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Abstract

Natural Language Processing �NLP� is concerned with processing ordinary� unrestricted text�
This work takes a new approach to a traditional NLP task� using neural computing methods�
A parser which has been successfully implemented is described� It is a hybrid system� in which
neural processors operate within a rule based framework�

The neural processing components belong to the class of Generalized Single Layer Networks
�GSLN�� In general� supervised� feed�forward networks need more than one layer to process data�
However� in some cases data can be pre�processed with a non�linear transformation� and then
presented in a linearly separable form for subsequent processing by a single layer net� Such
networks o�er advantages of functional transparency and operational speed�

For our parser� the initial stage of processing maps linguistic data onto a higher order repres�
entation� which can then be analysed by a single layer network� This transformation is supported
by information theoretic analysis�

Three di�erent algorithms for the neural component were investigated� Single layer nets can
be trained by �nding weight adjustments based on �a� factors proportional to the input� as in
the Perceptron� �b� factors proportional to the existing weights� and �c� an error minimization
method� In our experiments generalization ability varies little� method �b� is used for a prototype
parser� This is available via telnet�
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� Introduction

This paper examines some of the issues that have to be addressed in designing neural processors
for discrete� sequential data� There is a mutual dependence between the representation of data�
on the one hand� and the architecture and function of an e�ective network on the other� As
a vehicle for examining these processes we describe an automated partial parser that has been
successfully developed �	� 
�� This takes natural language sentences and returns them with the
subject and head of the subject located� Ability to generalize is the primary concern� A prototype
can be accessed via telnet� on which text can be entered and then parsed� Intermediate steps in
the process can be seen��

In principle� simpler networks with well understood functions have prima facie advantages�
so looking for a representation that enables such networks to be used should be advantageous�
With feed forward� supervised networks single layer models enjoy functional transparency and
operational speed� but in general this type of network will need more than one dynamically linked
layer to model non�linear relationships�

However� there is an alternative approach� The layers may be de�coupled� and processing at
di�erent layers done in separate steps� Data can be transformed� which is analogous to processing
at the �rst layer� and then presented in a linearly separable form to a single layer net� which is
analogous to a second layer� This is illustrated in Figure �� which shows in simpli�ed form
an archetype of the class of Generalized Single Layer Networks �GSLN�� A number of di�erent
network types that belong to this class are listed by Holden and Rayner �� page ���� The critical
issue is �nding an appropriate non�linear transformation to convert data into the required form�

This paper describes how characteristic linguistic data can be converted into a linearly sep�
arable representation that partially captures sequential form� The transformed data is then pro�
cessed by a single layer network� Three di�erent neural models are tried� and their performance
is compared�

All three networks are feed forward models with supervised training� Connection weights can
be found by adjustments based on �a� factors proportional to the input �b� factors proportional to
the existing weights� and �c� factors related to the di�erence between desired and actual output�
an error minimization method� Model �a� is a traditional Perceptron� model �b� is based on
the Hodyne network introduced by Wyard and Nightingale at British Telecom Laboratories ����
model �c� comes from the class of networks that use an LMS �Least Mean Square error� training
algorithm� There is little di�erence in generalization ability� but network �b� performs slightly
better and has been used for the parser in the prototype�

Natural language processing �NLP�

The automatic parsing of natural language poses a signi�cant problem� and neural computing
techniques can contribute to its solution� For an overview of the scope for work in NLP see
��� pages ��		�� Our prototype gives results of over ��� correct on declarative sentences from
technical manuals �see Section ���

Automated syntactic analysis of natural language has� in the last decade� been characterised
by two paradigms� Traditional AI� rule based methods contrast with probabilistic approaches�
in which stochastic models are developed from large corpora of real texts� Neural techniques fall
into the broad category of the latter� data driven methods� with trainable models developed from
examples of known parses� The parser we have implemented uses a hybrid approach� rule based
techniques are integrated with neural processors�
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Parsing can be taken as a pattern matching task� in which a number of parses are postulated
for some text� A classi�er distinguishes between the desired parse and incorrect structures�
The pattern matching capabilities of neural networks have a particular contribution to make to
the process� since they can conveniently model negative as well as positive relationships� The
occurrence of some words or groups of words inhibit others from following� and these constraints
can be exploited� Arguments on the need for negative information in processing formal languages
��� can be extended to natural language� This is an important source of information which has
been di�cult for traditional probabilistic methods to access ��� ��� Neural methods also have the
advantage that training is done in advance� so the run time computational load is low�

Contents of paper

This paper will �rst take an overview of some factors that are relevant to neural net design
decisions� �Section 
�� It then looks at characteristics of natural language �Section �� and the
representation of sequential data �Section ��� A description of the hybrid system used in our
work is given� �Section ��� Then we examine some of the design issues for the neural components
of this system� First� the data itself is examined closely� Then we consider how the data can
be transformed for processing with a single layer net �Section ��� We also comment on the use
of a Bayesian classi�er� which performs slightly less well than the neural networks� Section �
describes the three di�erent networks� �a� the Perceptron� �b� Hodyne and �c� an LMS model�

In Section � we compare the performance of the three networks� Generalization is good�
providing that enough training data is used� Over ��� of the data is correctly classi�ed� and the
output can be interpreted so that results for the practical application are up to 	��� correct�
On the small amount of data processed so far the di�erent networks have roughly comparable
generalization ability� but the Hodyne model is slightly better� A discussion on the function of
the net follows in Section �� We conclude �Section 	�� that linguistic data is a suitable candidate
for processing with this approach�

� Neural nets as classi�ers of di�erent types of data

��� �Clean� and noisy data

Consider the fundamental di�erence in purpose between systems that handle noisy data� where
it is desired to capture an underlying structure and smooth over some input� compared to those
that process �clean� data� where every input datum may count� The many applications of neural
nets in areas such as image processing provide examples of the �rst type� the parity problem
is typical of the second�� These �clean� and �noisy� types can be considered as endpoints of a
spectrum� along which di�erent processing tasks lie� In the case of noisy data a classi�er will
be required to model signi�cant characteristics in order to generalize e�ectively� The aim is to
model the underlying function that generates the data� so the training data should not be over
�tted�

On the other hand� for types of data such as inputs to a parity detector� no datum is noise�
Consider an input pattern that is markedly di�erent� that is topologically distant� from others
in its class� For one type of data this may be noise� In other instances an �atypical� vector may
not be noise� and we may need to capture the information it carries to �x the class boundary
e�ectively�

�The classical parity problem takes a binary input vector� the elements of which are � or �� and classi�es it as

having an even or odd number of ��s�






As we demonstrate in the next section� linguistic data needs to be analysed from both angles�
We need to capture the statistical information on probable and improbable sequences of words�
we also need to use the information from uncommon exemplars� which make up a very large
proportion of natural language data�

��� Preserving topological relationships

Another of the characteristics that is relevant to network design is the extent to which the
classi�cation task� the mapping from input to output� preserves topological relationships� In
many cases data which are close in input space are likely to produce the same output� and
conversely similar classi�cations are likely to be derived from similar inputs� However� there
are other classi�cation problems which are di�erent� a very small change in input may cause a
signi�cant change in output and� on the other hand� very di�erent input patterns can belong to
the same class� Again� the parity problem is a paradigm example� in every case changing a single
bit in the input pattern changes the desired output�

��� Data distribution and structure

Underlying data distribution and structure have their e�ect on the appropriate type of processor�
and these characteristics should be examined� Information about the structure of linguistic data
can be used to make decisions on suitable representations� In this work information theoretic
techniques are used to support decisions on representation of linguistic data�

We may also use information on data distribution to improve generalization ability� As shown
in Section � assumptions of normality cannot be made for linguistic data� The distribution
indicates that in order to generalize adequately the processor must capture information from a
signi�cant number of infrequent events�

� Characteristics of linguistic data

The signi�cant characteristics of natural language that we wish to capture include�

� An inde�nitely large vocabulary

� The distinctive distribution of words and other linguistic data

� A hierarchical syntactic structure

� Both local and distant dependencies� such as feature agreement

��� Vocabulary size

Shakespeare is said to have used a vocabulary of ����� words� and even an inarticulate computer
scientist might need 	����� to get by �counting di�erent forms of the same word stem separately��
Current vocabularies for commercial speech processing databases are O�	���� Without specifying
an upper limit we wish to be able to model an inde�nite number of words�





��� The distinctive distribution of linguistic data

The distribution of words in English and other languages has distinctive characteristics� to which
Shannon drew attention ���� Statistical studies were made of word frequencies in English language
texts� In about 
������ words of text �word tokens� there were about ����� di�erent words �word
types�� and the frequency of occurrence of each word type was recorded� If word types are ranked
in order of frequency� and n denotes rank� then there is an empirical relationship between the
probability of the word at rank n occurring� p�n�� and n itself� known as Zipf�s Law�

p�n� � n � constant

This gives a surprisingly good approximation to word probabilities in English and other
languages� and indicates the extent to which a signi�cant number of words occur infrequently�
For example� words that have a frequency of less than 	 in ������ make up about 
���� of
typical English language news�wire reports �	��� The LOB corpus� with about 	 million word
tokens contains about ������ di�erent word types� of which about �
���� occur less than 	� times
each �		��

The �zip�an� distribution of words has been found typical of other linguistic data� It is
found again in the data derived from part�of�speech tags used to train the prototype described
here� see Figures 
 and � Other �elds in which zip�an distribution is noted include information
retrieval and data mining �e�g� characteristics of WWW use� patterns of database queries�� It
has also been observed in molecular biology �e�g� statistical characteristics of RNA landscapes�
DNA sequence coding��

Mapping words onto part�of�speech tags

In order to address the problem of sparse data the vocabulary can be partitioned into groups�
based on a similarity criterion� as is done in our system� An inde�nitely large vocabulary is
mapped onto a limited number of part�of�speech tag classes� This also make syntactic patterns
more pronounced� Devising optimal tagsets is a signi�cant task� on which further work remains
to be done� For the purpose of this paper we take as given the tagsets used in the demonstration
prototype� described in �	
�� At the stage of processing described in this paper 	� tags are used�

��� Grammatical structure

There is an underlying hierarchical structure to all natural languages� a phenomenon that has been
extensively explored� Sentences will usually conform to certain structural patterns� as is shown in
a simpli�ed form in Figure 	� This is not inconsistent with the fact that acceptable grammatical
forms evolve with time� and that people do not always express themselves grammatically� Text
also� of course� contains non�sentential elements such as headings� captions� tables of contents�
The work described in this paper is restricted to declarative sentences�

Within the grammatical structure there is an inde�nite amount of variation in the way in
which words can be assembled� On the other hand� the absence or presence of a single word can
make a sentence unacceptable� for example

�There are many problems arise� � � � �	�
�We is late� � � � �
�

�The London Oslo Bergen corpus is a collection of texts used as raw material for natural language processing

�
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Figure 	� Decomposition of the sentence into syntactic constituents�

Now consider how linguistic data �ts into the scheme described in Section 
�
 on preserving
topological relationships� Many strings of words that are close in input space are also in the same
grammatical category� but� conversely� on occasions a single word change can put a string into a
di�erent category� Our processor has to model this�

��� Local and distant dependencies

In examining natural language we �nd there are dependencies between certain words� both locally
and at a distance� For instance� a plural subject must have a plural verb� so a construction like
sentence �
� above is incorrect� This type of dependency in its general form is not necessarily
local� In sentence �� below the number of the subject is determined by its head� which is not
adjacent to the verb�

If a cooler is �tted to the gearbox� � the pipe � connections � of the cooler � must
be regularly checked for corrosion� � � � ��

The subject of this sentence is the plural �connections�� Note that modal verbs like �must�
have the same singular and plural form in English� but not in many other languages� For an
automated translation system to process modal verbs it is necessary to �nd the head of the
subject that governs the verb and ensure number agreement�

There are also dependencies between sentences and between more distant parts of a text� We
aim to model just the intra�sentential dependencies as our automatic parser is developed�

� Modelling sequential data

Three methods have commonly been used to model sequential data� such as language� for connec�
tionist processing� The �rst is to move a window along through the sequence� and process a series
of static �snapshots�� Within each window ordering information is not represented� Sejnowski�s
NETtalk is a well known example �	��

�



Another method that warrants further investigation is the use of recurrent nets �	�� 	��� In its
basic form this type of network is equivalent to a �nite state automaton that can model regular
languages �	���

��� The n	gram method

The third method� used in this work� is to take sets of ordered� adjacent elements� which capture
some of the sequential structure of language� This is related to the well known trigram approach
used in probabilistic language processing� Combining tags into higher order tuples can also act
as a pre�processing function� making it more likely that the transformed data can be processed
by a single layer network �Section ���

This method of representation captures some of the structure of natural language� as is shown
by analysis with information theoretic techniques� There are relationships between neighbouring
words in text� some are likely to be found adjacent� others are unlikely� When words are mapped
onto part�of�speech tags this is also the case� This observation is supported by an investigation
of entropy levels in the LOB corpus� in which 	 million words have been manually tagged�

Entropy can be understood as a measure of uncertainty �	�� chapter 
�� The uncertainty about
how a partial sequence will continue can be reduced when statistical constraints of neighbouring
elements are taken into account� Shannon introduced this approach by analysing sequences of
letters ���� where the elements of a sequence are single letters� adjacent pairs or triples� with order
preserved� These are n�grams� with n equal to 	� 
 or � The entropy of a sequence represented by
letter n�grams declines as n increases� When sequences of tags in the LOB corpus were analysed
the same result was obtained� the entropy of part�of�speech n�grams declines as n increases from
	 to � This indicates that some of the structure of language is captured by taking tag pairs and
triples as processing elements�

We adopt the common approach of presenting data as binary vectors for all the networks
examined in this work� Each element of the input vector represents an ordered tuple of adjacent
part�of�speech tags� a pair or a triple� If a given tag tuple is present in an input string� then that
element in the input vector is �agged to 	� else it remains ��

� Description of the hybrid natural language processor

In order to process unrestricted natural language it is necessary to attack the problem on a broad
front� and use every possible source of information� In our work the neural networks are part
of a larger system� integrated with rule based modules� We �rst assert that there is a syntactic
structure which can be mapped onto a sentence �Figure 	�� Then we use neural methods to �nd
the mapping in each particular case� The grammar used is de�ned in �	
� chapter ���


�� Problem decomposition

In order to e�ect the mapping of this structure onto actual sentences we decompose the problem
into stages� �nding the boundaries of one syntactic feature at a time� The �rst step is to �nd
the correct placement for the boundaries of the subject� then further features are found in the 
basic constituents� In the current prototype the head of the subject is subsequently identi�ed�
The processing at each stage is based on similar concepts� and to explain the role of the neural
networks we shall in this paper discuss the �rst step in which the subject is found�

The underlying principle employed each time is to take a sentence� or part of a sentence� and
generate strings with the boundary markers of the syntactic constituent in question placed in all
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possible positions� Then a neural net selects the string with the correct placement� This is the
grammatical� �yes� string for the sentence� The model is trained in supervised mode on marked
up text to �nd this correct placement� The di�erent networks that are examined share the same
input and output routines� and each was integrated into the same overall system�


�� Tagging

The �rst stage in both the training and testing process is to map an inde�nite number of words
onto a limited number of part�of�speech tags� An automatic tagger allocates one or more part�
of�speech tags to the words to be processed� Many words� typically perhaps 
�� to ��� have
more than one tag� The CLAWS automatic tagger �	�� provided a set of candidate tags for each
word� but the probabilistic disambiguation modules were not used� disambiguating the tags is
a sub�task for the neural processer� The CLAWS tagset was mapped onto a customised tagset
of 	�� used for the work described here� Further information on tagset development is in �	
�
chapter ��� and� brie�y� in �	��


�� Hypertags as boundary markers

As well as part of speech tags we also introduce the syntactic markers� virtual tags� which at this
stage of the process will demarcate the subject boundary� These hypertags represent the opening
��� and closing ��� of the subject� The hypertags have relationships with their neighbours
in the same way that ordinary tags do� some combinations are likely� some are unlikely� The
purpose of the parser is to �nd the correct location of the hypertags�

With a tagset of 	� parts�of�speech� a start symbol and 
 hypertags we have 

 tags in all�
Thus� there are potentially 

��

� � 			
 pairs and triples� In practice only a small proportion
of tuples are actually realised � see Tables  and � � At other stages of the parsing process larger
tagsets are required �see �	
���


�� Rule based pruning� the Prohibition Table

Strings can potentially be generated with the hypertags in all possible positions� in all possible
sequences of ambiguous tags� However� this process would produce an unmanageable amount of
data� so it is pruned by rule based methods integrated into the generation process� Applying
local and semi�local constraints the generation of any string is zapped if a prohibited feature
is produced� For fuller details see �	
� or �	�� An example of a local prohibition is that the
adjacent pair �verb� verb� is not allowed� Of course �auxiliary verb� verb� is permissible�
as is �verb� � � verb�� These rules are similar to those in a constraint grammar� but are
not expected to be comprehensive� There are also arbitrary length restrictions on the sentence
constituents� currently� the maximum length of the pre�subject is 	� words� of the subject 	

words�


�
 Neural processing

This pruning operation is powerful and e�ective� but it still leaves a set of candidate strings for
each sentence � typically between 	 and 
� for the technical manuals� Around 
�� of sentences are
left with a single string� but the rest can only be parsed using the neural selector� This averages at
about  for the technical manuals� more for sentences from other domains� In training we manually
identify the string with the correct placement of hypertags� and the correctly disambiguated part�
of�speech tags� In testing mode� the correct string is selected automatically�
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�� Coding the input

As an example of input coding consider a short sentence�

All papers published in this journal are protected by copyright� �������

�A� Map each word onto � or more tags

all predeterminer

papers noun or verb

published past�part�verb

in preposition or adverb

this pronomial determiner

journal noun

are auxiliary�verb

protected past�part�verb

by preposition

copyright noun

� endpoint

�B� Generate strings with possible placement of subject boundary markers�

and possible tag allocations �pruned��

string no� �

strt � pred � verb pastp prep prod noun aux pastp prep noun end

�����������������

string no� �

strt � pred noun � pastp adv prod noun aux pastp prep noun end

string no� 	

strt � pred noun pastp � adv prod noun aux pastp prep noun end

string no� 
 ��� target ���

strt � pred noun pastp prep prod noun � aux pastp prep noun end

string no� �

strt � pred noun pastp adv prod noun � aux pastp prep noun end

�C� Transform strings into sets of tuples

string no� �

�strt� � � � �� pred � � pred� � � ������������������������noun� end�

�strt� �� pred� ��� pred� �� �pred� �� verb�������������� �prep� noun� end�

and similarly for other strings

�D� The elements of the binary input vector represent all tuples� initialized to �� If a tuple is
present in a string the element that represents it is changed from � to 	�

�




� Characteristics of the data

The domain for which our parser was developed was text from technical manuals from Perkins
Engines Ltd� They were written with the explicit aim of being clear and straight forward �	���
Using this text as a basis we augmented it slightly to develop the prototype on which users try
their own text� Declarative sentences were taken unaltered from the manuals for processing�
imperative sentences� titles� captions for �gures were omitted� 
� of declarative sentences were
omitted� as they fell outside the current bounds �e�g� the subject had more than 	
 words�� A
corpus of �	 sentences was produced� see Table 	�

Number of sentences �	

Average length 	���� words

No� of subordinate clauses�
In pre�subject ��
In subject 	�
In predicate 	�

Co�ordinated clauses ��

Table 	� Corpus statistics� Punctuation marks are counted as words� formulae as 	 word�

This corpus �Tr�all� was divided up � ways �Tr 	 to Tr �� so that nets could be trained on
part of the corpus and tested on the rest� as shown in Table 
� In order to �nd the placement
of the subject boundary markers we do not need to analyse the predicate fully� so the part of
the sentence being processed is dynamically truncated  words beyond the end of any postulated
closing hypertag� The pairs and triples generated represent part of the sentence only�


�� Data distribution

Statistics on the data generated by the Perkins corpus are given in Tables � � and �� A signi�cant
number of tuples occur in the test set� but have not occurred in the training set� since� as
Figures 
 and  show� the distribution of data has a zip�an character�

Training number of number of Test number of number of Ratio of
set sentences strings set sentences strings testing�training

strings

Tr�all �	 	��
Tr 	 �� ��
 Ts 	 �
 �� ��	�
Tr 
 
�
 �� Ts 
 �� 	�� ��
�
Tr  
�� �� Ts  � 	�� ��

Tr � 
�� �
� Ts � �� 
	
 ��
�

Table 
� Description of training and test sets of data

�



Training number of number of Test number of new number of new
set pairs in pairs in set pairs in pairs in

�yes� strings �no� strings �yes� strings �no� strings

Tr�all 	�
 
	
Tr 	 	�	 
		 Ts 	 	 �	�� 
 �	��
Tr 
 	�� 
	� Ts 
 
 �	��  �	��
Tr  	�� 
	� Ts  � ����  �	��
Tr � 	�� 	� Ts � 	 ���� 
� �	���

Table � Part�of�speech pairs in training and testing sets��Yes� indicates correct strings� �no�
incorrect ones

Training number of number of Test number of new number of new
set triples in triples in set triples in triples in

�yes� strings �no� strings �yes� strings �no� strings

Tr�all ��� �
�
Tr 	 ��� �	 Ts 	 � �
�� 	� �
��
Tr 
 � ��� Ts 
 
 ���� �	 ����
Tr  �	 ��
 Ts  �� �	
�� �� �	��
Tr � �� �
 Ts � �
 �	
�� �� �	���

Table �� Part�of�speech triples in training and testing data sets

Total number of pairs in �yes� strings �	�

Total number of pairs in �no� strings ���

Total number of triples in �yes� strings ��
Total number of triples in �no� strings ��
	

Table �� Total number of tuples in Tr�all� including repetitions

	�
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�� Interpreting the output

For training� the set of strings generated by the training text is taken as a whole� Each string
is given a �grammaticality measure� �� where � is positive for a correct string� negative for an
incorrect one� Details follow in Section �� In testing mode we consider separately the set of
strings generated for each sentence� and the string with the highest � measure is taken as the
correct one for that sentence� In the example in Section ��� string � is the correct one�

However� on test data� there are � metrics for correctness that can be useful in di�erent
practical situations� The measure �correct�a� requires only that the hypertags are correctly
placed� string � as well as string � is correct�a� �correct�b� requires also that all words within
the subject are correctly tagged� �correct�c� that all words within the part of the sentence being
processed are correctly tagged� The �nal measure �correct�d� records the proportion of strings
that are in the right class� It can happen that the highest scoring string may have a negative
�� Conversely� some incorrect strings can have a positive � without having the highest score�
For practical purposes the measures �correct�a�� ��b�� and ��c� will be the signi�cant ones� But
in analysing the performance of the networks we will be interested in �correct�d�� the extent to
which the net can generalize and correctly classify strings generated by the test data�

Metrics of other systems

Note that these measures relate to a string� not to individual elements of the string� This
contrasts with some natural language processing systems� in which the measure of correctness
relates to each word� For instance� automated word tagging systems typically measure success
by the proportion of words correctly tagged� The best stochastic taggers typically quote success
rates of ��� to ��� correct� If sentences are very approximately 
� words long on average� this
can mean that there is an error in many sentences�

� Using single layer networks

��� Conversion to linearly separable forms

It is always theoretically possible to solve supervised learning problems with a single layer� feed
forward network� providing the input data is enhanced in an appropriate way� A good explanation
is given by Pao �
�� chapter ��� Whether this is desirable in any particular case must be investig�
ated� The enhancement can map the input data onto a space� usually of higher dimensionality�
where it will be linearly separable� Widrow�s valuable 	��� paper on �Perceptron� Madaline� and
Back Propagation� �
	� page 	�
�� explores these approaches �which o�er great simplicity and
beauty��

Figure � illustrates the form of the Generalized Single Layer Network �GSLN�� This �gure is
derived from Holden and Rayner ��� A non�linear transformation  on inputs fxg converts them
to elements fyg� which a single layer net will then process to produce an output z �temporarily
assuming 	 output�� The  functions� or basis functions� can take various forms� They can be
applied to each input node separately� or� as indicated in the �gure� they can model the higher
order e�ects of correlation� In our processor  is an ordered �AND�� described in the following
section� A similar function is used in the grammatical inference work of Giles et al� �	��� it is
also used in DNA sequence analysis �

�� The  function can be arithmetic� for instance� for
polynomial discriminant functions the elements of the input vectors are combined as products
�
� page 	��� Successful uses of this approach include the discrimination of di�erent vowel
sounds �
�� and the automated interpretation of telephone company data in tabular form �
���
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Figure �� The Generalized Single Layer Network� GSLN� with 	 output

Radial basis function �RBF� networks also come into the class of GSLNs� In their two stage
training procedure the parameters governing the basis functions are determined �rst� Then a
single layer net is used for the second stage of processing� Examples include Tarassenko�s work
on the analysis of ECG signals �
�� and a solution to an inverse scattering problem to determine
particle properties �
���

An important characteristic of the GSLN is that processing at di�erent layers is de�coupled�
The �rst stage of training is unsupervised� the  functions are applied without recourse to desired
results� In the second stage of training a supervised method is used� in which weight adjustments
on links are related to target outputs�

One perspective on the GSLN is given by Bishop �
�� e�g� page ���� who characterises this type
of system as a special case of the more general multi�layer network� Whereas in the general case
the basis functions at the �rst layer are modi�ed during the training process� in this type of system
the basis functions are �xed independently� Widrow �
	� page 	�
�� puts it the other way round�
�one can view multi�layer networks as single layer networks with trainable preprocessors�����

	



��� The conversion function used in the parser

We use this approach in the parser by converting a sequence of tags to a higher order set of
adjacent pairs and triples� The example in section ���� stage C shows how the input elements are
constructed� Thus� one of the elements derived from string 	 is � �� predeterminer� verb ��
This of course is not the same as � predeterminer� �� verb �� The same tag can be repeated
within a tuple� Computer Science Department maps onto � noun� noun� noun ��

This can be related to Figure �� Let each xi for i � 	 to m represent a tag� The  functions
map these onto m� pairs and m� triples� so n � m� � m�� If s is a sequence of l tags� it is
transformed into a set S of higher order elements by  p for pairs and  t for triples�

s � x� � � � xi� xi��� xi�� � � � xl

 p�xi� � �xi� xi��� for i � 	 to i � l � 	

 t�xi� � �xi� xi��� xi��� for i � 	 to i � l � 


S � f p�xi�g � f t�xi�g

For some of our investigations either pairs or triples were used� rather than both�
The  function represents an ordered �AND�� the higher order elements preserve sequential

order� This function was derived using heuristic methods� but the approach was supported by
an objective analysis of the proposed representation� We aimed to capture some of the implicit
information in the data� model invariances� represent structure� As described in Section ��	�
the choice of the tupling pre�processing function is supported by information theoretic analysis�
It captures local� though not distant� dependencies� Using this representation we address sim�
ultaneously the issues of converting data to a linearly separable form� modelling its sequential
character and capturing some of its structure�

An approach similar to our own has been used to develop neural processors for an analysis
of DNA sequences �

� page 	���� Initially a multi�layer network was used for one task� but
an analysis of its operation led to the adoption of an improved representation with a simpler
network� The input representing bases was converted to codons �tuples of adjacent bases�� and
then processed with a Perceptron�

��� The practical approach

Minsky and Papert acknowledged that single layer networks could classify linearly inseparable
data if it was transformed to a su�ciently high order �
�� page ���� but claimed this would
be impractical� They illustrated the point with the example of a parity tester� However� this
example is the extreme case� where any change of a single input element will lead to a change
in the output class� If there are n inputs� then it is necessary to tuple each element together to
O�n�� The consequent explosion of input data would make the method unusable for all but the
smallest data sets�

However� in practice� real world data may be di�erent� Shavlik et al ��� compare single and
multi�layer nets on � well known problems� and conclude �Regardless of the reason� data for
many �real� problems seems to consist of linearly separable categories����� Using a Perceptron as
an initial test system is probably a good idea�� This empirical approach is advocated here� Tests
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for linear separability and related problems are computationally heavy �	� 
�� so we tried single
layer networks to see whether the higher order data we use is in practice linearly separable� or
nearly so�

Taking data items as pairs typically produces training sets of which about ��� can be learnt
by a single layer network� taking triples raises learnability to about ���� Thus our data is almost
linearly separable�

��� Linear discriminants 	 neural and Bayesian methods

Having established empirically that after transformation we have a linear problem� there are a
number of di�erent methods of linear discriminant analysis that could be used� Our single layer
networks are convenient tools�

We also ran our data through a Bayesian classi�er� based on the model described by Duda
and Hart �
� page 
�� Results were about �� less good on test data than those from Hodyne�
Though the parsing problem is decomposed so that good estimates can usually be made of prior
probabilities� estimating class conditional probabilities needs further investigation� �If n possible
parses are generated and 	 is correct� then the prior is 	�n �� Frequency counts extracted from
the training data cannot be used as they stand as probability estimates� The zip�an distribution
of data can distort the probabilities� even when very large quantities are used� so that rare events
are given too much signi�cance� Moreover� further information on zero frequency items� though
limited� can be extracted using an appropriate technique� as Dunning shows �	��� There are a
number of methods of estimating probabilities on the basis of partial information which need
investigation �� page ����

These issues can be avoided by using neural discriminators�

��
 Training set size

There is a relationship between training set size and linear separability� Cover�s classical work
addressed the probability that a set of random� real valued vectors with random binary desired
responses are linearly separable ��� 
	�� Using his terminology and taking the term �pattern�
to mean a training example� the critical factor is the ratio of number of patterns� !� to number
of elements in each pattern� n� While !�n � 	� the probability Pseparable � 	��� If !�n � 	 then
Pseparable � ���� As !�n increases� !separable quickly declines�

These observations are given as background information to indicate that training set size
should be considered� but they do not apply in our case as they stand� First� our data is not
random� Secondly� a necessary condition that the vectors are in �general position�� normally
satis�ed by real valued vectors� may not hold for binary vectors ��� page ����

The number of training examples� !� is a factor in determining generalization capability �see�
for example� ��� ��� The probability that an error is within a certain bound increases with the
number of training examples� Decreasing ! to convert data to a linearly separable form would
be pro�tless�

The ratio of training examples to weights in our data is shown in Figure �� Note that the
corpus used for this preliminary working prototype is small compared to other corpora� and future
work will use much larger ones� which could a�ect this ratio�
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Perceptron and LMS nets with one output�

� Three single layer networks

�� Architecture

Refer again to Figure �� illustrating the GSLN� In this work we compare  networks� which all
use the same  functions� described in Section ��	� We now compare methods of processing at
the second stage� that is the performance of  di�erent single layer classi�ers� The Perceptron
and LMS net can be characterised as examples of the GSLN in Figure �� The Hodyne model
di�ers in having 
 outputs� not symmetrically connected� as in Figure ��

�� Methods of adjusting connection weights during training

When single layer networks are used� we do not have the classic problem of �credit assignment�
associated with multi�layer networks� the input neurons responsible for incorrect output can be
identi�ed� and the weights on their links adjusted� There is a choice of methods for updating
weights� We do not have to use di�erentiable activation functions� as in the multi�layer Per�
ceptron� These methods can therefore be divided into two broad categories� First there are
�direct update� methods� used in the traditional Perceptron and Hodyne�type nets� where a
weight update is only invoked if a training vector falls into the wrong class� This approach is
related to the ideas behind reinforcement learning� but there is no positive reinforcement� If the
classi�cation is correct weights are left alone� If the classi�cation is incorrect then the weights
are incremented or decremented� No error measure is needed� the weight update is a function
either of the input vector �Perceptron�� or of the existing weights �Hodyne��

Secondly� there are �error minimization� approaches� which can also be used in multi�layer
nets� An error measure� based on the di�erence between a target value and the actual value
of the output� is used� This is frequently� as in standard back propagation� a process based on
minimizing the mean square error� to reach the LMS error ���� We have used a modi�ed error
minimization method �Section �����
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Figure �� The Hodyne network�

�� The Perceptron

The Perceptron and LMS models are both fully connected nets with a single output� Details
of the well known Perceptron training algorithm� and of the parameters used� are in ���� The
output represents �� the grammaticality measure of the input string� In training� a grammatical
string must produce a positive output� an ungrammatical string a negative output� The wrong
output triggers a weight adjustment on all links contributing to the result� This is a function of
the normalized input values� scaled by the learning rate�

To speed the training process� a method of �guided initialization� sets initial random weight
within bounds determined by the expected output� To implement this� see whether a new�
previously unseen input element belongs to a �yes� or �no� string� corresponding to desired
positive or negative outputs� Then set a random value between ��� and �� for �yes�� between ���
and ��� for �no� �	
�� When training is �nished� weights on links from unvisited input elements
are set to ����

Recall that in testing mode we consider the set of strings generated for each sentence� and
the string with the highest � measure is taken as the correct one for that sentence�

�� Hodyne

This network� shown in Figure �� is derived from the model introduced by Wyard and Nightingale
���� The 
 outputs z� and z� represent grammatical and ungrammatical� �yes� and �no�� results�
In training� a grammatical string must produce z� � z�� and vice�versa� else a weight adjustment
is invoked� In testing mode� as for the Perceptron� the strings generated by each sentence are
processed� and the string with the highest � score for that sentence is the winner� For this
network the grammaticality measure � is z�� z�� Since it is not widely known a summary of the
training method follows� More implementation details can be found in �	
��
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Notation
Let each input vector have n elements yi� Let w�t�i�j be the weight from the ith input node to the jth
output node at time t� Let u�t�i�j be the update factor�
� � �� or � � �� indicates whether weights should be decremented or incremented�

Mark all links disabled�
Initially� percentage of strings correctly classi�ed � ���
REPEAT
from START� to END� until � strings correctly classi�ed exceeds chosen threshold�

START�
REPEAT from START� to END� for each string
START�

Present input� a binary vector� y�� y�� ����yn
Present desired output� z� � z� or vice versa
For any y � � enable link to desired result if it is disabled
Initialize weight on any new link to ���
Calculate outputs z� and z�

zk �
Pi�n

i�� wi�k � yi
If actual result � desired result

Count string correct� leave weights alone
Else adjust weights on current active links�

if z� � z� then � � �� on links to z�� � � �� on links to z�
and vice versa

w�t� ��i�j �

�
� �

� � w�t�i�j
� � �� � w�t�i�j ��

�
w�t�i�j

END�
Calculate � strings correctly classi�ed� If greater than threshold� terminate

END�

For the Hodyne type net the update factor u is a function of the current weights� as the
weights increase it is asymptotic to �� as they decrease it becomes equal to ��

u�t�i�j �
�w�t��i�j
	� w�t��i�j

This function satis�es the requirement that the weights increase monotonically and saturate
�see Figure ��� We use the original Hodyne function with a comparatively low computational
load� Note that in contrast to the Perceptron� where the learning rate is set at compile time� the
e�ective learning rate in this method varies dynamically� The greatest changes occur when weights
are near their initial values of 	��� as they get larger or smaller the weight change decreases�
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Hodyne�s pattern of connectivity and the Prohibition Table

Note that during training elements of a new input vector may be linked to both� either or neither
output node� This represents the fact that a tuple can appear �i� in both a correct and incorrect
string� �ii� in either or �iii� in neither� Tables  and � gives some information on the distribution
of elements in training and testing sets� The data is asymmetric� any node that appears in a
grammatical string can also appear in an ungrammatical one� but the reverse is not true� When
training is completed links from unused inputs are enabled and their weights set to ���

Any single entry in the preliminary Prohibition Table �Section ���� can be omitted� and the
pair or triple be included in the neural processing task� In this case a tuple that cannot occur in
a grammatical string will� for Hodyne� only be connected to the �no� output node� Conversly�
if we examine the linkage of the Hodyne net� those tuples that are only connected to the �no�
output are candidates for inclusion in a constraint based rule� Of course there is a chance that a
rare grammatical occurrence may show up as the size of the training set increases�

�
 LMS network

The LMSmodel is based on the traditional method� described in �Parallel Distributed Processing�
��� page 

�� A bipolar activation function is used� and outputs are in the range �	 to �	�
As with the Perceptron� the output represents the � measure for the string being processed�
Gradient descent is used to reduce the error between desired and actual outputs�

It has been known for many years in the numerical optimization �eld that the gradient descent
technique is a poor� slow method ���� This is now also accepted wisdom in the neural network
community �
��� Other training methods� such as conjugate gradients� are usually preferable� For
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this experiment� however� the traditional method has been used� but some variations to speed
up training and improve performance have been incorporated� Brady et al� ���� described some
anomalies that can arise with the traditional LMS model� As a remedy Sontag�s technique for
interpreting the error measure is included ��	�� This means that an error is only recorded if a
vector falls into the wrong class� The target output is a threshold� and if this threshold is passed
the vector is considered correctly classi�ed� This contrasts with the original LMS method� in
which an error is recorded if the target is either undershot or overshot�

	 Performance

��� Training times

Since we have been developing a prototype the training threshold was taken so that training
was fast � less than 	� seconds for the Perceptron� less than 
� seconds for the Hodyne network�
Subject to this constraint the percentage of strings that could be trained ranged from ����� to
������ The Perceptron was fastest� For the LMS net training times were between 	 and 
 orders
of magnitude greater� but the ine�cient gradient descent method was used�

��� Ability to generalize

Results are given in Tables � to �� This system has been developed to produce a winning string for
each sentence� and performance can be assessed on di�erent measures of correctness� as described
in Section ���� For the purpose of investigating the function of the networks we take the strictest
measure� correct�d in the tables� requiring that strings should be classi�ed correctly� However� we
can interpret the results so that in practice we get up to 	��� correct for our practical application�
since a winning string may have a negative � measure� Thus the practical measure of correctness
can be higher than the percentage of correctly classi�ed strings�

Table � gives a summary of the results� showing how these vary with the ratio of test set size
to training set size� This would be expected� If there is insu�cient training data performance
degrades sharply�

The Hodyne net performed well� and this architecture was used for the prototype� Previous
work in this �eld compared the performance of multi�layer Perceptrons to that of single layer
models� and found they performed less well� This is discussed in Section ��
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Training Test Pairs Triples Training correct�a correct�b correct�c correct�d
set set used used threshold � � � �

Tr 	 Ts 	 Y Y ���� 	�� ���� ���
 �
��
Y Y ���� 	�� ���� ���
 ����
Y ���� 	�� ���� �
�� ����

Y ���� 	�� ���� ���� �	��

Tr 
 Ts 
 Y Y ���� ���� ���� �	�� ����
Y ���� ��
 ��
 ���	 ���	

Y ���� ��� ��� ���� ����

Tr  Ts  Y Y ���� ���� ���� ���
 ����
Y ���� ���� ��� �
�	 ����

Y ���� ���� ���
 ���� ����

Tr � Ts � Y Y ���� �
�� �
�� ���� ����
Y ���� �
�� �
�� �
�� �
��

Y ���� ���� ���	 ��� ���

Table �� Results using Perceptron� Recall that correct�a means hypertags are correctly placed�
correct�b that words inside subject are correctly tagged also� correct�c that all words in part of
sentence being processed are also correctly tagged� correct�d that the string is in the right class

Training Test Pairs Triples Training correct�a correct�b correct�c correct�d
set set used used threshold � � � �

Tr 	 Ts 	 Y Y ���� 	�� 	�� ���� �	��
Y Y ���� 	�� 	�� 	�� �
��
Y ���� 	�� ���� ���
 ����

Y ���� 	�� 	�� 	�� ����

Tr 
 Ts 
 Y Y ���� 	�� 	�� ���� �	��
Y ���� 	�� 	�� ���� ���


Y ���� ��� ��� ���� ����

Tr  Ts  Y Y ���� 	�� ���� ���
 ���

Y ���� ���� ���� ���
 �	�


Y ���� ���� ���� �
�	 ���	

Tr � Ts � Y Y ���� ���� ���� �	�� ����
Y ���� ���� ���� �
�� ���

Y ���� ���� ���� ��� �
��

Table �� Results for Hodyne net on same training and testing data as for the Perceptron �Table ��


	



Training Test Pairs Triples Training correct�c correct�d
set set used used threshold � �

Tr 	 Ts 	 Y Y ���� ���� �
��
Y ���� ���� ���

Y ���� ���� ����

Tr 
 Ts 
 Y Y ���� �	�� ����
Y ���� ���	 ����

Y ���� ��
 ���	

Tr  Ts  Y Y ���� ��� ���	
Y ���� ���
 ����

Y ���� ���� ����

Tr � Ts � Y Y ���� �
�� �
��
Y ���� ���� ���

Y ���� ���	 ���


Table �� Results for LMS net on the same data� Compare with Tables � and �

Ratio test set � Perceptron Hodyne LMS Hodyne
training set � test strings � test strings � test strings � hypertags

correct correct correct correct

��	� ���� �
�� �
�� 	��
��
� ���� �	�� ���� 	��
��
 ���� ���
 ���	 	��
��
� ���� ���� �
�� ����

Table �� Summary of results culled from Tables 
� �� � and �� showing performance on � di�erent
training and test sets�








 Understanding the operation of the network

��� The importance of negative information

Consider the following unremarkable sentence� and some of the strings it generates�

the determiner

directions noun

given past�part�verb

below preposition or adverb

must auxiliary verb

be auxiliary verb

carefully adverb

followed past�part�verb

� endpoint

string no� �

strt � det noun � pastp adv aux aux adv pastp endp

string no� �

strt � det noun pastp � prep aux aux adv pastp endp

string no� � ��� target ���

strt � det noun pastp prep � aux aux adv pastp endp

In the LOB corpus the pair �preposition� modal�verb�� which represents the words �below�
must�� has a frequency of less than ���	�� if it occurs at all ��
�� So when a sentence like this
is processed in testing mode the particular construction may well not have occurred in any
training string� However� in the candidate strings that are generated wrong placements should
be associated with stronger negative weights somewhere in the string� For example� string 
 maps
onto�

" � The directions given � below must be carefully followed�

The proposed subject would not be associated with strong negative weights� However� the follow�
ing pairs and triples include at least one that is strongly negative� such as � �� preposition�� an
element in the negative strings generated in the training set� The correct placement� as in string
� would be the least bad� the one with the highest � score� By training on negative as well as
positive examples we increase the likelihood that in testing mode a previously unseen structure
can be correctly processed� In this way the probability of correctly processing rare constructions
is increased�

��� Relationship between frequency of occurrence and weight

After training we see that the distribution of weights in Hodyne and Perceptron nets have certain
characteristics in common� In both cases there is a trend for links on the least common input
tuples to be more heavily weighted than the more common� see Figures � and ��

This characteristic distribution of weights can be understood when we examine the process
by which the weights are adapted� Since we are processing negative as well as positive examples
in the training stage� the movement of weights di�ers from that found with positive probabilities

�Modal verbs are included in the class of auxiliary verb in this tagset






alone� Some very common tuples will appear frequently in both correct and incorrect strings�
Consider a pair such as �start�of�sentence� open�subject�� This will often occur at the start
of both grammatical and ungrammatical strings� The result of the learning process is to push
down the weights on the links to both the �yes� and the �no� output nodes�

A signi�cant number of nodes represent those tuples that have never occurred in a gram�
matical strings� A few nodes represent tuples that have only occurred in grammatical strings
�Tables  and ���
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Figure �� Weights plotted against frequency of input node occurring� for training corpus Tr 	 on
Hodyne
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Figure �� Weights plotted against frequency of input node occurring� for training corpus Tr 	 on
Perceptron

The relationship between frequency of occurrence and level of weight accompanies the decision
to assess the correctness of a whole string� rather than the status of each element� Strings that are
slightly wrong will include tuples that occur both in grammatical and ungrammatical sequences�
As a consequence we see that the classifcation decision can depend more on infrequently occurring
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tuples� In particular� tuples that usually only occur in an ungrammatical string can have a
signi�cant in�uence on the classi�cation task�

��� Direct update versus error minimization

The use of direct update rather than error minimization methods may also have an e�ect on
generalization� The traditional LMS measure can lead to situations where most input vectors are
close to the target� while a few� or a single one� are distant� This may be desirable when noisy
data is processed� but not for our linguistic data� where we want precise �tting� We want to
capture information from isolated examples� We want to classify strings that are ungrammatical
in a single element as well as those that are grossly ungrammatical�

�� Conclusion

The original objective of this work was to see whether the pattern matching capabilities of neural
networks could be mobilised for Natural Language Processing tasks� The working partial parser
demonstrates that they can be�

Multi�layer Perceptrons were tried in the past� but it was found that single layer networks
were more e�ective� provided that the data was appropriately converted to a higher order form�
Some arguments against this approach centre on the lack of a principled method to �nd the
pre�processing�  function� But though the methods of �nding the initial  function are based
on intuition� a close initial examination of the data can mean that this intuition is founded on
an understanding of the data characteristics� In the case of the linguistic data support for the
non�linear conversion function has come from information theoretic tools� Though the setting
of parameters is not data driven at the micro level� as in a supervised learning environment�
the functions are chosen to capture some of the structure and invariances of the data� The
development of neural processors for an analysis of DNA sequences also illustrates this �

��

The analysis in the previous section illustrates the transparency of single layer networks�
and indicates why they are such convenient tools� Compared to multi�layer Perceptrons� the
parameters of the processor are more amenable to being interpreted� The Hodyne net in particular
lends itself to further linguistic analysis� Furthermore� this approach has the advantage of fast
two stage training� The speed of training� measured in seconds� shows how quickly single layer
networks can �x their weights� Training times are hardly an issue�

A signi�cant question of generalization ability is seen to relate to the ratio of testing to training
data set size� Current work on generalization has focused on principled methods of determining
training set size to ensure that the probability of generalization error is less than a given bound�
Having implemented a preliminary prototype our work will continue with much larger corpora�

In the development of this technology we return to the fundamental question� how do we
reconcile computational feasibility with empirical relevance# How do we match what can be done
to what needs to be done# Firstly� in addressing the parsing problem we start by decomposing
the problem into computationally more tractable subtasks� Then we investigate the data and
devise a representation that enables the simplest e�ective processors to be used� The guiding
principles are to attack complexity by decomposing the problem� and to adopt a reductionist
approach in designing the neural processors�
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