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Abstract

LoRaWAN is widely used for IoT environmental monitoring, but its lightweight security
mechanisms leave the physical layer vulnerable to availability attacks such as jamming
and battery-depletion. These risks are particularly critical in mission-critical environmental
monitoring systems. This paper proposes a multi-attribute physical-layer authentication
(PLA) framework that supports uplink legitimacy assessment by jointly exploiting radio, en-
ergy, and temporal attributes, specifically RSSI, altitude, battery_level, battery_drop_speed,
event_step, and time_rank. Using publicly available Brno LoRaWAN traces, we construct a
device-aware semi-synthetic dataset comprising 230,296 records from 1921 devices over
13.68 days, augmented with energy, spatial, and temporal attributes and injected with con-
trolled jamming and battery-depletion anomalies. Five classifiers (Random Forest, Multi-
Layer Perceptron, XGBoost, Logistic Regression, and K-Nearest Neighbours) are evaluated
using accuracy, precision, recall, F1-score, and AUC-ROC. The Multi-Layer Perceptron
achieves the strongest detection performance (F1-score = 0.8260, AUC-ROC = 0.8953), with
Random Forest performing comparably. Deployment-oriented computational profiling
shows that lightweight models such as Logistic Regression and the MLP achieve near-
instantaneous prediction latency (below 2 us per sample) with minimal CPU overhead,
while tree-based models incur higher training and storage costs but remain feasible for
Network Server-side deployment.

Keywords: LoORaWAN; multi-attribute physical-layer authentication (PLA); IoT security;
jamming attacks; battery-depletion attacks; machine learning; anomaly detection; forest-fire
detection network

1. Introduction

The proliferation of Internet of Things (IoT) devices has enabled large-scale environ-
mental monitoring through distributed wireless sensor networks deployed across wide
geographical areas. Low Power Wide Area Networks (LPWAN ), and, in particular, the
Long Range Wide Area Network (LoRaWAN), have become foundational technologies
for such applications due to their energy efficiency, long-range communication capability,
and low deployment cost [1-5]. These properties make LoRaWAN well-suited for mission-
critical deployments such as forest-fire monitoring, where battery-powered sensors must
operate reliably over extended periods with minimal maintenance.

Recent surveys further highlight the increasing role of machine-learning-based secu-
rity mechanisms in IoT and LPWAN environments, particularly for detecting availabil-
ity and intrusion-related threats that cannot be fully addressed through cryptographic
means alone [1,6-10].
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Despite these advantages, LoORaWAN exhibits inherent security trade-offs. While the
protocol provides end-to-end cryptographic protection at higher layers, its lightweight
design leaves the physical layer largely unprotected, exposing the device—gateway radio
link to attacks that cannot be mitigated through cryptographic mechanisms alone [11,12].
As a result, adversaries can target network availability through physical-layer attacks
that bypass authentication and encryption, degrading reliable data delivery even when
higher-layer security mechanisms are correctly implemented.

Figure 1 illustrates the LoRaWAN architecture and highlights the physical-layer at-
tack surface considered in this study. Sensor nodes communicate with gateways over the
device-gateway radio channel, which lies outside the scope of LoRaWAN cryptographic
protection. The figure situates this exposure within a forest-fire monitoring deployment,
where availability attacks—specifically jamming and battery-depletion attacks—can di-
rectly disrupt sensing coverage. The gateway operates as a transparent packet forwarder,
relaying uplink and downlink frames between end devices and the Network Server (NS).
Devices join the network using the Over-the-Air Activation (OTAA) procedure, during
which authentication and session-key establishment are handled via the Join Server (JS).
After a successful join, the Network Server (NS) manages MAC-layer operations and for-
wards application payloads to the Application Server (AS). The assumed attack behaviours
and threat scope are formalized in Section 3.3 and further discussed in the evaluation and
limitations sections.

Join Server
Availability attacks: /(( ))) Js
jamming and \ I
battery-depletion = ((( ))) |
) Uplink/DownlinI& IP Traffic Network Server
~- ©
A ‘ (NS)
.ln LoRaWAN Gateway l
Application
Forest Fire Sensors Server (AS)

Figure 1. LoRaWAN architecture for the forest-fire use case, showing the physical-layer attack surface
where jamming and radio-induced battery-depletion attacks target the device-to-gateway radio link.

This work focuses on non-3GPP LoRaWAN deployments as specified by the LoRa
Alliance and evaluates physical-layer authentication (PLA) under sub-GHz unlicensed ISM
band assumptions consistent with EU 868 MHz operation. Experimental evaluation follows
a dataset-driven methodology based on the publicly available Brno LoORaWAN traces [5],
whose characteristics are representative of real-world outdoor LoRaWAN deployments.

PLA has emerged as a promising defence mechanism by exploiting devices and
environment-specific physical-layer attributes to distinguish legitimate transmissions from
malicious ones [13,14]. Prior work has demonstrated the effectiveness of multi-attribute
PLA for identity spoofing detection using features such as Received Signal Strength Indi-
cator (RSSI), altitude, and battery level [15]. However, the application of multi-attribute
PLA to availability-oriented attacks, namely jamming and battery-depletion, remains
comparatively underexplored.

This paper addresses this gap by developing and evaluating a multi-attribute PLA
framework specifically tailored to availability attack detection in LoRaWAN. Building on
our prior spoofing-focused study, the threat model is expanded to include jamming and
battery-depletion attacks, and the feature set is extended with battery-aware and temporal
attributes. The proposed framework operates exclusively on packet-level metadata ob-
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servable at the Network Server or Application Server and does not require access to raw
physical-layer waveforms.

Operational Limitations of Single-Attribute and Rule-Based Detection in LoORaAWAN

In practical LoRaWAN deployments, detecting availability attacks such as jamming
and battery depletion using single-attribute or rule-based schemes is inherently challenging.
RSSI thresholding is commonly adopted as a lightweight indicator of abnormal radio
behaviour; however, RSSI is strongly influenced by benign environmental and network
factors, including multipath fading, shadowing, interference, adaptive data rate (ADR)
changes, gateway diversity, and physical obstructions [3-5,11,16]. As a consequence, RSSI-
only detection approaches frequently exhibit high false-positive rates in large-scale outdoor
deployments [17-19].

Battery-level-based detection faces similar limitations. Although accelerated bat-
tery depletion may indicate malicious activity, benign operational factors such as retrans-
missions, confirmed-message retries, re-join activity, and poor link quality can produce
battery-consumption patterns that closely resemble attack-induced depletion [20-23]. As a
result, threshold-based detection relying solely on battery-related indicators cannot reliably
distinguish malicious energy-drain attacks from normal LoRaWAN operation [24-26].

Rule-based detection schemes that rely on fixed thresholds further degrade under
non-stationary conditions, including seasonal channel variation, node ageing, and changes
in traffic patterns [27-29]. In mission-critical applications such as forest-fire monitoring,
these limitations are particularly problematic, as false positives may trigger unnecessary
mitigation actions, while false negatives can result in undetected sensing failures and
coverage gaps [3,5,30].

These limitations motivate a multi-attribute detection approach that jointly analyses
complementary physical-layer information. By combining radio behaviour, energy dynam-
ics, spatial context, and temporal characteristics, a learning-based PLA framework can
more reliably distinguish benign operational anomalies from malicious availability attacks
than single-attribute or static rule-based schemes.

The main contributions of this work are as follows:

e  Availability-oriented multi-attribute PLA
We present a systematic evaluation of multi-attribute PLA for detecting jamming
and battery-depletion attacks in LoRaWAN, moving beyond prior spoofing-focused
studies. Detection performance is assessed using accuracy, precision, recall, F1-score,
and Area Under the Receiver Operating Characteristic Curve (AUC) under device-
aware evaluation protocols.

e  Threat model-driven dataset construction
We construct a transparent, device-aware semi-synthetic dataset derived from publicly
available Brno LoRaWAN traces, augmented with battery, spatial, and temporal
attributes, and injected with controlled anomalies representing availability attacks.

e  Deployment-oriented feasibility analysis
We analyze the trade-off between detection effectiveness and computational cost,
reporting prediction-time latency, Central Processing Unit (CPU) usage under single-
threaded execution, and model size to support practical Network Server deploy-
ment decisions.

The remainder of this paper is organized as follows. Section 2 reviews related work on
LoRaWAN security and PLA-based detection approaches. Section 3 presents the methodol-
ogy. Section 4 reports experimental results and key findings, and Section 5 concludes with
limitations and directions for future work.
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2. Related Work

Research on LoRaWAN security has increasingly focused on the physical layer, where
low-cost and protocol-aware attacks can compromise network availability and reliability.
This section reviews prior work relevant to availability attack detection and multi-attribute
physical-layer authentication (PLA). Section 2.1 surveys jamming attacks and representative
detection approaches. Section 2.2 reviews battery-depletion attacks and their detection
challenges. Section 2.3 summarizes machine-learning-based detection in LPWANSs, with
emphasis on feature design and deployment feasibility. Section 2.4 synthesizes these
findings and identifies the research gap addressed by this work.

2.1. Jamming Attacks in LoORaWAN

Although LoRa’s chirp spread-spectrum (CSS) modulation provides resilience against
narrowband interference, protocol-aware jamming can still disrupt LoRaWAN communica-
tions. Selective jamming that targets specific frame segments using commodity hardware
can significantly degrade link reliability [17]. Analytical studies have characterized symbol-
and frame-error behaviour under LoRa-on-LoRa interference, while experimental work
shows that reactive jammers implemented with low-cost software-defined radios can inject
energy at precise timings to cause disproportionate disruption [16,19]. Further modelling
and experimental analysis indicate that targeting acknowledgement frames can induce
large-scale service degradation at minimal attacker cost [31]. In addition, synchronized jam-
ming chirps can bypass simple timing and energy threshold defences, motivating the need
for more robust detection and mitigation mechanisms at the gateway or network level [18].

Recent detection approaches increasingly rely on gateway and network-side ana-
lytics rather than fixed signal thresholds. Traffic and metadata consistency checks have
been proposed to identify anomalous interference patterns indicative of jamming [27].
Lightweight detection mechanisms targeting tone and band jammers have also been de-
veloped [28]. More recently, machine-learning classifiers have been applied to distinguish
deliberate jamming from benign channel variation, demonstrating improved robustness
under non-stationary conditions [32].

2.2. Battery-Depletion Attacks

Battery-depletion (sleep-deprivation) attacks have long been recognized in wireless
sensor networks and remain relevant in LPWAN deployments [20,24,33,34]. Experimental
studies demonstrate that malicious traffic patterns can significantly increase per-event
energy consumption, leading to rapid battery exhaustion [21]. Modelling-based analy-
ses further show that “ghost traffic” can accelerate device lifetime decay even without
continuous interference [23]. Battery depletion can also arise unintentionally through pro-
tocol misuse or misconfiguration, producing energy-consumption patterns that resemble
deliberate attacks [27].

LoRaWAN exposes multiple vectors through which battery depletion can be induced.
Abuse of confirmed messages forces devices to remain active while awaiting acknowl-
edgements. Re-join storms increase signalling overhead and repeated radio wakeups.
Exploitation of MAC commands can trigger frequent LinkCheck or Adaptive Data Rate
(ADR) adjustments, while unnecessary downlinks compel devices to power on their re-
ceivers during listening windows. These mechanisms are documented in the LoRaWAN
specification and associated best-practice guidance [35-38].

Detection techniques typically monitor energy-consumption patterns and their evo-
lution over time. Energy time-series analysis combined with thresholding and machine-
learning classifiers has been proposed to identify anomalous depletion behaviour [25].
Tree-based models, particularly Random Forests, have shown strong performances for
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detecting power-related anomalies in IoT systems [39,40]. However, approaches rely-
ing on energy indicators alone are prone to false positives, since benign factors such as
poor link conditions, retransmissions, and duty-cycle irregularities can closely resemble
attack-induced depletion [26]. This motivates multi-attribute approaches that combine
energy-related information with complementary physical-layer indicators.

2.3. Machine Learning for Attack Detection and Multi-Attribute PLA

Machine learning (ML) is widely explored for physical-layer threat detection in LP-
WAN:S. Supervised models such as Random Forests, support vector machines, and neural
networks often perform well when trained on features derived from RSSI and protocol-
level metadata (e.g., timing irregularities and retransmission-related indicators) [32,41].
Unsupervised methods such as autoencoders and clustering reduce dependence on la-
belled data, although false positives often increase in non-stationary environments [29].
Lightweight analytic detectors can suit constrained deployments but tend to adapt poorly
to evolving channel and traffic conditions [28]. More advanced directions include federated
learning, reinforcement-based approaches, and game-theoretic anti-jamming strategies
that enable adaptive and decentralized defenses at the cost of additional system complex-
ity [42—44]. Tree-based models such as Random Forest and XGBoost can also provide
feature-importance diagnostics (e.g., permutation-based importance) that support operator
interpretation and tuning [45].

Multi-attribute PLA has demonstrated strong performance for spoofing detection by
jointly exploiting multiple physical-layer features [13-15]. However, most PLA studies
emphasize identity impersonation and do not explicitly target availability-oriented attacks
such as jamming and battery-depletion, whose effects can be time-evolving and may manifest
indirectly through reduced communication reliability and accelerated energy consumption.

Table 1 summarizes representative lightweight detection approaches, PLA frameworks,
and the proposed multi-attribute PLA approach, highlighting their features, addressed
threats, and key limitations.

Table 1. Comparison of lightweight defences, prior physical-layer authentication (PLA) frameworks,
and the proposed multi-attribute PLA for availability-attack detection in LoRaWAN.

Approach Detection Threats e Representative
Category Principle Features Used Addressed Limitations References
. . . High false
threzi)slldin F1xedri’i1;esshold RSSI Coai;sdeii 2{[1(1)2111(% alarms under [3,11,16,17,19]
& fading and ADR
Energy-based Static Battery depletion Confouns:le@ by
. . battery_level .. retransmissions [20-23]
rules limits /heuristics indicators .
and poor links
Protocol-level Retransmissions Deployment-
heuristi MAC-layer rules e * DoS symptoms specific tuning [24,30,34]
euristics joins .
required
Prior P.LA Identity RSSI, channel . Not dgmgr}gd for
(spoofing- . Spoofing availability [13-15]
. consistency features
oriented) attacks
RSSI, altitude,
battery_level, Dataset-driven;
Proposed Multi-attribute bat- Jamming, battery periodic This work
method ML-based PLA  tery_drop_speed, depletion retraining
event_step, required

time_rank
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2.4. Research Gap

Prior experimental and analytical work has demonstrated the practicality of avail-
ability attacks in LoRaWAN, including selective and reactive jamming and energy-drain
strategies [17,19,21,23,27,31]. However, most existing detection approaches either rely on
single-attribute indicators, focus primarily on identity spoofing rather than availability
degradation [13-15], or evaluate machine-learning models on laboratory or small-scale
datasets without device-aware splitting, increasing the risk of device-level leakage and
limiting generalization to real deployments [25,46].

Furthermore, deployment-relevant computational costs such as per-sample predic-
tion latency, CPU usage, and serialized model size are rarely reported, despite being
critical factors for deployment at the Network Server or other centralized LoRaWAN
infrastructure performing the classification stage [26]. As a result, there is a lack of device-
aware, multi-attribute physical-layer authentication (PLA) frameworks that explicitly target
availability attacks in LoRaWAN and are evaluated under realistic, deployment-oriented
performance constraints.

3. Methodology

This section presents the methodological framework used to evaluate the proposed
multi-attribute physical-layer authentication (PLA) approach against jamming and battery-
depletion attacks in LoRaWAN networks. The methodology follows a dataset-driven evalu-
ation pipeline and comprises three main components: (i) construction and augmentation of
a device-aware semi-synthetic dataset, (ii) behavioural injection and labelling of availability
attacks, and (iii) machine-learning-based classification and computational profiling.

The proposed PLA framework consistently uses the following features throughout
the methodology: Received Signal Strength Indicator (RSSI), altitude, battery_level, bat-
tery_drop_speed, event_step, and time_rank. RSSI captures radio propagation conditions
at the gateway, altitude represents the fixed installation height of each device, battery_level
denotes the remaining device energy expressed as a percentage, battery_drop_speed is
defined as the first-order difference between consecutive battery_level observations for
the same device, event_step is a device-local temporal index representing the sequential
transmission count per device, and time_rank represents the global temporal ordering of
transmissions across all devices in the dataset.

Figure 2 illustrates the end-to-end operational workflow of the proposed multi-
attribute PLA framework, showing packet reception at the gateway, metadata aggregation
at the Network Server (NS), feature extraction and preprocessing, model inference at the
classification stage, and decision-support handling. The workflow operates exclusively
on packet-level metadata observable at the Network Server (NS) or Application Server
(AS) and does not require access to raw physical-layer waveforms or I/Q samples. The
framework is designed as an auxiliary monitoring component that does not modify the
LoRaWAN protocol or interfere with standard MAC-layer operations.

PLA inference is performed centrally at the classification stage after uplink reception
using metadata already available at the NS or AS. The outputs of the classification stage are
treated as risk scores rather than definitive enforcement decisions. To reduce the impact of
false positives, the framework assumes conservative and progressive handling of suspicious
devices. Potential mitigation actions include operator alerts, increased monitoring, or
temporary limitation of non-critical operations while maintaining service continuity for
benign devices.
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Figure 2. End-to-end workflow of the proposed multi-attribute PLA framework for availability-attack
detection in LoRaWAN.

3.1. Dataset

This study builds on the publicly available Brno LoRaWAN dataset released on Zenodo
in 2022 [5]. Unlike our earlier spoofing-focused study [15], the present work targets avail-
ability attacks and therefore extends the Brno dataset through a device-aware, semi-synthetic
augmentation process designed to represent jamming and battery-depletion behaviours.

The original Brno dataset captures legitimate LoRaWAN traffic from a real deployment
in the Czech Republic and includes the core attributes device_address (unique device identi-
fier), RSSI (Received Signal Strength in dBm), SNR (signal-to-noise ratio in dB), and Spread-
ing Factor (SF), which are standard indicators defined by the LoRa Alliance [35,36]. While
the dataset provides a realistic baseline of multi-device LoRaWAN traffic, it lacks explicit
energy, spatial, and temporal attributes required for evaluating availability-oriented PLA.

Accordingly, the dataset was expanded into a semi-synthetic PLA dataset that pre-
serves empirical radio distributions while incorporating additional attributes that reflect
temporal evolution, energy consumption, and attack behaviour. Controlled attack labels
were injected in a device-aware manner to ensure consistency with long-term node be-
haviour. A formal integrity audit of the released dataset, including attribute consistency,
label distribution, and temporal validation, is provided in Appendix B.

3.2. Dataset Augmentation

Building on the dataset described in Section 3.1, we augment the records with synthetic
attributes designed to reflect physical-layer behaviour observable in real LoRaWAN deploy-
ments. Augmentation is performed at the individual-device level, preserving the original
device structure and transmission order. The following attributes are added: battery_level,
battery_drop_speed, event_step, time_rank, and altitude.

Battery_level

Each device is assigned an initial battery_level, with most devices randomly initialized
between approximately 90-98% (~65% of devices), while a minority are seeded below
this range to simulate partially depleted nodes. Battery level decreases incrementally over
successive transmissions according to

t
By =By — )6
i=1
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where By is the initial battery level, ¢; is the energy consumed during transmission i, and
By is the remaining battery level at time step . Under normal conditions, §; remains small
and consistent. In attack scenarios, ; is increased to mimic accelerated drain, producing a
clear contrast between gradual benign depletion and sudden forced drops 12,16, 34.
Battery_drop_speed
Short-term battery dynamics are captured using battery_drop_speed, defined as the
first-order difference between consecutive battery measurements for the same device:

AB; = Bt — By

where B; and B;_; denote the current and previous battery levels, respectively, for consecu-
tive event_step values of the same device. Small values of AB; indicate gradual depletion
consistent with benign operation, while large negative values indicate abrupt energy loss
consistent with accelerated drain or forced activity. Positive values, which are rare, typically
arise from measurement noise or device resets.

Altitude

Each device is assigned a fixed installation altitude in the range 2.0-10.0 m, represent-
ing near-surface sensors and low-mast deployments commonly used to improve gateway
visibility in LoRaWAN networks 5-8,20. To model realistic GPS variability, altitude mea-
surements are perturbed using

Al=A+e

where A is the nominal installation altitude and e is zero-mean Gaussian noise corre-
sponding to approximately 0.2-0.5% per device (maximum < 1.6%). This preserves a stable
per-device altitude baseline while making implausible shifts observable for anomaly detection.

Event_step

The attribute event_step represents a device-local temporal index, defined as the
sequential transmission count for each individual device (1,2,3,...). This index preserves
the temporal evolution of each node while avoiding reliance on absolute timestamps,
thereby reducing the risk of time-based leakage related to installation dates, duty-cycle
irregularities, or diurnal patterns.

Time_rank

To capture the network-wide temporal structure, time_rank is defined as the global
temporal ordering of all transmissions across all devices. Unlike event_step, which is
device-local, time_rank reflects the relative ordering of events across the entire network.
This attribute enables the model to capture bursty or coordinated behaviours indicative of
availability attacks, such as synchronized jamming, without relying on absolute time values.

RSSI Normalization

RSSI values are normalized during model training using Z-score standardization:

Rgr’ — 5L
o

where ¢ and ¢ denote the mean and standard deviation of RSSI computed from the training
data [47]. To avoid data leakage, the scaler is fitted on the training set only and then applied
to validation and test sets [48]. Where time-ordered validation is required, time-aware
splitting (e.g., TimeSeriesSplit) can be used to avoid training on future samples [49].

Figure 3 illustrates the complete dataset preparation pipeline, showing the progression
from raw Brno data through augmentation, attack injection, labelling, preprocessing, and
the final ML-ready dataset.
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Figure 3. Dataset preparation pipeline.

3.3. Attack Injection and Labelling

Attack labels are inferred from observable physical-layer behaviour rather than
waveform-level interference. Three mutually exclusive classes are defined: Label 0 (Nor-
mal) represents benign traffic with RSSI values within the empirical Brno range (ap-
proximately —120 to —40 dBm) and stable energy behaviour. Label 1 (Jamming) rep-
resents traffic exhibiting implausible RSSI extremes (<—125 dBm or >—30 dBm) while
maintaining otherwise plausible secondary attributes, consistent with PHY-layer interfer-
ence [17-19,27]. Label 2 (Battery-depletion) represents traffic exhibiting abrupt negative
battery_drop_speed while RSSI and SF remain stable, consistent with energy-abuse or
ghost-traffic patterns [20,21,23,26].

Attack injection is behavioural and dataset-driven, designed to emulate the observ-
able consequences of availability attacks at the Network Server rather than to reproduce
waveform-level interference. This design choice reflects the constraints of the Brno dataset,
which provides packet-level metadata rather than raw I/Q samples [5]. All injection thresh-
olds and parameter ranges are explicitly reported to ensure reproducibility and allow
recalibration for alternative environments.

3.4. Models and Evaluation Protocol

Detection performance is evaluated using the macro-averaged Fl-score (F1), which
balances precision and recall across classes, and the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC), which measures threshold-independent class
separability. The ROC curve plots the true positive rate against the False Positive Rate
across decision thresholds.

Five classifiers are evaluated to cover interpretable baselines and non-linear learners
suitable for mixed-scale tabular data. These include Random Forest (RF), Multi-Layer
Perceptron (MLP), XGBoost, Logistic Regression (LR), and K-Nearest Neighbours (KNNs).
Implementations use scikit-learn (RF, LR, and KNN), TensorFlow /Keras (MLP), and the
XGBoost library.

All experiments employ device-aware, stratified train/test splits to ensure that no
device appears in both sets and that class proportions are preserved. Standardization
and scaling are performed within the training pipelines to prevent leakage. Performance
is assessed using macro-averaged accuracy, precision, recall, F1-score, and AUC-ROC,
complemented by confusion matrices and ROC curves. All preprocessing statistics are
fit exclusively on training folds and applied to validation and test data using the fitted
transformers to prevent information leakage.

https://doi.org/10.3390/i18010038
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3.5. Compute Profiling

To assess deployment feasibility, we profile the computational cost of each classifier
under controlled single-threaded conditions representative of Network Server execution.
We report training time, per-sample prediction latency, Central Processing Unit (CPU)
usage, throughput, and serialized model size. All models are evaluated using a consistent
execution environment to ensure fair comparison. No parallelisation is used during infer-
ence; Open Multi-Processing (OpenMP) and Basic Linear Algebra Subprograms (BLASs)
acceleration are disabled to ensure consistent and reproducible single-threaded measure-
ments [50,51].Detailed profiling definitions and measurement procedures are provided
in Appendix A.

4. Evaluation and Findings

This section presents the empirical evaluation of the proposed multi-attribute PLA
framework. We first analyze the augmented dataset to characterize class balance and
feature behaviour (Section 4.1), then assess classifier performance and error patterns
(Section 4.2), and finally evaluate computational feasibility through single-threaded pro-
filing (Section 4.3). Together, these analyses quantify both detection effectiveness and
operational cost under realistic LoRaWAN conditions.

4.1. Feature Distribution Analysis

The dataset class balance is illustrated in Figure 4. Normal traffic represents 208,255
of 230,296 samples (90.4%), while jamming and battery-depletion samples account for
the remainder (Figure 4; percentages rounded for visual clarity). This imbalance reflects
operational LoRaWAN deployments, where benign traffic dominates and attacks are com-
paratively rare but potentially high-impact.

Classes (mapping)
B Normal (0)
B Jamming (1)
B Battery Depletion (2)

Figure 4. Distribution of normal and attack traffic in the dataset.

This distribution aligns with observations from operational LoRaWAN deployments,
where the majority of traffic is benign.

Battery level behaviour exhibits distinct class-specific patterns (Figure 5). Normal
transmissions maintain high battery percentages (>80%) with gradual depletion, whereas
battery-depletion attacks cluster sharply below 20%, replicating abrupt drain events. Jam-
ming samples largely overlap with the normal battery range, as interference affects com-
munication reliability rather than energy consumption.

Temporal inspection further confirms this behaviour (Figure 6). Battery level for a
representative device declines smoothly during normal operation, while battery-depletion
attacks manifest as abrupt vertical drops, indicating accelerated consumption. Battery level
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is sampled only at uplinks. Therefore, energy usage between transmissions appears as step
changes at subsequent samples.
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Figure 5. Distribution of battery level (%) across normal and attack classes.
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Figure 6. Battery-level progression over time for a representative device.

RSSI analysis (Figure 7) shows that normal traffic lies predominantly within the
expected LoRaWAN operational range (—120 to —40 dBm). Jamming injections introduce
extreme RSSI outliers (<—125 dBm), whereas battery-depletion samples retain near-normal
RSSI distributions. This overlap demonstrates that RSSI alone cannot reliably distinguish
all availability attacks and motivates the use of multi-attribute PLA.
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Figure 7. RSSI distribution by class (boxplot).
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Altitude remains stable within the expected installation range (2-10 m) across all
classes (Figure 8), confirming its role as a baseline physical attribute rather than a discrimi-
native feature for availability attacks.

| I

Altitude (meters)
o N ® ©

o

1 L 1 1

Normal (0) (n=208255) Battery Depletion (2) (n=10929) Jamming (1) (n=11112)
Attack Label

Figure 8. Altitude distribution by class (boxplot).

4.2. Classification Performance

False Positive Rate (FPR) denotes the proportion of benign transmissions incorrectly
classified as attacks and is particularly critical in LoRaWAN deployments, where false
alarms may trigger unnecessary mitigation actions or operational overhead. For this reason,
the evaluation emphasizes both detection accuracy and error characteristics. Having
established feature behavior and class separability, we next evaluate model performance
using five classifiers. Table 2 summarizes macro-averaged accuracy, precision, recall, F1-
score, and Area Under the Curve (AUC), with macro-averaging used to ensure equal
weighting of minority attack classes under class imbalance. Bold values indicate the
best-performing result for each evaluation metric across all classifiers.

Table 2. Classification performance metrics for all models (macro-averaged).

Model Accuracy Precision Recall F1-Score AUC
Random Forest 0.8253 0.8239 0.8253 0.8180 0.8927
MLP 0.8231 0.8511 0.8231 0.8260 0.8953
XGBoost 0.7709 0.7772 0.7709 0.7705 0.8939
Logistic Regression 0.8002 0.8193 0.8002 0.8033 0.7680
KNN 0.8084 0.8135 0.8084 0.7959 0.8938

The MLP achieves the highest F1-score (0.8260) and AUC (0.8953), indicating strong
capture of non-linear relationships among physical-layer attributes. Random Forest follows
closely with a balanced performance. Logistic Regression and KNN provide moderate
results, while XGBoost exhibits a high AUC but lower F1-score, illustrating that AUC alone
may mask minority-class errors.

Figure 9 visualizes the macro-F1 scores of all classifiers to emphasize comparative
detection performance on the minority attack classes. Macro-F1 is reported because it
assigns equal weight to each class and therefore reflects the performance on jamming and
battery-depletion attacks, whereas micro-averaged (overall) F1 would be dominated by the
majority normal class.

Confusion matrices (Figure 10) show that jamming (Label 1) is the most challenging
class, with misclassifications primarily into the normal class. Battery-depletion (Label 2) ex-
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hibits slightly higher recall for the stronger models. For MLP, Random Forest, and XGBoost,
jamming recall is approximately 0.76, while battery-depletion recall is approximately 0.81.

0.8260

t
ML %GBOOS Lagitc Regression KNN

aandom Forest

Figure 9. Fl-score comparison across classifiers.
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Figure 10. Confusion matrices for all classifiers.

ROC analysis (Figure 11) confirms these trends. MLP and Random Forest achieve the
highest AUC values and maintain superior true positive rates in the low False Positive Rate
region, which are critical for LoRaWAN deployments where false alarms are costly.
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Figure 11. ROC curves for all classifiers with low-FPR inset.
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4.3. Compute Profiling (Prediction Costs)

All models were profiled under the single-threaded protocol defined in Section 3.4.
Table 3 summarizes training time, prediction latency, throughput, and model size.

Table 3. Computational performance of all classifiers, reporting training time, prediction latency,
throughput, and model size.

Prediction Latenc Prediction
Model Training Time (s) y Throughput Model Size (MB)
(ms/sample)
(samples/s)
Logistic Regression 3.342 0.000413 2,421,448 0.002
Random Forest 148.352 0.035584 28,106 112.707
KNN 0.201 2.164 462 30.684
MLP (scikit-learn) 95.123 0.001280 781,537 0.118
XGBoost 9.676 0.013677 73,116 1.023

Bold values indicate the most favorable result for each computational metric (i.e., lowest training time and
prediction latency, highest throughput, and smallest model size).

Logistic Regression achieves the lowest prediction latency (0.000413 ms/sample),
highest throughput, and smallest model size, but trails in detection quality. MLP provides
the strongest detection performance with very low prediction cost at the expense of longer
training time. Random Forest offers robust detection performance but incurs the highest
training cost and a large storage footprint (112.7 MB), which may limit its suitability
for resource-constrained Network Server deployments.Figures 12-15 visualize prediction
latency, throughput, training time, and model size, respectively.
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Figure 12. The inference latency (ms) of each model is shown using a logarithmic y-axis to accommo-
date the wide variance in execution time.

The exact numerical values underlying Figures 12-15, including inference latency,
throughput, training time, and model size for all models, are reported in Appendix C.

Table 4 provides a deployment-oriented synthesis of the quantitative results reported
in Table 3. Qualitative labels (e.g., very low, high, and large) are derived from the measured
prediction latency, throughput, and model size to highlight practical accuracy—cost trade-
offs and to support model selection for Network Server deployment. Bold entries indicate
the model exhibiting the most favorable overall trade-off between detection performance
and deployment efficiency.

https://doi.org/10.3390/i18010038


https://doi.org/10.3390/fi18010038

Future Internet 2026, 18, 38 15 of 22

108

10°

104

103

Throughput (samples/s, log scale)

=
o
N

=
o
-

10°

Training Time (s, log scale)

Figure 14. Training time (s) for all models (log-scale).
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Figure 15. Model size (MB) for each classifier (log-scale).

Additional implementation details, including model hyperparameters and computa-
tional profiling parameters, are provided in Appendix A (Tables A1l and A2).

Overall, MLP provides the most favourable balance between detection effectiveness
and runtime efficiency for NS deployment, while Logistic Regression serves as a lightweight
baseline and Random Forest remains a strong server-side alternative when storage and
training cost are acceptable.
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Table 4. Deployment-oriented comparison of models.
Prediction . 11
Model Macro-F1 AUC Model Size Deployment Suitability
Latency
Logistic high/ . . . .
Regression medium high very low very small Very lightweight baseline
. . High accuracy with
Random Forest high high low large substantial resource cost
MLP highest highest very low small Best accuracy—cost balance
XGBoost high high higher larger Accurate but heavier
KNN medium medium high large Not suitable for NS use

5. Conclusions

This work evaluated multi-attribute PLA for LoRaWAN availability attacks using
a device-aware, semi-synthetic dataset derived from the Brno traces. The distributional
and temporal analyses (Figures 4-6) explain the error patterns observed in Section 4.2.
Jamming attacks produce clear radio anomalies in the form of RSSI extremes, whereas
battery-depletion attacks largely overlap with normal RSSI behaviour and are best revealed
through energy-trajectory features such as battery_level and battery_drop_speed. As a
result, models capable of capturing non-linear interactions between RSSI and energy-related
attributes achieve the strongest detection performance. The MLP achieved the highest
overall detection quality (F1 = 0.8260, AUC = 0.8953), with Random Forest performing
comparably. Logistic Regression served as a compact and interpretable baseline.

From a deployment perspective, the compute profile in Section 4.3 indicates that accu-
rate PLA is feasible at the NS. The MLP combines strong detection performance with low
prediction cost (0.001280 ms/sample, model size 0.118 MB). Random Forest offers similar ac-
curacy but incurs the largest model footprint (112.707 MB) and the longest training time. Lo-
gistic Regression delivers sub-microsecond-level prediction latency (0.000413 ms/sample)
and a minimal model size (~0.002 MB), albeit at a lower AUC. These trade-offs are summa-
rized in Table 4 and visualized in Figures 12-15.

Overall, the results confirm three key contributions of this work: (i) a systematic evalu-
ation of multi-attribute PLA for availability attacks, reporting detection performance using
accuracy, precision, recall, F1-score, and AUC (Table 2; Figures 9-11), (ii) the construction
of a transparent, device-aware semi-synthetic dataset that preserves empirical LoORaWAN
behaviour while enabling the controlled evaluation of jamming and battery-depletion at-
tacks, and (iii) a deployment-oriented feasibility analysis combining detection effectiveness
with prediction-time computational profiling to support practical Network Server model
selection (Tables 3 and 4, Figures 12-15).

Limitations and Future Work

While the proposed multi-attribute PLA framework demonstrates strong detection
performance for jamming and battery-depletion attacks under the evaluated conditions,
several limitations and potential failure modes should be acknowledged.

First, the proposed approach may be less effective against slow or stealthy jamming
strategies. Unlike aggressive or continuous jamming, such attacks deliberately induce only
marginal degradation in signal quality over extended periods. By operating at low power,
intermittently, or selectively targeting specific frames or spreading factors, stealthy jammers
can remain within the natural variability of LoRaWAN channel conditions. As a result,
the induced RSSI and temporal patterns may closely resemble benign fading, interference
from neighbouring devices, or ADR adjustments, and therefore remain below detection
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thresholds used by metadata-based PLA schemes [17,19,30,42]. Detecting such attacks may
require longer observation windows, cross-gateway correlation, or access to lower-level
physical-layer measurements not available in the present dataset.

Second, benign battery anomalies may confound battery-aware detection. Although
abrupt battery drops are indicative of forced activity or energy-drain attacks, similar
patterns can arise from non-malicious operational factors, including persistent poor link
quality, repeated retransmissions, confirmed-message retries, misconfigured duty cycles,
or device resets. In such cases, battery-depletion behaviour may mimic attack-induced
drain without adversarial intent, increasing the risk of false positives. While the proposed
multi-attribute fusion mitigates this risk by jointly analyzing radio and temporal features,
complete disambiguation between malicious and benign energy anomalies cannot be
guaranteed in all deployment scenarios [20,21,23,26].

Third, the framework may be affected by concept drift during long-term deployment.
Physical-layer characteristics such as RSSI distributions and battery-consumption patterns
can evolve over time due to seasonal environmental changes, vegetation growth, hardware
ageing, firmware updates, or network densification. Models trained on historical data may
therefore experience gradual performance degradation if such changes are not accounted
for. Periodic retraining, adaptive threshold recalibration, or online learning mechanisms
may be required to maintain detection reliability over extended operational lifetimes.

Unlike our earlier spoofing-oriented PLA work, which explored online adaptation,
the present study intentionally focuses on batch-trained models in order to isolate and
rigorously evaluate availability-oriented attack behaviour under controlled and repro-
ducible conditions.

Finally, the attack modelling in this study is behavioural and dataset-driven, reflecting
observable effects at the gateway or Network Server level rather than waveform-level over-
the-air interference. This choice is constrained by the Brno LoRaWAN dataset [5], which
provides packet-level metadata but not raw 1/Q samples or channel state information.
While prior experimental studies show that selective and reactive jamming produces
detectable metadata-level effects [16-19,27,31], future work should incorporate field trials
with physical interferers to further validate realism under diverse interference conditions.

These extensions are intentionally left for future work, as the present study focuses on
the controlled and reproducible evaluation of availability-oriented PLA under well-defined
threat assumptions.

Addressing these limitations represents an important direction for future research.
In particular, extending the framework to incorporate multi-gateway correlation, longer
temporal context, and adaptive retraining strategies would further strengthen robustness
against stealthy attacks and long-term environmental drift.
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Abbreviations

The following abbreviations are used in this manuscript:

ADR Adaptive Data Rate

AS Application Server

AUC Area Under the Curve

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

csv Comma-Separated Values

F1 F1-score (harmonic mean of precision and recall)
FPR False Positive Rate

IoT Internet of Things

ISM Industrial, Scientific and Medical (radio band)
JS Join Server

KNN K-Nearest Neighbours

LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network

LR Logistic Regression

MAC Medium Access Control

ML Machine Learning

MLP Multi-Layer Perceptron

NS Network Server

OpenMP Open Multi-Processing

OTAA Over-the-Air Activation

PLA Physical-Layer Authentication
RF Random Forest

ROC Receiver Operating Characteristic
RSSI Received Signal Strength Indicator
SDR Software-Defined Radio

SF Spreading Factor

SNR Signal-to-Noise Ratio

WSN Wireless Sensor Network

XGBoost eXtreme Gradient Boosting

Appendix A. Compute Profiling Metrics and Definitions
Appendix A.1. Execution Setup

All profiling experiments were conducted under single-threaded execution to isolate
the intrinsic computational cost of each model. This avoids variability introduced by
automatic multi-threading in numerical backends such as BLAS (Basic Linear Algebra
Subprograms) and OpenMP, which may otherwise utilize multiple CPU cores. Enforc-
ing a single thread ensures that reported timings reflect model complexity rather than
hardware parallelism.

Appendix A.2. Training Cost

For each classifier, training cost is measured using the following:

Wall-clock time: Real elapsed time required to complete model training.

Process CPU time: CPU time consumed by the training process.

Resident memory change: Average increase in memory usage during training.

Training runs are repeated R = 3 times, and mean =+ standard deviation values
are reported.
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Appendix A.3. Prediction Latency and CPU Cost

Prediction-time efficiency is evaluated under controlled, single-threaded execution
conditions. We report three complementary inference metrics.
Prediction Latency

Tinfer,wall % 1000

Lpred [ms/sample] = New,

where Tipfer wall is the total wall -clock time (in seconds) required to score the full test set, and
Niest denotes the number of test samples. The factor 1000 converts seconds to milliseconds.
Lyreq represents the average end-to-end inference time per sample, as experienced by an
operator or system.

CPU Cost per Sample

Tinfer,cpu

Cpred [CPU ms/sample] = x 1000

test

where Tipfer,cpu IS the total process CPU time required for inference (in seconds), excluding
idle or waiting time. This metric isolates the pure computational effort per sample and is
particularly useful for capacity planning and deployment analysis.

Throughput
For completeness, throughput is reported as follows:
1
Opred [samples/s]| ~ 000
Lpred

Since Lpeq is expressed in milliseconds per sample, dividing 1000 by this value yields
the corresponding inference throughput on the same host. Throughput is therefore the
inverse of prediction latency.

Appendix A.4. Model Size

We also report the model size:
Simodel = Size of the serialized model on disk.

Model size reflects storage and replication overhead, as well as potential cold-start
implications in resource-constrained or edge deployments.

Appendix B. Data Integrity Note

To verify internal consistency between the described methodology and the released
dataset (Brno_dataset_with_battery_drop_speed_and_label noise.csv), a descriptive audit
was conducted. The results confirm that all claimed attributes are present, correctly labelled,
and statistically coherent with the methodological narrative.

Verification Summary

The final dataset comprises 230,296 records following augmentation and labelling.

No missing or inconsistent entries were identified after data cleaning.

Temporal continuity was verified for all transmissions within each device_address,
ensuring correct sequencing for A-based features.

A controlled label noise rate (<2%) was intentionally maintained to support general-
ization during model training.

The derived attribute battery_drop_speed was validated as the first-order difference
in battery_level for each node, confirming internal consistency.

Interpretation
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These checks confirm that the dataset constitutes a semi-synthetic extension of the
Brno LoRaWAN dataset, integrating real-world physical-layer parameters (RSSI, SNR, and
SF) with synthetically modelled altitude and energy behaviour. This design provides a
transparent and reproducible foundation for evaluating multi-attribute Physical-Layer
Authentication (PLA) against both spoofing and availability attacks.

Table Al. Summary statistics and verification outcomes for the semi-synthetic PLA dataset.

Attribute Description Min Median Max Observations/Notes
. . No duplicates per timestamp;
device_address Unique numeric ID for 1 — 8800 malicious IDs preserved as —1 for
each node
spoof markers.
event_step Transm1i15101.r1 order per 1 84 168 Seq1.1ent1al; ensures temppral
evice consistency for A calculations.

. Received signal strength Reflects original Brno variation;
o8t indicator (dBm) —137.6 —100:3 257 Normal samples not hard-clipped.
snr Signal-to-noise ratio (dB) —17.8 34 12.6 Matches !Srno distribution; used to

enrich channel context.
. Integer; unchanged from original
sf Spreading factor 7 9 12 Brno dataset.
Fixed node installation Device-wise variation = 0.2-0.5%,
altitude height (m) 2.00 5.92 9.97 maximum 1.6%; consistent with
€18 GPS drift model.
e ~65% —98%: - %
battery_level Remaining energy 127 873 1014 65% start 90-98%; s.ma.ll over 100%
percentage values due to noise injection.
battery_drop_speed ABattery between 49 —0.08 0.02 Mean near zero; large negatives

event steps

correspond to depletion events.

Attack class (0—Normal,

Class distribution:

label 1—Jamming, and — — — o o o .
%—Ba £ te%y) 90.43%/4.83%/4.75%, respectively.
Appendix C. Detailed Performance Metrics of Classification Models
This appendix provides the exact numerical values corresponding to the summary
plots shown in Figures 11-14. Since the performance metrics span multiple orders of
magnitude, the log-scale visualizations in the main Results section focus on compara-
tive trends rather than exact quantities. For completeness and reproducibility, the full
metrics—including inference latency, throughput, training time, and model size—are re-
ported here.
Table A2. Performance metrics for all evaluated models.
Model Inference Throughput Training Time (s) Model Size (MB)
Latency (ms) (samples/s)
Random Forest 0.035584 28,102.45 148.351617 112.706849
Logistic Regression 0.000413 2,421,447.90 3.341863 0.002229
KNN 2.164416 462.02 0.201079 30.684250
XGBoost 0.013677 73,116.13 9.675927 1.023351
MLP (sklearn) * 0.001280 781,537.04 95.122917 0.118211

* We explicitly label the model as “MLP (sklearn)” because the Multi-Layer Perceptron is implementation-
dependent, and its architecture and optimization behaviour differ across frameworks. Adding the library clarifies
that our results refer specifically to scikit-learn’s MLPClassifier, avoiding confusion with deep-learning MLP
implementations such as PyTorch or TensorFlow.
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