
                             Elsevier Editorial System(tm) for Atmospheric Environment 
                                  Manuscript Draft 
 
 
Manuscript Number: ATMENV-D-10-01569R1 
 
Title: Mechanisms responsible for the build-up of ozone over South East England during the August 
2003 heatwave  
 
Article Type: Special Issue: Multiscale Modeling Sokhi 
 
Keywords: Process rate analysis; Ozone; Heatwave; CMAQ 
 
Corresponding Author: Dr. Xavier Francis, Ph. D 
 
Corresponding Author's Institution: University of Hertfordshire 
 
First Author: Xavier Francis, Ph. D 
 
Order of Authors: Xavier Francis, Ph. D; Charles Chemel, Ph. D; Ranjeet  S Sokhi, Ph. D.; Emily G Norton, 
Ph. D; Hugo Ricketts, Ph. D; Bernard Fisher, Ph. D 
 
Abstract: The Community Multiscale Air Quality (CMAQ) model is used in order to quantify reasons for 
the build-up of ozone over South East England during the August 2003 heatwave. Unlike previous 
studies, the effects of individual meteorological and chemical processes on the temporal evolution of 
the episode are assessed quantitatively in the present work. The performance of the modelling system 
was briefly evaluated. The modelling system was able to capture the evolution of the episode, with 
increasing ozone levels during the period 1-4 August 2003, and maximum values afterwards. Analysis 
of the results of the CMAQ model indicates that three mechanisms were mainly responsible for the 
episode: (i) horizontal transport from mainland Europe in the presence of a long-lived high-pressure 
system, (ii) convergence of westerly and easterly near-surface winds, and (iii) downward entrainment 
of ozone-rich air from residual layers in the free troposphere. The downward entrainment of ozone 
from residual layers in the morning is found to be key to enhancing ozone levels during the day. The 
relevance of this mechanism is supported by the good agreement of the model vertical ozone 
distribution with that derived from Light detection and ranging (Lidar) measurements. The process 
analysis of the rate of change of ozone concentration shows that both horizontal transport and vertical 
transport were equally important in explaining the variability of ozone. The contribution of chemical 
processes to the increase of ozone concentration as simulated by the modelling system is relatively 
small close to the surface. However, its contribution to the decrease of ozone concentration there 
becomes as important as that of meteorological processes. By investigating the role of separate 
meteorological and chemical mechanisms, this study hopes to add to the current understanding of the 
evolution of air pollution episode. 
 
 
 
 



Ms. Ref. No.: ATMENV-D-10-01569 

Response to Reviewer #1 

 

 

We thank the anonymous reviewer for his enlightened review of our manuscript. Below is 

our response point by point and wherever necessary an indication of the changes that have 

been made to the original manuscript. Note that the page numbers that are ‘given’ in our 

response refer to those of the revised manuscript, unless otherwise indicated. 

 

 

 The paper is well written and provides a relevant insight on mechanisms underlying the 

growth of ozone concentrations during an episode associated to a summer heat wave. 
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The formulated hypothesis are interesting but they should be better specified. How can soil 
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max O3 concentrations are usually expected from an increase of model resolution, while it 

can cause an increase of titration effects due to higher local emissions. Which effects of 
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this underestimation has not yet been identified. However, the possible reasons for this 

underestimation are extreme dryness of the soil, resulting in a decrease in dry deposition 

during that period, an underestimation of emissions of VOCs (including isoprene) as 

suggested by Utembe et al. (2005), and inadequate model resolution to properly represent 

the spatial distribution of ozone precursors.’ in the revised version of the manuscript (see 

lines 190-194, pages 7-8). The mention of the underestimation of emissions of VOCs has 

been suggested by Reviewer #2. 

 
 

 Line 238-239: 

The sentence "This clearly supports...", commenting Figure 5, is not convincing. The 
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overall features of the observed vertical cross-section of ozone concentration on 10
 

August 2003.’ to ‘While the model underestimated ozone levels, it successfully 

reproduced the observed vertical distribution of ozone concentration and its evolution in 
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What is the origin of the relevant VADV observed? Surface flow convergence? Coastal 

uprise originated by breeze flow? or other phenomena ? 

 

 Thanks for this. We have added ‘This finding may be explained by the convergence of 

westerly and easterly flows on that day (see Section 3.2).’ in the revised version of the 
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 Fixed. 

 

 

 Figure 6 caption: 

scales used for model and lidar concentration fields are different. If it has been done to make 
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Ms. Ref. No.: ATMENV-D-10-01569 

Response to Reviewer #2 

 

 

We thank the anonymous reviewer for his enlightened review of our manuscript. Below is 

our response point by point and wherever necessary an indication of the changes that have 

been made to the original manuscript. Note that the page numbers that are ‘given’ in our 

response refer to those of the revised manuscript, unless otherwise indicated. 

 

 This paper presents modelling results looking at UK ozone during the heatwave of August 

2003. It attempts to quantify the source of the high levels of ozone seen over the UK during 

this period by use of the CMAQ model. It shows that downward entrainment of ozone from 

residual layers in the morning is the key to enhancing ozone levels during the day. It is an 
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descriptions of a series of measurements that do support this hypothesis (albeit with no 

modelling study). For example the measurement of high levels of peroxy radicals (which the 
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evidence to suggest that local ozone production may be important is given in a paper by 

Utembe et al (Faraday Discussions, 2005, 130, 311-326). This paper shows that a 

photochemical trajectory model underestimates the observed ozone concentrations at the 

Writtle site during the heatwave period, something that is attributed to poorly constrained 

biogenic and long chain VOC emissions in the model. The authors should comment on this 

paper in relation to their current publication.  

 

 Thanks for this. We have changed the sentence ‘Nevertheless, because of lack of 

observation data, no clear evidence was provided to support this suggestion.’ to ‘The 

high levels of peroxy radicals observed during the episode indicated a high level of local 

photochemical activity.’ (see lines 78-79, page 3). Also, we have added the reference, 

Utembe et al., 2005, in the revised version of the manuscript (page 8, line 193).  

 

 

 Line 190. The authors state that there is an underestimation of the high ozone peaks but they 

have not indentified the source. Could they comment on whether the source of the 

underestimation is in fact missing isoprene in the chemistry scheme. It is likely that the 

emissions for isoprene used will be an underestimate so the authors should comment on how 

increased isoprene in the model may affect the chemistry and therefore modelled ozone.  

 

 Thanks for this. We have changed the last sentence of Section 3.1 to The source of this 

underestimation has not yet been identified. However, the possible reasons for this 

underestimation are extreme dryness of the soil, resulting in a decrease in dry deposition 

during that period, an underestimation of emissions of VOCs (including isoprene) as 

suggested by Utembe et al. (2005), and inadequate model resolution to properly represent 

the spatial distribution of ozone precursors.’ in the revised version of the manuscript (see 



lines 190-194, pages 7-8). 

 Paragraph beginning line 233. The authors state that Figures 5f and 5g clearly support the 

contribution of vertical transport to the enhancement of ground-level ozone on 6th and 7th 

August. It is not clear to me how the figure does show this. How do high ozone 

concentrations in the boundary layer (as stated on line 237) show that vertical transport 

contributes to ground level ozone. The authors should expand this section to make their 

argument clearer. 

 

 Agreed. Point raised by Reviewer #1 as well. This sentence should not been linked to 

Fig. 5. Hence it is removed in the revised version of the manuscript. 

 

 

 Lines 244-247. The authors state that the predicted boundary layer height agrees 'well' with 

the observation. This appears to be true for some times but not for others. What is the authors 
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should comment further on the comparison between modelled and measured BL height and 

why the agreement is better at some times than others.  

 

 Thanks for this. We have changed the sentence ‘The simulated boundary-layer height 
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August 2003.’ to ‘The simulated boundary-layer height is 
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August 2003, suggesting an underestimation of surface heating 

at this site in the model.’ in the revised version of the manuscript (see lines 248-250, 

pages 9-10). 
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 Fixed. 
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The Community Multiscale Air Quality (CMAQ) model is used in order to quantify reasons for the build-up of 15 

ozone over South East England during the August 2003 heatwave. Unlike previous studies, the effects of individual 16 

meteorological and chemical processes on the temporal evolution of the episode are assessed quantitatively in the 17 

present work. The performance of the modelling system was briefly evaluated. The modelling system was able to 18 

capture the evolution of the episode, with increasing ozone levels during the period 1-4 August 2003, and maximum 19 

values afterwards. Analysis of the results of the CMAQ model indicates that three mechanisms were mainly 20 

responsible for the episode: (i) horizontal transport from mainland Europe in the presence of a long-lived high-21 

pressure system, (ii) convergence of westerly and easterly near-surface winds, and (iii) downward entrainment of 22 

ozone-rich air from residual layers in the free troposphere. The downward entrainment of ozone from residual layers 23 

in the morning is found to be key to enhancing ozone levels during the day. The relevance of this mechanism is 24 
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supported by the good agreement of the model vertical ozone distribution with that derived from Light detection and 25 

ranging (Lidar) measurements. The process analysis of the rate of change of ozone concentration shows that both 26 

horizontal transport and vertical transport were equally important in explaining the variability of ozone. The 27 

contribution of chemical processes to the increase of ozone concentration as simulated by the modelling system is 28 

relatively small close to the surface. However, its contribution to the decrease of ozone concentration there becomes 29 

as important as that of meteorological processes. By investigating the role of separate meteorological and chemical 30 

mechanisms, this study hopes to add to the current understanding of the evolution of air pollution episode. 31 

Keywords: Process rate analysis; Ozone; Heatwave; CMAQ 32 

 33 

1. Introduction 34 

 35 

The summer 2003 heatwave was one of the hottest periods ever recorded in Europe with record-breaking 36 

temperatures across Europe.  The heatwave was associated with unusual weather conditions and unprecedented air 37 

pollution events in Europe and worldwide. During the period June – August 2003, observed temperatures were 38 

about 20 – 30 % above the seasonal average over most parts of the Europe. The average near-surface temperature 39 

during the heatwave period was about 3 
o
C higher than that of the equivalent periods in 1961 – 1990 (Schär et al., 40 

2004). The period broke temperature records dating back to the year 1500. Heatwave periods are becoming more 41 

frequent in the present climate. A study, reconstructing monthly and seasonal temperature fields in Europe, indicated 42 

that the European climate is becoming warmer, especially from early 21st century (Luterbacher et al., 2004). This 43 

trend in warming of the European climate is attributed to the increase in frequency of summer heatwaves. 44 

The unusual hot and dry summer triggered several prolonged air pollution episodes over Europe. Several studies 45 

indicated exceptionally intense, long-lasting, and spatially extensive episodes of high ozone concentration over the 46 

regions with the highest temperatures, especially during the first two weeks of August 2003 (e.g. Grynszpan, 2003). 47 

During this period, the limit value of 120 µg m
-3

 (about 60 ppb) for ozone concentration was repeatedly breached in 48 

the UK, especially in South East (SE) England. 49 

Severe socio-economic effects, in relation to the summer 2003 heatwave, were observed in most parts of 50 

western Europe. The most affected sector was public health, and especially the elderly population, who were not 51 

only exposed to high temperatures, but also long exposures to high concentration of pollutants, notably ozone and 52 
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particulate matter. The associated total death toll across Europe was estimated to be about 35,000 (Vandentorren et 53 

al., 2004). The European countries strongly affected were France, Germany, Spain, Italy, the UK, the Netherlands, 54 

Portugal, and Belgium, with France reporting the highest number of deaths (De Bono et al., 2003). In the UK, 55 

especially in SE England, between 21 and 38 % of the excess mortality during the summer 2003 heatwave was 56 

estimated to be attributable to exposure to high concentrations of ozone and particulate matter (Johnson et al., 2005). 57 

Stedman (2004) investigated the air pollution related deaths in the UK during August 2003 and found a 45 µg m
-3

 58 

increase in population-weighted mean ozone concentration, as compared with the same period in 2002. 59 

The heatwave during the first two weeks of August 2003 resulted primarily from a high-pressure ridge located 60 

over western Europe holding back the rain bearing low-pressure systems that usually enter the continent from the 61 

Atlantic Ocean. An analysis of ozone simulations (Vautard et al., 2005) suggested that, for most of the period, the 62 

associated anticyclonic wind re-circulated the warm air throughout Europe and over the Mediterranean region, 63 

leading to a build-up of pollutants together with a rise in temperature. 64 

Most tropospheric ozone is formed and destroyed through reactions involving nitrogen oxides (NOx) and 65 

volatile organic compounds (VOCs) in the presence of sunlight (Sillman, 1999; Jenkin and Clemitshaw, 2000). A 66 

reduction of 30 %, in peak ozone concentration at the European Monitoring and Evaluation Programme (EMEP) 67 

stations in the UK, was identified over the period 1986 – 1999 (NEGTAP, 2001). This downward trend in episodic 68 

peak ozone levels is attributed to the effective reduction in emissions of ozone precursors, notably NOx and some 69 

VOCs, during that period (Derwent et al., 2003). This correlates well with a reduction, in annual emissions of NOx 70 

and VOCs in western and central Europe, in the range 23 – 32 % during the period 1991 – 2002 reported by 71 

Vestreng et al. (2004). However, in spite of the overall reduction in precursors of tropospheric ozone, air pollution 72 

events are still often observed during heat wave periods. 73 

A number of factors, which contributed to the prolonged heatwave in Europe and associated degradation of air 74 

quality, have been discussed in the literature (Solberg et al., 2008, and references therein). Less attention has been 75 

paid to the ozone smog episode in SE England. Lee et al. (2006) suggested that the initial morning increase of ozone 76 

concentration was caused primarily by entrainment of air from higher levels, further enhanced by increased 77 

emissions of isoprene in the afternoon. The high levels of peroxy radicals observed during the episode indicated a 78 

high level of local photochemical activity.  A sensitivity study using the EMEP unified model for the UK 79 

(EMEP4UK) indicated that meteorology, boundary conditions, and chemistry all played significant roles in 80 
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contributing to the magnitude of the UK surface ozone concentration during the heatwave period (Vieno et al., 81 

2010). 82 

The accumulation of tropospheric ozone over the UK is often attributed to transport of pollutants from adjacent 83 

European countries. Jenkin et al. (2002) analyzed back trajectories to identify the origin and day-of-week 84 

dependence of photochemically active ozone episodes in the UK and found that the highest ozone concentrations 85 

generally occur under summertime anticyclonic conditions, when air masses from mainland Europe overlapped the 86 

UK. Derwent et al. (2004) conducted a model study using a global three-dimensional Lagrangian chemistry-87 

transport model and showed that intercontinental transport can have a significant impact on ozone levels at ground 88 

surface sites in Europe. Li et al. (2002) found that transport in the boundary layer and subsidence from the free 89 

troposphere enhanced ground surface ozone concentrations over mainland Europe by 2 – 4 ppb during summertime 90 

and 5 – 10 ppb during transatlantic transport events from North America. 91 

The meteorological and chemical mechanisms contributing to the high ozone episode over SE England during 92 

the August 2003 heatwave have not been quantified so far. The primary focus of the present study is to quantify the 93 

contributions of the key meteorological and chemical mechanisms to the build-up of ozone over SE England.  94 

Results from this study are expected to provide a greater appreciation of the processes responsible for the build-up 95 

of ozone associated with summer heatwaves, which is needed for reliable air quality predictions and to make 96 

effective control strategies for episodic conditions. 97 

The Community Multi-scale Air Quality (CMAQ) model coupled with the Advanced Research core of the 98 

Weather Research and Forecasting (WRF) model is used to characterize the build-up of ozone, during the first two 99 

weeks of August 2003. Section 2 gives a brief description of the setup of the modelling system and the observation 100 

data used for this study. The synoptic situation associated with the high ozone episode and reasons for the build-up 101 

of ozone are explored in Section 3. The respective role of horizontal transport and vertical transport are discussed to 102 

identify whether that episode was mainly driven by local and/or regional effects. By performing an Integrated 103 

Process Rate (IPR) analysis, the contributions of the individual meteorological and chemical processes that combine 104 

to produce the predicted hourly ozone concentration are quantified. Concluding remarks are given in Section 4. 105 

 106 

 107 

 108 
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2. Modelling system and observation data 109 

 110 

The modelling system used in this study consists of the CMAQ chemistry-transport model (Byun and Schere, 111 

2006) version 4.6 coupled with the WRF meteorological model (Skamarock et al., 2008) version 3. Meteorological 112 

fields, simulated by WRF, were supplied to CMAQ every hour by using the Meteorology-Chemistry Interface 113 

Processor (MCIP). Hourly emissions were prepared using the Sparse Matrix Operator Kernel Emissions (SMOKE) 114 

pre-processor (Houyoux et al., 2000) version 2.4. The UK National Atmospheric Emission Inventory (NAEI), which 115 

provides annual averaged emission from point sources and area sources at a horizontal resolution of 1 km, were used 116 

for the grid cells inside the UK. The annual anthropogenic emission data from the European Pollution Emission 117 

Register (EPER), for point sources, and from the European Monitoring and Evaluation Programme (EMEP), for area 118 

sources, at a horizontal resolution of 50 km were used for the grid cells outside the UK. The chemical interactions 119 

for gas chemistry were treated with the Carbon Bond mechanism CB05 in the CMAQ simulation. The simulation 120 

was performed for the year 2003 (Chemel et al., 2010), which contained several pollution episodes. 121 

 122 

2.1. Model setup and configuration 123 

 124 

The WRF model was setup with three nested grids using one-way nesting. The domains (see Fig. 1) used 125 

horizontal resolutions of 45 km (D1), 15 km (D2), and 5 km (D3). The outer domain D1 covers the whole of Europe 126 

while the innermost domain D3 covers the whole of the UK and the Republic of Ireland. Note that the domains used 127 

for the CMAQ simulation matches those of the WRF simulation with 5 grid cells less in each horizontal direction. 128 

The model was run on 28 vertical levels up to 50 hPa and the grid was stretched along the vertical axis to 129 

accommodate a high resolution (about 40 m) close to the ground. The averaged vertical grid spacing was 500 m. We 130 

used the United States Geological Survey (USGS) geographical data (e.g. digital elevation, soil type, land cover) 131 

provided with the WRF pre-processing system. The 6-hourly analyses from the European Centre for Medium-range 132 

Weather Forecasts (ECMWF), at a horizontal resolution of 0.5
o
, were used for the initial and lateral boundary 133 

conditions for D1. In order to shorten the spin-up time and to constrain the model towards the analyses, a grid 134 

nudging technique (Stauffer and Seaman, 1990) was employed over D1, every 6 hours. The physics options selected 135 

included: the YSU non-local boundary layer parameterization scheme (Hong et al., 2006), the Monin Obukhov 136 
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surface-layer scheme, the Noah soil-vegetation model (Ek et al., 2003), the CAM3 radiation package (Collins et al., 137 

2006), the microphysical scheme by Thompson et al. (2004, 2006), and the ensemble cumulus scheme by Grell and 138 

Dévényi (2002) for D1 and D2 only. The monthly mean concentration of gaseous species, derived from the UK Met 139 

Office Lagragian chemistry-transport model STOCHEM for the year 2000 were used as the chemical initial and 140 

boundary conditions for the CMAQ simulation. Further details of the setup of the modelling system are given in 141 

Chemel et al. (2010). The model results from D3 are analyzed in this study.   142 

 143 

2.2. Integrated process rate analysis of modelled ozone concentration 144 

 145 

An Integrated Process Rate (IPR) analysis (Jeffries and Tonnesen, 1994; Godowitch et al., 2008; Xu et al., 146 

2008; Yu et al., 2008) is used to study the effect of different processes on the prediction of ozone concentrations. 147 

The IPR analysis allows the effects of key meteorological and chemical processes on model predictions to be 148 

assessed separately. The contributing terms in the conservation equation for ozone were processed every hour for 149 

each grid cell in the ‘SE England domain’ (region delimited by 2.0
o 

W to 1.5
o
 E and 51.5

o 
N to 53.0

o 
N, see Fig. 1). 150 

These terms represent the contributions of vertical advection (VADV) and diffusion (VDIF), horizontal advection 151 

(HADV) and diffusion (HDIF), dry deposition (DDEP), cloud processes (CLD), and chemical processes (CHEM). 152 

Results of the IPR analysis are discussed in Section 3.3 in order to determine quantitatively the relative importance 153 

of the different meteorological and chemical processes that drive the spatial and temporal distribution of ozone. 154 

 155 

2.3. Observation data 156 

 157 

The predicted ground-level ozone concentrations are compared with the surface ozone measurements from the 158 

UK Automatic Urban and Rural Network (AURN) in Section 3.1. The surface ozone measurements from 18 159 

monitoring sites of suburban, urban and rural background types, over SE England were considered for this study. 160 

The first field campaign of the Tropospheric ORganic CHemistry experiment (TORCH), was carried out during the 161 

period 27 July – 30 August 2003 at Writtle College (51° 44′ 12″ N; 0° 25′ 28″ E in Fig. 1). This campaign study 162 

collected valuable air quality and meteorological measurements during the high ozone episode. The site description 163 

and the details of pollutants measured during the campaign study are described in Lee et al. (2006). The planetary 164 
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boundary-layer height, derived from wind profiler data, and ozone profiles, obtained from Light detection and 165 

ranging (Lidar) data, at Writtle, are compared with model results for the heatwave period in Section 3.2. The Lidar 166 

system used was the Facility for Ground-based Atmospheric Measurement (FGAM) Ozone and Aerosol Profiler 167 

(Ricketts, 2009). 168 

 169 

3. Results and discussion 170 

 171 

3.1. Overall meteorological features and performance of the modelling system 172 

 173 

The UK Met Office observations reported that August 2003 was a very hot, sunny, and exceptionally dry period 174 

across the UK. At Brogdale (51.297 
o
N, 0.881 

o
E) near Faversham (Kent), a record-breaking temperature of 38.5 

o
C 175 

was measured on 10 August 2003. Synoptic conditions during the first two weeks of August 2003 were particularly 176 

favourable to the establishment of the heat wave episode. A low-pressure system formed to the north west of the 177 

UK, over the Atlantic Ocean, on 1 August 2003 and decayed rapidly. Subsequently, a high-pressure system formed 178 

over the UK over the next 10 days leading to the severe heatwave and several pollution episodes. The steady-state 179 

anticyclonic system yielded clear skies, prolonged sunshine, high temperature, subsidence of air, and the build-up of 180 

ozone throughout the UK during the period 4 – 10 August 2003. 181 

In order to evaluate the performance characteristics of the modelling system in simulating ground-level ozone, 182 

the time series of observed maximum daily running 8-hour mean ozone averaged over 18 ozone monitoring sites 183 

(see Section 2.3) for the period 1 – 12 August 2003 are compared with model results in Fig. 2. A sharp increase in 184 

ozone concentration (in the order of 30 ppb) occurred during the period 1 – 4 August 2003. The model successfully 185 

captured this build-up of ozone, with a maximum value of 65 ppb on 5 August 2003. The threshold of 60 ppb for 186 

ozone was exceeded as from 5 August 2003. The model effectively predicted ozone concentration above the 60 ppb 187 

threshold, for the period 6 – 12 August 2003. The peak ozone mixing ratio was simulated one day after that 188 

observed and was underestimated. This underestimation of high-ozone peaks during the August 2003 heatwave is 189 

consistent with the findings of Vautard et al. (2005). The source of this underestimation has not yet been identified. 190 

However, the possible reasons for this underestimation are extreme dryness of the soil, resulting in a decrease in dry 191 

deposition during that period, an underestimation of emissions of VOCs (including isoprene) as suggested by 192 
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Utembe et al. (2005), and inadequate model resolution to properly represent the spatial distribution of ozone 193 

precursors. 194 

 195 

3.2. Horizontal features 196 

 197 

Meteorological fields, namely sea level pressure (SLP), 2-m temperature, wind, and boundary-layer height have 198 

been analyzed to understand the synoptic conditions that were responsible for the heatwave episode triggering the 199 

pollution episode. Black et al. (2004) studied factors contributing to the summer 2003 European heatwave and 200 

concluded that a blocking regime persisted over the whole of Europe in August 2003, enhancing radiative forcing 201 

because of the absence of cloud, and increasing surface temperatures. 202 

Fig. 3 shows the SLP and 2-m temperature fields extracted from the WRF simulation for the period 1 – 12 203 

August 2003 at 15 UTC. The spatial variability of the SLP and 2-m temperature, on all days of the episode, is well 204 

reproduced when compared with that reported by Burt (2004). The predicted 2-m temperature pattern corresponds 205 

well to observations during this period for the whole of the UK. The model successfully reproduces high 206 

temperatures, in excess of 35 
o
C over SE England, in particular on 6, 9, and 10

 
August 2003 as was reported by 207 

Black et al. (2004). The high-pressure (1017 – 1025 hPa) system over the UK during the episode, discussed by 208 

Black et al. (2004), is well reproduced by the model (see Fig. 3c – 3l).  209 

In order to understand the contribution of the meteorological process to the build-up of ground-level ozone 210 

during the heatwave episode, the spatial distribution of ground surface ozone and 10-m wind field are displayed, in 211 

Fig. 4, for the period 1 – 12 August at 15 UTC. During 1 – 3 August 2003 (see Fig. 4a – 4c), a westerly flow brought 212 

cool and moisture-rich air from the Atlantic Ocean over the UK resulting in light rainfall. During the next five days 213 

(see Fig. 4d – 4h) the air mass in the UK experienced anticyclonic circulation due to the presence of a blocking high 214 

(see Fig. 4g). As a result of the blocking high over the UK, an easterly flow from mainland Europe, with wind 215 

speeds greater than 15 m s
-1

, pushed the westerly flow from the Atlantic Ocean towards the North. A convergence 216 

zone developed along the western side of the UK on 9 August 2003 (see Fig. 4i), which turned into a cold front on 217 

10 August 2003 (see Fig. 4j). Due to the presence of the cold front, SE England (the region ahead of the cold front) 218 

experienced high temperatures (see Fig. 3j). The anticyclonic activity decayed on 12
 
August 2003 and a westerly 219 

flow from the Atlantic Ocean pushed the polluted air mass eastwards. 220 
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Fig. 4a and 4b show that there is no transport of ozone-rich air from the Atlantic Ocean, for the period 1 – 2 221 

August 2003 with the westerly flow setting the background concentration (about 40 ppb). The build-up of ozone 222 

during the next 10 days is predominantly associated with horizontal transport of ozone from mainland Europe in the 223 

presence of the blocking high over Europe. Easterly winds from mainland Europe transported ozone towards the UK 224 

on 4
 
and 5

 
August 2003 (see Fig. 4d and 4e). The transported ozone was blocked in SE England on 6

 
August 2003 225 

(see Fig. 4f) due to the convergence of westerly and easterly flows. The next four days were characterized by high 226 

levels of ozone, with concentrations in excess of 90 ppb, over the south-western part of England on 9
 
August 2003 227 

(see Fig. 4i).  Ozone concentration decreased as the anticyclonic system decayed over the next two days (see Fig. 4k 228 

and 4l). It is worth noting that the high temperature regions coincide with the high ozone concentration regions 229 

during this episode (see Fig. 3 and 4). 230 

The next section discusses the vertical distribution of ozone, where the maximum ground-level ozone was 231 

observed, so as to identify the role of vertical transport in the build-up of ozone over SE England. 232 

 233 

3.3. Vertical features 234 

 235 

The variability of the boundary-layer height, along with the vertical distribution of ozone across SE England at 236 

0
o
 longitude is displayed in Fig. 5 for the period 1 – 12 August 2003 at 15 UTC. It is noteworthy that the ozone 237 

within the boundary layer is well mixed, over land, in the afternoons. The boundary layer is very shallow (in the 238 

range 0 – 200 m) over the English Channel and the North Sea while being well developed over land with a 239 

maximum height of approximately 1 – 2 km. Fig. 5f and 5g show ozone concentration in excess of 80 ppb within the 240 

boundary layer on 6 and 7
 
August 2003. Interestingly, on 10

 
and 11

 
August 2003, the model simulated the maximum 241 

ozone concentration above the boundary layer (see Fig. 5j and 5k). 242 

Consistent with observations (Lee et al., 2006), our work reveals that the maximum ground-level ozone 243 

occurred on 6
 
August 2003 and that maximum temperatures occurred on 10

 
August 2003. Fig. 6 depicts the vertical 244 

distribution of ozone and the boundary-layer height from 08 UTC to 18 UTC on 6
 
and 10

 
August 2003, respectively. 245 

The simulated boundary-layer height is also compared with that observed at Writtle, on 6
 
and 10

 
August 2003. The 246 

boundary-layer height reaches a maximum at 14 UTC (see Fig. 6d and 6j) and then decreases in the evening (see 247 

Fig. 6f and 6l). The simulated boundary-layer height is comparable to that of observations at Writtle, although it is 248 
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lower in the afternoon and decays more rapidly on 6
 
August 2003, suggesting an underestimation of surface heating 249 

at this site in the model. Ozone mixing ratios are as large as 80 ppb in the range 500 – 2000 m in the afternoon (see 250 

Fig. 6d and 6j). The strong convective activity within the boundary layer causes ozone mixing during daytime.  251 

The boundary-layer height reaches the level where ozone concentration was trapped during the morning (i.e. a 252 

residual layer) and entrains ozone downwards, further increasing ground-level ozone in the later hours. This 253 

mechanism is similar to that discussed by Zhang and Rao (1999) and Rappenglück et al. (2008) in that ozone and its 254 

precursors trapped aloft in the nocturnal residual layer influence ground-level ozone concentrations on the following 255 

day as the surface-based inversion starts to break up. 256 

Fig. 7 shows the vertical cross-section of ozone concentration derived from the Lidar data and predicted from 257 

the modelling system for the levels in the range 400 – 2000 m, at Writtle, on 9
 
and 10

 
August 2003. The Lidar 258 

indicated ozone concentration greater than 100 ppb, in the range 800 – 1500 m, from late evening on 9 August 2003. 259 

While the model underestimated ozone levels, it successfully reproduced the observed vertical distribution of ozone 260 

concentration and its evolution in time on 10
 
August 2003. The Lidar measurement on 10

 
August 2003 suggested 261 

that ozone trapped at the level of 1400 m during morning hours was entrained downwards, further increasing 262 

ground-level ozone in the later hours. The model reproduced well the increased ground-level ozone concentration 263 

due to ozone entrainment from the residual layer. 264 

The analysis of model results and observations have revealed some of the mechanisms that contributed to the 265 

enhancement of ground-level ozone concentration during the first two weeks of August 2003, in particular, 266 

horizontal transport of ozone from mainland Europe in the presence of prolonged anticyclonic conditions, 267 

convergence of easterly and westerly flows, with stagnant conditions over the south east of the UK, and vertical 268 

transport of ozone over SE England.  269 

 270 

3.4. Process rate analysis 271 

 272 

An IPR analysis was performed to quantify the relative contributions of the processes driving ozone 273 

concentration in the CMAQ model (see Section 2.2) at different vertical levels for the ‘SE England domain’ (see 274 

Fig. 1). The contributions of cloud processes (CLD), and chemical processes (CHEM) were combined into one 275 

chemistry-related contribution and referred to as CHEM thereafter. Fig. 8 summarizes results of the IPR analysis on 276 
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6
 
and 10

 
August 2003. The time series of the rate of change in ozone concentration due to each contribution (VADV, 277 

VDIF, HADV, DDEP, and CHEM) at different model heights (namely, 46 m, 372 m, 837 m, and 1303 m) are shown 278 

in Fig. 8. Dry deposition (DDEP) is relevant only for the near-surface layer (46 m). The contribution of horizontal 279 

diffusion (HDIF) is found negligible and thus is not discussed thereafter. The contribution of the chemistry-related 280 

processes (CHEM) is found to be small, compared with the meteorological processes especially near the ground 281 

surface. 282 

  Fig. 8a and 8e show that the removal of ozone due to DDEP is compensated by VDIF in the near-surface layer 283 

(46 m). On 6 August 2003, HADV contributes to increasing ozone concentration there, while VADV decreases 284 

ground-level ozone. The contributions of HADV and VADV to the change in ground-level ozone concentration are 285 

more variable and tend to compensate each other on 10 August 2003. CHEM contributes to the increase of ozone 286 

concentration at all levels, except close to the ground surface where ozone is dry deposited and depleted. This 287 

consumption of ozone during the daytime due to the titration by nitrogen monoxide (NO) was reported in Wang et 288 

al. (2010).  289 

On 6 August 2003, it is found that in the morning hours the horizontally advected ozone is removed by VADV 290 

in the upper levels. This finding may be explained by the convergence of westerly and easterly flows on that day 291 

(see Section 3.2). During daytime, CHEM and HADV contribute to the increase of ozone concentration up to the 292 

height 837 m but above that height (see Fig. 8d), CHEM and VADV are the main contributors to the increase of 293 

ozone concentration. Indeed, during daytime the horizontally trapped (advected) ozone in the residual layer further 294 

increases ozone levels in the presence of sunlight. At the height of 1303 m, HADV removes ozone locally produced 295 

during the daytime. Some ozone is also transported downward (positive values of VADV) from upper levels. The 296 

vertically transported ozone from the upper level is advected horizontally within the SE England domain (positive 297 

value of HADV) at heights below 1303 m. The increase of ozone concentration is also contributed by the 298 

convergence of westerly and easterly winds as depicted in Fig. 4f on 6 August 2003.   299 

The situation is more complicated in explaining the contribution of different processes on 10 August 2003 (see 300 

Fig. 6g-l and Fig. 8f-8h). Similarly to the near-surface layer, the contributions of HADV and VADV to the change in 301 

ozone concentration are noticeably variable and tend to compensate each other. Above the boundary layer, ozone 302 

levels are increased due to HADV, and decreased due to VADV. Also, they decrease as height increases from 372 m 303 

to 1303 m.    304 
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Tables 1 and 2 report time-averaged (7 UTC-19 UTC) values of the contributions of HADV, VADV, VDIF, 305 

DDEP, and CHEM to the ozone concentration at 46, 372, 837, and 1303 m on 6
 
and 10

 
August 2003, when the 306 

ozone concentration increased (i.e. ∆O3/∆t > 0) and when it decreased (i.e. ∆O3/∆t < 0), respectively. As shown in 307 

Fig. 8, when the ozone concentration increased, VDIF (24 ppb/hr on average for 6 and 10 August 2003, 308 

respectively) played the major role in increasing ozone levels, and DDEP (-22 ppb/hr on average) in decreasing 309 

ozone levels in the near-surface layer (46 m). As mentioned above, when the ozone concentration decreased, both 310 

VDIF (16 ppb/hr) and DDEP (-13 ppb/hr) played significant roles in increasing and decreasing ozone levels 311 

respectively, near the ground surface. As height increases, CHEM played a significant role along with HADV 312 

(except for 10 August 2003, when ozone increased) in contributing to the increase of ozone level for both ∆O3/∆t > 313 

0 (1 ppb/hr on average) and ∆O3/∆t < 0 (1 ppb/hr on average). VADV and VDIF were the main contributors to the 314 

decrease of ozone concentrations at upper levels.   315 

 316 

4. Concluding remarks 317 

 318 

The mechanisms responsible for the high ozone episode over SE England during the August 2003 heatwave 319 

have been investigated using the CMAQ chemistry-transport model coupled with the WRF meteorological model. 320 

This period is of particular interest since such extreme weather conditions provide conspicuous events for air quality 321 

analysis. The horizontal and vertical day-to-day variability of ozone during the episode have been discussed. The 322 

enhancement of ozone due to the distribution of various ozone enrichment processes has been investigated by 323 

employing an IPR analysis in the CMAQ model. The horizontal analysis showed a maximum ozone concentration 324 

region over SE England on 6
 
August 2003. Our study has revealed that transported ozone from mainland Europe 325 

was trapped due to the convergence of westerly and easterly flows over the UK on 6
 
August 2003, and thus 326 

increased ozone levels in the following days. The vertical distribution of ozone over SE England on 6
 
and 10

 
August 327 

2003 suggested that the strong convective activity, during the daytime, entrained ozone from the residual layer 328 

downwards during the afternoon hours, increasing ground surface ozone levels. The vertical cross-section of ozone 329 

concentration from the model simulation compared well with that derived from Lidar measurements. The IPR 330 

analysis for ozone has indicated that the main contributors to the increase of ozone concentration were horizontal 331 

transport and vertical transport in the morning hours. The enhancement of ozone concentration on 6 August 2003 332 
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due to horizontal advection and vertical diffusion processes is supported by the convergence of westerly and easterly 333 

winds over the SE England domain on that day. The modelling study has shown that chemical processes have 334 

contributed much less to the ozone build up during the episode. Nonetheless, we cannot rule out a more important 335 

contribution of chemical processes. Indeed, about 10 – 15 ppb of ozone were not accounted for by the modelling 336 

simulation, when comparing the simulated maximum daily running 8-hour mean ozone concentration, averaged over 337 

18 sites in the ‘SE England domain’, with observations. In general, our study adds to the current understanding of 338 

the role of meteorological and chemical processes in the variability of ozone concentration during episodic 339 

conditions. Also, this research demonstrates the value of process analysis to understand the causes of the evolution 340 

of air pollution episodes and how their description can be generalised. 341 
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Tables 459 

 460 

Table 1. Time-averaged values of the contributions of HADV, VADV, VDIF, DDEP, and CHEM to the ozone 461 

concentration (ppb/hr) at 46, 372, 837, and 1303 m when ozone concentration increased, i.e. ∆O3/∆t > 0. 462 

Height 

(m) 

 6 August 2003  10 August 2003 

 HADV VADV VDIF DDEP CHEM  HADV VADV VDIF  DDEP CHEM 

46  2.52 -3.28 24.25 -20.40 -1.04  -1.41   1.47 24.61  -21.66 -1.53 

372  1.40 -1.35 -0.85    0.00  1.13  -2.29   2.60  -0.33     0.00   1.32 

837  0.98 -0.88 -1.16    0.00  1.53    1.73 -1.77 -0.65     0.00   0.89 

1303  0.67 -0.95 -0.65    0.00  1.47  -0.47   0.52 -0.84     0.00   1.01 

 463 

Table 2. Time averaged values of the contributions of HADV, VADV, VDIF, DDEP, and CHEM to the ozone 464 

concentration (ppb/hr) at 46, 372, 837, and 1303 m when ozone concentration decreased, i.e. ∆O3/∆t < 0. 465 

Height 

(m) 

 6 August 2003  10 August 2003 

 HADV VADV VDIF DDEP CHEM  HADV VADV VDIF DDEP CHEM 

46    2.49 -2.85 15.83 -12.80 -4.33  2.35 -1.85  15.86 -13.52 -4.75 

372    1.48 -1.37 -1.64    0.00  0.28  5.28 -5.03 -1.44   0.00   0.27 

837    0.48 -0.16 -1.23    0.00  1.31  5.86 -5.89 -1.02   0.00   0.51 

1303  -0.38 -0.10 -1.33    0.00  1.32  3.65 -4.00 -0.26   0.00   0.38 

466 
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List of Figures 467 

 468 

Fig. 1. CMAQ model domains (D1: 45 km, D2: 15 km, and D3: 5km horizontal resolutions). The rectangular box 469 

inside D3 delineates the ‘South East England domain’. 470 

Fig. 2. Time series of observed and predicted maximum daily running 8-hour mean ozone concentration (ppb) 471 

averaged over 18 ozone monitoring sites in SE England for the period 1 – 12 August. The horizontal dashed line 472 

indicates the limit value of 120 µg m
-3

 (about 60 ppb).  473 

Fig. 3. Sea-level pressure (hPa) and 2 m temperature (
o
C) for the period 1 – 12 August 2003 at 15 UTC. 474 

Fig. 4. Ground-level ozone concentration and 10-m wind speed (m s
-1

) for the period 1 – 12 August 2003 at 15 UTC. 475 

Fig. 5. Vertical cross section of ozone concentration (ppb) and boundary-layer height (m) along latitude (x-axis) 476 

across SE England at 0
o
 longitude for the period 1 – 12 August 2003 at 15 UTC. 477 

Fig. 6. Vertical cross section of ozone concentration (ppb) and boundary-layer height (m) along latitude (x-axis) 478 

across SE England for 6 and 10 August 2003 at 08, 10, 12, 14, 16, and 18 UTC. The white ‘x’ symbol represents the 479 

boundary-layer height observed at Writtle (51° 44′ 12″ N; 0° 25′ 28″ E in Fig. 1). 480 

Fig. 7. Vertical cross-section of predicted and observed ozone concentration (ppb) at Writtle (51° 44′ 12″ N; 0° 25′ 481 

28″ E in Fig. 1) for the period 9 – 10 August 2003. 482 

Fig. 8. Time series of the rate of change in ozone concentration due to horizontal advection (HADV), vertical 483 

advection (VADV), vertical diffusion (VDIF), dry deposition (DDEP), and chemistry-related (CHEM) processes, 484 

and ozone levels for 6 and 10 August 2003 at different model heights. 485 

  486 



 

 

  18 

Fig. 1. CMAQ model domains (D1: 45 km, D2: 15 km, and D3: 5km horizontal resolutions). The rectangular box 487 

inside D3 delineates the ‘South East England domain’. 488 
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Fig. 2. Time series of observed and predicted maximum daily running 8-hour mean ozone concentration (ppb) 490 

averaged over 18 ozone monitoring sites in SE England for the period 1 – 12 August. The horizontal dashed line 491 

indicates the limit value of 120 µg m
-3

 (about 60 ppb).  492 
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Fig. 3. Sea-level pressure (hPa) and 2 m temperature (
o
C) for the period 1 – 12 August 2003 at 15 UTC   493 
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 494 

Fig. 4. Ground-level ozone concentration and 10-m wind speed (m s
-1

) for the period 1 – 12 August 2003 at 15 UTC. 495 
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Fig. 5. Vertical cross section of ozone concentration (ppb) and boundary-layer height (m) along latitude (x-axis) 497 

across SE England at 0
o
 longitude for the period 1 – 12 August 2003 at 15 UTC. 498 
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Fig. 6. Vertical cross section of ozone concentration (ppb) and boundary-layer height (m) along latitude (x-axis) 500 

across SE England for 6 and 10 August 2003 at 08, 10, 12, 14, 16, and 18 UTC. The white ‘x’ symbol represents the 501 

boundary-layer height observed at Writtle (51° 44′ 12″ N; 0° 25′ 28″ E in Fig. 1). 502 

503 
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Fig. 7. Vertical cross-section of predicted and observed ozone concentration (ppb) at Writtle (51° 44′ 12″ N; 0° 25′ 504 

28″ E in Fig. 1) for the period 9 – 10 August 2003. 505 

506 
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Fig. 8. Time series of the rate of change in ozone concentration due to horizontal advection (HADV), vertical 507 

advection (VADV), vertical diffusion (VDIF), dry deposition (DDEP), and chemistry-related (CHEM) processes, 508 

and ozone levels for 6 and 10 August 2003 at different model heights. 509 


