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ABSTRACT 

The inhibitor κB kinase-β (IKK-β) phosphorylates the NF-κB inhibitor protein IκB leading to 

the translocation of the transcription factor NF-κB to the nucleus. The transcription factor 

NF-κB and consequently IKK-β are central to signal transduction pathways of mammalian 

cells. The purpose of this research was to develop a 3D structural model of the IKK-β kinase 

domain with its ATP cofactor and investigate its dynamics and ligand binding potential. 

Through a combination of comparative modelling and simulated heating/annealing molecular 

dynamics (SAMD) simulation in explicit water the model accuracy could be substantially 

improved compared to comparative modelling on its own as shown by model validation 

measures. The structure revealed the details of ATP/Mg2+ binding indicating hydrophobic 

interactions with the adenine base and a significant contribution of Mg2+ as a bridge between 

ATP phosphate groups and negatively charged side chains. The molecular dynamics 

trajectories of the ATP-bound and free enzyme showed two conformations in each case, 

which contributed to the majority of the trajectory.  The ATP-free enzyme revealed a novel 

binding site distant from the ATP binding site that was not encountered in the ATP bound 

enzyme. Based on the overall structural flexibility, it is suggested that a truncated version of 

the kinase domain from Ala14 to Leu265 should be subjected to crystallisation trials. 

The 3D structure of this enzyme will enable rational design of new ligands and analysis of 

protein-protein interactions. Furthermore, our results may provide a new impetus for wet-lab 

based structural investigation focussing on a truncated kinase domain. 
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Introduction 

The inhibitor κB kinase-β (IKK-β, IKBKB, IKK2) is a key enzyme in the activation pathway 

of the transcription factor NF-κB. IKK-β phosphorylates the NF-κB inhibitor protein IκB 

leading to its ubiquitinylation and degradation as reviewed by Schmid & Birbach (2008). NF-

κb is then translocated to the nucleus, where it stimulates the transcription of genes. IKK-β 

and subsequent NF-κB activation occurs due to a variety of inflammatory stimuli including 

viral and bacterial pathogens (Chu et al., 1999). Changes in IKK-β regulation have also been 

linked to various forms of cancer (Bollrath and Greten, 2009; Hernandez et al., 2010; Karin 

and Greten, 2005), heart disease (Gupta et al., 2008; Konia et al., 2009) and to the 

development of type II diabetes (Arkan et al., 2005). Recently IKK-β has been characterised 

as a novel drug target against influenza virus infection. The known low affinity inhibitor 

aspirin (Yin et al., 1998) was shown to protect mice from influenza infection, when inhaled 

prior to virus exposure, and, most importantly, it did not induce virus resistance in multi-

passaging experiments (Mazur et al., 2007). The high mutation rate of influenza virus 

proteins causing the development of resistance against the existing M2 proton channel 

inhibitors (Barr et al., 2008; Barr et al., 2007) and neuraminidase inhibitors (Handel et al., 

2007; Yen et al., 2006) lead to the proposal of IKK-β as novel drug target of the host cell 

against influenza infection (Ludwig and Planz, 2008).   

IKK-β exists as part of a complex consisting of two catalytic subunits, IKK-α (also known as 

IKK1), IKK-β and a regulatory subunit IKK-γ (NEMO); they predominantly exist as IKK-

α/IKK-β heterodimer associated with IKK-γ (Krappmann et al., 2000). Although IKK-α and 

IKK-β have overall 52% sequence identity and >70% homology (Burke and Strnad, 2002; 

Woronicz et al., 1997), IKK-β is the essential enzyme for phosphorylation of IκB (Delhase et 

al., 1999), since cells lacking IKK-α show normal induction of NF-ĸB DNA-binding activity 

in response to most stimuli and pathogens (Chu et al., 1999; Delhase et al., 1999).  

The human IKK-β sequence is 756 amino acid residues long and has a molecular mass of 

86.6 kDa (DiDonato et al., 1997; Woronicz et al., 1997). It consists of a kinase domain 

(residues 15-312), a leucine zipper domain (458-479), a helix-loop-helix domain (566-645) 

and the IKK-γ binding domain (734-744) (Mercurio et al., 1997). Activation of IKK-β 

requires phosphorylation of Ser177 and Ser181 (Lallena et al., 1999), and more recently 

Tyr188 and Tyr199 were identified as necessary for activation (Darwech et al., 2010a; Huang 



et al., 2003), while the phosphatases PPM1A and PPM1B play a role in deactivation (Sun et 

al., 2009). 

Despite the pronounced interest into IKK-β as a drug target, because of its central role in a 

key signal transduction pathway, no experimental 3D structure is available. However, some 

models of the kinase domain based on comparative modelling have been published (Avila et 

al., 2009; Lauria et al., 2010; Mathialagan et al., 2010; Nagarajan et al.), but the 3D structures 

are not available either in public databases or from the authors of the studies. It appears that 

in most of these studies straightforward comparative modelling using the BLAST algorithm 

for template selection and the automated Modeller (Eswar et al., 2008) or the Swiss-Model 

(Guex et al., 2009) server was used for model building. Crucially, the co-factor ATP 

normally located in the active site was not included in most studies, apart from the study by 

Avila et al. (Avila et al., 2009), which developed a comparative model based on one template 

with the ‘first approach mode’ of the Swiss-Model server. It has been suggested that 

comparative models, which include the natural ligand, can lead to similar and in some cases 

to better results for protein-ligand docking, than crystal structures without the ligand (Rockey 

and Elcock, 2006). 

In this study we report the comparative model of the IKK-β kinase domain based on multiple 

templates including the ATP co-factor and Mg2+  ions. The resulting model was refined 

through molecular dynamics (MD) simulations using a simulated heating/annealing protocol 

in an explicit water environment. Our results reveal model accuracy, which is superior to 

some of the structural templates used in terms of model assessment parameters. In order to 

identify small-scale conformational changes and novel allosteric binding sites the model was 

subjected to constant temperature MD simulations over 80 ns. While simulations of this time 

scale are too short to reveal large conformational changes or even protein folding events, it 

was shown that this time scale is sufficient to explore the conformation of loops and side-

chains in agreement with experimental data (Almond et al., 2007; Nederveen and Bonvin, 

2005). Our results reveal the molecular details of ATP and peptide substrate ligand binding, 

the role of the activation loop and conformational changes. This study will facilitate virtual 

screening and rational drug design efforts for this biomedically important protein kinase. 

 

Materials and methods 

The computations were performed on a dual-socket dual-core AMD Opteron workstation 

(Digital Networks UK, Hyde) and a cluster build from 80 two-socket quad core Intel Xeon 

E5520 nodes (Dell Inc., USA). 



 

Template selection and alignment 

The primary sequence of human IKK-β was retrieved from UniProtKB (Apweiler et al., 

2010; Jain et al., 2009) (http://www.uniprot.org/) under the accession number 014920. The 

IKK-β kinase domain ranging from 1-300 amino acid residues was used to identify 

homologous sequences by Hidden Markov Model Comparison using the HHpred (Hildebrand 

et al., 2009) web server (http://toolkit.tuebingen.mpg.de/hhpred) searching against the pdb70 

database with a maximum of eight PSI-BLAST iterations including the scoring of secondary 

structure and a local alignment mode. Five templates were chosen, viz 3G51A, 3FE3A, 

3HKOA, 3DTCA & 1ZY4A based on high sequence identity between 29% and 31%. An 

additional template (1PHKA) with a lower sequence identity of 27% was selected that 

covered any stretches of the target sequence that had no matches with the previous five 

templates in order to avoid the process of loop modelling. Another template (1RDQE) with 

27% sequence identity was selected that had ATP and Mg2+ as cofactors. The query sequence 

and template sequences were further aligned by ‘SALIGN’ program of  the Modeller9v7 

(Fiser and Sali, 2003; Sali and Blundell, 1993) software with an rms_cutoff=3.5, 

gap_penalties_1d=(-450, -50), gap_penalties_3d=(0,3) and the alignment_type=’progressive’.  
  

 

Homology modelling and model assessment 

The homology model of the IKK-β kinase domain was generated by the Modeler9v7 (Fiser 

and Sali, 2003; Sali and Blundell, 1993) program using the cofactors ATP and Mg2+  during 

the modelling process. Initially 100 models were generated, with a thorough optimisation 

using the variable target function method (automodel.library_schedule = autosched.slow) 

with a maximum number of conjugate gradient iterations of 300, followed by a slow 

refinement with simulated annealing molecular dynamics (automodel.md_level = 

refine.slow). 

Initially the models were assessed based on the normalised Discrete Optimized Protein 

Energy (Shen and Sali, 2006) (DOPE) scores. Ten models with the lowest DOPE score were 

selected and further rated with MolProbity (Chen et al., 2010). The MolProbity score was 

highlighted as a good measure of the protein-likeliness in an analysis of all-atom accuracy of 

models from the Critical Assessment of Protein Structure Prediction (CASP8) exercise 

(Keedy et al., 2009).    The model with the lowest MolProbity score and suitable peptide 



backbone dihedral angles as reported by  by Ramachandran plot analysis (Lovell et al., 2003) 

was selected. 

An all-atom model was generated by adding hydrogen atoms with the HAAD algorithm (Li et 

al., 2009), which was reported to have a higher accuracy than the widely used program 

REDUCE (Word et al., 1999). 

 

System preparation 

All the energy minimisations (EM) and molecular dynamics (MD) simulations were 

performed with the GROMACS 4.07 simulation package (Hess et al., 2008) employing the 

AMBER03 force field (Duan et al., 2003) ported to GROMACS (DePaul et al., 2010; Sorin 

and Pande, 2005).  AMBER03 is a variant of the AMBER99 force field, which was 

successfully used for many all-atom protein MD simulations (Cerutti et al., 2010; Ponder and 

Case, 2003). The standard AMBER building blocks were used to build the topology, except 

for ATP. The atomic charges of ATP3- were obtained with the RESP ESP Charge Derive 

(Dupradeau et al., 2010) and provided by François-Yves Dupradeau (personal 

communication). The AMBER topology for Gromacs was generated from the Tripos MOL2 

format with the ACPYPE web portal (http://webapps.ccpn.ac.uk/acpype/) that includes 

Antechamber (Wang et al., 2006). The protein/ATP/Mg system was solvated with 9723 

TIP3P water (Mahoney and Jorgensen, 2000) molecules and neutralised with one Na+ ion that 

replaced a water molecule at the position of favourable electrostatic potential. The charges on 

the protein were chosen automatically in accordance with a pH of 7.0. 

The energy of the system was minimised with 2000 steps of the conjugate gradient method, 

while keeping the protein and ATP heavy atoms restrained to their original positions. 

Lennard-Jones interactions were calculated with a cut-off of 1.4nm, while electrostatic 

interactions were treated with the Particle-Mesh-Ewald method using a real space cut-off of 

1.0 nm. 

In the next step 500 ps of MD simulations with position restraints on the protein and ATP 

non-hydrogen atoms were performed. A time step of 2 fs was used at a temperature of 298K, 

kept constant via a stochastic velocity rescaling thermostat (Bussi et al., 2009) using a 

coupling constant of 1.0 ps. Isotropic Berendsen pressure coupling (Berendsen et al., 1984) 

with a time constant of 1.0 ps was applied to keep the pressure constant at 1.0 bar. Covalent 

bonds of the protein and the ATP were constrained with the LINCS algorithm (Hess et al., 

1997), while water molecules were constrained with the SETTLE algorithm (Miyamoto and 

Kollman, 1992). Long-range dispersion corrections for energy and pressure were applied.  



After a further 2000 steps of conjugate gradient energy minimization without any position 

restraints the system was subjected to unrestrained MD simulations.  

 

Simulated heating/annealing MD (SAMD) 

SAMD of the unrestrained system was performed, by heating from 20K to 280K over a 

period of 4000 ps and annealing from 280K to 20K for another 4000 ps. All other parameters 

were as described above. Afterwards the system was subjected to 2000 steps of conjugate 

gradient energy minimization. The same SAMD/EM protocol was repeated twenty times with 

different random initial atom velocities. The ensemble of twenty structures was analysed with 

respect to the root mean square deviation (RMSD) of the peptide backbone atom coordinates 

with the g_cluster program of the GROMACS 4.07 package. The final SAMD model was 

chosen as the central structure, i.e. the structure that was most similar to all other structures of 

the ensemble. 

 

Constant temperature MD simulations 

The final model with ATP/Mg2+ bound was subjected to MD simulation at a temperature of 

298K over a period of 80 ns. All other parameters were as described above. For the MD 

simulation of the protein without ATP, the ATP/Mg coordinates were deleted and the system 

was subjected to 2000 steps of conjugate gradient energy minimisation followed by 500 ps of 

MD simulations with position restraints on the protein non-hydrogen atoms. After a further 

2000 steps of energy minimisation the unrestrained MD simulation was run over a period of 

80 ns. Tow repeat simulations for each system were run over a period of 50 ns. 

The trajectory between 10 ns and 80 ns was analysed for clusters of similar structures using 

the g_cluster tool of the GROMACS software package with a cutoff of 0.3 nm and the 

Gromos clustering algorithm (Daura et al., 1999). The pdb-files of central cluster structures 

are available as supplementary material. 

 

Binding site prediction 

Binding sites of the final model were predicted by computational solvent docking, in which a 

library of small organic probe molecules was docked to the protein without ATP/Mg2+ using 

the FTmap algorithm (Brenke et al., 2009). It was shown that a cluster of probes found by 

FTmap can identify important subsites of a protein binding site and that a group of vicinal 

clusters can map out a protein binding site with high accuracy (Landon et al., 2009).  

 



Accession numbers 

The final model after the SAMD protocol was submitted to the Protein Model Database 

(Castrignano et al., 2006) and is available under the identifier PM0076858. 

 

Results and discussion 

Template identification & multiple sequence alignment 

Templates were identified with HHpred (Hildebrand et al., 2009), which utilises the pairwise 

comparison of profile hidden Markow models that provides superior sensitivity and 

selectivity compared to sequence-profile based methods like PSI-BLAST. From almost 800 

protein serine/theronine kinase structures available in the RCSB protein databank (Berman et 

al., 2000) the HHpred algorithm identified the best 100 structural templates with sequence 

identities ranging from18% to 31%. Five templates were chosen, namely 3G51A (31% 

sequence identity), 3FE3A (31% sequence identity), 3HKOA (30% sequence identity), 

3DTCA (30% sequence identity) and 1ZY4A 29% sequence identity). Inaccuracies in 

comparative modelling can arise through large gaps (Lushington, 2008), where the target 

sequence is not covered by any structural template. In order to avoid these inaccuracies a 

further template 1PHK with 27% sequence identity was selected that covered all gaps in the 

alignment. For an accurate description of the ATP binding site it is necessary to include ATP 

in the modelling process, which was found in the template 1RDQE (27% sequence identity). 

The resulting structure/sequence alignment obtained from the Modeller SALIGN procedure is 

shown in figure 1(a) shaded according to similarity scores based on the BLOSSUM62 matrix 

(Henikoff and Henikoff, 1992). Except for the first eleven N-terminal residues there is a good 

coverage of the query sequence by at least one of the templates. Another region of low 

sequence similarity is in the C-terminal region 286-300 of the query sequence. The ATP 

binding site residues 21 to 29 is highly conserved; seven out of nine amino acid residues are 

identical between the query sequence and the template (1RDQE). The key residues lysine 44 

and tyrosine 188/199 are conserved in most templates, while Ser 177/181 are matched with 

the template 1PHKA.  

 

Modelling of IKK-β kinase domain 

The 100 initial models generated by Modeller9v7 resulted in normalised Discrete Optimized 

Protein Energy (Shen and Sali, 2006) (DOPE) z-scores between -0.044 and -0.388. The ten 

models with the lowest DOPE-z scores were then further assessed with ‘MolProbity’. The 

MolProbity scores ranged from 3.08 to 3.87. The model with the lowest MolProbity score of 



3.08, which had also the lowest DOPE z-score of -0.388, was selected for further refinement 

with SAMD simulations in the presence of explicit water and counter ions. The SAMD 

protocol was carried out 20 times. The maximum peptide backbone RMSD between the 20 

structures was 1.86 Å and the structure, which was most similar to all other structures, was 

chosen as the final model. This model was assessed using DOPE z-scores, MolProbity and 

PROCHEK. The results in table 1 show that the DOPE z-scores of the model was improved 

by the SAMD simulation from -0.388 to -0.779, while the range of DOPE z-scores for the 

template structures obtained by x-ray crystallography are  between -1.28 and -1.8. The scores 

of experimental structures are in all cases lower (better) than the initial model and the 

SAMD-refined model, while the SAMD method lead to an improved DOPE-z score 

compared to the initial model. As a further assessment the MolProbity score was calculated, 

which was reported as a full-model measure that correlates well with model accuracy using 

predicted structures in the recent Critical Assessment of protein structure Prediction (CASP8) 

exercise (Keedy et al., 2009).  The MolProbity scores shown in table 1 are with one exception 

lower than the initial model as it would be expected. Most notably, the MolProbity score for 

the SAMD model of 0.98 is lower than any of the templates indicating that the SAMD 

protocol resulted in a marked increase of all-atom accuracy, which exceeds every template 

structure used.  

The analysis of peptide backbone dihedral angles based on the Ramachandran plot (table 1) 

showed that experimental structures had a higher proportion of residues in the allowed 

regions, than both of the models with the exception of 3DTC. The differences were, however 

minor. 

The comparison of the initial model with the SAMD model in figure 2a showed that the per- 

residue DOPE score was improved for every residue in the model except for the last three C-

terminal residues. The most apparent structural differences were visible in the N-terminal α-

helix up to residue Arg20, in the antiparallel β-sheet from His33 to Ile43, in a helix-loop-

helix motif from Gln110 to Ile122, in the loop Gly156 to Arg159 and in a C-terminal 

disordered region starting from Gln278. 

Overall the SAMD simulation resulted in a more compact well defined structure, which was 

significantly protein-like as evidenced by the MolProbity score. 

 

IKK-β structure 

The model for IKK-β showed the typical two-lobe structure (figure 3a) of eukaryotic 

serine/threonine and tyrosine protein kinases analysed by Hanks & Hunter (Hanks and 



Hunter, 1995) with a C-terminal lobe rich in α-helices and an N-terminal lobe rich in β-sheet 

secondary structures. The deep cleft between the two lobes is the site of ATP binding, while 

the peptide substrate is known to bind to the C-lobe. The location of typical structural 

features reviewed by Huse and   Kuriyan (2002) has been highlighted in figure 3a, such as the 

phosphate binding (P-) loop from Gly22 to Val29, the only α-helix in the N-lobe from Arg53 

to Arg67 (αC helix) and the activation loop from Leu167 to Tyr188. The αC helix is known 

to undergo positional changes due to regulation of the kinase activity, e.g. in cyclin-

dependent kinases (Debondt et al., 1993; Jeffrey et al., 1995), where the αC helix undergoes a 

rotation due to the binding of cyclin. The activation loop contains residues Ser177, Ser181 

that are phosphorylated as part of the activation mechanism (Lallena et al., 1999) as well as 

Tyr188 and Tyr199 (Darwech et al., 2010b; Huang et al., 2003) with Tyr199 being outside 

the commonly known activation loop. In the model shown in figure 3a the activation loop 

points away from the ATP binding site, which is characteristic of the active form of the 

kinase, while in the inactive form the activation loop adopts a conformation that impedes the 

binding of ATP and the peptide substrate (Hubbard et al., 1994).  

A long C-terminal segment from Leu265 to Phe300 is unstructured and remains unstructured 

in conformations encountered during molecular dynamics simulations (see below). .   

 

ATP binding 

The adenine base of the ATP molecule was mainly bound via hydrophobic contacts to the 

protein provided by Leu21, Gly22, Gly24, Val29, Ala42, Tyr98 and Ile165 (figure 3b and 

3c). In addition the peptide backbone carbonyl oxygen of Glu97 acted as a hydrogen acceptor 

and the backbone NH of Cys99 as a hydrogen bond donor to the adenine base. The majority 

of hydrogen bond and electrostatic interactions occurred with the triphosphate group of ATP. 

Interestingly only one positively charged side chain of Lys147 contributed to the stabilisation 

of the terminal phosphate group, while Asp145 and Asp166 interact with the magnesium 

ions. The magnesium ions fulfilled a role as a bridge between the negatively charged 

phosphate oxygens and negatively charged side-chains of the protein. Furthermore, the 

backbone NH groups of Gly25, Phe26 and Gly27 act as hydrogen bond donors to phosphate 

terminal and bridging oxygen atoms. The highly conserved Lys44 interacted with the oxygen 

of the proximal phosphate group. Asp145 corresponds to a highly conserved Asp166 in 

protein kinase A that interacts with the hydroxyl side chain of the peptide substrate. The 

detailed analysis of the conformational dynamics (see below) shows that this residue is quite 



flexible in our model, thus upon binding of the peptide substrate the orientation of the side-

chain may switch into another conformation.   

From this analysis some general features of new inhibitors can be devised. Potential 

inhibitors should have a significant number of hydrophobic centres that fit deeply into the 

ATP-binding cavity. In addition, both positively and negatively charged groups are required 

for interaction with Asp145/Asp146 on the one hand and Lys147/Lys44 on the other hand. 

 

Conformational dynamics of  IKK-β 

The conformational dynamics at room temperature in the vicinity of the SAMD-refined 

comparative model was analysed by subjecting the IKK-β model with bound ATP (holo-

enzyme) and without ATP (apo-enzyme) to 80 ns MD simulation. During both simulations 

the protein backbone underwent a substantial conformational change with respect to the 

starting structure as revealed by a root mean square deviation (RMSD) of the backbone 

coordinates of up to 0.6 nm as shown in figure 4. Similar trajectories were obtained in two 50 

ns repeat simulations for each system (data not shown). There was a sharp increase of the 

RMSD from the starting structure during the first 5 to 6 ns to an RMSD of 0.4 nm; thereafter 

the increase in RMSD is less pronounced. Taking into consideration that the final model of 

the holo-enzyme was obtained through SAMD simulations and energy minimisation of the 

same system used for  the constant temperature simulations shown here, the large RMSD 

reached over 80 ns is surprising. RMSDs of conformationally stable proteins remain within 

0.2 to 0.3 nm of the experimental starting structure during MD simulations. The higher 

structural fluctuations shown in this study are indicative of the conformational flexibility of 

the protein, which would have a negative impact on crystallisation for x-ray structural 

analysis. Based on our observation of a long C-terminal segment that lacks secondary 

structure we recommend crystallisation of a reduced length kinase domain from Ala14 to 

Leu265. 

Comparison of the trajectories of the protein with and without ATP (figure 4) shows that the 

RMSD values with respect to the starting structure are overall similar. During the first 5 ns 

there was a sharp increase in the RMSD for the apo-enzyme reflecting the structural adaption 

to the removal of ATP, but there was a tendency for the apo-enzyme to adopt lower RMSD 

values than the holo-enzyme. It should be noted, however, that the RMSD was calculated 

with respect to the beginning of the simulation. While the RMSD is indicative of the 

deviation of the simulation from the starting structure, the root mean square fluctuation 

(RMSF) can capture the equilibrium dynamics. In order to exclude the fluctuations at the 



beginning of the simulation due to the removal of ATP for the apo-enzyme, the RMSF 

between 10 and 80 ns was calculated (figure 5). The average RMSF per residue shown in 

figure 5a revealed that the holo-enzyme structure was overall more stable than the structure 

of the apo-enzyme. Residues that showed a particular high structural fluctuation were 9, 83 

and 114. The mapping of the RMSF onto the 3D structure using a colour gradient from blue 

(low RMSF) to red (high RMSF) revealed similarly that the holo-enzyme shows overall less 

fluctuations apart from a segment of the αC helix from Arg47 to Glu61, that was in contact 

with Pro88-Pro92, which showed also high RMSF values (figure 5b and c). The apo-enzyme 

showed fluctuations throughout the structure, but not in the aforementioned segments. It is, 

therefore, tempting to speculate that the high RMSF values in a few segments of the holo-

enzyme indicate conformational fluctuations that bring ATP into close contact with the 

protein phosphorylation substrate. The same observations with regards to RMSF were made 

in repeated simulations (data not shown).  

Given the high RMSD with respect to the starting structure for both apo- and holo-enzyme, it 

is clear that the final outcome of the comparative modelling process described above is not 

the major conformation of IKK-β in solution. A cluster analysis of the trajectory resulted in 

the identification of three conformations in case of holo-enzyme and four conformations in 

case of the apo-enzyme (table 2).  

In both cases there were two predominant conformations, which were encountered in 74% of 

the trajectory for the holo-enzyme and in 83.5% of the trajectory for the apo-enzyme. These 

conformations were not identical, as the protein backbone RMSD between them was 0.55 

nm. Visual comparison of these two conformations in figure 6a and 6b (leftmost structure) 

showed that there were subtle differences throughout the structure but most apparently in the 

orientation of an N-terminal segment and an anti-parallel beta-hairpin from Asp78 to Arg95, 

that does not show any beta-structure in the holo-enzyme. The two minor conformations 

showed similar differences, which were overall less pronounced resulting in an RMSD of 

0.38 nm between ATP2 and noATP2. The overlay of all three or four conformations of the 

holo- and apo-enzyme respectively with the comparative model (figure 6, right hand side) 

showed that the holo-form underwent major structural changes in the N-lobe, while the 

structural changes in the C-lobe were more subtle. The apo-form showed significant 

structural changes throughout, which would be expected as the protein structure was 

modelled with the ATP cofactor bound. 

It should be noted that the simulation time of 80 ns limits the conformational changes to 

small scale motions in the vicinity of the starting structure, which nevertheless allow the 



exploration of side-chain movements and loop flexibility that is in agreement with NMR 

experiments (Almond et al., 2007) and may critically influence ligand binding. 

 

Binding site prediction 

Given the structural changes observed, we investigated, if the ATP binding site was retained 

in the apo-form and if other binding sites for potential allosteric modulators are available 

using computational solvent mapping (Brenke et al., 2009). Figure 7 shows the predicted 

binding sites for the two major conformations of the apo-enzyme. In the most populated 

conformation noATP1 (figure 7a) the ATP binding site is mapped out by clusters of solvent 

molecules ranked at place two and four. In the conformation noATP2 (figure 7b) the highest 

ranked binding sub-site one does not coincide with the original ATP binding site, while sub-

site two retains the position shown in figure 7a. It is possible that the conformation noATP2 

represents a pre-ATP binding state, which allows ATP interaction at sub-sites one and two 

followed by a conformational change that allows ATP to slip into its deep binding pocket. An 

additional highly ranked binding site of conformation noATP1 (figure 7a) was predicted by 

solvent clusters one and three at a location distant from ATP binding. This binding site is 

formed by the helix Thr200-Gly218 and residues Lys254/Ser258 from a short C-terminal 

helix. Pro260, Tyr261 and Asn263 also contribute to the binding site. The binding site was 

partially retained in the conformation noATP2, but based on lower ranked solvent clusters. 

Interestingly, this binding site was not seen in the ATP bound conformations (data not 

shown), thus it may be an allosteric binding site that could be targeted with ligands that lock 

IKK-β in an ATP-free inactive conformation. Another possibility for the design of novel 

inhibitors may be targeting the highly ranked sub-sites one and two in the pre-ATP 

conformation. 

 

Conclusion 

In the absence of a crystal- or NMR-structure of the IKK-β kinase, a comparative model was 

developed and it was demonstrated how the model accuracy can be improved by simulated 

annealing MD simulations. Importantly, the ATP co-factor was included in the modelling 

process, which renders the present structure an ideal starting point for receptor-based virtual 

screening efforts as well as rational drug-design. The location of structural elements and 

residues interacting with ATP is commensurate with the structural details of other Ser/Thr 

kinases known from x-ray crystallography confirming the accuracy of the present model. In 



addition the conformational dynamics of the apo-form of the kinase showed the emergence of 

additional binding sites that could lead to the design of new isosteric as well as allosteric 

modulators. 
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Tables 

Table 1: Assessment results for comparative models and templates 
 Model     DOPE z-score        MolProbity    score                         Ramachandran  plot1 

                       a                             b 

 

IKK-β (Modeller) -0.388 3.08                91.92%                  1.68%  

IKK-β (SAMD) -0.779 0.98               92.09%                  1.08%  

1RDQE -1.80 1.25               97.59%                    0.00%  

3G51A -1.73 1.50               98.10%                  0.00%  

3HKOA -1.28 1.77               96.99%                  0.00%  

 3DTC                         - 1.43                           3.19                90.67%                  1.78%  

1ZY4A   -1.57                  2.08                96.84%                  0.40%  

3FE3A    -1.55   2.60                96.04%                  0.33%  

1PHKA   -1.54   2.87                94.68%                   0.76%  

1 a, Ramachandran favored; b, Ramachandran outliers  

 

Table 2: Cluster analyis of the MD trajectory between 10 ns and 80 ns 

Cluster fraction of trajectory1 RMSD2 /nm 

ATP1 74.0 % 0.57 

ATP2 24.3 % 0.39 

ATP3 1.6 % 0.47 

noATP1 83.5 % 0.46 

noATP2 13.1 % 0.35 

noATP3 1.6 % 0.48 

noATP4 1.3 % 0.56 
1 The fraction of the trajectory during which the protein adopts are particular structure within 

an RMSD cut off of 0.2 nm. Only clusters with a fraction larger than 1% are shown 
2 RMSD with respect to the final comparative model 

 



 

 
Figure 1: (a) Multiple sequence alignment of the IKK-β kinase domain (IKBKB Human) with 

the sequences of structural templates used for comparative modelling. The sequences 
are shaded according to similarity using the BLOSUM62 score. (b) 3D backbone 
structure of the initial IKK-β model shaded according to similarity with any one of the 
templates. This figure was made with Jalview (Waterhouse et al., 2009). 



 
 
Figure 2: (a) Profile of the per-residue DOPE model assessment score of the initial model 

(grey curve) and final SAMD model (black curve). (b) Superposition of the 3D 
backbone structure of the final SAMD model (blue) with the initial model (white). 
This figure was made with VMD (Humphrey et al., 1996). 

 



 
 
Figure 3: (a) Backbone representation the final IKK-β model with ATP in Van der Waals 

representation. (b) Solvent accessible surface representation of IKK-β with ATP in 
van der Waals representation, a selection of interacting amino acid residues are 
highlighted. This figure was made with Python Molecular Viewer(Sanner, 1999; 
Sanner et al., 1996). (c) 2D representation of the ATP-protein interaction. Bonds 
within the ATP ligand are shown in purple. This figure was made with LigPlot 
(Wallace et al., 1995). 



 
Figure 4: Root mean square deviation (RMSD) of the backbone coordinates with respect to 

the final model is shown for IKK-β with ATP/Mg bound (black curve) and without 
ATP (grey curve) plotted against MD simulation time.  

 

 
 
Figure 5: (a) Root mean square fluctuations (RMSF) averaged over all atoms of an amino 

acid residue plotted against the residue number for IKK-β with ATP/Mg bound (black 
curve) and without ATP (grey curve). (b) The protein backbone structure of IKK-β 
with ATP coloured according to the root mean square fluctuations of backbone atoms 
from blue (low fluctuations) to red (high fluctuations). (c) The representation for 
IKK-β without ATP. 



 
Figure 6: The two major conformations adopted by IKK- β from left to right ATP1 and ATP2 

(a) and noATP1, no ATP2 (b). Additionally an overlay of all conformations in table 2 
with the final comparative model is shown. 



 

 
 
Figure 7: Binding site analysis with the FTmap (Brenke et al., 2009) algorithm of the two 

major conformations without ATP co-factor, (a) noATP1 and (b) noATP2. The 
numbers show the ranking of binding sites with one being the highest rank. 

 

 


