Fig. 1 A 2D smart wing with pitch DOF
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The smart wing motion in the Leishman-Beddoes model is describes by a(t) and the non-

dimensional unsteady pitch rate ¢ = @c/U where @ is the time derivative of @ defined as

1 Usina 4+ hcosa —b(a+1/2)a

— R 2
tan?a@ + 1 (Ucosa — hsina)

a= (Uasina + hsina + hd cos a)

+U0kcosa+Hcosa—hdsina—b(a+ 1/2)a

. 5
Ucosa — hsina )
Equation (3) can be written in first order form as
X = (X, %13, X14) (6)

where x isa 16 X 1 state vector including the 12 Leishman-Beddoes states, x,3 = &, x14 = ¢,

X15 = a, and x;4 = q. The general form of the equations of motion can be represented
Ay+Cy+Ey=F (7)

where A the structural mass and inductance matrix, ¥ = [@ ¢]7 is the pitching acceleration
and the rate of the pitch electrical current vector, C is the pitching structural damping and pitch
resistance of piezoelectric material matrix, y = [@ ¢]7 is the pitching velocity and pitch
electrical current vector, E is the pitching structural stiffness, pitch electromechanical coupling
and pitch capacitance of piezoelectric material matrix, y = [@ ¢]7 is the pitching angle and
pitch electric charge vector, and F is the aerodynamic load vector. Moreover, A, C, and E

matrices, and F vector are given by Eq. (A.)-(A.) in Appendix.

Considering Egs. (A.28)-(A.31), the equations of motion, Eq. (7), can be written as

X13 X13 —cp/cosa

X14| _[-A7IC —AEV|*1a| 1 5 ec, + b(a+1/2)c,

X15 _[ I 0 ] X15 +2’DU ¢ 0 (®)
5(16 X16 0
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Because of the nonlinearity in x,5 due to the nonlinearity in @, Eq. (5), as ;3 = @, EQ. (8)
needs to be solved iteratively by considering the Runge-Kutta approach and using a simple

implicit algorithm as follows,

1. The vectors x; and x; are known at time instance t;.

2. Substitute x,3, in Eq. (6).

3. Evaluate the first guess x;,4 o and x;,1 ¢ using the Runge-Kutta method.
4. Calculate J = |x3,,, , — X13,| as a convergence criterion.

5. The solution has convergence if ] < €, where € < 1. Increment i and return to step 1.

6. 1f] > €, substitute xy3,,, , into Eq. (6) and return to step 3 to calculate the second guess
X;+11 and X;44 1. Keep repeating until having convergence.

4. Numerical Examples
Consider a smart wing with a pitch degree of freedom and the following characteristics.
Previously, there were practical limits in the low frequency range like the one typically existing
in aeroelastic phenomena due to the large required inductance in passive aeroelastic control.
However, nowadays, it is possible to have a small inductor integrated into a piezopatch
dedicated to aeroelastic control [71]. Since standard inductors usually have too large internal
resistance for resonant shunt application, they are not a practical component to integrate into a
piezopatch. Implementing closed magnetic circuits with high permeability materials allows the
design of large inductance inductors with high quality factors.

Table 2 Smart wing characteristics for modal analysis

c=0.637m Chord

xr=c/3 Pitch axis

K, = 2500 N/rad Rotational spring stiffness

ap = 10° Wind-off equilibrium pitch angle

12



fn =5Hz Wind-off natural frequency

M =0.3 Horizontal airflow Mach number

e, =7.55%x1073 C/m Pitch coupling coefficient of piezoelectric material
Cpa =34 x1071°F Pitch capacitance of piezoelectric material
L,=0.01H Pitch inductance of piezoelectric material

R, =10Q Pitch resistance of piezoelectric material

The pizopatch characteristics as ey, Cpq, Lo, and R, are determined by the experience from the
author’s previous work on smart wing flutter suppression [72-74] and some try and error
process to find optimal values for each of them. The airfoil of the wing is NACA 0012 and its
natural frequency is w, = 2mf,, = 107w, the moment of inertia around the pitch axis is I, =
K,/w? = 2.533 N/s2. A light structural damping with coefficient c, = K, /1000 has be

considered in the system.
Example 1 Smart wing modal analysis

As the first example, we conduct a linear eigen or modal analysis to the system and show its
frequencies and mode shapes with and without the pizopatch, as follows.
The smart wing equations of motion in free vibrations are given

[,d + Cha+ Kya — ,9, =0

. ) 1 9
Laqa + Raqa + C_Qa - ﬁa(xf - Xp)a =0 ( )
Pa

where the parameters are defined as before. Equation (9) can be written as first-order

differential equations by assuming x; = &, x, = q,, x3 = a, and x, = q,

r)'c =—&x —&x +ﬁ—ax
Rq 1 Ba
. __Ra P 10
{ Xy » Xy CpaLaX4 » (xr — xp)x3 (10)
5C3 =x1
k)'c4=x2
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Equation (10) can be rewritten by considering g =[I, C, K, By Ly Cpa Ra]Tand

X = [x1 Xy X3 x4]T, as fOIIOWS

—&x —&x +ﬁ—ax
L, ot
. R 1 B
X:f(x, ): __(1 —_ _(X —_ (11)
q L X, CpaLax4+La (xf xp)x3
X1
X2

where f are linear functions, x;, x,, x3, and x, are the smart wing states and denote the system’s
pitching velocity, pitching angle, pitch electrical current, and pitch electric charge responses,
respectively. There are four eigenvalues for the single DOF system that indicate the stability
of the fixed point. One can obtain the fixed point of the system by solving
f(x,q) =0 (12)
or, equivalently,
x=0 (13)

Using Eqg. (11), it is possible to write Eq. (13) as

x = A(@x (14)
where
_ & 0 __@ &
Iq Iq Iq
Ba Rq 1
A= Pa e — e _ (15)
0 L (xf Xp) L, Cpa:La
1 0 0 0
L0 1 0 0
The solution of Eq. (15) can be given [70]
n
x(t) = Z vielith, (16)

i=1
where v; is the ith eigenvector of A, A; is the ith eigenvalue of A, and b; is the ith element of

b = V~1x,, where V is eigenvector of A and x, is the initial condition.
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The smart wing characteristics are the same mentioned before. In addition, the initial conditions
are given as x;(0) = 0 deg/s, x,(0) = 0 A, x3(0) = 0.1 deg, and x,(0) = 0 C. The system
response of the smart wing is depicted in Figure 2. The solid line represents the pitching angle
of the smart wing and the dashed line shows the pitching angle of the corresponding regular
wing. It is clear that the smart wing oscillation can be damped very smoothly in only three
period however, the regular wing oscillation can be damped very sharply during many sharp

oscillations.

——Smart Wing
- - -Regular Wing

Wi,
'n" e
) ||||I"::'|ll|'l

.l-

5 10

Fig. 2 Pitch angle time response in modal analysis

In addition, the phase plane plot for the pitching velocity and angle has been shown in Figure
3 where the point (0,0) evokes the system trajectory. The initial pitching angle and velocity is
the start point of the smart wing trajectory at the far right and the trajectory is turning to the

fixed point, x; = 0, where is the center of the phase plane (0,0).

15
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Fig. 3 Phase plane for the pitching velocity and angle in modal analysis

Also, the initial conditions for the electric charge and current which are zeros is the start point
for the phase plane for the electrical current and charge. The trajectory is twisting out counter-
clockwise until reaching to its maximum values after that it is turning towards the start point

(0,0), as indicated in Figure 4.

4000

2000 |

-2000 |

-4000

0 001 002 003 004
q (C)

Fig. 4 Phase plane for the electrical current and charge in modal analysis
Example 2 Smart wing bifurcation analysis

In second example, a linear bifurcation analysis about static equilibrium (flutter) is conducted

with and without piezo dampener. The differential equations of motion are as follows,

16



(I, + pb*(1/8 + a?))é + (C, + 2pUnb3ala — 1/2))d
+(K, + 2pU%nb?a(a+ 1/2))a — g, = 0

(17)

LoGo + ReGa + Cipaqa — B(xf — xp)a =0
where its parameters are defined in Table 1 and p is the air density. For convenience, Eq. (17)
can be written as

ma +da + ka - f,9, =0

Lufja + Rotla + Cimqa ~ Bl —xp)a =0 (18)
where m =1, + prb*(1/8 +a?), d=C,+2pUnb3a(a—1/2), and k=K,+
2pU?mb?a(a + 1/2). Equation (18) is the equations of motion of a simple unforced Duffing
oscillator that is very often used in dynamics literature. We can express it in first order

x = f(x,X) (19)

where x; = &, x; = q,, X3 = @, X4 = ¢4, and

d k B,
T T T
. R, 1 «
f(x, %) = — X T T X —f;(xf — Xp)x3 (20)
a a~pa a
X1
X2

The fixed points of the system are obtained by f(x,%x) = 0, which yields x; = 0 and x3 = 0.

Equation (20) can be written as

x = f(x,X) = A;x (21)
where
d k B
_4 _k _E
m m
R B 1
A, = _ e _Pafy — 22
1 0 L L (xr — x) c, (22)
1 0 0 0
L 0 1 0 0
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The eigenvalues of matrix 4, in Eq. (22) shows the stability of the x fixed point. We consider
the same smart wing with characteristics as Table 2 and air density of p = 1.225 kg/m?3 and
as the airspeed is changing, we evaluate the position and stability of the fixed points. At the
critical airspeed, x5 is on the point of becoming unstable, as shown in Figure 5. For the smart
wing, stable fixed points are indicated by a solid blue line and unstable ones by a solid black
line. However, for the regular wing, stable fixed points are denoted by a dashed red line and
unstable ones by a dashed green line. A pitchfork bifurcation is occurring at U = 1166 m/s,
as shown in Figure 5 by a blue circle for the smart wing and red triangle for the regular wing.
It is clear adding the piezopatch does not affect the bifurcation of the smart wing compared to

the regular one.

—Stable Smart Wing - - -Stable Regular Wing
—Unstable Smart Wing Unstable Regular Wing
O Pitchfork Point Smart Wing|| A Pitchfork Point Regular Wing
0.1
0.05" Stable
Unstable
3
S 0
-0.05¢ Stable
-0.1 : :
1140 1160 1180 1200
U(m/s)

Fig. 5 Bifurcation analysis
Example 3 Smart wing stall flutter alleviation

In third example, we conduct an aeroelastic analysis on the following smart wing, Table 3, to
represent the effect of the piezoelectric patch on stall flutter alleviation.

Table 3 Smart wing characteristics for flutter alleviation

¢ =0.637m Chord

18



xr=c/3

K, = 2500 N/rad

ap = 10°
fn =5Hz
M =0.3

e, = 1.4465 x 10~! C/m
Cpe = 105 x 1078 F
L,=001H

R,=10Q

Pitch axis

Rotational spring stiffness

Wind-off equilibrium pitch angle

Wind-off natural frequency

Horizontal airflow Mach number

Pitch coupling coefficient of piezoelectric material
Pitch capacitance of piezoelectric material

Pitch inductance of piezoelectric material

Pitch resistance of piezoelectric material

Using the Runge-Kutta-Fehlberg approach and event detection, one can solve the implicit

scheme by considering the following parameters in Table 4

Table 4 Runge-Kutta-Fehlberg Parameters

At =2x10"*s
tr=12s

e=0.1
§=10"16
e=10"°

a(0) = 20°
a(0)=0

Default time step

Final time
Runge-Kutta-Fehlberg tolerance
Event detection tolerance
Implicit tolerance

Initial pitch angle

Initial pitch velocity

Note that the aerodynamic states initial values are unknowns, and they cannot be considered

all as zero. For instance, x,, and x;, represent the separation point positions and locate close

to 0.05 for a pitch angle of 20°. The simplest way to find properly the aerodynamic states

initial values is to implement Leishman-Beddoes model for a short time as ¢t = 0.2 s, while

the structural states are at their initial values. In the full aeroelastic simulation, initial conditions
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can be obtained from the aerodynamic states after reaching their converged values at the end

of this pre-simulation.

The pre-simulation results are shown in Figure 6 including solid lines for the smart wing and
dashed black lines for the regular wing. It indicates all of the aerodynamic states can converge
to constant values after 0.2 s. These values can be considered as initial conditions, along with
the initial values of the pitch and pitch rate. From Figure 6, it is clear that both smart and regular

wings have the same aerodynamic state response during pre-simulation time interval.

2.5

2,
157

"
1

05§/ »

Fig. 6 Aerodynamic state response versus time during pre-simulation, solid lines: smart wing,

dashed lines: regular wing

The full aeroelastic simulation is started after resetting time to zero. The time response of the
resulting pitch angle is shown in Figure 7 which indicates the stall flutter or LCO. It is clear
that using smart material can decrease the maximum pitch angle from 23.5° in the regular wing
to 20.3° in the smart wing which shows the effect of using smart material in decreasing the
maximum pitch angle. The response of the regular wing settles onto a limit cycle frequency 5.6
Hz however, the smart wing limit cycle frequency is 5.47 Hz. Reduced frequency of the regular

wing is k = 0.11 however, the smart wing reduced frequency is k = 0.098. Amplitude of the
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regular wing is 10.86° and its mean is 12.63° but the smart wing amplitude is 1.38° and its mean

is 18.92°.

25 ‘ :
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5t " l'.': T ',:' ——Smart Wing

» U W |- - -Regular Wing
0 . L L
0 0.5 1 1.5 2

t (s)
Fig. 7 Pitch angle time response

The load response versus pitch angle during the LCO has been depicted in Figure 8 which
shows higher load response in the regular wing rather than the smart wing. In fact, using smart
material can reduce the induced lift due to the leading edge vortex and increase the trailing
edge vortex effect, as well. The experimental result is from McAlister et al. as a classic
reference providing detailed aerodynamic loads on many different wing sections under
dynamics stall at different kinematic and flow conditions [75]. The experimental result is for a
wing with a NACA 0012 section under forced pitching oscillations with an amplitude of 10°
around a mean pitch angle of 12° with reduced frequency k = 0.098 at a Mach number of 0.3.
The experimental measured normal force coefficient is around the quarter chord against
instantaneous pitch angle and it is also a cycle average. The arrows indicate the direction of the
experimental normal force coefficient variation as the pitch angle increases from 4° to 22° and
then back down to 4°. In the regular wing, the pitch angle increases from 2° to 22° and then
back down to 2°. However, in the smart wing, the pitch angle increases from 17.4° to 20.6° then

back down to 17.4°. It means that the smart wing is able to control effectively the pitching
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oscillation of the wing during the stall flutter or LCO. The angle of static stall is 12° however,
it is increased during the oscillation to 16.4°. The smart wing results shows an increase in the
dynamic stall angle due to increasing in the wing oscillation to 20.3°. The characteristics of the
LCO of the regular wing are very similar to the those of the forced oscillation of experimental
result in [75], therefore the load response versus the angle of attack plots of the regular wing
and experiment resemble closely. The only difference is the fact that the effect of the LEV is
stronger in the regular wing because of existing the slightly higher frequency and amplitude.
However, due to the lower frequency and amplitude in the smart wing rather than the

experiment, the effect of the LEV is weaker in the smart wing.
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Fig. 8 Load response versus pitch angle: (a) smart and regular wings, experiment, and static,

(b) smart and regular wings

Dynamic lift initially varies linearly with pitch angle with slope equals to that of the static lift
curve, as shown in Figure 8. In the experiment, up to « = 16.4°, the dynamic lift remains linear
which is more than 4° higher than the static stall angle. However, in the regular wing, up to

a = 17°, the dynamic lift remains linear which is more than 5° higher than the static stall angle.
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In the smart wing, the dynamic lift becomes completely nonlinear. Moreover, in both the
experiment and regular wing, there are a large amount of increase in the static maximum lift
however, in the smart wing, that value decreases considerably. In the experiment, moment stall
occurs at @ = 16.4° which represents the start of dynamic stall leading to flattening out the lift
variation with pitch angle. However, in the regular wing, moment stall appears at « = 18° and
in the smart wing, the wing remains always in stall. Furthermore, in the experiment at a =
17.9°, the LEV detaches from the leading edge and starts to move down the chord leading to
increasing the lift, but in the smart wing, the LEV is always detached from the leading edge
and in the regular wing, it happens at « = 18.5°. The LEV effect on the aerodynamic loads
decreases rapidly such as dropping the lift while there is a fully separated flow on the upper
surface of the regular wing. However, those effects on the smart wing are much less in terms
of lift dropping and upper surface fully separated flow, as shown in Figure 8. Finally, the
regular wing reaches the maximum pitch angle of 22° then its pitch angle starts to decrease
until reaching the minimum pitch angle of 2°. However, the smart wing reaches the maximum
pitch angle of 20.6° then its pitch angle starts to decrease until reaching the minimum pitch
angle of 17.4°. In the regular wing, the flow re-attach again fully by the time a = 10.7°
however, in the smart wing, the flow fully attachment never occurs. Table 5 shows the
comparison between the smart and regular wings and experimental results for different
parameters.

Table 5 Comparison between smart and regular wings and experiment

Smart Wing  Regular Wing  Experiment

Minimum pitch angle 17.4° 2° 4°

Maximum pitch angle 20.6° 22° 22°
Dynamic stall angle - 18° 16.4°
LEV detaches - 18.5° 17.9°
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LEV at TE - 10.7° 10.7°

The stall delay effect occurs due to inviscid and viscous mechanisms. The inviscid flow has a
reduction in the adverse pressure gradient over most of the surface of the wing during pitch up
in compared to one acting on the static wing surface at the same instantaneous angle of attack.
In other words, during moving upward, the boundary layer is further from stall hence stays
attached up to higher angles of attack than in the static case [76]. The viscous mechanism is
referred to as the leading edge jet or moving wall effect [77]. The boundary layer velocity at
the wall of a static wing is zero because of static wall. However, on the pitching up wing, the
leading edge is moving up parallel to the boundary layer flow direction. Having nonzero
boundary layer speed at the wall can add a considerable momentum input to the boundary layer
leading to stall delay. The leading edge jet only has a significant effect very close to the leading
edge and in downstream of the leading edge, the leading edge jet add very little momentum to
the boundary layer. At the moving down, there is inverted moving wall effect therefore, the

flow is forced to separate at the leading edge leading to reattachment delay.

Probably the LEV is the most major difference between static and dynamic stall. There are
three main mechanisms for the LEV formation and shedding [78, 79]. The first mechanism
which occurs on wings with sharp leading edges is bubble bursting in the leading edge laminar
separation. Since the boundary layer near the leading edge is laminar, laminar separation
happens first. Then due to becoming turbulent of the separated shear layer and re-attaching
again, a separation bubble forms. Increasing the pitch angle leads to bursting the bubble
abruptly and creating the LEV that then propagates downstream. The trailing edge separation
does not interfere with the LEV formation process, as there is a certain amount of trailing edge
separation. The second mechanism is mixed leading edge/trailing edge stall with flow
separation occurs first at the trailing edge and starts to move upstream. By increasing the pitch

angle, there is an abrupt separation of the turbulent boundary layer on the entire front section
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of the wing leading to spreading flow reversal to nearly all the wing upper surface and forming
the LEV near the leading edge. The third mechanism is shock-induced separation due to strong
shocks occurring at higher Mach numbers near the leading edge. Strong shocks impose very
high adverse pressure gradient on the boundary layer leading to forcing separation. At the foot
of the last strong shock wave, the LEV creates in oblong shape and initially enveloped in
supersonic external flow. Depending to the roughness of the leading edge and the Reynolds
number, the shock-induced separation mechanism can interact with the laminar separation

bubble bursting mechanism.

The pitching moment versus pitch angle during the LCO is indicated in Figure 9. It is clear that
using smart material cannot increase the pitching moment in high pitch angle in comparison
with the regular wing one. In other words, the LEV can induce more pitching moment in the
regular wing in comparison with the one in the smart wing. Furthermore, the trailing edge
vortex effect in inducing pitching moment in the smart wing is lower than the one in the regular

wing.
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Fig. 9 Pitching moment versus pitch angle

The pitching moment around the pitching axis, x¢, versus pitch angle during the LCO is

indicated in Figure 10 which shows implementing smart material can help increase the pitching
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moment in high pitch angle due to improving of the leading edge vortex effect and in addition
it can reduce the effect of trailing edge, as well. There are some differences between Figure 10
and Figure 9. Both figures for the regular wing include three loops with different relative sizes.
However, for the smart wing in Figure 9 there is only one loop but in Figure 10 there are two

loops. Considering the aerodynamic work done during a complete cycle as

W = jgcmxf dx (23)

there are following distinguish two cases
Case 1- The Cmy, versus a loop has a counter-clockwise direction which includes a negative

moment when a increases and vice-versa. There is a negative total work done over the cycle
by the structure on the fluid domain. Therefore, the structure loses energy and its motion is

damped.
Case 2- The Cmy, versus a loop has a clockwise direction which includes a positive moment

when a increases and vice-versa. There is a positive total work done over the cycle by the fluid
on the structure domain. Therefore, the structure obtains energy and its motion amplitude is

increased.
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—Regular Wing
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Fig. 10 Pitching moment around the pitching axis versus pitch angle
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The two outer loops in Figure 10 have counter-clockwise directions however, the inner loop
posses a clockwise direction. The total work done over the cycle is positive because the inner
loop is bigger than the two outer combined. Hence, the fluid is performing work on the structure

leading to sustain the stall flutter or limit cycle.

In contrast, in Figure 9, the total work done by the pitching moment around the aerodynamic
center is negative since the inner loop is smaller than the two outer ones. In fact, if the pitch
axis is moved to the quarter-chord, the stall flutter or LCO would be removed the motion would

be damped.

The pitching velocity versus pitch angle has been depicted in Figure 11 where the system
trajectory starts from the point (20,0) according to the initial condition of the system. The
smart wing trajectory starts from the initial pitch angle and pitching velocity in the inner part
and the trajectory is turning to the outer part where the stall flutter or LCO occurs as shown in

Figure 11.

G (deg/s)

17 18 19 20 21
o (deg)

Fig. 11 Phase plane for pitching velocity versus pitch angle

The start point of the phase plane for the electric current and charge starts from the zero initial
conditions for the electric charge and current, as shown in Figure 12. The trajectory twists in

clockwise until reaching its limit value in the stall flutter or LCO.
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Fig. 12 Phase plane for pitch electric current versus pitch electric charge
Example 4 Smart wing stall flutter elimination

As fourth example, we conduct an aeroelastic analysis on the same smart wing for example 3
except the pitching coupling coefficient of piezoelectric material which is e, =
1.463 x 10~1 C/m to represent the effect of the piezoelectric patch on stall flutter elimination.
Using the Runge-Kutta-Fehlberg approach and event detection, one can solve the implicit
scheme by considering the same parameters of Table 4. As mentioned in example 3, we need
note that the aerodynamic states initial values are unknowns, and they cannot be considered all
as zero. For instance, x;, and x;, represent the separation point positions and locate close to
0.05 for a pitch angle of 20°. The simplest way to find properly the aerodynamic states initial
values is to implement Leishman-Beddoes model for a short time as t; = 0.2's, while the
structural states are at their initial values. In the full aeroelastic simulation, initial conditions
can be obtained from the aerodynamic states after reaching their converged values at the end

of this pre-simulation.

The pre-simulation results are shown in Figure 13 including solid lines for the smart wing and
dashed black lines for the regular wing. It indicates all of the aerodynamic states can converge

to constant values after 0.2 s. These values can be considered as initial conditions, along with
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the initial values of the pitch and pitch rate. From Figure 13, it is clear that both smart and

regular wings have the same aerodynamic state response during pre-simulation time interval.
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Fig. 13 Aerodynamic state response versus time during pre-simulation, solid lines: smart

wing, dashed lines: regular wing

The full aeroelastic simulation is started after resetting time to zero. The time response of the
resulting pitch angle is shown in Figure 14 which indicates the stall flutter or LCO. It is clear
that using smart material can decrease the maximum pitch angle from 23.5° in the regular wing
to 19.9° in the smart wing which shows the effect of using smart material in decreasing the
maximum pitch angle. The response of the regular wing settles onto a limit cycle frequency 5.6

Hz however, the smart wing has no limit cycle.
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Fig. 14 Pitch angle time response

The load response versus pitch angle during the LCO has been depicted in Figure 15 which
shows higher load response in the regular wing rather than the smart wing. In fact, using smart
material due to no oscillation load response value becomes one point, as shown in Figure 15.
In the smart wing, the pitch angle remains around 19.9° since there is no oscillatory motion. It
means that the smart wing is able to eliminate effectively the pitching oscillation of the wing

during the stall flutter or LCO.

* Smart Wing Experiment [75]—|
Regular Wing —Static

157

0.5}
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Fig. 15 Load response versus pitch angle: smart and regular wings, experiment, and static

In the smart wing, due to having a constant pitch angle, there is no dynamic lift. Moreover, in
both the experiment and regular wing, there are a large amount of increase in the static
maximum lift however, in the smart wing, that value decreases considerably. In the experiment,
moment stall occurs at « = 16.4° which represents the start of dynamic stall leading to
flattening out the lift variation with pitch angle. However, in the regular wing, moment stall
appears at « = 18° and in the smart wing, the wing remains always in stall. Furthermore, in

the smart wing, the LEV is always detached from the leading edge.
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The pitching moment versus pitch angle during the LCO is indicated in Figure 16. It is clear
that using smart material cannot increase the pitching moment in high pitch angle in
comparison with the regular wing one. In other words, the LEV can induce more pitching
moment in the regular wing in comparison with the one in the smart wing. Furthermore, the
trailing edge vortex effect in inducing pitching moment in the smart wing is lower than the one

in the regular wing.

-0.2| e Smart Wing
Regular Wing
-0.37 Experiment 75
—Static
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a (deg)

Fig. 16 Pitching moment versus pitch angle

The pitching moment around the pitching axis, x, versus pitch angle during the LCO is
indicated in Figure 17 which shows implementing smart material to eliminate stall flutter
cannot help increase the pitching moment in high pitch angle due to not improving of the
leading edge vortex effect and in addition it cannot reduce the effect of trailing edge, as well.
There are some differences between Figure 17 and Figure 16. Both figures for the regular wing
include three loops with different relative sizes. However, for the smart wing in both Figures

16 and 17, there is no loop since there is no oscillation.
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Fig. 17 Pitching moment around the pitching axis versus pitch angle

The pitching velocity versus pitch angle has been depicted in Figure 18 where the system
trajectory starts from the point (20,0) according to the initial condition of the system. The
smart wing trajectory starts from the initial pitch angle and pitching velocity in the inner part
and the trajectory is turning to the outer part where the stall flutter or LCO occurs as shown in

Figure 18.

G (deg/s)
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Fig. 18 Phase plane for pitching velocity versus pitch angle

The start point of the phase plane for the electric current and charge starts from the zero initial
conditions for the electric charge and current, as shown in Figure 19. The trajectory twists in

clockwise until reaching its limit value in the stall flutter or LCO.
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Fig. 19 Phase plane for pitch electric current versus pitch electric charge
5. Parametric Study for Stall Flutter Alleviation and Elimination

In this section, effects of different parameters of the smart wing on stall flutter alleviation are
investigated. According to the smart wing configuration shown in Figure 1, we consider the
parameters as x,,, piezoelectric axis, B, pitch electromechanical coupling, L, pitch inductance

of piezoelectric material, R,, pitch resistance of piezoelectric material, and Cpa’ pitch

capacitance of piezoelectric material.

5.1 Effectof x, on stall flutter alleviation and elimination

As the first parameter, we consider x with  different  values as

p

0.095¢, 0.096¢, 0.097c¢, 0.098¢, 0.099¢, and 0.1c, where c represents the chord length of the
wing. Having different locations for the shunt piezoelectric patch cannot create any difference
on the smart wing pre-simulation results obtaining the aerodynamic state initial values

discussed in Section 4, as indicated in Figure 20.
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Fig. 20 Aerodynamic state response versus time during pre-simulation for different x,,

location, solid lines: smart wing, dashed lines: regular wing

It is clear that changing the location of the piezoelectric patch does not change the aerodynamic
state response versus time during pre-simulation as all of the aerodynamic states converge to
constant values after 0.2 s, as shown in Figure 20. In other words, both smart and regular wings
have the same aerodynamic state response during pre-simulation time interval. Furthermore,
pitch angle time response of the smart wing changes with respect to the locations of the
piezoelectric patch which indicates pitch angle time response of the smart wing is dependent
on the location of the piezoelectric patch, as shown in Figure 21. Having piezoelectric patch at

location of 0.095c¢ can eliminate the LCO effectively. However, by moving the location

e —————— ]
e
-

=
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t (s)

towards 0.1c, the amplitude of LCO is increased gradually.

34



T T
1 L T R L L - -
20 P ' L |[—Smart Wing, x /¢ = 0.095
A S i S e e 9%
Vb r e e o meal ) | —Smart Wing, x fc = 0.096
—~ ' 1 1 1 1
%015'”", A A Smart Wing, x /c = 0.097
! 1
= el | __Smart Wing, x /c = 0.098
10 ! ' ' p
d [T B I |' LI I || "L RN T )
L e ——Smart Wing, x_/c = 0.099
\,' 1: oy et Yy :: :: ! . P
57 uo ¥ ',: ;: :: Y :; Smart Wing, x /c = 0.1
v 1
A B T - - -Regular Wing
O L L L
0 0.5 1 1.5 2

t(s)
Fig. 21 Pitch angle time response for different x,, location

Also, the load response versus pitch angle during the LCO has been depicted in Figure 22 for
different locations of the piezoelectric patch which indicates the load response of the smart

wing is dependent on the location of the piezoelectric patch.
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Fig. 22 Load response versus pitch angle for different x,, location

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
23 for different locations of the piezoelectric patch which indicates the pitching moment of the

smart wing is dependent on the location of the piezoelectric patch.
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Fig. 23 Pitching moment versus pitch angle for different x,, location
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 24 for different locations of the piezoelectric patch which indicates the

pitching moment around the pitching axis of the smart wing is dependent on the location of the

piezoelectric patch.
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Fig. 24 Pitching moment around the pitching axis versus pitch angle for different x,, location
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 25 for different locations of the piezoelectric patch which indicates the phase
plane for pitching velocity of the smart wing is dependent on the location of the piezoelectric

patch.
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Fig. 25 Phase plane for pitching velocity versus pitch angle for different x,, location
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 26 for different locations of the piezoelectric patch which indicates
the load response of the smart wing is almost independent on the location of the piezoelectric

patch.
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Fig. 26 Phase plane for pitch electric current versus pitch electric charge for different x,,

location

5.2 Effect of L, on stall flutter alleviation and elimination
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As the second parameter, we consider L, with different values as 0.01, 0.05, 0.1, 0.5, and 1 H.
However, having different pitch inductance of piezoelectric material for the shunt piezoelectric
patch cannot create any difference on the smart wing pre-simulation results obtaining the

aerodynamic state initial values discussed in Section 4, as indicated in Figure 27.

___________
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Fig. 27 Aerodynamic state response versus time during pre-simulation for different L, solid

lines: smart wing, dashed lines: regular wing

It is clear that changing the pitch inductance of the piezoelectric patch does not change the
aerodynamic state response versus time during pre-simulation as all of the aerodynamic states
converge to constant values after 0.2 s, as shown in Figure 27. In other words, both smart and
regular wings have the same aerodynamic state response during pre-simulation time interval.
Furthermore, pitch angle time response of the smart wing does not change with respect to the
pitch inductance of the piezoelectric patch which indicates pitch angle time response of the
smart wing is independent on the pitch inductance of the piezoelectric patch, as shown in Figure

28.
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Fig. 28 Pitch angle time response for different L,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 29 for
different pitch inductance of the piezoelectric patch which indicates the load response of the

smart wing is independent on the pitch inductance of the piezoelectric patch.
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Fig. 29 Load response versus pitch angle for different L,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
30 for different pitch inductance of the piezoelectric patch which indicates the pitching moment

of the smart wing is not dependent on the pitch inductance of the piezoelectric patch.
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Fig. 30 Pitching moment versus pitch angle for different L,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 31 for different pitch inductance of the piezoelectric patch which indicates
the pitching moment around the pitching axis of the smart wing is independent on the pitch

inductance of the piezoelectric patch.

0.2
0.1¢ ] —Smart Wing, L_=0.01H
——Smart Wing, L(1 =0.05H
= 0f — 1 Smart Wing, L =0.1H
~ 4
<) / ——Smart Wing, L =05 H
010 Smart Wing, L_=1H
-0.2+ ] Regular Wing
-0.3

0 5 1‘0 1I5 2‘0 25
a (deg)

Fig. 31 Pitching moment around the pitching axis versus pitch angle for different L,
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 32 for different pitch inductance of the piezoelectric patch which indicates the
phase plane for pitching velocity of the smart wing is not dependent on the pitch inductance of

the piezoelectric patch.
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Fig. 32 Phase plane for pitching velocity versus pitch angle for different L,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 33 for different pitch inductance of the piezoelectric patch which
indicates the load response of the smart wing is dependent on the pitch inductance of the

piezoelectric patch.
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Fig. 33 Phase plane for pitch electric current versus pitch electric charge for different L,
5.3 Effect of e, on stall flutter alleviation and elimination

As the third parameter, we consider e, with different values as 1.4455 x 1071, 1.446 x 1071,
1.4465 x 1071, and 1.447 x 10~1 C/m. However, having different pitch coupling coefficient

of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the
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smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in

Section 4, as indicated in Figure 34.
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Fig. 34 Aerodynamic state response versus time during pre-simulation for different e,

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change
the aerodynamic state response versus time during pre-simulation as all of the aerodynamic
states converge to constant values after 0.2 s, as shown in Figure 34. In other words, both smart
and regular wings have the same aerodynamic state response during pre-simulation time
interval. Furthermore, pitch angle time response of the smart wing changes slightly with respect
to the pitch coupling coefficient of the piezoelectric patch which indicates pitch angle time
response of the smart wing is slightly dependent on the pitch coupling coefficient of the

piezoelectric patch, as shown in Figure 35.
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Fig. 35 Pitch angle time response for different e,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 36 for
different pitch coupling coefficient of the piezoelectric patch which indicates the load response

of the smart wing is slightly dependent on the pitch coupling coefficient of the piezoelectric

patch.
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Fig. 36 Load response versus pitch angle for different e,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure

37 for different pitch coupling coefficient of the piezoelectric patch which indicates the
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pitching moment of the smart wing is slightly dependent on the pitch coupling coefficient of

the piezoelectric patch.
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Fig. 37 Pitching moment versus pitch angle for different e,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 38 for different pitch coupling coefficient of the piezoelectric patch which
indicates the pitching moment around the pitching axis of the smart wing is slightly dependent

on the pitch coupling coefficient of the piezoelectric patch.
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Fig. 38 Pitching moment around the pitching axis versus pitch angle for different e,
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Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 39 for different pitch coupling coefficient of the piezoelectric patch which
indicates the phase plane for pitching velocity of the smart wing is dependent on the pitch

coupling coefficient of the piezoelectric patch.
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Fig. 39 Phase plane for pitching velocity versus pitch angle for different e,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 40 for different pitch coupling coefficient of the piezoelectric patch
which indicates the load response of the smart wing is independent on the pitch coupling

coefficient of the piezoelectric patch.
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Fig. 40 Phase plane for pitch electric current versus pitch electric charge for different e,
5.4 Effect of Cp, on stall flutter alleviation and elimination

As the fourth parameter, we consider C,,, with different values as 104 x 1078, 104.5 x 107,
105 x 1078, 105.5 x 1078, and 106 x 108 F. However, having different pitch capacitance
of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the
smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in

Section 4, as indicated in Figure 41.
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Fig. 41 Aerodynamic state response versus time during pre-simulation for different C,,,

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change
the aerodynamic state response versus time during pre-simulation as all of the aerodynamic
states converge to constant values after 0.2 s, as shown in Figure 41. In other words, both smart
and regular wings have the same aerodynamic state response during pre-simulation time
interval. Furthermore, pitch angle time response of the smart wing changes with respect to the
pitch capacitance of the piezoelectric patch which indicates pitch angle time response of the
smart wing is dependent on the pitch capacitance of the piezoelectric patch, as shown in Figure

42.
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Fig. 42 Pitch angle time response for different C,,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 43 for

different pitch capacitance of the piezoelectric patch which indicates the load response of the

smart wing is dependent on the pitch capacitance of the piezoelectric patch.
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Fig. 43 Load response versus pitch angle for different C,,,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
44 for different pitch capacitance of the piezoelectric patch which indicates the pitching

moment of the smart wing is dependent on the pitch capacitance of the piezoelectric patch.
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Fig. 44 Pitching moment versus pitch angle for different C,,,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 45 for different pitch capacitance of the piezoelectric patch which indicates
the pitching moment around the pitching axis of the smart wing is dependent on the pitch

capacitance of the piezoelectric patch.
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Fig. 45 Pitching moment around the pitching axis versus pitch angle for different C,,

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been

shown in Figure 46 for different pitch capacitance of the piezoelectric patch which indicates
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the phase plane for pitching velocity of the smart wing is dependent on the pitch capacitance

of the piezoelectric patch.
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Fig. 46 Phase plane for pitching velocity versus pitch angle for different C,,,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 47 for different pitch capacitance of the piezoelectric patch which
indicates the load response of the smart wing is independent on the pitch capacitance of the

piezoelectric patch.
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Fig. 47 Phase plane for pitch electric current versus pitch electric charge for different C,,,,

5.5 Effect of R, on stall flutter alleviation and elimination
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As the fifth parameter, we consider R, with different values as 5, 10, 15, 20, and 25 Q.
However, having different pitch resistance of piezoelectric material for the shunt piezoelectric
patch cannot create any difference on the smart wing pre-simulation results obtaining the

aerodynamic state initial values discussed in Section 4, as indicated in Figure 48.
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Fig. 48 Aerodynamic state response versus time during pre-simulation for different R,

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change
the aerodynamic state response versus time during pre-simulation as all of the aerodynamic
states converge to constant values after 0.2 s, as shown in Figure 48. In other words, both smart
and regular wings have the same aerodynamic state response during pre-simulation time
interval. Furthermore, pitch angle time response of the smart wing does not change with respect
to the pitch resistance of the piezoelectric patch which indicates pitch angle time response of
the smart wing is independent on the pitch resistance of the piezoelectric patch, as shown in

Figure 49.
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Fig. 49 Pitch angle time response for different R,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 50 for
different pitch resistance of the piezoelectric patch which indicates the load response of the

smart wing is independent on the pitch resistance of the piezoelectric patch.
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Fig. 50 Load response versus pitch angle for different R,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
51 for different pitch resistance of the piezoelectric patch which indicates the pitching moment

of the smart wing is not dependent on the pitch resistance of the piezoelectric patch.
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Fig. 51 Pitching moment versus pitch angle for different R,,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 52 for different pitch resistance of the piezoelectric patch which indicates
the pitching moment around the pitching axis of the smart wing is independent on the pitch

resistance of the piezoelectric patch.
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Fig. 52 Pitching moment around the pitching axis versus pitch angle for different R,
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been

shown in Figure 53 for different pitch resistance of the piezoelectric patch which indicates the
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phase plane for pitching velocity of the smart wing is not dependent on the pitch resistance of

the piezoelectric patch.
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Fig. 53 Phase plane for pitching velocity versus pitch angle for different R,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 54 for different pitch resistance of the piezoelectric patch which
indicates the load response of the smart wing is independent on the pitch resistance of the

piezoelectric patch.
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Fig. 54 Phase plane for pitch electric current versus pitch electric charge for different R,
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In summary, according to the parametric study results, only phase plane can be affected with
respect to different parameters value. However, other results remain unchanged, as shown in

this sub-section.
5.6 Effect of electrical system frequency on stall flutter alleviation and elimination

As the sixth parameter, we consider the effect of the electrical system frequency which needs
to derive first the equations of motion for the electrical system, as follows

L. 1pU?%c?
_I_qa =5
a

1
i+ 2{wyd + wyla (cm+—(a+1/2)cn)
271, 2

o + 2800e, + W2 qq — Cp Bowo?(xr — xp)a = 0

(24)

where { = C,/ (2,/1(,,10[) is the structural damping ratio, w,, the structural natural frequency,
(. the electrical damping ration, and w, the electrical natural frequency. Assuming x; to x;,
as the aerodynamic load states which are explained later and x,; = &, x14 = q,, X;5 = a, and

X16 = qq» EQ. (24) is written as first-order differential equations, as follows

_ B 1pU%c
X153 = —2{WnXq3 — Wy 2Xqs + I—ax16 - El—cn/cos a
a a
X14 = —20eWeX14 — wezx16 + Cpaﬁawez(xf - Xp)x15
{ 1 pUZC (25)
= (ccp +b(a+1/2)cy,)
2 1,
X15 = X13
\X16 = X14

The new form of the equation of motion can be written as Eq. (3) because of having nonlinear
function of &. Equation (3) can be written in first order form as Eq. (6), where x isa 16 x 1
state vector including the 12 Leishman-Beddoes states, x;5 = &, x4 = q, X15 = @, and x;¢ =
q. The general form of the equations of motion can be represented as Eq. (7), where A the
structural mass and inductance matrix, ¥ = [@ §]” is the pitching acceleration and the rate of
the pitch electrical current vector, C is the pitching structural damping and pitch resistance of

piezoelectric material matrix, y = [@ ¢]7 is the pitching velocity and pitch electrical current
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vector, E is the pitching structural stiffness, pitch electromechanical coupling and pitch
capacitance of piezoelectric material matrix, y = [a ¢]T is the pitching angle and pitch
electric charge vector, and F is the aerodynamic load vector. Moreover, A, C, and E matrices,

and F vector are given by

A= [(1) 2 (26)
_ 26wy, 0
=" 2] 27)
5 Ba
Wy, ——=
E= I (28)

_Cpaﬁawez(xf - xp) W

1pU3c —cp/cosa
F= 2 1, [ccm +b(a+ 1/2)cn] (29)
Considering Egs. (26)-(29), the equations of motion, Eq. (25), can be written as
X13 X13 , —cp/cosa
X1a| _ [—A‘lc —AL1E] [*14 n 1pU%clce,, + b(a+1/2)c, (30)
X15 I 0 X1s| 2 1, 0
5(16 X16 0

Because of the nonlinearity in x;5, EQ. (30) needs to be solved iteratively by considering the

Runge-Kutta approach and using a simple implicit algorithm, as explained previously.

We conduct an aeroelastic analysis on the following smart wing, Table 6, to represent the effect
of the piezoelectric patch on stall flutter alleviation.

Table 6 Smart wing characteristics for electrical system

w, = 2500 N/rad Structural natural frequency

¢ = 0.0157 Structural damping ratio

I, = 2.5330 N/s? Mass moment of inertia

By = 1.2438 X 10° C/mF Pitch electromechanical coupling
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w, = 9272.783982 rad/s Electrical natural frequency

¢ = 0.0539 Electrical damping ration

We consider the electrical natural frequency, w., with different values as 9260, 9270,
9272.783982, 9280, and 9280 rad/s. However, having different electrical natural frequency
of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the
smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in

Section 4, as indicated in Figure 55.
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Fig. 55 Aerodynamic state response versus time during pre-simulation for different w,

It is clear that changing the different electrical natural frequency of the piezoelectric patch does
not change the aerodynamic state response versus time during pre-simulation as all of the
aerodynamic states converge to constant values after 0.2 s, as shown in Figure 55. In other
words, both smart and regular wings have the same aerodynamic state response during pre-
simulation time interval. Furthermore, pitch angle time response of the smart wing does not
change with respect to the electrical natural frequency of the piezoelectric patch which
indicates pitch angle time response of the smart wing is independent of the electrical natural

frequency of the piezoelectric patch, as shown in Figure 56.
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Fig. 56 Pitch angle time response for different w,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 57 for
different electrical natural frequency of the piezoelectric patch which indicates the load
response of the smart wing is independent on the electrical natural frequency of the

piezoelectric patch.

@ —Smart Wing, w_= 9260 rad/s
157 — 1

—— —— Smart Wing, Wy = 9270 rad/s
\ Smart Wing, w, = 9272.783982 rad/s

1 ~_ | |—Smart Wing, w_= 9280 rad/s

——Smart Wing, w, = 9290 rad/s

0.5¢ ] Regular Wing

Cn

Fig. 57 Load response versus pitch angle for different w,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure

58 for the different electrical natural frequency of the piezoelectric patch which indicates the
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pitching moment of the smart wing is not dependent on the electrical natural frequency of the

piezoelectric patch.
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Fig. 58 Pitching moment versus pitch angle for different w,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 59 for different electrical natural frequency of the piezoelectric patch which
indicates the pitching moment around the pitching axis of the smart wing is independent on the

electrical natural frequency of the piezoelectric patch.
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Fig. 59 Pitching moment around the pitching axis versus pitch angle for different w,
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Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 60 for different electrical natural frequency of the piezoelectric patch which
indicates the phase plane for pitching velocity of the smart wing is not dependent on the

electrical natural frequency of the piezoelectric patch.
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Fig. 60 Phase plane for pitching velocity versus pitch angle for different w,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 61 for different electrical natural frequency of the piezoelectric
patch which indicates the load response of the smart wing is independent on the electrical

natural frequency of the piezoelectric patch.
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Fig. 61 Phase plane for pitch electric current versus pitch electric charge for different w,

In summary, according to the parametric study results, the electrical natural frequency results
cannot be affected with respect to different parameters values and remain unchanged, as shown

in this sub-section.
5.7 Effect of electrical system damping on stall flutter alleviation and elimination

As the seventh parameter, we consider the effect of the electrical system frequency by
considering the electrical damping, {., with different values as 0.0519, 0.0529, 0.0539,
0.0549, and 0.0559. However, having different electrical damping of piezoelectric material
for the shunt piezoelectric patch cannot create any difference on the smart wing pre-simulation
results obtaining the aerodynamic state initial values discussed in Section 4, as indicated in

Figure 62.
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Fig. 62 Aerodynamic state response versus time during pre-simulation for different ¢,

It is clear that changing the different electrical damping of the piezoelectric patch does not
change the aerodynamic state response versus time during pre-simulation as all of the
aerodynamic states converge to constant values after 0.2 s, as shown in Figure 63. In other
words, both smart and regular wings have the same aerodynamic state response during pre-

simulation time interval. Furthermore, pitch angle time response of the smart wing does not
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change with respect to the electrical damping of the piezoelectric patch which indicates pitch
angle time response of the smart wing is independent on the electrical damping of the

piezoelectric patch, as shown in Figure 63.
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Fig. 63 Pitch angle time response for different ¢,

Also, the load response versus pitch angle during the LCO has been depicted in Figure 64 for
different electrical damping of the piezoelectric patch which indicates the load response of the

smart wing is independent on the electrical damping of the piezoelectric patch.
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Fig. 64 Load response versus pitch angle for different ¢,
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Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
65 for the different electrical dampening of the piezoelectric patch which indicates the pitching

moment of the smart wing is not dependent on the electrical dampening of the piezoelectric

patch.
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Fig. 65 Pitching moment versus pitch angle for different ¢,
The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 66 for different electrical damping of the piezoelectric patch which indicates
the pitching moment around the pitching axis of the smart wing is independent on the electrical

damping of the piezoelectric patch.
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Fig. 66 Pitching moment around the pitching axis versus pitch angle for different {,
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 67 for different electrical damping of the piezoelectric patch which indicates
the phase plane for pitching velocity of the smart wing is not dependent on the electrical

damping of the piezoelectric patch.
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Fig. 67 Phase plane for pitching velocity versus pitch angle for different ¢,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 68 for different electrical damping of the piezoelectric patch which
indicates the load response of the smart wing is independent on the electrical damping of the

piezoelectric patch.
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Fig. 68 Phase plane for pitch electric current versus pitch electric charge for different {,

In summary, according to the parametric study results, the electrical system results cannot be
affected with respect to different electrical damping values and remain unchanged, as shown

in this sub-section.
5.8 Effect of electrical system impedance on stall flutter alleviation and elimination

As the eighth parameter, we consider the effect of the electrical system impedance, z =V /I =
1/R,, by considering different values as 0.1, 0.2, 0.3, 0.4, and 0.5. However, having different
impedance of piezoelectric material for the shunt piezoelectric patch cannot create any
difference on the smart wing pre-simulation results obtaining the aerodynamic state initial

values discussed in Section 4, as indicated in Figure 69.
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Fig. 69 Aerodynamic state response versus time during pre-simulation for different z

It is clear that changing the different impedance of the piezoelectric patch does not change the
aerodynamic state response versus time during pre-simulation as all of the aerodynamic states
converge to constant values after 0.2 s, as shown in Figure 69. In other words, both smart and
regular wings have the same aerodynamic state response during pre-simulation time interval.
Furthermore, pitch angle time response of the smart wing does not change with respect to the
impedance of the piezoelectric patch which indicates pitch angle time response of the smart

wing is independent on the impedance of the piezoelectric patch, as shown in Figure 70.
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Fig. 70 Pitch angle time response for different z
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Also, the load response versus pitch angle during the LCO has been depicted in Figure 71 for
different impedance of the piezoelectric patch which indicates the load response of the smart

wing is independent on the impedance of the piezoelectric patch.
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Fig. 71 Load response versus pitch angle for different z

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
72 for the different impedance of the piezoelectric patch which indicates the pitching moment

of the smart wing is not dependent on the impedance of the piezoelectric patch.
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Fig. 72 Pitching moment versus pitch angle for different z
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The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 73 for different impedance of the piezoelectric patch which indicates the
pitching moment around the pitching axis of the smart wing is independent on the impedance

of the piezoelectric patch.
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Fig. 73 Pitching moment around the pitching axis versus pitch angle for different z
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 74 for different impedance of the piezoelectric patch which indicates the phase
plane for pitching velocity of the smart wing is not dependent on the impedance of the

piezoelectric patch.
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Fig. 74 Phase plane for pitching velocity versus pitch angle for different z
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 75 for different impedance of the piezoelectric patch which
indicates the load response of the smart wing is independent on the impedance of the

piezoelectric patch.
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0 2 4 6 8

Fig. 75 Phase plane for pitch electric current versus pitch electric charge for different z

In summary, according to the parametric study results, the electrical system results cannot be
affected with respect to different impedance values and remain unchanged, as shown in this

sub-section.
5.9 Effect of electrical system coupling on stall flutter alleviation and elimination

As the ninth parameter, we consider the effect of the electrical system coupling, B,, by
considering different values as 1.2418 x 10°, 1.2428 x 10°, 1.2438 x 10°, 1.2448 x 10°,
and 1.2458 x 10> C/mF. However, having different coupling of piezoelectric material for the
shunt piezoelectric patch cannot create any difference on the smart wing pre-simulation results

obtaining the aerodynamic state initial values discussed in Section 4, as indicated in Figure 76.
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Fig. 76 Aerodynamic state response versus time during pre-simulation for different g3,

It is clear that changing the different coupling of the piezoelectric patch does not change the
aerodynamic state response versus time during pre-simulation as all of the aerodynamic states
converge to constant values after 0.2 s, as shown in Figure 76. In other words, both smart and
regular wings have the same aerodynamic state response during pre-simulation time interval.
Furthermore, pitch angle time response of the smart wing change with respect to the coupling
of the piezoelectric patch which indicates pitch angle time response of the smart wing is

dependent on the coupling of the piezoelectric patch, as shown in Figure 77.

—Smart Wing, ,-BQ =1.2418x10° C/mF
—Smart Wing, ,HQ =1.2428x10° C/mF

Smart Wing, ,-BQ =1.2438x10° C/mF
—Smart Wing, ,-BQ =1.2448x10° C/mF

——Smart Wing, ,SQ =1.2458 x10° C/mF
- - -Regular Wing

Fig. 77 Pitch angle time response for different S,
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Also, the load response versus pitch angle during the LCO has been depicted in Figure 78 for
different coupling of the piezoelectric patch which indicates the load response of the smart

wing is dependent on the coupling of the piezoelectric patch.

, —Smart Wing, 3 =1.2418x 10° C/mF

1.5 ’ 1
—Smart Wing, Bu =1.2428x10° C/mF
| \ | Smart Wing, 3 =1.2438x10° C/mF

<
O L,
—Smart Wing, Bu =1.2448x10° C/mF
05+ . —Smart Wing, Hu =1.2458x10° C/mF
Regular Wing
0

Fig. 78 Load response versus pitch angle for different S,

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure
79 for the different coupling of the piezoelectric patch which indicates the pitching moment of

the smart wing is dependent on the coupling of the piezoelectric patch.

0.1
0r | —Smart Wing, Bu =1.2418x10° C/mF
—Smart Wing, 3 =1.2428x 10° C/mF
0 1 | s e | [a%
s Smart Wing, 3 =1.2438x 10° C/mF
D &
02+ — 1 —Smart Wing, Bu =1.2448x10° C/mF
Qm'—'-a;—.: :*—___\
——Smart Wing, 3 =1.2458x 10° C/mF
-0.3 “
Regular Wing
-0.4

0 5 10 15 20 25
a (deg)

Fig. 79 Pitching moment versus pitch angle for different g,
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The pitching moment around the pitching axis versus pitch angle during the LCO has also been
depicted in Figure 80 for different coupling of the piezoelectric patch which indicates the
pitching moment around the pitching axis of the smart wing is dependent on the coupling of

the piezoelectric patch.

0.2
01" | |——Smart Wing, 3_=1.2418x10° C/mF
—Smart Wing, 3= 1.2428x10° C/mF
3 0 1 Smart Wing, 3 =1.2438x10° C/mF
O 0.1} / - —Smart Wing, 3= 1.2448x10° C/mF
w ——Smart Wing, 3= 1.245810° C/mF
0.2 = 1 ——Regular Wing
-0.3

0 5 10 15 20 25
o (deg)
Fig. 80 Pitching moment around the pitching axis versus pitch angle for different 5,
Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been
shown in Figure 81 for different coupling of the piezoelectric patch which indicates the phase

plane for pitching velocity of the smart wing is dependent on the coupling of the piezoelectric

patch.
40
20l ——Smart Wing, 3_=1.2418x10° C/mF
@ ——Smart Wing, 3_=1.2428x10° C/mF
=10
g 0 Smart Wing, 3= 1.2438x10° C/mF
-3 —Smart Wing, 3= 1.2448x10° C/mF
207 ——Smart Wing, 3= 1.2458x 10° C/mF
-40 - -
16 18 20 22
a (deg)
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Fig. 81 Phase plane for pitching velocity versus pitch angle for different g,
Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO
has been depicted in Figure 82 for different coupling of the piezoelectric patch which indicates

the load response of the smart wing is independent on the coupling of the piezoelectric patch.

40

—Smart Wing, 3 =1.2418x10° C/mF
—Smart Wing, 3 = 1.2428x10° C/mF
Smart Wing, 3 = 1.2438x10° C/mF

— Smart Wing, ;ﬂu = 1.2448x10° C/mF

——Smart Wing, ;5’& =1.2458 x10° C/mF

0 2 4 6
q (C) %1073

Fig. 82 Phase plane for pitch electric current versus pitch electric charge for different g,

In summary, according to the parametric study results, the electrical system results can be
affected with respect to different coupling values and remain unchanged, as shown in this sub-
section.

6. Conclusions

In this paper, it has been shown that how the stall flutter phenomenon can be alleviated and
eliminated using a small inductor by implementing a piezoelectric patch. The main contribution
of this work is to represent a way to alleviate or eliminate the stall flutter on a regular 2D wing
by using a passive aeroelastic control including piezoelectric patches and shunt circuits in
which the size of the required inductance is small. The results indicate a considerable
improvement in dynamic aeroelastic behavior of a 2D wing.

Appendix

Al Leishman-Beddoes model
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If a wing has pitching around the quarter chord x¢ = c/4, @ is equal to the geometric pitch
angle, means @ = a. By considering these assumptions, an additional circulatory pitching
moment term is added to the Leishman-Beddoes model as the following function

¢¢§M = 1 — g~bsB?Ut/b (A1)
where bs = 0.5. Because of having compressibility effects and added mass as impulsive loads,

Leishman and Beddoes is related to non-circulatory contributions to the aerodynamic loads.

These non-circulatory contributions can be represented as follows

bl = e=t/Kal (A.2a)

Py = e~/KaT1 (A.2b)
¢£_{M = Aze~t/bsKauTi 4 4, =t/bsKayTi (A.20)
B! = =t/ KayT: (A. 2d)

where T; = ¢/a., A IS the free stream sound speed, the I superscript represents impulsive

aerodynamic step responses and

1
Ka =T M.) T npME(Asbs + AzDy) (A-3a)
K, = 1 (A.3b)
(1 —My) + 2nBfMZ(Aby + Ayby)
Asby + Aub
Kz, = m (A.30)
K, = 7 (A.3d)
15(1 — M.,) + 3nSM2b;
where A; = 1.5, A, = —0.5, b; = 0.25, and b, = 0.1.
The total aerodynamic loads of attached flow can be written as
P =ct+ch (A.4)
P =ck +ck, (A.5)
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Superscript p denotes potential flow and presents the total load, normal force or moment, in
unsteady attached flow conditions. The circulatory and impulsive load contributions in state

space form can be represented as below [67]

Ch = Cn, A (A.6a)
;4 1 .
Ch = M—OOX3 + M—OOX4 (A 6b)
1 x,.(My)
c _ .C ac )
- —_zach ©7 A.6
TR ho
L A LA 7 U
= MobyKa T, T Mobaka T 165 P
7, ! - A.6d
12M,, ¢~ M, (A.6d)

where aj is an effective angle of attack in unsteady flow which can be written in the following

form
) U
ag = f E(A1b1x1 + Ayb;yx;) (A.7)

In Eqg. (A.6¢), x,.(M,,) represents the aerodynamic center static position which is a function
of Mach number. Moreover, c,_ denotes the normal force coefficient curve slope against a
during attached flow conditions. Considering small values of the angle of attack at attached
flow, ¢, = ¢, which is the classical lift curve slope. Since this slope is a function of Mach
number, for each airfoil, it can be measured in static wind tunnel tests. However, an alternative

way is to use the Prandtl-Glauert value as

Cng (M) = 2"771- (A.8)

In addition, x; to xg represent aerodynamic states similar to the w, to wg states in Eq. (23) in
Ref. [80]. Overall, for each of the exponential terms in Eq. (22) in Ref. [80] and Egs. (A.1) and

(A.2), there are eight aerodynamic states. Because of writing the compressibility and added
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mass contributions to the aerodynamic loads means the impulsive loads in terms of step
response functions, there is high number of aerodynamic states in compared to the one in Ref.
[80]. In fact, in the Wagner model of Ref. [80], per each degree of freedom, there are only two
aerodynamic states and there are no compressibility terms and the added mass terms appear as
linear functions of the structural states. The Leishman-Beddoes aerodynamic states can be

obtained by solving the following set of first order linear ordinary differential equations

) U ) 1
xl - __ﬁ b1X1 + a + - (A. 93)
b 2
. U ) 1
xZ == _Eﬁ bzXz + a + E (A 9b)
. 1 _
X3 = _KaTz X3+ a (A.90)
X, = 1 + A.9d
Xz = 1 +a A.9
X5 = boKa, T, Xs+a (A.9e)
X = 1 +a A.9
. u_,
%7 = —bs 5 B + q (A.99)
Xg = ! + A.9h
Xg = Kmnxs q (A.9h)

The potential aerodynamic force coefficients cZ and c?, can be obtained by combining Egs.

(A.4), (A.5) and (A.9) into a state space system as follows

X =Ax+ Bu
by~ ex + pu (A.10)
where the kinematic variables @(t) and gq(t) areinputs, x = [*1 X2 - xg]T,u=[a q]T

andy? = [c} P ]". Furthermore, matrices A, B, C, and D are defined as follows. Matrix A

is a diagonal 8 x 8 matrix with the main diagonal components as
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matrix B is

asz = KT, 1
1
Agq = — Kqu b,
- b
ass b3KaMT1 1
1 b
Qee boKa T, 1
u 2
a;7 = —bs E:B
1
Qgg = KqMTI

101 1 0 0

11
B‘[0.50.5010011

matrix C is a 2 X 8 matrix with the components as

U
€11 = Cna,B 3A1b1

U
C12 = Cnaﬁ EAzbz

~ 4
3= T MUK,T,

~ 1
T T MK, T,

1 x4c(My)
Cr=Cu\g——

4 c
1 Xac(Me)
Co2 = Cr2\ =7
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(A.11a)

(A.11b)

(A.11c)

(A.11d)

(A.11e)

(A.11f)

(A.11g)

(A.11h)

(A.12)

(A.13a)

(A.13b)

(A.130¢)

(A.13d)

(A.13e)

(A.13f)



Cys MobyKo T, (A.13g)
Ay

2 = T, (A.13h)

T U :

C27 = _1_65 (A 131)
7

(A.13K)

28 = 12MK,T,

the remaining components of matrix C are zero. Finally, matrix D is a 2 x 2 with the following

components.
[4 1 ]
M, M.,
p=\"7 37| (A.14)
|, 12m.)

In Egs. (A.4) to (A.9), there is no airfoil-specific information except c,,  as the lift curve slope.
In the Leishman-Beddoes model, flow separation can be taken into account by considering
contributions of leading edge and trailing edge separation and the leading edge vortex (LEV)
to the aerodynamic loads. By comparing a critical normal force coefficient c, (M.,) to the
potential normal force coefficient c2, one can determine the leading edge separation onset. Due

to stall delay in dynamic case leading to inaccuracy of direct comparison between ¢, (M)

and c?, a time-delayed version of c?, x, is used in the Leishman-Beddoes model [64].

ch () — xq

Xg =
T,
14

(A.15)

In fact, Eq. (A.7) indicates that x, has time delay T, to cP. Thus, the leading edge separation
criterion can add an additional state as x4(t) > c,, for the leading edge flow separation and
x9(t) < ¢y, for the leading edge flow reattachment. To determine the value of critical normal
force coefficient c,, and the time delay coefficient T,,, one needs to perform dynamic stall

experiments for each Mach number and airfoil section. Although at very low Mach numbers,
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the Leishman-Beddoes leading edge stall criterion cannot provide dynamic stall, a modified
criterion for such flow speed was developed by Sheng et al. for wind turbine blades [66].

To determine trailing edge separation, one can use quasi-steady considerations. The static lift
or normal force can be expressed by Kirchhoff theory as a function of the separation point

chordwise position f. The following equation can be used to approximate this position.

1 — 0.3e@@1)/$: if a<ay

a) =
f@) {0.04+0.66e(“1‘“)/52 if a>a

(A.16)

where «a is the angle of attack in static form and S; and S, are constant values which need to
be obtained for each airfoil and Mach number through a wind tunnel test. The second static
angle of attack a, has f = 0.7, it means the separation point is located at 0.7c. The angle a;
is obtained through a static wind tunnel test. After having the separation point position for a

given angle of attack, the corresponding lift coefficient can be calculated as

(A.17)

1+ﬁ>2

enl@) = an,(Mm)( -

In dynamic situations, in the Leishman-Beddoes model, the angle « in Eq. (A.12) is replaced

by an effective angle of attack as follows
(A.18)

To find the unsteady separation point position, one needs to substitute Eg. (A.10) into Eq.

(A.12)
xXq(t) )
1- 0.3e<6na(Moo) “ )/ TR (O a1
Crg (M)
fxg) = () (A.19)
O.O4+0.66e<a1_cna(M°°)>/ ST IO

_—>

Cng (M)~

This model creates an additional time delay to f(x,) to consider the unsteadiness effect of the
boundary layer response. An additional state x;, needs to be considered to indicate the delayed

unsteady separation point position
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jyg = LD~ % (A. 20)
Ty
where T is additional time delay coefficient which needs to be obtained by dynamic wind

tunnel tests. The corresponding normal force for the trailing edge separation point position can

be calculated as

(A.21)

2
1+ /%10
2

ch(t) = cﬁ(

where cf is the potential flow normal force circulatory component in Eq. (A.6). The
corresponding pitching moment of the trailing edge separation point position can be

approximated by

2
F . 1+ /xq
cm = (Ko + K1 (1 — xq9) + K, sinmx{yy)chy — (A.22)

where K, K;, K,, and k are coefficients related to the stall moment break shape, the pressure
center position, and the aerodynamic center position. To determine all these coefficients, one
needs to perform static wind tunnel tests. Having the LEV shedding can create extra lift and
moment terms which can be represented by the LEV vorticity estimation in the Leishman-
Beddoes model. This can be obtained by the difference between the circulatory lift forces in

the attached and separated forms.

2
1+ /x
Cy =cfl—c,]; =c 1—<TIO> (A.23)

This vorticity is only relevant after having leading edge separation. In other words, the value

of this vorticity before separation is zero, ¢, = 0. In order to have separation, xq(t) > c,,, a
time instance indicated by t,, . After passing T,,, seconds, the LEV arrives the trailing edge; this

time interval can be measured through dynamic wind tunnel tests.

The LEV lift can be proportional to the vorticity change rate ¢,, [68] as
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U

Cp = Cnagﬁz(l‘hbﬂfl + Abyx,) | 1— <

2
1+ /%10
2

1 \x

v X10 4
Though, in a constant time interval T, called characteristic time constant, the vorticity can be

dissipated hence, the vortex lift x,; is written in the following differential equation

. X11 .
Cy — T_ if t— tVo < ZTvl
5611 = xll v . (AZS)
_T_v if t — tvo > 2Tvl
The LEV lift ¢} and pitching moment c};, can be obtained from
C;{ - x11 (A 26)
0 if  xg <cp,
v o— t—t A.27
Cm —0.25 (1 — cosn( T, vO)) x11  if  t—t, < 2T, ( )
l

The final state in the Leishman-Beddoes model is x;, which shows a delayed version of the
separation point f(c?(t)) given by Eq. (A.12) and can be implemented to improve the pitching
moment representation because of flow reattachment in trailing edge separation. That final

state can be calculated by the following ordinary differential equation

_ zf(a(t)) — X1

X1z T (A.28)

In Eqg. (A.18), the pitching moment can be obtained by either x;, or x,, whichever has higher

value

: 1+ /x50 :
(Ko + K1 (1 — x19) + K, sinmxiy)cs — if X10 = X12
¢ = (A.29)

2
1++/x
(KO + Kl(l - xlz) + KZ Sin ﬂxfz)cg <—12> lf x10 < x12

2

Then at every time instance, the total lift and pitching moment are calculated as
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ch=ch+ci+cl (A.30a)
em=cl +c¥+ch+ Crm, (A.30b)
where ¢, is the pitching moment in zero lift. Having Egs. (A.26) provides the complete

Leishman-Beddoes dynamic stall model space equations. Equations (A.4), (A.6), (A.20), and
(A.28) represent the state equations. The summary of all the states nature is given in Table A.1.

Table A.1 Leishman-Beddoes states summary

State Nature
X, — Xg Aerodynamic states for unsteady attached flow
Xo Potential normal force coefficient time-delayed version c?,

when x4 > c,,_, there is leading edge separation

X10 The unsteady trailing edge separation point chordwise position
X11 The LEV lift
X1y The quasi-steady separation point location time-delayed version,

which can affect only the LEV pitching moment

The nonlinear state space equations are given as follows

x = f(x,u) (A.31)

y = g(x,u) (A.32)
where f is a 12 x 1 nonlinear functions vector, g is a 2 X 1 nonlinear functions vector, x =
[¥1 %2 - x2]T, u=[a q]T and y=[cn ¢cm]T. The Leishman-Beddoes model
depends on 14 parameter values as ¢, (M), @1, S1, Sz, Ko, K1, K3, €y Cnys Ky Ty, Tr, Ty, and
T,,. The value of these parameters can change according to the airfoil type and Mach number,
so they need to be determined by wind tunnel test experiments. These values have been
provided at different Mach numbers and a Reynolds number of 8 x 10° for the NACA 0012

airfoil by Leishman-Beddoes [69]. The parameter values for other airfoils can be found in the
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literature. However, the attached flow parameters as A,, b, and so on are constants therefore,
they are independent from Mach number or the airfoil type. In the Leishman-Beddoes, the
discontinuous LEV shedding process and the Kirchoff function for the separation point f (&)
or f(xq) create the major nonlinearity. Since the Kirchoff function is discontinuous, Egs.
(A.16) and (A.18), the following discontinuity boundaries exist, as given in Table A.2.

Table A.2 Discontinuity Boundaries

Flow reattachment or stall onset X9 = Cp,
Static lift curve break due to the unsteady separation point Xg/Cn,(Mo) = a1
Static lift curve break due to the quasi steady separation point a=a

Time when having no effect of LEV t—t, =

Crossing states x;, and x,, X190 = X12

A.2  Matrix coefficient for equations of motion

The matrix coefficient for the general form of the equations of motion, Eqg. (7), can be given as

follows
e O
A= [o La] (A.33)
[C. O
C= [ 0 Ra] (A.34)
Ka _ﬁa
E = 1 A.35
~Ba (s — %) e (8.35)
1 —c,/cosa
_ _ 2 n
F=5pU% [ccm +b(a+1/2)c, (A.36)
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