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Abstract: One of classical aeroelastic phenomenon seriously affecting the performance of 

flexible wings at high angle of attack is stall flutter. This work shows that how the stall flutter 

phenomenon can be alleviated and eliminated using a small inductor by implementing a 

piezoelectric patch. The dynamic responses are calculated to analyze the nonlinear 

characteristics of the aeroelastic system. Parametric study has been performed for different 

parameters. The main contribution of this work is to represent a way to alleviate or eliminate 

the stall flutter on a regular 2D wing by using a passive aeroelastic control including 

piezoelectric patches and shunt circuits in which the size of the required inductance is small. 

The results indicate a considerable improvement in dynamic aeroelastic behavior of a 2D wing. 
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Nomenclature 

𝐼𝛼 mass moment of inertia 

𝛼̈ pitching acceleration 

𝐶𝛼 pitching structural damping 

𝛼̇ pitching velocity 

𝐾𝛼 pitching structural stiffness 

𝛼 pitching angle 
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𝛽𝛼 pitch electromechanical coupling 

𝑞𝛼 pitch electric charge 

𝑐𝑚 pitching moment coefficient 

𝑎 𝑎 = 𝑥𝑓 𝑏⁄ − 1 

𝑥𝑓 elastic axis 

𝑏 half span 

𝑐𝑛 total lift coefficient 

𝐿𝛼 pitch inductance of piezoelectric material 

𝑞̈𝛼 rate of the pitch electrical current 

𝑅𝛼 pitch resistance of piezoelectric material 

𝑞̇𝛼 pitch electrical current 

𝐶𝑝𝛼 pitch capacitance of piezoelectric material 

𝑥𝑝 piezoelectric axis 

𝑥1 − 𝑥8 aerodynamic states for unsteady attached flow 

𝑥9 potential normal force coefficient time-delayed version 𝑐𝑛
𝑝
, when 𝑥9 > 𝑐𝑛1, 

there is leading edge separation 

𝑥10 unsteady trailing edge separation point chordwise position 

𝑥11 LEV lift 

𝑥12 quasi-steady separation point location time-delayed version, which can affect 

only the LEV pitching moment 

𝑐 chord 

𝛼𝐹 wind-off equilibrium pitch angle 

𝑓𝑛 wind-off natural frequency 

𝑀 horizontal airflow Mach number 
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∆𝑡 default time step 

𝑡𝑓 final time 

𝜀 Runge-Kutta-Fehlberg tolerance 

𝛿 event detection tolerance 

𝜖 implicit tolerance 

𝛼(0) initial pitch angle 

𝛼̇(0) initial pitch velocity 

1. Introduction 

Nowadays, green aircraft with zero emission is a major priority for the aerospace industry 

worldwide, which is more efficient, quieter, and cleaner, with low fuel consumption, pollutants 

emission, and operational costs. In this regard, to have low environmental impact and more 

sustainable flight, leading aerospace companies such as Airbus and Boeing are trying to study 

and design new aircraft with new configurations and characteristics [1]. Most of these advanced 

designs include more flexibility in aircraft structures. In some modern designs, in order to 

reduce induced drag, wings have long span and made of lighter materials to minimize overall 

weight, which cause more flexibility in the structure. Having more flexibility leads to sever 

aeroelastic behavior in the vehicle and strong coupling between aeroelastic behavior and flight 

dynamics [1, 2]. 

One of particular interest for aeroelastic investigations is the flutter phenomenon where there 

is a challenging problem as modeling post-flutter limit-cycle oscillation (LCO). Flutter is a 

common concern in dynamic aeroelasticity that can affect flight dynamics effectively. This 

happens when the combine structural and aerodynamics damping becomes negative leading to 

a self-induced oscillation on the structure. Having nonlinearities in the aerodynamics and 

structure can create LCO, which may lead to structural failure. Therefore, it is crucial to 

investigate their occurrence and effects in different flight phases. 
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The flutter phenomenon can be modeled with linear aerodynamic theories in the frequency 

domain such as Theodorsen and Garrick ones [3, 4] and in the time domain with Wagner’s 

indicial solution [5]. Since LCOs are very nonlinear, these linear models cannot predict all 

possible LCOs and their features accurately. One way to fully predict LCOs is to perform 

extensive flight test, which is a time-consuming and expensive attempt. This problem can arise 

more in highly flexible aerospace structures like futuristic configurations and designs with 

large aspect ratio wings or High-Altitude Long Endurance (HALE). Hence, it is necessary to 

have a nonlinear aeroelastic model to predict all possible LCO aspects properly [6]. 

One of the very specific oscillations in highly flexible aerospace structures can be caused by 

dynamic stall. Dynamic stall can lead to stall flutter may seriously affect the performance of 

flexible wings, blades, and propellers at high angle of attack. The vibrations resulting from the 

fluid and structure interactions can create flutter phenomenon, which results divergent 

oscillations with exponentially increasing amplitude. Flow separation does not cause this kind 

of flutter and hence occurs more frequently [7]. Using linear potential flow theory, the pitch-

plunge flutter velocities of two degrees of freedom system can be accurately predicted. 

However, stall flutter is a nonlinear dynamic aeroelasticity, which includes only one degree of 

freedom and dynamic large region boundary layer separation and reattachment, knowing as 

dynamic stall. The critical flutter velocity can be strongly under effect of the equilibrium angle 

of attack. It has been shown that stall hysteresis correction can help predict stall boundaries 

and it is possible to have stall flutter even in a purely pitching mode [8-10]. Due to the 

nonlinearity of unsteady aerodynamic loads, stall flutter may present different dynamic 

response at different angles of attack and velocities, such as bifurcation, chaotic motion, and 

multiple equilibrium states [11-14]. 

Aerodynamic nonlinearity in dynamic stall can make the critical velocity of stall flutter often 

lower than that of couple mode flutter. Creating a strong vortex close to the leading edge, 
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known as the dynamic stall vortex (DSV), can characterize dynamic stall [15-17]. Transient 

additional lift and considerable pitching moment fluctuation can be produced when the DSV 

moves downstream [18]. Then the trailing edge can be shed off, which can create full flow 

separation over the suction surface. Deep stall may induce pitching oscillation and energy 

absorbing from the fluid. LCO with constant amplitude can appear when there are equal energy 

harvested and dissipated by damping [19]. Many different response mechanisms of the flow 

induced vibration during deep stall can be analyzed determining the wake flow field diagrams 

of the trailing edge vortices and the leading edge DSVs [20]. The numerical simulations of 

dynamic stall results show that the strength, development, and shedding of the DSV can be 

directly affected by the amplitude angle, reduced frequency, equilibrium angle of attack, fluid 

flow Mach number, and rotation axis position [21]. 

Recently, by developing in structural materials rapidly, the aerospace structures become 

lightweight and more flexible leading to aggravate the destructiveness of stall flutter. Hence, it 

becomes more important to suppress the flutter amplitudes and delay the flutter boundaries. 

Since the main reason for stall flutter is the sever pitching moment fluctuation, it is necessary 

to investigate how to reduce the aerodynamic loads during dynamic stall [22, 23]. Design of 

highly flexible aerospace structures requires avoiding stall flutter; hence, it needs to predict 

dynamic stall airloads accurately. Accurate prediction of aeroelastic instabilities and flutter is 

very necessary in the performance of aerospace vehicles. To reduce design iterative procedure, 

it needs to perform aeroelastic simulations fast and inexpensively specially in rotary-wing 

airplanes, which include more complex aeroelastic behavior. An accurate model of the wing or 

airfoil section unsteady aerodynamic behavior is a prerequisite to any aeroelastic analysis. 

Implementing Computational Fluid Dynamics (CFD) for obtaining aerodynamic load and 

Finite Element Method (FEM) for structural dynamics can be expensive and it can require a 
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considerable run time for some cases even by using High Performance Computing (HPC) 

resources. 

Having an effective system to control and suppress stall flutter can be a crucial element in the 

aeroelastic design of aerospace structures including fixed-wing and rotary-wing aircraft and 

flapping-wing micro air vehicle (MAV). The control methods can be passive or active 

according to requirement of external energy or not. Due to good adaptability of active control, 

it has been widely investigated. The open-loop control has been studied on the rotational 

oscillation effect on vortex shedding [24]. Using a rotating oscillating cylinder numerically, 

drag can effectively reduce [25]. Other open-loop control methods are blowing/suction [26, 

27], a synthetic jet [28, 29], streamwise [30], transverse [31], distributed forcing [32], and 

moving surface boundary-layer [33, 34]. Because the open-loop control consumes large 

energy, the closed-loop control has been widely investigated due to stronger adaptive ability 

and low energy consumption. For feedback control, the optimal control [35, 36] and reduced 

order method [37-39] were used in the early stage. Recently, machine learning method is also 

implemented for feedback control [40-42]. However, in closed-loop method, control law 

design is not simple and it requires to be determined by researchers experience in many cases. 

Since passive control can be simple and low cost, it is used to study Vortex Induced Vibration 

(VIV). To reduce vibration and drag over a bluff body, different passive control methods are 

applied as surface modifications with roughness [43, 44], splitter plates [45-48], tripping wires 

[49, 50], grooves [51-53], Strakes [54], and shrouding [55]. Most passive control methods by 

changing geometry or the boundary layer characteristics suppress vibration and reduce drag. 

Dynamic stall is the phenomenon of periodic separation and reattachment of the flow around a 

wing during free or forced oscillations. The dynamic stall main features include a) stall delay, 

a rapidly oscillating wing will stall when the instantaneous angle of attack is higher than the 

static stall angle, b) leading edge vortex, under certain conditions a large vortical structure is 
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shed near the leading edge and travels downstream over the airfoil’s surface, c) reattachment, 

the flow can reattach if the instantaneous pitch angle reduces sufficiently. 

The first complete dynamic stall models’ comparison was carried out by Reddy and Kaza with 

application to two different aeroelastic systems including the Gormont, Gangwani and Bielawa 

model and ONERA model [56, 57]. The ONERA model has been applied to a cantilevered 

rectangular wing and the results have been compared to experimental ones by Dunn and 

Dugundji [58]. The Gangwani and Bielawa model has been used on a 2D pitching wing by 

Price and Keleris [59]. Using the ONERA model, the pitch-plunge wing linear aeroelastic 

stability has been studied by Tang and Dowell [60]. The pitch-plunge wing simulations 

combined with Gormont’s dynamic stall model have been carried out by Li and Fleeter [61]. 

Using the ONERA model, a pitch-plunge wing in a pulsing free stream has been studied by 

axman and Venkatesan [62]. The ONERA model has been applied to a 2D blade under pitching 

and flap-edgewise oscillations by Sakar and Bijl [63]. The pitch-plunge wing has been 

simulated with Leishman-Beddoes aerodynamics by Galvanetto et al. [64] and a similar 

analysis for low Mach numbers using the Sheng et al. modification to the Leishman-Beddoes 

model has been carried out by Shao et al. [65, 66]. Dynamic stall models used by a lot of these 

authors undergo very complex bifurcations, leading to chaos in many times [59, 61-64]. 

However, these bifurcations do not necessarily happen in a physical flow because they were 

not verified against experimental results. 

The Leishman-Beddoes model can provide the aerodynamic load coefficients as the normal 

force coefficient perpendicular to the chord, 𝑐𝑛, the tangential force coefficient along to the 

chord, 𝑐𝑐, and the pitching moment coefficient around the quarter chord, 𝑐𝑚. In the helicopter 

community, researchers use routinely the normal and chordwise forces instead of lift; in 

contrary of the airplane community which uses usually lift. 
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We consider a wing with NACA 0012 airfoil section forced to undergo pitch oscillations with 

an amplitude of 10˚ around a mean pitch angle of 12˚ with reduced frequency 𝑘 = 0.098 at a 

Mach number of 0.3. To present a very specific problem as a 2D wing forced vibration, 

dynamic stall models were developed. The most validations of such model are about pitch 

oscillation around the quarter-chord. However, they have also been validated experimentally 

on linear pitch ramp and some other motions [67-69]. Implementing a semi-empirical dynamic 

stall model needs effectively an extrapolation since the model was neither developed nor 

validated for motions applied. Assuming the model can be able to present well sinusoidal 

pitching motion around the quarter chord, it can also be able to present well all other motions. 

Semi-empirical dynamic stall models are usually applied to the helicopter rotor blades 

aeroelasticity because of similarity of the rotor blades behavior to dynamic stall models due to 

implementing the entire blade sinusoidal motion by the blade root cyclic pitch. This work 

presents a new approach using small inductance was not previously presented in the literature 

for stall flutter alleviation and elimination. 

2. Methodology 

2.1. Smart Wing Dynamic Stall Aeroelastic Simulation 

This study investigates the self-excited oscillations of a two-dimensional (2D) smart wing in 

uniform flow, as shown in Figure 1. The smart wing is free to pitch, 𝛼, about the elastic axis at 

a distance 𝑥𝑓 from the leading edge. The pitch stiffness 𝐾𝛼 is provided by a spiral spring and 

the pitch damping 𝐶𝛼 is presented by a torsional damper. Using the Lagrange’s equations and 

Kirchhoff’s law, the smart wing equations of motion can be written as [66, 67, 70] 

{
 

 𝐼𝛼𝛼̈ + 𝐶𝛼𝛼̇ + 𝐾𝛼𝛼 − 𝛽𝛼𝑞𝛼 =
1

2
𝜌𝑈2𝑐2 (𝑐𝑚 +

1

2
(𝑎 + 1 2⁄ )𝑐𝑛)                   

𝐿𝛼𝑞̈𝛼 + 𝑅𝛼𝑞̇𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0                                                   

                         (1) 

where its parameters are defined as below 
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Table 1 Parameters for smart wing equations of motion 

𝐼𝛼 Mass moment of inertia 

𝛼̈ Pitching acceleration 

𝐶𝛼 Pitching structural damping 

𝛼̇ Pitching velocity 

𝐾𝛼 Pitching structural stiffness 

𝛼 Pitching angle 

𝛽𝛼 Pitch electromechanical coupling 

𝑞𝛼 Pitch electric charge 

𝑐𝑚 Pitching moment coefficient 

𝑎 𝑎 = 𝑥𝑓 𝑏⁄ − 1 

𝑥𝑓 Elastic axis 

𝑏 Half span 

𝑐𝑛 Total lift coefficient 

𝐿𝛼 Pitch inductance of piezoelectric material 

𝑞̈𝛼 Rate of the pitch electrical current 

𝑅𝛼 Pitch resistance of piezoelectric material 

𝑞̇𝛼 Pitch electrical current 

𝐶𝑝𝛼 Pitch capacitance of piezoelectric material 

𝑥𝑝 Piezoelectric axis 

Assuming 𝑥1 to 𝑥12 as the aerodynamic load states which are explained later and 𝑥13 = 𝛼̇, 

𝑥14 = 𝑞̇𝛼, 𝑥15 = 𝛼, and 𝑥16 = 𝑞𝛼, Eq. (1) is written as first-order differential equations, as 

follows 
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{
  
 

  
 𝑥̇13 = −

𝐶𝛼
𝐼𝛼
𝑥13 −

𝐾𝛼
𝐼𝛼
𝑥15 +

𝛽𝛼
𝐼𝛼
𝑥16 −

1

2
𝜌𝑈2𝑐 𝑐𝑛 cos 𝛼⁄                                                   

𝑥̇14 = −
𝑅𝛼
𝐿𝛼
𝑥14 −

1

𝐶𝑝𝛼𝐿𝛼
𝑥16 +

𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝)𝑥15 +

1

2
𝜌𝑈2𝑐(𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛)

𝑥̇15 = 𝑥13                                                                                                                                   
𝑥̇16 = 𝑥14                                                                                                                                   

      (2) 

The new form of the equation of motion can be written 

𝐱̇ = 𝐟(𝐱, 𝐱̇)                                                                       (3) 

because of having nonlinear function of 𝛼̈. 

3. Dynamic Stall Aerodynamic Model 

In this work, the Leishman-Beddoes model has been applied to a general pitching aeroelastic 

smart structure by using the effective angle of attack 𝛼̅ as the angle between the total chordwise 

velocity and the total upwash at the quarter-chord, as follows [64, 70] 

𝛼̅ = tan−1 (
𝑈 sin 𝛼 + ℎ̇ cos 𝛼 − 𝑏(𝑎 + 1 2⁄ )𝛼̇

𝑈 cos 𝛼 − ℎ̇ sin 𝛼
)                                      (4) 

where 𝑈 is the free-stream airspeed, 𝛼 is the pitching angle, ℎ̇ is the plunge velocity, 𝑏 is the 

half chord, 𝑎 = 𝑥𝑓 𝑏⁄ − 1, 𝑥𝑓 elastic axis, and 𝛼̇ is the pitching velocity. In other words, using 

the angle of the triangle whose perpendicular sides are 𝑈𝑐 and 𝑈𝑛, 𝛼̅ can be calculated as shown 

in Figure 1. 

 

Fig. 1 A 2D smart wing with pitch DOF 

𝛽𝛼 𝐶𝑝𝛼 

𝑅𝛼 

𝐿𝛼 
𝐾𝛼 𝛼 

𝑥𝑓 

𝑥𝑝 

𝐶𝛼 

(𝑥𝑓 − 𝑥)𝛼̇ 

𝑈 
𝑈𝑛 

𝑈𝑐 

𝑐 4⁄  
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The smart wing motion in the Leishman-Beddoes model is describes by 𝛼̅(𝑡) and the non-

dimensional unsteady pitch rate 𝑞 = 𝛼̇̅𝑐 𝑈⁄  where 𝛼̇̅ is the time derivative of 𝛼̅ defined as 

𝛼̇̅ =
1

tan2 𝛼̅ + 1
[
𝑈 sin 𝛼 + ℎ̇ cos 𝛼 − 𝑏(𝑎 + 1 2⁄ )𝛼̇

(𝑈 cos 𝛼 − ℎ̇ sin 𝛼)
2 (𝑈𝛼̇ sin 𝛼 + ℎ̈ sin 𝛼 + ℎ̇𝛼̇ cos 𝛼) 

+
𝑈𝛼̇ cos 𝛼 + ℎ̈ cos 𝛼 − ℎ̇𝛼̇ sin 𝛼 − 𝑏(𝑎 + 1 2⁄ )𝛼̈

𝑈 cos 𝛼 − ℎ̇ sin 𝛼
]                                 (5) 

Equation (3) can be written in first order form as 

𝐱̇ = 𝐟(𝐱, 𝑥̇13, 𝑥̇14)                                                                 (6) 

where 𝐱 is a 16 × 1 state vector including the 12 Leishman-Beddoes states, 𝑥13 = 𝛼̇, 𝑥14 = 𝑞̇, 

𝑥15 = 𝛼, and 𝑥16 = 𝑞. The general form of the equations of motion can be represented 

𝑨𝒚̈ + 𝑪𝒚̇ + 𝑬𝒚 = 𝑭                                                                 (7) 

where 𝑨 the structural mass and inductance matrix, 𝒚̈ = [𝛼̈ 𝑞̈]𝑇 is the pitching acceleration 

and the rate of the pitch electrical current vector, 𝑪 is the pitching structural damping and pitch 

resistance of piezoelectric material matrix, 𝒚̇ = [𝛼̇ 𝑞̇]𝑇 is the pitching velocity and pitch 

electrical current vector, 𝑬 is the pitching structural stiffness, pitch electromechanical coupling 

and pitch capacitance of piezoelectric material matrix, 𝒚 = [𝛼 𝑞]𝑇 is the pitching angle and 

pitch electric charge vector, and 𝑭 is the aerodynamic load vector. Moreover, 𝑨, 𝑪, and 𝑬 

matrices, and 𝑭 vector are given by Eq. (A.)-(A.) in Appendix. 

Considering Eqs. (A.28)-(A.31), the equations of motion, Eq. (7), can be written as 

[

𝑥̇13
𝑥̇14
𝑥̇15
𝑥̇16

] = [−𝑨
−1𝑪 −𝑨−1𝑬
𝑰 𝟎

] [

𝑥13
𝑥14
𝑥15
𝑥16

] +
1

2
𝜌𝑈2𝑐 [

− 𝑐𝑛 cos 𝛼⁄

𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛
0
0

]               (8) 
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Because of the nonlinearity in 𝑥̇13 due to the nonlinearity in 𝛼̇̅, Eq. (5), as 𝑥̇13 = 𝛼̇̅, Eq. (8) 

needs to be solved iteratively by considering the Runge-Kutta approach and using a simple 

implicit algorithm as follows, 

1. The vectors 𝐱𝑖 and 𝐱̇𝑖 are known at time instance 𝑡𝑖. 

2. Substitute 𝑥̇13𝑖 in Eq. (6). 

3. Evaluate the first guess 𝐱𝑖+1,0 and 𝐱̇𝑖+1,0 using the Runge-Kutta method. 

4. Calculate 𝐽 = |𝑥13𝑖+1,0 − 𝑥13𝑖| as a convergence criterion. 

5. The solution has convergence if 𝐽 < 𝜖, where 𝜖 ≪ 1. Increment 𝑖 and return to step 1. 

6. If 𝐽 > 𝜖, substitute 𝑥13𝑖+1,0 into Eq. (6) and return to step 3 to calculate the second guess  

𝐱𝑖+1,1 and  𝐱̇𝑖+1,1. Keep repeating until having convergence. 

4. Numerical Examples 

Consider a smart wing with a pitch degree of freedom and the following characteristics. 

Previously, there were practical limits in the low frequency range like the one typically existing 

in aeroelastic phenomena due to the large required inductance in passive aeroelastic control. 

However, nowadays, it is possible to have a small inductor integrated into a piezopatch 

dedicated to aeroelastic control [71]. Since standard inductors usually have too large internal 

resistance for resonant shunt application, they are not a practical component to integrate into a 

piezopatch. Implementing closed magnetic circuits with high permeability materials allows the 

design of large inductance inductors with high quality factors. 

Table 2 Smart wing characteristics for modal analysis 

𝑐 = 0.637 m Chord 

𝑥𝑓 = 𝑐 3⁄  Pitch axis 

𝐾𝛼 = 2500 N rad⁄  Rotational spring stiffness 

𝛼𝐹 = 10° Wind-off equilibrium pitch angle 
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𝑓𝑛 = 5 Hz Wind-off natural frequency 

𝑀 = 0.3 Horizontal airflow Mach number 

𝑒𝛼 = 7.55 × 10
−3  C m⁄  Pitch coupling coefficient of piezoelectric material 

𝐶𝑝𝛼 = 34 × 10
−10 F Pitch capacitance of piezoelectric material 

𝐿𝛼 = 0.01 H Pitch inductance of piezoelectric material 

𝑅𝛼 = 10 Ω Pitch resistance of piezoelectric material 

The pizopatch characteristics as 𝑒𝛼, 𝐶𝑝𝛼, 𝐿𝛼, and 𝑅𝛼 are determined by the experience from the 

author’s previous work on smart wing flutter suppression [72-74] and some try and error 

process to find optimal values for each of them. The airfoil of the wing is NACA 0012 and its 

natural frequency is 𝜔𝑛 = 2𝜋𝑓𝑛 = 10𝜋, the moment of inertia around the pitch axis is 𝐼𝛼 =

𝐾𝛼 𝜔𝑛
2⁄ = 2.533 N s2⁄ . A light structural damping with coefficient 𝑐𝛼 = 𝐾𝛼 1000⁄  has be 

considered in the system.  

Example 1 Smart wing modal analysis 

As the first example, we conduct a linear eigen or modal analysis to the system and show its 

frequencies and mode shapes with and without the pizopatch, as follows. 

The smart wing equations of motion in free vibrations are given 

{

𝐼𝛼𝛼̈ + 𝐶𝛼𝛼̇ + 𝐾𝛼𝛼 − 𝛽𝛼𝑞𝛼 = 0                   

𝐿𝛼𝑞̈𝛼 + 𝑅𝛼𝑞̇𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0

                                                                                    (9) 

where the parameters are defined as before. Equation (9) can be written as first-order 

differential equations by assuming 𝑥1 = 𝛼̇, 𝑥2 = 𝑞̇𝛼, 𝑥3 = 𝛼, and 𝑥4 = 𝑞𝛼 

{
  
 

  
 𝑥̇1 = −

𝐶𝛼
𝐼𝛼
𝑥1 −

𝐾𝛼
𝐼𝛼
𝑥3 +

𝛽𝛼
𝐼𝛼
𝑥4                       

𝑥̇2 = −
𝑅𝛼
𝐿𝛼
𝑥2 −

1

𝐶𝑝𝛼𝐿𝛼
𝑥4 +

𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝)𝑥3

𝑥̇3 = 𝑥1                                                               
𝑥̇4 = 𝑥2                                                               

                                                                             (10) 
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Equation (10) can be rewritten by considering 𝒒 = [𝐼𝛼 𝐶𝛼 𝐾𝛼 𝛽𝛼 𝐿𝛼 𝐶𝑝𝛼 𝑅𝛼]𝑇and 

𝐱 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇, as follows 

𝐱̇ = 𝐟(𝐱, 𝒒) =

[
 
 
 
 
 
 −

𝐶𝛼
𝐼𝛼
𝑥1 −

𝐾𝛼
𝐼𝛼
𝑥3 +

𝛽𝛼
𝐼𝛼
𝑥4

−
𝑅𝛼
𝐿𝛼
𝑥2 −

1

𝐶𝑝𝛼𝐿𝛼
𝑥4 +

𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝)𝑥3

𝑥1
𝑥2 ]

 
 
 
 
 
 

                                (11) 

where 𝐟 are linear functions, 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are the smart wing states and denote the system’s 

pitching velocity, pitching angle, pitch electrical current, and pitch electric charge responses, 

respectively. There are four eigenvalues for the single DOF system that indicate the stability 

of the fixed point. One can obtain the fixed point of the system by solving 

𝐟(𝐱, 𝒒) = 𝟎                                                             (12) 

or, equivalently, 

𝐱̇ = 𝟎                                                                  (13) 

Using Eq. (11), it is possible to write Eq. (13) as 

𝐱̇ = 𝑨(𝒒)𝐱                                                          (14) 

where 

𝑨 =

[
 
 
 
 
 
 −
𝐶𝛼
𝐼𝛼

0 −
𝐾𝛼
𝐼𝛼

𝛽𝛼
𝐼𝛼

0
𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝) −

𝑅𝛼
𝐿𝛼

−
1

𝐶𝑝𝛼𝐿𝛼
1 0 0 0
0 1 0 0 ]

 
 
 
 
 
 

                                        (15) 

The solution of Eq. (15) can be given [70] 

𝐱(𝑡) =∑𝐯𝑖𝑒
𝜆𝑖𝑡𝑏𝑖

𝑛

𝑖=1

                                                           (16) 

where 𝐯𝑖 is the ith eigenvector of 𝑨, 𝜆𝑖 is the ith eigenvalue of 𝑨, and 𝑏𝑖 is the ith element of 

𝒃 = 𝑽−1𝐱0, where 𝑽 is eigenvector of 𝑨 and 𝐱0 is the initial condition. 
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The smart wing characteristics are the same mentioned before. In addition, the initial conditions 

are given as 𝑥1(0) = 0 deg s⁄ , 𝑥2(0) = 0 A, 𝑥3(0) = 0.1 deg, and 𝑥4(0) = 0 C. The system 

response of the smart wing is depicted in Figure 2. The solid line represents the pitching angle 

of the smart wing and the dashed line shows the pitching angle of the corresponding regular 

wing. It is clear that the smart wing oscillation can be damped very smoothly in only three 

period however, the regular wing oscillation can be damped very sharply during many sharp 

oscillations. 

 

Fig. 2 Pitch angle time response in modal analysis 

In addition, the phase plane plot for the pitching velocity and angle has been shown in Figure 

3 where the point (0,0) evokes the system trajectory. The initial pitching angle and velocity is 

the start point of the smart wing trajectory at the far right and the trajectory is turning to the 

fixed point, 𝐱𝐹 = 𝟎, where is the center of the phase plane (0,0). 
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Fig. 3 Phase plane for the pitching velocity and angle in modal analysis 

Also, the initial conditions for the electric charge and current which are zeros is the start point 

for the phase plane for the electrical current and charge. The trajectory is twisting out counter-

clockwise until reaching to its maximum values after that it is turning towards the start point 

(0,0), as indicated in Figure 4. 

 

Fig. 4 Phase plane for the electrical current and charge in modal analysis 

Example 2 Smart wing bifurcation analysis 

In second example, a linear bifurcation analysis about static equilibrium (flutter) is conducted 

with and without piezo dampener. The differential equations of motion are as follows, 
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{
 
 

 
 (𝐼𝛼 + 𝜌𝜋𝑏

4(1 8⁄ + 𝑎2))𝛼̈ + (𝐶𝛼 + 2𝜌𝑈𝜋𝑏
3𝑎(𝑎 − 1 2⁄ ))𝛼̇                     

+(𝐾𝛼 + 2𝜌𝑈
2𝜋𝑏2𝑎(𝑎 + 1 2⁄ ))𝛼 − 𝛽𝛼𝑞𝛼 = 0                   

𝐿𝛼𝑞̈𝛼 + 𝑅𝛼𝑞̇𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0                                                   

                         (17) 

where its parameters are defined in Table 1 and 𝜌 is the air density. For convenience, Eq. (17) 

can be written as 

{

𝑚𝛼̈ + 𝑑𝛼̇ + 𝑘𝛼 − 𝛽𝛼𝑞𝛼 = 0                                                                               

𝐿𝛼𝑞̈𝛼 + 𝑅𝛼𝑞̇𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0                                                   

                         (18) 

where 𝑚 = 𝐼𝛼 + 𝜌𝜋𝑏
4(1 8⁄ + 𝑎2), 𝑑 = 𝐶𝛼 + 2𝜌𝑈𝜋𝑏

3𝑎(𝑎 − 1 2⁄ ), and 𝑘 = 𝐾𝛼 +

2𝜌𝑈2𝜋𝑏2𝑎(𝑎 + 1 2⁄ ). Equation (18) is the equations of motion of a simple unforced Duffing 

oscillator that is very often used in dynamics literature. We can express it in first order 

𝐱̇ = 𝐟(𝐱, 𝐱̇)                                                                       (19) 

where 𝑥1 = 𝛼̇, 𝑥2 = 𝑞̇𝛼, 𝑥3 = 𝛼, 𝑥4 = 𝑞𝛼, and 

𝐟(𝐱, 𝐱̇) =

(

 
 
 

−
𝑑

𝑚
𝑥1 −

𝑘

𝑚
𝑥3 −

𝛽𝛼
𝑚
𝑥4

−
𝑅𝛼
𝐿𝛼
𝑥2 −

1

𝐿𝛼𝐶𝑝𝛼
𝑥4 −

𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝)𝑥3

𝑥1
𝑥2 )

 
 
 

                               (20) 

The fixed points of the system are obtained by 𝐟(𝐱, 𝐱̇) = 0, which yields 𝑥1 = 0 and 𝑥3 = 0. 

Equation (20) can be written as 

𝐱̇ = 𝐟(𝐱, 𝐱̇) ≈ 𝑨1𝐱                                                                (21) 

where 

𝑨1 =

[
 
 
 
 
 −

𝑑

𝑚
0

0 −
𝑅𝛼
𝐿𝛼

−
𝑘

𝑚
−
𝛽𝛼
𝑚

−
𝛽𝛼
𝐿𝛼
(𝑥𝑓 − 𝑥𝑝) −

1

𝐿𝛼𝐶𝑝𝛼
 1        0
 0        1

        0                    0
        0                    0 ]

 
 
 
 
 

                          (22) 
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The eigenvalues of matrix 𝑨1 in Eq. (22) shows the stability of the 𝐱𝐹 fixed point. We consider 

the same smart wing with characteristics as Table 2 and air density of 𝜌 = 1.225 kg m3⁄  and 

as the airspeed is changing, we evaluate the position and stability of the fixed points. At the 

critical airspeed, 𝐱𝐹 is on the point of becoming unstable, as shown in Figure 5. For the smart 

wing, stable fixed points are indicated by a solid blue line and unstable ones by a solid black 

line. However, for the regular wing, stable fixed points are denoted by a dashed red line and 

unstable ones by a dashed green line. A pitchfork bifurcation is occurring at 𝑈 = 1166 m s⁄ , 

as shown in Figure 5 by a blue circle for the smart wing and red triangle for the regular wing. 

It is clear adding the piezopatch does not affect the bifurcation of the smart wing compared to 

the regular one. 

 

Fig. 5 Bifurcation analysis 

Example 3 Smart wing stall flutter alleviation 

In third example, we conduct an aeroelastic analysis on the following smart wing, Table 3, to 

represent the effect of the piezoelectric patch on stall flutter alleviation.  

Table 3 Smart wing characteristics for flutter alleviation 

𝑐 = 0.637 m Chord 

Stable 

Stable 

Unstable 
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𝑥𝑓 = 𝑐 3⁄  Pitch axis 

𝐾𝛼 = 2500 N rad⁄  Rotational spring stiffness 

𝛼𝐹 = 10° Wind-off equilibrium pitch angle 

𝑓𝑛 = 5 Hz Wind-off natural frequency 

𝑀 = 0.3 Horizontal airflow Mach number 

𝑒𝛼 = 1.4465 × 10
−1  C m⁄  Pitch coupling coefficient of piezoelectric material 

𝐶𝑝𝛼 = 105 × 10
−8 F Pitch capacitance of piezoelectric material 

𝐿𝛼 = 0.01 H Pitch inductance of piezoelectric material 

𝑅𝛼 = 10 Ω Pitch resistance of piezoelectric material 

Using the Runge-Kutta-Fehlberg approach and event detection, one can solve the implicit 

scheme by considering the following parameters in Table 4 

Table 4 Runge-Kutta-Fehlberg Parameters 

∆𝑡 = 2 × 10−4 s Default time step 

𝑡𝑓 = 2 s Final time 

𝜀 = 0.1 Runge-Kutta-Fehlberg tolerance 

𝛿 = 10−16 Event detection tolerance 

𝜖 = 10−6 Implicit tolerance 

𝛼(0) = 20° Initial pitch angle 

𝛼̇(0) = 0 Initial pitch velocity 

Note that the aerodynamic states initial values are unknowns, and they cannot be considered 

all as zero. For instance, 𝑥10 and 𝑥12 represent the separation point positions and locate close 

to 0.05 for a pitch angle of 20°. The simplest way to find properly the aerodynamic states 

initial values is to implement Leishman-Beddoes model for a short time as 𝑡𝑓 = 0.2 s, while 

the structural states are at their initial values. In the full aeroelastic simulation, initial conditions 
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can be obtained from the aerodynamic states after reaching their converged values at the end 

of this pre-simulation. 

The pre-simulation results are shown in Figure 6 including solid lines for the smart wing and 

dashed black lines for the regular wing. It indicates all of the aerodynamic states can converge 

to constant values after 0.2 s. These values can be considered as initial conditions, along with 

the initial values of the pitch and pitch rate. From Figure 6, it is clear that both smart and regular 

wings have the same aerodynamic state response during pre-simulation time interval. 

 

Fig. 6 Aerodynamic state response versus time during pre-simulation, solid lines: smart wing, 

dashed lines: regular wing 

The full aeroelastic simulation is started after resetting time to zero. The time response of the 

resulting pitch angle is shown in Figure 7 which indicates the stall flutter or LCO. It is clear 

that using smart material can decrease the maximum pitch angle from 23.5˚ in the regular wing 

to 20.3˚ in the smart wing which shows the effect of using smart material in decreasing the 

maximum pitch angle. The response of the regular wing settles onto a limit cycle frequency 5.6 

Hz however, the smart wing limit cycle frequency is 5.47 Hz. Reduced frequency of the regular 

wing is 𝑘 = 0.11 however, the smart wing reduced frequency is 𝑘 = 0.098. Amplitude of the 
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regular wing is 10.86˚ and its mean is 12.63˚ but the smart wing amplitude is 1.38˚ and its mean 

is 18.92˚. 

 

Fig. 7 Pitch angle time response 

The load response versus pitch angle during the LCO has been depicted in Figure 8 which 

shows higher load response in the regular wing rather than the smart wing. In fact, using smart 

material can reduce the induced lift due to the leading edge vortex and increase the trailing 

edge vortex effect, as well. The experimental result is from McAlister et al. as a classic 

reference providing detailed aerodynamic loads on many different wing sections under 

dynamics stall at different kinematic and flow conditions [75]. The experimental result is for a 

wing with a NACA 0012 section under forced pitching oscillations with an amplitude of 10˚ 

around a mean pitch angle of 12˚ with reduced frequency 𝑘 = 0.098 at a Mach number of 0.3. 

The experimental measured normal force coefficient is around the quarter chord against 

instantaneous pitch angle and it is also a cycle average. The arrows indicate the direction of the 

experimental normal force coefficient variation as the pitch angle increases from 4˚ to 22˚ and 

then back down to 4˚. In the regular wing, the pitch angle increases from 2˚ to 22˚ and then 

back down to 2˚. However, in the smart wing, the pitch angle increases from 17.4˚ to 20.6˚ then 

back down to 17.4˚. It means that the smart wing is able to control effectively the pitching 
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oscillation of the wing during the stall flutter or LCO. The angle of static stall is 12˚ however, 

it is increased during the oscillation to 16.4˚. The smart wing results shows an increase in the 

dynamic stall angle due to increasing in the wing oscillation to 20.3˚. The characteristics of the 

LCO of the regular wing are very similar to the those of the forced oscillation of experimental 

result in [75], therefore the load response versus the angle of attack plots of the regular wing 

and experiment resemble closely. The only difference is the fact that the effect of the LEV is 

stronger in the regular wing because of existing the slightly higher frequency and amplitude. 

However, due to the lower frequency and amplitude in the smart wing rather than the 

experiment, the effect of the LEV is weaker in the smart wing. 

 

 

Fig. 8 Load response versus pitch angle: (a) smart and regular wings, experiment, and static, 

(b) smart and regular wings 

Dynamic lift initially varies linearly with pitch angle with slope equals to that of the static lift 

curve, as shown in Figure 8. In the experiment, up to 𝛼 = 16.4°, the dynamic lift remains linear 

which is more than 4° higher than the static stall angle. However, in the regular wing, up to 

𝛼 = 17°, the dynamic lift remains linear which is more than 5° higher than the static stall angle. 

[75] 
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In the smart wing, the dynamic lift becomes completely nonlinear. Moreover, in both the 

experiment and regular wing, there are a large amount of increase in the static maximum lift 

however, in the smart wing, that value decreases considerably. In the experiment, moment stall 

occurs at 𝛼 = 16.4° which represents the start of dynamic stall leading to flattening out the lift 

variation with pitch angle. However, in the regular wing, moment stall appears at 𝛼 = 18° and 

in the smart wing, the wing remains always in stall. Furthermore, in the experiment at 𝛼 =

17.9°, the LEV detaches from the leading edge and starts to move down the chord leading to 

increasing the lift, but in the smart wing, the LEV is always detached from the leading edge 

and in the regular wing, it happens at 𝛼 = 18.5°. The LEV effect on the aerodynamic loads 

decreases rapidly such as dropping the lift while there is a fully separated flow on the upper 

surface of the regular wing. However, those effects on the smart wing are much less in terms 

of lift dropping and upper surface fully separated flow, as shown in Figure 8. Finally, the 

regular wing reaches the maximum pitch angle of 22˚ then its pitch angle starts to decrease 

until reaching the minimum pitch angle of 2˚. However, the smart wing reaches the maximum 

pitch angle of 20.6˚ then its pitch angle starts to decrease until reaching the minimum pitch 

angle of 17.4˚. In the regular wing, the flow re-attach again fully by the time 𝛼 = 10.7° 

however, in the smart wing, the flow fully attachment never occurs. Table 5 shows the 

comparison between the smart and regular wings and experimental results for different 

parameters. 

Table 5 Comparison between smart and regular wings and experiment 

 Smart Wing Regular Wing Experiment 

Minimum pitch angle 17.4˚ 2˚ 4˚ 

Maximum pitch angle 20.6˚ 22˚ 22˚ 

Dynamic stall angle - 18˚ 16.4˚ 

LEV detaches - 18.5˚ 17.9˚ 
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LEV at TE - 10.7˚ 10.7˚ 

The stall delay effect occurs due to inviscid and viscous mechanisms. The inviscid flow has a 

reduction in the adverse pressure gradient over most of the surface of the wing during pitch up 

in compared to one acting on the static wing surface at the same instantaneous angle of attack. 

In other words, during moving upward, the boundary layer is further from stall hence stays 

attached up to higher angles of attack than in the static case [76]. The viscous mechanism is 

referred to as the leading edge jet or moving wall effect [77]. The boundary layer velocity at 

the wall of a static wing is zero because of static wall. However, on the pitching up wing, the 

leading edge is moving up parallel to the boundary layer flow direction. Having nonzero 

boundary layer speed at the wall can add a considerable momentum input to the boundary layer 

leading to stall delay. The leading edge jet only has a significant effect very close to the leading 

edge and in downstream of the leading edge, the leading edge jet add very little momentum to 

the boundary layer. At the moving down, there is inverted moving wall effect therefore, the 

flow is forced to separate at the leading edge leading to reattachment delay. 

Probably the LEV is the most major difference between static and dynamic stall. There are 

three main mechanisms for the LEV formation and shedding [78, 79]. The first mechanism 

which occurs on wings with sharp leading edges is bubble bursting in the leading edge laminar 

separation. Since the boundary layer near the leading edge is laminar, laminar separation 

happens first. Then due to becoming turbulent of the separated shear layer and re-attaching 

again, a separation bubble forms. Increasing the pitch angle leads to bursting the bubble 

abruptly and creating the LEV that then propagates downstream. The trailing edge separation 

does not interfere with the LEV formation process, as there is a certain amount of trailing edge 

separation. The second mechanism is mixed leading edge/trailing edge stall with flow 

separation occurs first at the trailing edge and starts to move upstream. By increasing the pitch 

angle, there is an abrupt separation of the turbulent boundary layer on the entire front section 
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of the wing leading to spreading flow reversal to nearly all the wing upper surface and forming 

the LEV near the leading edge. The third mechanism is shock-induced separation due to strong 

shocks occurring at higher Mach numbers near the leading edge. Strong shocks impose very 

high adverse pressure gradient on the boundary layer leading to forcing separation. At the foot 

of the last strong shock wave, the LEV creates in oblong shape and initially enveloped in 

supersonic external flow. Depending to the roughness of the leading edge and the Reynolds 

number, the shock-induced separation mechanism can interact with the laminar separation 

bubble bursting mechanism. 

The pitching moment versus pitch angle during the LCO is indicated in Figure 9. It is clear that 

using smart material cannot increase the pitching moment in high pitch angle in comparison 

with the regular wing one. In other words, the LEV can induce more pitching moment in the 

regular wing in comparison with the one in the smart wing. Furthermore, the trailing edge 

vortex effect in inducing pitching moment in the smart wing is lower than the one in the regular 

wing. 

 

Fig. 9 Pitching moment versus pitch angle 

The pitching moment around the pitching axis, 𝑥𝑓, versus pitch angle during the LCO is 

indicated in Figure 10 which shows implementing smart material can help increase the pitching 

75 
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moment in high pitch angle due to improving of the leading edge vortex effect and in addition 

it can reduce the effect of trailing edge, as well. There are some differences between Figure 10 

and Figure 9. Both figures for the regular wing include three loops with different relative sizes. 

However, for the smart wing in Figure 9 there is only one loop but in Figure 10 there are two 

loops. Considering the aerodynamic work done during a complete cycle as 

𝑊 = ∮𝑐𝑚𝑥𝑓
𝑑𝑥                                                                      (23) 

there are following distinguish two cases 

Case 1- The 𝑐𝑚𝑥𝑓
 versus 𝛼 loop has a counter-clockwise direction which includes a negative 

moment when 𝛼 increases and vice-versa. There is a negative total work done over the cycle 

by the structure on the fluid domain. Therefore, the structure loses energy and its motion is 

damped. 

Case 2- The 𝑐𝑚𝑥𝑓
 versus 𝛼 loop has a clockwise direction which includes a positive moment 

when 𝛼 increases and vice-versa. There is a positive total work done over the cycle by the fluid 

on the structure domain. Therefore, the structure obtains energy and its motion amplitude is 

increased. 

 

Fig. 10 Pitching moment around the pitching axis versus pitch angle 
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The two outer loops in Figure 10 have counter-clockwise directions however, the inner loop 

posses a clockwise direction. The total work done over the cycle is positive because the inner 

loop is bigger than the two outer combined. Hence, the fluid is performing work on the structure 

leading to sustain the stall flutter or limit cycle. 

In contrast, in Figure 9, the total work done by the pitching moment around the aerodynamic 

center is negative since the inner loop is smaller than the two outer ones. In fact, if the pitch 

axis is moved to the quarter-chord, the stall flutter or LCO would be removed the motion would 

be damped. 

The pitching velocity versus pitch angle has been depicted in Figure 11 where the system 

trajectory starts from the point (20,0) according to the initial condition of the system. The 

smart wing trajectory starts from the initial pitch angle and pitching velocity in the inner part 

and the trajectory is turning to the outer part where the stall flutter or LCO occurs as shown in 

Figure 11. 

 

Fig. 11 Phase plane for pitching velocity versus pitch angle 

The start point of the phase plane for the electric current and charge starts from the zero initial 

conditions for the electric charge and current, as shown in Figure 12. The trajectory twists in 

clockwise until reaching its limit value in the stall flutter or LCO. 
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Fig. 12 Phase plane for pitch electric current versus pitch electric charge 

Example 4 Smart wing stall flutter elimination 

As fourth example, we conduct an aeroelastic analysis on the same smart wing for example 3 

except the pitching coupling coefficient of piezoelectric material which is 𝑒𝛼 =

1.463 × 10−1  C m⁄  to represent the effect of the piezoelectric patch on stall flutter elimination. 

Using the Runge-Kutta-Fehlberg approach and event detection, one can solve the implicit 

scheme by considering the same parameters of Table 4. As mentioned in example 3, we need 

note that the aerodynamic states initial values are unknowns, and they cannot be considered all 

as zero. For instance, 𝑥10 and 𝑥12 represent the separation point positions and locate close to 

0.05 for a pitch angle of 20°. The simplest way to find properly the aerodynamic states initial 

values is to implement Leishman-Beddoes model for a short time as 𝑡𝑓 = 0.2 s, while the 

structural states are at their initial values. In the full aeroelastic simulation, initial conditions 

can be obtained from the aerodynamic states after reaching their converged values at the end 

of this pre-simulation. 

The pre-simulation results are shown in Figure 13 including solid lines for the smart wing and 

dashed black lines for the regular wing. It indicates all of the aerodynamic states can converge 

to constant values after 0.2 s. These values can be considered as initial conditions, along with 
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the initial values of the pitch and pitch rate. From Figure 13, it is clear that both smart and 

regular wings have the same aerodynamic state response during pre-simulation time interval. 

 

Fig. 13 Aerodynamic state response versus time during pre-simulation, solid lines: smart 

wing, dashed lines: regular wing 

The full aeroelastic simulation is started after resetting time to zero. The time response of the 

resulting pitch angle is shown in Figure 14 which indicates the stall flutter or LCO. It is clear 

that using smart material can decrease the maximum pitch angle from 23.5˚ in the regular wing 

to 19.9˚ in the smart wing which shows the effect of using smart material in decreasing the 

maximum pitch angle. The response of the regular wing settles onto a limit cycle frequency 5.6 

Hz however, the smart wing has no limit cycle. 
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Fig. 14 Pitch angle time response 

The load response versus pitch angle during the LCO has been depicted in Figure 15 which 

shows higher load response in the regular wing rather than the smart wing. In fact, using smart 

material due to no oscillation load response value becomes one point, as shown in Figure 15. 

In the smart wing, the pitch angle remains around 19.9˚ since there is no oscillatory motion. It 

means that the smart wing is able to eliminate effectively the pitching oscillation of the wing 

during the stall flutter or LCO. 

 

 

Fig. 15 Load response versus pitch angle: smart and regular wings, experiment, and static 

In the smart wing, due to having a constant pitch angle, there is no dynamic lift. Moreover, in 

both the experiment and regular wing, there are a large amount of increase in the static 

maximum lift however, in the smart wing, that value decreases considerably. In the experiment, 

moment stall occurs at 𝛼 = 16.4° which represents the start of dynamic stall leading to 

flattening out the lift variation with pitch angle. However, in the regular wing, moment stall 

appears at 𝛼 = 18° and in the smart wing, the wing remains always in stall. Furthermore, in 

the smart wing, the LEV is always detached from the leading edge. 

[75] 
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The pitching moment versus pitch angle during the LCO is indicated in Figure 16. It is clear 

that using smart material cannot increase the pitching moment in high pitch angle in 

comparison with the regular wing one. In other words, the LEV can induce more pitching 

moment in the regular wing in comparison with the one in the smart wing. Furthermore, the 

trailing edge vortex effect in inducing pitching moment in the smart wing is lower than the one 

in the regular wing. 

 

Fig. 16 Pitching moment versus pitch angle 

The pitching moment around the pitching axis, 𝑥𝑓, versus pitch angle during the LCO is 

indicated in Figure 17 which shows implementing smart material to eliminate stall flutter 

cannot help increase the pitching moment in high pitch angle due to not improving of the 

leading edge vortex effect and in addition it cannot reduce the effect of trailing edge, as well. 

There are some differences between Figure 17 and Figure 16. Both figures for the regular wing 

include three loops with different relative sizes. However, for the smart wing in both Figures 

16 and 17, there is no loop since there is no oscillation. 

75 
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Fig. 17 Pitching moment around the pitching axis versus pitch angle 

The pitching velocity versus pitch angle has been depicted in Figure 18 where the system 

trajectory starts from the point (20,0) according to the initial condition of the system. The 

smart wing trajectory starts from the initial pitch angle and pitching velocity in the inner part 

and the trajectory is turning to the outer part where the stall flutter or LCO occurs as shown in 

Figure 18. 

 

Fig. 18 Phase plane for pitching velocity versus pitch angle 

The start point of the phase plane for the electric current and charge starts from the zero initial 

conditions for the electric charge and current, as shown in Figure 19. The trajectory twists in 

clockwise until reaching its limit value in the stall flutter or LCO. 
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Fig. 19 Phase plane for pitch electric current versus pitch electric charge 

5. Parametric Study for Stall Flutter Alleviation and Elimination 

In this section, effects of different parameters of the smart wing on stall flutter alleviation are 

investigated. According to the smart wing configuration shown in Figure 1, we consider the 

parameters as 𝑥𝑝, piezoelectric axis, 𝛽𝛼, pitch electromechanical coupling, 𝐿𝛼, pitch inductance 

of piezoelectric material, 𝑅𝛼, pitch resistance of piezoelectric material, and 𝐶𝑝𝛼, pitch 

capacitance of piezoelectric material. 

5.1 Effect of 𝒙𝒑 on stall flutter alleviation and elimination 

As the first parameter, we consider 𝑥𝑝 with different values as 

0.095𝑐, 0.096𝑐, 0.097𝑐, 0.098𝑐, 0.099𝑐, and 0.1𝑐, where 𝑐 represents the chord length of the 

wing. Having different locations for the shunt piezoelectric patch cannot create any difference 

on the smart wing pre-simulation results obtaining the aerodynamic state initial values 

discussed in Section 4, as indicated in Figure 20. 
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Fig. 20 Aerodynamic state response versus time during pre-simulation for different 𝑥𝑝 

location, solid lines: smart wing, dashed lines: regular wing 

It is clear that changing the location of the piezoelectric patch does not change the aerodynamic 

state response versus time during pre-simulation as all of the aerodynamic states converge to 

constant values after 0.2 s, as shown in Figure 20. In other words, both smart and regular wings 

have the same aerodynamic state response during pre-simulation time interval. Furthermore, 

pitch angle time response of the smart wing changes with respect to the locations of the 

piezoelectric patch which indicates pitch angle time response of the smart wing is dependent 

on the location of the piezoelectric patch, as shown in Figure 21. Having piezoelectric patch at 

location of 0.095𝑐 can eliminate the LCO effectively. However, by moving the location 

towards 0.1𝑐, the amplitude of LCO is increased gradually. 
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Fig. 21 Pitch angle time response for different 𝑥𝑝 location 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 22 for 

different locations of the piezoelectric patch which indicates the load response of the smart 

wing is dependent on the location of the piezoelectric patch. 

 

Fig. 22 Load response versus pitch angle for different 𝑥𝑝 location 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

23 for different locations of the piezoelectric patch which indicates the pitching moment of the 

smart wing is dependent on the location of the piezoelectric patch. 
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Fig. 23 Pitching moment versus pitch angle for different 𝑥𝑝 location 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 24 for different locations of the piezoelectric patch which indicates the 

pitching moment around the pitching axis of the smart wing is dependent on the location of the 

piezoelectric patch. 

 

Fig. 24 Pitching moment around the pitching axis versus pitch angle for different 𝑥𝑝 location 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 25 for different locations of the piezoelectric patch which indicates the phase 

plane for pitching velocity of the smart wing is dependent on the location of the piezoelectric 

patch. 
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Fig. 25 Phase plane for pitching velocity versus pitch angle for different 𝑥𝑝 location 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 26 for different locations of the piezoelectric patch which indicates 

the load response of the smart wing is almost independent on the location of the piezoelectric 

patch. 

 

Fig. 26 Phase plane for pitch electric current versus pitch electric charge for different 𝑥𝑝 

location 

5.2 Effect of 𝑳𝜶 on stall flutter alleviation and elimination 
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As the second parameter, we consider 𝐿𝛼 with different values as 0.01, 0.05, 0.1, 0.5, and 1 H. 

However, having different pitch inductance of piezoelectric material for the shunt piezoelectric 

patch cannot create any difference on the smart wing pre-simulation results obtaining the 

aerodynamic state initial values discussed in Section 4, as indicated in Figure 27. 

 

Fig. 27 Aerodynamic state response versus time during pre-simulation for different 𝐿𝛼, solid 

lines: smart wing, dashed lines: regular wing 

It is clear that changing the pitch inductance of the piezoelectric patch does not change the 

aerodynamic state response versus time during pre-simulation as all of the aerodynamic states 

converge to constant values after 0.2 s, as shown in Figure 27. In other words, both smart and 

regular wings have the same aerodynamic state response during pre-simulation time interval. 

Furthermore, pitch angle time response of the smart wing does not change with respect to the 

pitch inductance of the piezoelectric patch which indicates pitch angle time response of the 

smart wing is independent on the pitch inductance of the piezoelectric patch, as shown in Figure 

28. 
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Fig. 28 Pitch angle time response for different 𝐿𝛼 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 29 for 

different pitch inductance of the piezoelectric patch which indicates the load response of the 

smart wing is independent on the pitch inductance of the piezoelectric patch. 

 

Fig. 29 Load response versus pitch angle for different 𝐿𝛼 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

30 for different pitch inductance of the piezoelectric patch which indicates the pitching moment 

of the smart wing is not dependent on the pitch inductance of the piezoelectric patch. 
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Fig. 30 Pitching moment versus pitch angle for different 𝐿𝛼 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 31 for different pitch inductance of the piezoelectric patch which indicates 

the pitching moment around the pitching axis of the smart wing is independent on the pitch 

inductance of the piezoelectric patch. 

 

Fig. 31 Pitching moment around the pitching axis versus pitch angle for different 𝐿𝛼 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 32 for different pitch inductance of the piezoelectric patch which indicates the 

phase plane for pitching velocity of the smart wing is not dependent on the pitch inductance of 

the piezoelectric patch. 
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Fig. 32 Phase plane for pitching velocity versus pitch angle for different 𝐿𝛼 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 33 for different pitch inductance of the piezoelectric patch which 

indicates the load response of the smart wing is dependent on the pitch inductance of the 

piezoelectric patch. 

 

Fig. 33 Phase plane for pitch electric current versus pitch electric charge for different 𝐿𝛼 

5.3 Effect of 𝒆𝜶 on stall flutter alleviation and elimination 

As the third parameter, we consider 𝑒𝛼 with different values as 1.4455 × 10−1, 1.446 × 10−1, 

1.4465 × 10−1, and 1.447 × 10−1 C m⁄ . However, having different pitch coupling coefficient 

of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the 
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smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in 

Section 4, as indicated in Figure 34. 

 

Fig. 34 Aerodynamic state response versus time during pre-simulation for different 𝑒𝛼 

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change 

the aerodynamic state response versus time during pre-simulation as all of the aerodynamic 

states converge to constant values after 0.2 s, as shown in Figure 34. In other words, both smart 

and regular wings have the same aerodynamic state response during pre-simulation time 

interval. Furthermore, pitch angle time response of the smart wing changes slightly with respect 

to the pitch coupling coefficient of the piezoelectric patch which indicates pitch angle time 

response of the smart wing is slightly dependent on the pitch coupling coefficient of the 

piezoelectric patch, as shown in Figure 35. 
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Fig. 35 Pitch angle time response for different 𝑒𝛼 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 36 for 

different pitch coupling coefficient of the piezoelectric patch which indicates the load response 

of the smart wing is slightly dependent on the pitch coupling coefficient of the piezoelectric 

patch. 

 

Fig. 36 Load response versus pitch angle for different 𝑒𝛼 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

37 for different pitch coupling coefficient of the piezoelectric patch which indicates the 
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pitching moment of the smart wing is slightly dependent on the pitch coupling coefficient of 

the piezoelectric patch. 

 

Fig. 37 Pitching moment versus pitch angle for different 𝑒𝛼 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 38 for different pitch coupling coefficient of the piezoelectric patch which 

indicates the pitching moment around the pitching axis of the smart wing is slightly dependent 

on the pitch coupling coefficient of the piezoelectric patch. 

 

Fig. 38 Pitching moment around the pitching axis versus pitch angle for different 𝑒𝛼 
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Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 39 for different pitch coupling coefficient of the piezoelectric patch which 

indicates the phase plane for pitching velocity of the smart wing is dependent on the pitch 

coupling coefficient of the piezoelectric patch. 

 

Fig. 39 Phase plane for pitching velocity versus pitch angle for different 𝑒𝛼 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 40 for different pitch coupling coefficient of the piezoelectric patch 

which indicates the load response of the smart wing is independent on the pitch coupling 

coefficient of the piezoelectric patch. 
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Fig. 40 Phase plane for pitch electric current versus pitch electric charge for different 𝑒𝛼 

5.4 Effect of 𝑪𝑷𝜶 on stall flutter alleviation and elimination 

As the fourth parameter, we consider 𝐶𝑝𝛼 with different values as 104 × 10−8, 104.5 × 10−8, 

105 × 10−8, 105.5 × 10−8, and 106 × 10−8 F. However, having different pitch capacitance 

of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the 

smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in 

Section 4, as indicated in Figure 41. 

 

Fig. 41 Aerodynamic state response versus time during pre-simulation for different 𝐶𝑝𝛼 

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change 

the aerodynamic state response versus time during pre-simulation as all of the aerodynamic 

states converge to constant values after 0.2 s, as shown in Figure 41. In other words, both smart 

and regular wings have the same aerodynamic state response during pre-simulation time 

interval. Furthermore, pitch angle time response of the smart wing changes with respect to the 

pitch capacitance of the piezoelectric patch which indicates pitch angle time response of the 

smart wing is dependent on the pitch capacitance of the piezoelectric patch, as shown in Figure 

42. 
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Fig. 42 Pitch angle time response for different 𝐶𝑝𝛼 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 43 for 

different pitch capacitance of the piezoelectric patch which indicates the load response of the 

smart wing is dependent on the pitch capacitance of the piezoelectric patch. 

 

Fig. 43 Load response versus pitch angle for different 𝐶𝑝𝛼 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

44 for different pitch capacitance of the piezoelectric patch which indicates the pitching 

moment of the smart wing is dependent on the pitch capacitance of the piezoelectric patch. 
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Fig. 44 Pitching moment versus pitch angle for different 𝐶𝑝𝛼 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 45 for different pitch capacitance of the piezoelectric patch which indicates 

the pitching moment around the pitching axis of the smart wing is dependent on the pitch 

capacitance of the piezoelectric patch. 

 

Fig. 45 Pitching moment around the pitching axis versus pitch angle for different 𝐶𝑝𝛼 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 46 for different pitch capacitance of the piezoelectric patch which indicates 
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the phase plane for pitching velocity of the smart wing is dependent on the pitch capacitance 

of the piezoelectric patch. 

 

Fig. 46 Phase plane for pitching velocity versus pitch angle for different 𝐶𝑝𝛼 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 47 for different pitch capacitance of the piezoelectric patch which 

indicates the load response of the smart wing is independent on the pitch capacitance of the 

piezoelectric patch. 

 

Fig. 47 Phase plane for pitch electric current versus pitch electric charge for different 𝐶𝑝𝛼 

5.5 Effect of 𝑹𝜶 on stall flutter alleviation and elimination 
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As the fifth parameter, we consider 𝑅𝛼 with different values as 5, 10, 15, 20, and 25 Ω. 

However, having different pitch resistance of piezoelectric material for the shunt piezoelectric 

patch cannot create any difference on the smart wing pre-simulation results obtaining the 

aerodynamic state initial values discussed in Section 4, as indicated in Figure 48. 

 

Fig. 48 Aerodynamic state response versus time during pre-simulation for different 𝑅𝛼 

It is clear that changing the pitch coupling coefficient of the piezoelectric patch does not change 

the aerodynamic state response versus time during pre-simulation as all of the aerodynamic 

states converge to constant values after 0.2 s, as shown in Figure 48. In other words, both smart 

and regular wings have the same aerodynamic state response during pre-simulation time 

interval. Furthermore, pitch angle time response of the smart wing does not change with respect 

to the pitch resistance of the piezoelectric patch which indicates pitch angle time response of 

the smart wing is independent on the pitch resistance of the piezoelectric patch, as shown in 

Figure 49. 
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Fig. 49 Pitch angle time response for different 𝑅𝛼 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 50 for 

different pitch resistance of the piezoelectric patch which indicates the load response of the 

smart wing is independent on the pitch resistance of the piezoelectric patch. 

 

Fig. 50 Load response versus pitch angle for different 𝑅𝛼 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

51 for different pitch resistance of the piezoelectric patch which indicates the pitching moment 

of the smart wing is not dependent on the pitch resistance of the piezoelectric patch. 
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Fig. 51 Pitching moment versus pitch angle for different 𝑅𝛼 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 52 for different pitch resistance of the piezoelectric patch which indicates 

the pitching moment around the pitching axis of the smart wing is independent on the pitch 

resistance of the piezoelectric patch. 

 

Fig. 52 Pitching moment around the pitching axis versus pitch angle for different 𝑅𝛼 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 53 for different pitch resistance of the piezoelectric patch which indicates the 
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phase plane for pitching velocity of the smart wing is not dependent on the pitch resistance of 

the piezoelectric patch. 

 

Fig. 53 Phase plane for pitching velocity versus pitch angle for different 𝑅𝛼 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 54 for different pitch resistance of the piezoelectric patch which 

indicates the load response of the smart wing is independent on the pitch resistance of the 

piezoelectric patch. 

 

Fig. 54 Phase plane for pitch electric current versus pitch electric charge for different 𝑅𝛼 
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In summary, according to the parametric study results, only phase plane can be affected with 

respect to different parameters value. However, other results remain unchanged, as shown in 

this sub-section. 

5.6 Effect of electrical system frequency on stall flutter alleviation and elimination 

As the sixth parameter, we consider the effect of the electrical system frequency which needs 

to derive first the equations of motion for the electrical system, as follows 

{
𝛼̈ + 2𝜁𝜔𝑛𝛼̇ + 𝜔𝑛

2𝛼 −
𝛽𝛼
𝐼𝛼
𝑞𝛼 =

1

2

𝜌𝑈2𝑐2

𝐼𝛼
(𝑐𝑚 +

1

2
(𝑎 + 1 2⁄ )𝑐𝑛)                                   

𝑞̈𝛼 + 2𝜁𝑒𝜔𝑒𝑞̇𝛼 + 𝜔𝑒
2𝑞𝛼 − 𝐶𝑝𝛼𝛽𝛼𝜔𝑒

2(𝑥𝑓 − 𝑥𝑝)𝛼 = 0                                                       

   (24) 

where 𝜁 = 𝐶𝛼 (2√𝐾𝛼𝐼𝛼)⁄  is the structural damping ratio, 𝜔𝑛 the structural natural frequency, 

𝜁𝑒  the electrical damping ration, and 𝜔𝑒 the electrical natural frequency. Assuming 𝑥1 to 𝑥12 

as the aerodynamic load states which are explained later and 𝑥13 = 𝛼̇, 𝑥14 = 𝑞̇𝛼, 𝑥15 = 𝛼, and 

𝑥16 = 𝑞𝛼, Eq. (24) is written as first-order differential equations, as follows 

{
 
 
 

 
 
 𝑥̇13 = −2𝜁𝜔𝑛𝑥13 − 𝜔𝑛

2𝑥15 +
𝛽𝛼
𝐼𝛼
𝑥16 −

1

2

𝜌𝑈2𝑐

𝐼𝛼
𝑐𝑛 cos 𝛼⁄                                                   

𝑥̇14 = −2𝜁𝑒𝜔𝑒𝑥14 − 𝜔𝑒
2𝑥16 + 𝐶𝑝𝛼𝛽𝛼𝜔𝑒

2(𝑥𝑓 − 𝑥𝑝)𝑥15                                                      

            +
1

2

𝜌𝑈2𝑐

𝐼𝛼
(𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛)

𝑥̇15 = 𝑥13                                                                                                                                       
𝑥̇16 = 𝑥14                                                                                                                                       

(25) 

The new form of the equation of motion can be written as Eq. (3) because of having nonlinear 

function of 𝛼̈. Equation (3) can be written in first order form as Eq. (6), where 𝐱 is a 16 × 1 

state vector including the 12 Leishman-Beddoes states, 𝑥13 = 𝛼̇, 𝑥14 = 𝑞̇, 𝑥15 = 𝛼, and 𝑥16 =

𝑞. The general form of the equations of motion can be represented as Eq. (7), where 𝑨 the 

structural mass and inductance matrix, 𝒚̈ = [𝛼̈ 𝑞̈]𝑇 is the pitching acceleration and the rate of 

the pitch electrical current vector, 𝑪 is the pitching structural damping and pitch resistance of 

piezoelectric material matrix, 𝒚̇ = [𝛼̇ 𝑞̇]𝑇 is the pitching velocity and pitch electrical current 
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vector, 𝑬 is the pitching structural stiffness, pitch electromechanical coupling and pitch 

capacitance of piezoelectric material matrix, 𝒚 = [𝛼 𝑞]𝑇 is the pitching angle and pitch 

electric charge vector, and 𝑭 is the aerodynamic load vector. Moreover, 𝑨, 𝑪, and 𝑬 matrices, 

and 𝑭 vector are given by 

𝑨 = [
1 0
0 1

]                                                                        (26) 

𝑪 = [
2𝜁𝜔𝑛 0
0 2𝜁𝑒𝜔𝑒

]                                                                       (27) 

𝑬 = [
𝜔𝑛

2 −
𝛽𝛼
𝐼𝛼

−𝐶𝑝𝛼𝛽𝛼𝜔𝑒
2(𝑥𝑓 − 𝑥𝑝) 𝜔𝑒

2

]                                                       (28) 

𝑭 =
1

2

𝜌𝑈2𝑐

𝐼𝛼
[

− 𝑐𝑛 cos 𝛼⁄

𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛
]                                         (29) 

Considering Eqs. (26)-(29), the equations of motion, Eq. (25), can be written as 

[

𝑥̇13
𝑥̇14
𝑥̇15
𝑥̇16

] = [−𝑨
−1𝑪 −𝑨−1𝑬
𝑰 𝟎

] [

𝑥13
𝑥14
𝑥15
𝑥16

] +
1

2

𝜌𝑈2𝑐

𝐼𝛼
[

− 𝑐𝑛 cos 𝛼⁄

𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛
0
0

]            (30) 

Because of the nonlinearity in 𝑥̇13, Eq. (30) needs to be solved iteratively by considering the 

Runge-Kutta approach and using a simple implicit algorithm, as explained previously. 

We conduct an aeroelastic analysis on the following smart wing, Table 6, to represent the effect 

of the piezoelectric patch on stall flutter alleviation. 

Table 6 Smart wing characteristics for electrical system 

𝜔𝑛 = 2500 N rad⁄  Structural natural frequency 

𝜁 = 0.0157 Structural damping ratio 

𝐼𝛼 = 2.5330 N s2⁄  Mass moment of inertia 

𝛽𝛼 = 1.2438 × 105  C mF⁄  Pitch electromechanical coupling 
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𝜔𝑒 = 9272.783982 rad s⁄  Electrical natural frequency 

𝜁𝑒 = 0.0539 Electrical damping ration 

We consider the electrical natural frequency, 𝜔𝑒, with different values as 9260, 9270, 

9272.783982, 9280, and 9280 rad 𝑠⁄ . However, having different electrical natural frequency 

of piezoelectric material for the shunt piezoelectric patch cannot create any difference on the 

smart wing pre-simulation results obtaining the aerodynamic state initial values discussed in 

Section 4, as indicated in Figure 55. 

 

Fig. 55 Aerodynamic state response versus time during pre-simulation for different 𝜔𝑒 

It is clear that changing the different electrical natural frequency of the piezoelectric patch does 

not change the aerodynamic state response versus time during pre-simulation as all of the 

aerodynamic states converge to constant values after 0.2 s, as shown in Figure 55. In other 

words, both smart and regular wings have the same aerodynamic state response during pre-

simulation time interval. Furthermore, pitch angle time response of the smart wing does not 

change with respect to the electrical natural frequency of the piezoelectric patch which 

indicates pitch angle time response of the smart wing is independent of the electrical natural 

frequency of the piezoelectric patch, as shown in Figure 56. 
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Fig. 56 Pitch angle time response for different 𝜔𝑒 

Also, the load response versus pitch angle during the LCO has been depicted in Figure 57 for 

different electrical natural frequency of the piezoelectric patch which indicates the load 

response of the smart wing is independent on the electrical natural frequency of the 

piezoelectric patch. 

 

Fig. 57 Load response versus pitch angle for different 𝜔𝑒 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

58 for the different electrical natural frequency of the piezoelectric patch which indicates the 
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pitching moment of the smart wing is not dependent on the electrical natural frequency of the 

piezoelectric patch. 

 

Fig. 58 Pitching moment versus pitch angle for different 𝜔𝑒 

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 59 for different electrical natural frequency of the piezoelectric patch which 

indicates the pitching moment around the pitching axis of the smart wing is independent on the 

electrical natural frequency of the piezoelectric patch. 

 

Fig. 59 Pitching moment around the pitching axis versus pitch angle for different 𝜔𝑒 
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Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 60 for different electrical natural frequency of the piezoelectric patch which 

indicates the phase plane for pitching velocity of the smart wing is not dependent on the 

electrical natural frequency of the piezoelectric patch. 

 

Fig. 60 Phase plane for pitching velocity versus pitch angle for different 𝜔𝑒 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 61 for different electrical natural frequency of the piezoelectric 

patch which indicates the load response of the smart wing is independent on the electrical 

natural frequency of the piezoelectric patch. 
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Fig. 61 Phase plane for pitch electric current versus pitch electric charge for different 𝜔𝑒 

In summary, according to the parametric study results, the electrical natural frequency results 

cannot be affected with respect to different parameters values and remain unchanged, as shown 

in this sub-section. 

5.7 Effect of electrical system damping on stall flutter alleviation and elimination 

As the seventh parameter, we consider the effect of the electrical system frequency by 

considering the electrical damping, 𝜁𝑒 , with different values as 0.0519, 0.0529, 0.0539, 

0.0549, and 0.0559. However, having different electrical damping of piezoelectric material 

for the shunt piezoelectric patch cannot create any difference on the smart wing pre-simulation 

results obtaining the aerodynamic state initial values discussed in Section 4, as indicated in 

Figure 62. 

 

Fig. 62 Aerodynamic state response versus time during pre-simulation for different 𝜁𝑒  

It is clear that changing the different electrical damping of the piezoelectric patch does not 

change the aerodynamic state response versus time during pre-simulation as all of the 

aerodynamic states converge to constant values after 0.2 s, as shown in Figure 63. In other 

words, both smart and regular wings have the same aerodynamic state response during pre-

simulation time interval. Furthermore, pitch angle time response of the smart wing does not 
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change with respect to the electrical damping of the piezoelectric patch which indicates pitch 

angle time response of the smart wing is independent on the electrical damping of the 

piezoelectric patch, as shown in Figure 63. 

 

Fig. 63 Pitch angle time response for different 𝜁𝑒  

Also, the load response versus pitch angle during the LCO has been depicted in Figure 64 for 

different electrical damping of the piezoelectric patch which indicates the load response of the 

smart wing is independent on the electrical damping of the piezoelectric patch. 

 

Fig. 64 Load response versus pitch angle for different 𝜁𝑒  
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Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

65 for the different electrical dampening of the piezoelectric patch which indicates the pitching 

moment of the smart wing is not dependent on the electrical dampening of the piezoelectric 

patch. 

 

Fig. 65 Pitching moment versus pitch angle for different 𝜁𝑒  

The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 66 for different electrical damping of the piezoelectric patch which indicates 

the pitching moment around the pitching axis of the smart wing is independent on the electrical 

damping of the piezoelectric patch. 
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Fig. 66 Pitching moment around the pitching axis versus pitch angle for different 𝜁𝑒  

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 67 for different electrical damping of the piezoelectric patch which indicates 

the phase plane for pitching velocity of the smart wing is not dependent on the electrical 

damping of the piezoelectric patch. 

 

Fig. 67 Phase plane for pitching velocity versus pitch angle for different 𝜁𝑒  

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 68 for different electrical damping of the piezoelectric patch which 

indicates the load response of the smart wing is independent on the electrical damping of the 

piezoelectric patch. 
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Fig. 68 Phase plane for pitch electric current versus pitch electric charge for different 𝜁𝑒  

In summary, according to the parametric study results, the electrical system results cannot be 

affected with respect to different electrical damping values and remain unchanged, as shown 

in this sub-section. 

5.8 Effect of electrical system impedance on stall flutter alleviation and elimination 

As the eighth parameter, we consider the effect of the electrical system impedance, 𝑧 = 𝑉 𝐼⁄ =

1 𝑅𝛼⁄ , by considering different values as 0.1, 0.2, 0.3, 0.4, and 0.5. However, having different 

impedance of piezoelectric material for the shunt piezoelectric patch cannot create any 

difference on the smart wing pre-simulation results obtaining the aerodynamic state initial 

values discussed in Section 4, as indicated in Figure 69. 
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Fig. 69 Aerodynamic state response versus time during pre-simulation for different 𝑧 

It is clear that changing the different impedance of the piezoelectric patch does not change the 

aerodynamic state response versus time during pre-simulation as all of the aerodynamic states 

converge to constant values after 0.2 s, as shown in Figure 69. In other words, both smart and 

regular wings have the same aerodynamic state response during pre-simulation time interval. 

Furthermore, pitch angle time response of the smart wing does not change with respect to the 

impedance of the piezoelectric patch which indicates pitch angle time response of the smart 

wing is independent on the impedance of the piezoelectric patch, as shown in Figure 70. 

 

Fig. 70 Pitch angle time response for different 𝑧 
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Also, the load response versus pitch angle during the LCO has been depicted in Figure 71 for 

different impedance of the piezoelectric patch which indicates the load response of the smart 

wing is independent on the impedance of the piezoelectric patch. 

 

Fig. 71 Load response versus pitch angle for different 𝑧 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

72 for the different impedance of the piezoelectric patch which indicates the pitching moment 

of the smart wing is not dependent on the impedance of the piezoelectric patch. 

 

Fig. 72 Pitching moment versus pitch angle for different 𝑧 
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The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 73 for different impedance of the piezoelectric patch which indicates the 

pitching moment around the pitching axis of the smart wing is independent on the impedance 

of the piezoelectric patch. 

 

Fig. 73 Pitching moment around the pitching axis versus pitch angle for different 𝑧 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 74 for different impedance of the piezoelectric patch which indicates the phase 

plane for pitching velocity of the smart wing is not dependent on the impedance of the 

piezoelectric patch. 
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Fig. 74 Phase plane for pitching velocity versus pitch angle for different 𝑧 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 75 for different impedance of the piezoelectric patch which 

indicates the load response of the smart wing is independent on the impedance of the 

piezoelectric patch. 

 

Fig. 75 Phase plane for pitch electric current versus pitch electric charge for different 𝑧 

In summary, according to the parametric study results, the electrical system results cannot be 

affected with respect to different impedance values and remain unchanged, as shown in this 

sub-section. 

5.9 Effect of electrical system coupling on stall flutter alleviation and elimination 

As the ninth parameter, we consider the effect of the electrical system coupling, 𝛽𝛼, by 

considering different values as 1.2418 × 105, 1.2428 × 105, 1.2438 × 105, 1.2448 × 105, 

and 1.2458 × 105  C mF⁄ . However, having different coupling of piezoelectric material for the 

shunt piezoelectric patch cannot create any difference on the smart wing pre-simulation results 

obtaining the aerodynamic state initial values discussed in Section 4, as indicated in Figure 76. 
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Fig. 76 Aerodynamic state response versus time during pre-simulation for different 𝛽𝛼 

It is clear that changing the different coupling of the piezoelectric patch does not change the 

aerodynamic state response versus time during pre-simulation as all of the aerodynamic states 

converge to constant values after 0.2 s, as shown in Figure 76. In other words, both smart and 

regular wings have the same aerodynamic state response during pre-simulation time interval. 

Furthermore, pitch angle time response of the smart wing change with respect to the coupling 

of the piezoelectric patch which indicates pitch angle time response of the smart wing is 

dependent on the coupling of the piezoelectric patch, as shown in Figure 77. 

 

Fig. 77 Pitch angle time response for different 𝛽𝛼 
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Also, the load response versus pitch angle during the LCO has been depicted in Figure 78 for 

different coupling of the piezoelectric patch which indicates the load response of the smart 

wing is dependent on the coupling of the piezoelectric patch. 

 

Fig. 78 Load response versus pitch angle for different 𝛽𝛼 

Moreover, the pitching moment versus pitch angle during the LCO has been shown in Figure 

79 for the different coupling of the piezoelectric patch which indicates the pitching moment of 

the smart wing is dependent on the coupling of the piezoelectric patch. 

 

Fig. 79 Pitching moment versus pitch angle for different 𝛽𝛼 
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The pitching moment around the pitching axis versus pitch angle during the LCO has also been 

depicted in Figure 80 for different coupling of the piezoelectric patch which indicates the 

pitching moment around the pitching axis of the smart wing is dependent on the coupling of 

the piezoelectric patch. 

 

Fig. 80 Pitching moment around the pitching axis versus pitch angle for different 𝛽𝛼 

Furthermore, the phase plane for pitching velocity versus pitch angle during the LCO has been 

shown in Figure 81 for different coupling of the piezoelectric patch which indicates the phase 

plane for pitching velocity of the smart wing is dependent on the coupling of the piezoelectric 

patch. 
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Fig. 81 Phase plane for pitching velocity versus pitch angle for different 𝛽𝛼 

Finally, the phase plane for pitch electric current versus pitch electric charge during the LCO 

has been depicted in Figure 82 for different coupling of the piezoelectric patch which indicates 

the load response of the smart wing is independent on the coupling of the piezoelectric patch. 

 

Fig. 82 Phase plane for pitch electric current versus pitch electric charge for different 𝛽𝛼 

In summary, according to the parametric study results, the electrical system results can be 

affected with respect to different coupling values and remain unchanged, as shown in this sub-

section. 

6. Conclusions 

In this paper, it has been shown that how the stall flutter phenomenon can be alleviated and 

eliminated using a small inductor by implementing a piezoelectric patch. The main contribution 

of this work is to represent a way to alleviate or eliminate the stall flutter on a regular 2D wing 

by using a passive aeroelastic control including piezoelectric patches and shunt circuits in 

which the size of the required inductance is small. The results indicate a considerable 

improvement in dynamic aeroelastic behavior of a 2D wing. 

Appendix 

A.1 Leishman-Beddoes model 



73 

If a wing has pitching around the quarter chord 𝑥𝑓 = 𝑐 4⁄ , 𝛼̅ is equal to the geometric pitch 

angle, means 𝛼̅ = 𝛼. By considering these assumptions, an additional circulatory pitching 

moment term is added to the Leishman-Beddoes model as the following function 

𝜙𝑞𝑀
𝐶 = 1 − 𝑒−𝑏5𝛽

2𝑈𝑡 𝑏⁄                                                                 (A. 1) 

where 𝑏5 = 0.5. Because of having compressibility effects and added mass as impulsive loads, 

Leishman and Beddoes is related to non-circulatory contributions to the aerodynamic loads. 

These non-circulatory contributions can be represented as follows 

𝜙𝛼̅
𝐼 = 𝑒−𝑡 𝐾𝛼̅𝑇𝐼⁄                                                                                     (A. 2𝑎) 

𝜙𝑞
𝐼 = 𝑒−𝑡 𝐾𝑞𝑇𝐼⁄                                                                                     (A. 2𝑏) 

𝜙𝛼̅𝑀
𝐼 = 𝐴3𝑒

−𝑡 𝑏3𝐾𝛼̅𝑀𝑇𝐼⁄ + 𝐴4𝑒
−𝑡 𝑏4𝐾𝛼̅𝑀𝑇𝐼⁄                                         (A. 2𝑐) 

𝜙𝑞𝑀
𝐼 = 𝑒−𝑡 𝐾𝑞𝑀𝑇𝐼⁄                                                                                  (A. 2𝑑) 

where 𝑇𝐼 = 𝑐 𝑎∞⁄ , 𝑎∞ is the free stream sound speed, the 𝐼 superscript represents impulsive 

aerodynamic step responses and 

𝐾𝛼̅ =
1

(1 −𝑀∞) + 𝜋𝛽𝑀∞
2 (𝐴1𝑏1 + 𝐴2𝑏2)

                                        (A. 3𝑎) 

𝐾𝑞 =
1

(1 −𝑀∞) + 2𝜋𝛽𝑀∞
2 (𝐴1𝑏1 + 𝐴2𝑏2)

                                      (A. 3𝑏) 

𝐾𝛼̅𝑀 =
𝐴3𝑏4 + 𝐴4𝑏3
𝑏3𝑏4(1 − 𝑀∞)

                                                                             (A. 3𝑐) 

𝐾𝑞𝑀 =
7

15(1 −𝑀∞) + 3𝜋𝛽𝑀∞
2 𝑏5

                                                        (A. 3𝑑) 

where 𝐴3 = 1.5, 𝐴4 = −0.5, 𝑏3 = 0.25, and 𝑏4 = 0.1. 

The total aerodynamic loads of attached flow can be written as 

𝑐𝑛
𝑝 = 𝑐𝑛

𝐶 + 𝑐𝑛
𝐼                                                                             (A. 4) 

𝑐𝑚
𝑝 = 𝑐𝑚

𝐶 + 𝑐𝑚
𝐼                                                                         (A. 5) 
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Superscript 𝑝 denotes potential flow and presents the total load, normal force or moment, in 

unsteady attached flow conditions. The circulatory and impulsive load contributions in state 

space form can be represented as below [67] 

𝑐𝑛
𝐶 = 𝑐𝑛𝛼𝛼𝐸                                                                                                     (A. 6𝑎) 

𝑐𝑛
𝐼 =

4

𝑀∞
𝑥̇3 +

1

𝑀∞
𝑥̇4                                                                                  (A. 6𝑏) 

𝑐𝑚
𝐶 = 𝑐𝑛

𝐶 (
1

4
−
𝑥𝑎𝑐(𝑀∞)

𝑐
)                                                                           (A. 6𝑐) 

𝑐𝑚
𝐼 =

𝐴3
𝑀∞𝑏3𝐾𝛼̅𝑀𝑇𝐼

𝑥5 +
𝐴4

𝑀∞𝑏4𝐾𝛼̅𝑀𝑇𝐼
𝑥6 −

𝜋

16

𝑈

𝑏
𝛽𝑥7 

−
7

12𝑀∞
𝑥̇8 −

1

𝑀∞
𝛼̅                                                                (A. 6𝑑) 

where 𝛼𝐸 is an effective angle of attack in unsteady flow which can be written in the following 

form 

𝛼𝐸 = 𝛽
2
𝑈

𝑏
(𝐴1𝑏1𝑥1 + 𝐴2𝑏2𝑥2)                                         (A. 7) 

In Eq. (A.6c), 𝑥𝑎𝑐(𝑀∞) represents the aerodynamic center static position which is a function 

of Mach number. Moreover, 𝑐𝑛𝛼 denotes the normal force coefficient curve slope against 𝛼 

during attached flow conditions. Considering small values of the angle of attack at attached 

flow, 𝑐𝑛𝛼 = 𝑐𝑙𝛼, which is the classical lift curve slope. Since this slope is a function of Mach 

number, for each airfoil, it can be measured in static wind tunnel tests. However, an alternative 

way is to use the Prandtl-Glauert value as 

𝑐𝑛𝛼(𝑀∞) =
2𝜋

𝛽
                                                                        (A. 8) 

In addition, 𝑥1 to 𝑥8 represent aerodynamic states similar to the 𝑤1 to 𝑤6 states in Eq. (23) in 

Ref. [80]. Overall, for each of the exponential terms in Eq. (22) in Ref. [80] and Eqs. (A.1) and 

(A.2), there are eight aerodynamic states. Because of writing the compressibility and added 
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mass contributions to the aerodynamic loads means the impulsive loads in terms of step 

response functions, there is high number of aerodynamic states in compared to the one in Ref. 

[80]. In fact, in the Wagner model of Ref. [80], per each degree of freedom, there are only two 

aerodynamic states and there are no compressibility terms and the added mass terms appear as 

linear functions of the structural states. The Leishman-Beddoes aerodynamic states can be 

obtained by solving the following set of first order linear ordinary differential equations 

𝑥̇1 = −
𝑈

𝑏
𝛽2𝑏1𝑥1 + 𝛼̅ +

1

2
𝑞                                                      (A. 9a) 

𝑥̇2 = −
𝑈

𝑏
𝛽2𝑏2𝑥2 + 𝛼̅ +

1

2
𝑞                                                      (A. 9b) 

𝑥̇3 = −
1

𝐾𝛼̅𝑇𝐼
𝑥3 + 𝛼̅                                                                     (A. 9c) 

𝑥̇4 = −
1

𝐾𝑞𝑇𝐼
𝑥4 + 𝑞                                                                     (A. 9𝑑) 

𝑥̇5 = −
1

𝑏3𝐾𝛼̅𝑀𝑇𝐼
𝑥5 + 𝛼̅                                                             (A. 9𝑒) 

𝑥̇6 = −
1

𝑏4𝐾𝛼̅𝑀𝑇𝐼
𝑥6 + 𝛼̅                                                            (A. 9𝑓) 

𝑥̇7 = −𝑏5
𝑈

𝑏
𝛽2𝑥7 + 𝑞                                                               (A. 9𝑔) 

𝑥̇8 = −
1

𝐾𝑞𝑀𝑇𝐼
𝑥8 + 𝑞                                                                (A. 9ℎ) 

The potential aerodynamic force coefficients 𝑐𝑛
𝑝
 and 𝑐𝑚

𝑝
 can be obtained by combining Eqs. 

(A.4), (A.5) and (A.9) into a state space system as follows 

{
𝐱̇ = 𝑨𝐱 + 𝑩𝒖
𝒚𝑝 = 𝑪𝐱 + 𝑫𝒖

                                                                           (A. 10) 

where the kinematic variables 𝛼̅(𝑡) and 𝑞(𝑡) are inputs, 𝐱 = [𝑥1 𝑥2 ⋯ 𝑥8]𝑇, 𝐮 = [𝛼̅ 𝑞]𝑇 

and 𝐲𝑝 = [𝑐𝑛
𝑝 𝑐𝑚

𝑝 ]𝑇. Furthermore, matrices 𝑨, 𝑩, 𝑪, and 𝑫 are defined as follows. Matrix 𝑨 

is a diagonal 8 × 8 matrix with the main diagonal components as 
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𝑎11 = −
𝑈

𝑏
𝛽2𝑏1                                                        (A. 11a) 

𝑎22 = −
𝑈

𝑏
𝛽2𝑏2𝑏1                                                    (A. 11b) 

𝑎33 = −
1

𝐾𝛼̅𝑇𝐼
𝑏1                                                        (A. 11c) 

𝑎44 = −
1

𝐾𝑞𝑇𝐼
𝑏1                                                        (A. 11d) 

𝑎55 = −
1

𝑏3𝐾𝛼̅𝑀𝑇𝐼
𝑏1                                                (A. 11e) 

𝑎66 = −
1

𝑏4𝐾𝛼̅𝑀𝑇𝐼
𝑏1                                                 (A. 11f) 

𝑎77 = −𝑏5
𝑈

𝑏
𝛽2                                                        (A. 11g) 

𝑎88 = −
1

𝐾𝑞𝑀𝑇𝐼
                                                         (A. 11h) 

matrix 𝑩 is 

𝑩 = [
1 1 1 0 1 1 0 0

0.5 0.5 0 1 0 0 1 1
]                           (A. 12) 

matrix 𝑪 is a 2 × 8 matrix with the components as 

𝑐11 = 𝑐𝑛𝛼𝛽
2
𝑈

𝑏
𝐴1𝑏1                                                    (A. 13a) 

𝑐12 = 𝑐𝑛𝛼𝛽
2
𝑈

𝑏
𝐴2𝑏2                                                    (A. 13b) 

𝑐13 = −
4

𝑀∞𝐾𝛼𝑇𝐼
                                                         (A. 13c) 

𝑐14 = −
1

𝑀∞𝐾𝑞𝑇𝐼
                                                        (A. 13d) 

𝑐21 = 𝑐11 (
1

4
−
𝑥𝑎𝑐(𝑀∞)

𝑐
)                                       (A. 13e) 

𝑐22 = 𝑐12 (
1

4
−
𝑥𝑎𝑐(𝑀∞)

𝑐
)                                       (A. 13f) 
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𝑐25 =
𝐴3

𝑀∞𝑏3𝐾𝛼̅𝑀𝑇𝐼
                                                  (A. 13g) 

𝑐26 =
𝐴4

𝑀∞𝑏4𝐾𝛼̅𝑀𝑇𝐼
                                                  (A. 13h) 

𝑐27 = −
𝜋

16

𝑈

𝑏
𝛽                                                         (A. 13i) 

𝑐28 =
7

12𝑀∞𝐾𝑞𝑇𝐼
                                                    (A. 13k) 

the remaining components of matrix 𝑪 are zero. Finally, matrix 𝑫 is a 2 × 2 with the following 

components. 

𝑫 =

[
 
 
 
4

𝑀∞

1

𝑀∞

−1

𝑀∞

−7

12𝑀∞]
 
 
 

                                                    (A. 14) 

In Eqs. (A.4) to (A.9), there is no airfoil-specific information except 𝑐𝑛𝛼 as the lift curve slope. 

In the Leishman-Beddoes model, flow separation can be taken into account by considering 

contributions of leading edge and trailing edge separation and the leading edge vortex (LEV) 

to the aerodynamic loads. By comparing a critical normal force coefficient 𝑐𝑛1(𝑀∞) to the 

potential normal force coefficient 𝑐𝑛
𝑝
, one can determine the leading edge separation onset. Due 

to stall delay in dynamic case leading to inaccuracy of direct comparison between 𝑐𝑛1(𝑀∞) 

and 𝑐𝑛
𝑝
, a time-delayed version of 𝑐𝑛

𝑝
, 𝑥9 is used in the Leishman-Beddoes model [64]. 

𝑥̇9 =
𝑐𝑛
𝑝(𝑡) − 𝑥9
𝑇𝑝

                                                                         (A. 15) 

In fact, Eq. (A.7) indicates that 𝑥9 has time delay 𝑇𝑝 to 𝑐𝑛
𝑝
. Thus, the leading edge separation 

criterion can add an additional state as 𝑥9(𝑡) > 𝑐𝑛1 for the leading edge flow separation and 

𝑥9(𝑡) < 𝑐𝑛1 for the leading edge flow reattachment. To determine the value of critical normal 

force coefficient 𝑐𝑛1 and the time delay coefficient 𝑇𝑝, one needs to perform dynamic stall 

experiments for each Mach number and airfoil section. Although at very low Mach numbers, 
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the Leishman-Beddoes leading edge stall criterion cannot provide dynamic stall, a modified 

criterion for such flow speed was developed by Sheng et al. for wind turbine blades [66]. 

To determine trailing edge separation, one can use quasi-steady considerations. The static lift 

or normal force can be expressed by Kirchhoff theory as a function of the separation point 

chordwise position 𝑓. The following equation can be used to approximate this position. 

𝑓(𝛼) = {
1 − 0.3𝑒(𝛼−𝛼1) 𝑆1⁄                  if      𝛼 ≤ 𝛼1                    

0.04 + 0.66𝑒(𝛼1−𝛼) 𝑆2⁄         if      𝛼 > 𝛼1                    
 (A. 16) 

where 𝛼 is the angle of attack in static form and 𝑆1 and 𝑆2 are constant values which need to 

be obtained for each airfoil and Mach number through a wind tunnel test. The second static 

angle of attack 𝛼1 has 𝑓 = 0.7, it means the separation point is located at 0.7𝑐. The angle 𝛼1 

is obtained through a static wind tunnel test. After having the separation point position for a 

given angle of attack, the corresponding lift coefficient can be calculated as 

𝑐𝑛(𝛼) = 𝑐𝑛𝛼(𝑀∞) (
1 + √𝑓

2
)

2

                                                 (A. 17) 

In dynamic situations, in the Leishman-Beddoes model, the angle 𝛼 in Eq. (A.12) is replaced 

by an effective angle of attack as follows 

𝛼𝑓(𝑡) =
𝑥9(𝑡)

𝑐𝑛𝛼(𝑀∞)
                                                                 (A. 18) 

To find the unsteady separation point position, one needs to substitute Eq. (A.10) into Eq. 

(A.12) 

𝑓(𝑥9) =

{
 
 

 
 1 − 0.3𝑒

(
𝑥9(𝑡)

𝑐𝑛𝛼(𝑀∞)
−𝛼1) 𝑆1⁄

                 if      
𝑥9(𝑡)

𝑐𝑛𝛼(𝑀∞)
≤ 𝛼1                    

0.04 + 0.66𝑒
(𝛼1−

𝑥9(𝑡)
𝑐𝑛𝛼(𝑀∞)

) 𝑆2⁄
        if      

𝑥9(𝑡)

𝑐𝑛𝛼(𝑀∞)
> 𝛼1                   

(𝐴. 19) 

This model creates an additional time delay to 𝑓(𝑥9) to consider the unsteadiness effect of the 

boundary layer response. An additional state 𝑥10 needs to be considered to indicate the delayed 

unsteady separation point position 



79 

𝑥̇10 =
𝑓(𝑥9) − 𝑥9

𝑇𝑓
                                                           (A. 20) 

where 𝑇𝑓 is additional time delay coefficient which needs to be obtained by dynamic wind 

tunnel tests. The corresponding normal force for the trailing edge separation point position can 

be calculated as 

𝑐𝑛
𝑓(𝑡) = 𝑐𝑛

𝑐 (
1 + √𝑥10

2
)

2

                                                   (A. 21) 

where 𝑐𝑛
𝑐  is the potential flow normal force circulatory component in Eq. (A.6). The 

corresponding pitching moment of the trailing edge separation point position can be 

approximated by 

𝑐𝑚
𝑓
= (𝐾0 + 𝐾1(1 − 𝑥10) + 𝐾2 sin 𝜋𝑥10

𝜅 )𝑐𝑛
𝑐 (
1 + √𝑥10

2
)

2

             (A. 22) 

where 𝐾0, 𝐾1, 𝐾2, and 𝜅 are coefficients related to the stall moment break shape, the pressure 

center position, and the aerodynamic center position. To determine all these coefficients, one 

needs to perform static wind tunnel tests. Having the LEV shedding can create extra lift and 

moment terms which can be represented by the LEV vorticity estimation in the Leishman-

Beddoes model. This can be obtained by the difference between the circulatory lift forces in 

the attached and separated forms. 

𝑐𝑣 = 𝑐𝑛
𝑐 − 𝑐𝑛

𝑓
= 𝑐𝑛

𝑐 (1 − (
1 + √𝑥10

2
)

2

)                             (A. 23) 

This vorticity is only relevant after having leading edge separation. In other words, the value 

of this vorticity before separation is zero, 𝑐𝑣 = 0. In order to have separation, 𝑥9(𝑡) > 𝑐𝑛1, a 

time instance indicated by 𝑡𝑣0. After passing 𝑇𝑣𝑙 seconds, the LEV arrives the trailing edge; this 

time interval can be measured through dynamic wind tunnel tests. 

The LEV lift can be proportional to the vorticity change rate 𝑐̇𝑣 [68] as 
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𝑐̇𝑣 = 𝑐𝑛𝛼
𝑈

𝑏
𝛽2(𝐴1𝑏1𝑥̇1 + 𝐴2𝑏2𝑥̇2) (1 − (

1 + √𝑥10

2
)

2

) 

−𝑐𝑛
𝐶 (1 +

1

√𝑥10
)
𝑥̇10
4
                                                                       (A. 24) 

Though, in a constant time interval 𝑇𝑣 called characteristic time constant, the vorticity can be 

dissipated hence, the vortex lift 𝑥11 is written in the following differential equation 

𝑥̇11 = {

𝑐̇𝑣 −
𝑥11
𝑇𝑣
       if      𝑡 − 𝑡𝑣0 ≤ 2𝑇𝑣𝑙

−
𝑥11
𝑇𝑣
            if      𝑡 − 𝑡𝑣0 > 2𝑇𝑣𝑙

                                     (A. 25)  

The LEV lift 𝑐𝑛
𝑣 and pitching moment 𝑐𝑚

𝑣  can be obtained from 

𝑐𝑛
𝑣 = 𝑥11                                                                             (A. 26) 

𝑐𝑚
𝑣 = {

0                                                      if      𝑥9 ≤ 𝑐𝑛1

−0.25 (1 − cos 𝜋 (
𝑡 − 𝑡𝑣0
𝑇𝑣𝑙

)) 𝑥11      if      𝑡 − 𝑡𝑣0 ≤ 2𝑇𝑣𝑙
                (A. 27) 

The final state in the Leishman-Beddoes model is 𝑥12 which shows a delayed version of the 

separation point 𝑓(𝛼̅(𝑡)) given by Eq. (A.12) and can be implemented to improve the pitching 

moment representation because of flow reattachment in trailing edge separation. That final 

state can be calculated by the following ordinary differential equation 

𝑥̇12 = 2
𝑓(𝛼̅(𝑡)) − 𝑥12

𝑇𝑓
                                                        (A. 28) 

In Eq. (A.18), the pitching moment can be obtained by either 𝑥10 or 𝑥12 whichever has higher 

value 

𝑐𝑚
𝑓
=

{
 
 

 
 (𝐾0 +𝐾1(1 − 𝑥10) + 𝐾2 sin 𝜋𝑥10

𝜅 )𝑐𝑛
𝑐 (
1 + √𝑥10

2
)

2

   if              𝑥10 ≥ 𝑥12

(𝐾0 + 𝐾1(1 − 𝑥12) + 𝐾2 sin 𝜋𝑥12
𝜅 )𝑐𝑛

𝑐 (
1 + √𝑥12

2
)

2

    if              𝑥10 < 𝑥12

          (A. 29) 

Then at every time instance, the total lift and pitching moment are calculated as 
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𝑐𝑛 = 𝑐𝑛
𝑓
+ 𝑐𝑛

𝑣 + 𝑐𝑛
𝐼                                                                  (A. 30𝑎) 

𝑐𝑚 = 𝑐𝑚
𝑓
+ 𝑐𝑚

𝑣 + 𝑐𝑚
𝐼 + 𝑐𝑚0

                                                  (A. 30𝑏) 

where 𝑐𝑚0
 is the pitching moment in zero lift. Having Eqs. (A.26) provides the complete 

Leishman-Beddoes dynamic stall model space equations. Equations (A.4), (A.6), (A.20), and 

(A.28) represent the state equations. The summary of all the states nature is given in Table A.1. 

Table A.1 Leishman-Beddoes states summary 

State Nature 

𝑥1 − 𝑥8 Aerodynamic states for unsteady attached flow 

𝑥9 Potential normal force coefficient time-delayed version 𝑐𝑛
𝑝
, 

 when 𝑥9 > 𝑐𝑛1, there is leading edge separation 

𝑥10 The unsteady trailing edge separation point chordwise position 

𝑥11 The LEV lift 

𝑥12 The quasi-steady separation point location time-delayed version, 

 which can affect only the LEV pitching moment 

The nonlinear state space equations are given as follows 

𝐱̇ = 𝐟(𝐱, 𝐮)                                                                           (A. 31) 

𝐲 = 𝐠(𝐱, 𝐮)                                                                           (A. 32) 

where 𝐟 is a 12 × 1 nonlinear functions vector, 𝐠 is a 2 × 1 nonlinear functions vector, 𝐱 =

[𝑥1 𝑥2 ⋯ 𝑥12]𝑇, 𝐮 = [𝛼̅ 𝑞]𝑇 and 𝐲 = [𝑐𝑛 𝑐𝑚]𝑇. The Leishman-Beddoes model 

depends on 14 parameter values as 𝑐𝑛𝛼(𝑀∞), 𝛼1, 𝑆1, 𝑆2, 𝐾0, 𝐾1, 𝐾2, 𝑐𝑚0
, 𝑐𝑛1, 𝜅, 𝑇𝑝, 𝑇𝑓, 𝑇𝑣 and 

𝑇𝑣𝑙. The value of these parameters can change according to the airfoil type and Mach number, 

so they need to be determined by wind tunnel test experiments. These values have been 

provided at different Mach numbers and a Reynolds number of 8 × 106 for the NACA 0012 

airfoil by Leishman-Beddoes [69]. The parameter values for other airfoils can be found in the 
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literature. However, the attached flow parameters as 𝐴1, 𝑏1 and so on are constants therefore, 

they are independent from Mach number or the airfoil type. In the Leishman-Beddoes, the 

discontinuous LEV shedding process and the Kirchoff function for the separation point 𝑓(𝛼̅) 

or 𝑓(𝑥9) create the major nonlinearity. Since the Kirchoff function is discontinuous, Eqs. 

(A.16) and (A.18), the following discontinuity boundaries exist, as given in Table A.2. 

Table A.2 Discontinuity Boundaries 

Flow reattachment or stall onset 𝑥9 = 𝑐𝑛1 

Static lift curve break due to the unsteady separation point 𝑥9 𝑐𝑛𝛼(𝑀∞)⁄ = 𝛼1 

Static lift curve break due to the quasi steady separation point 𝛼̅ = 𝛼1 

Time when having no effect of LEV 𝑡 − 𝑡𝑣0 = 2𝑇𝑣𝑙 

Crossing states 𝑥10 and 𝑥12 𝑥10 = 𝑥12 

A.2 Matrix coefficient for equations of motion 

The matrix coefficient for the general form of the equations of motion, Eq. (7), can be given as 

follows 

𝑨 = [
𝐼𝛼 0
0 𝐿𝛼

]                                                                        (A. 33) 

𝑪 = [
𝐶𝛼 0
0 𝑅𝛼

]                                                                       (A. 34) 

𝑬 = [

𝐾𝛼 −𝛽𝛼

−𝛽𝛼(𝑥𝑓 − 𝑥𝑝)
1

𝐶𝑝𝛼

]                                                       (A. 35) 

𝑭 =
1

2
𝜌𝑈2𝑐 [

− 𝑐𝑛 cos 𝛼⁄

𝑐𝑐𝑚 + 𝑏(𝑎 + 1 2⁄ )𝑐𝑛
]                                         (A. 36) 
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