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ABSTRACT

Aims. In this article we describe the search for white dwarfs (WDs)in the multi-band photometric data of the Capodimonte deep field
survey.
Methods. The WD candidates were selected through theV−RC vsB−V color-color diagram. For two bright objects, the WD nature has
been confirmed spectroscopically, and the atmospheric parameters (Teff and logg) have been determined. We have computed synthetic
stellar population models for the observed field and the expected number of white dwarfs agrees with the observations. The possible
contamination by turn-off and horizontal branch halo stars has been estimated. The quasar (QSO) contamination has been determined
by comparing the number of WD candidates in different color bins with state-of-the-art models and previousobservations.
Results. The WD space density is measured at different distances from the Sun. The total contamination (non-degenerate stars+
QSOs) in our sample is estimated to be around 30%. This work should be considered a small experiment in view of more ambitious
projects to be performed in the coming years in larger surveycontexts.
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1. Introduction

The intrinsic faintness of white dwarfs (WDs) means that they
are only seen at small distances from the Sun and that their sta-
tistical properties are still not well known. A complete sample
of white dwarfs only exists in a small volume with a radius of
13 pc. Based on this sample of 43 stars, and adding another 79
objects with known distances all within 20 pc from the Sun,
Holberg et al. (2008) obtained a WD local space density of
(4.8± 0.5)× 10−3 pc−3.

Statistical studies of white dwarfs have been increasing inthe
past years, thanks to the results of recent and/or ongoing surveys,
in particular the Sloan Digital Sky Survey (SDSS, Eisenstein et
al. 2006), which has roughly doubled the number of spectroscop-
ically confirmed white dwarfs, with about 6,000 new discover-
ies, allowing detailed studies of the mass distribution (Kepler
et al. 2007) and the mass and luminosity function (De Gennaro
et al. 2008 and references therein). However, the completeness
limit of the SDSS photometric data, around g≈19.5 (De Gennaro
et al. 2008), is not deep enough to study the WD distribution of
these stars across the galactic disk, and their scale height, in par-
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der proposals 63.O-0464(A), 64.O-0304(A), 65.O-0298(A),68.D-
0579(A), 69.D-0653(A).

ticular for the coolest objects. Deeper samples exist, for exam-
ple the WD candidates identified in the Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS, Limboz et al. 2007), even
though they are generally limited to small areas (3.6 squarede-
grees for the CFHTLS WDs). Moreover, color selection alone
is not enough to identify cool white dwarfs. For white dwarfs
cooler than about 8,000 K, astrometry is essential when spec-
troscopic data are not available and the reduced proper motion
diagram (Luyten 1918) is the best way to separate these ob-
jects from metal-weak, high-velocity, main-sequence Population
II subdwarfs (Kilic et al. 2006).

Of particular interest are the so-called ultra-cool white
dwarfs (Teff

<
∼4,000 K), very old objects that contain precious

information on the primordial epoch of our galaxy. These ob-
jects fall near the deep minimum of the WD luminosity func-
tion, at L/L⊙ ≃ −4.5, caused by the finite age of the galactic
disk. Measuring the position of this minimum, we can measure
the age of the galactic disk itself (D’Antona & Mazzitelli 1978,
Harris et al. 2006 and references therein). Presently, the number
of known ultra-cool WDs is about 20 (Harris et al. 2008) and
most of them were discovered in the Sloan Digital Sky Survey.

For the future, one of the most ambitious projects that study
the WD populations is the ESA Gaia astrometric space mission,
which will be able to discover about 400,000 white dwarfs with
a detection rate close to 100% up to 100 pc (Jordan 2007).

http://arXiv.org/abs/0812.0911v1
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In this article we describe the search for white dwarfs in
the multi-color photometric data of the Capodimonte deep field
survey. In sect. 2 we present the selection criteria of our sam-
ple, based on morphological classification of point sourcesand
colors. In sect. 3 we describe the spectroscopic results on three
bright targets. In sect. 4 synthetic stellar population models are
computed and the expected number of white dwarfs is compared
with our sample. Contamination from turn-off and horizontal
branch halo stars is estimated and discussed. QSO contamina-
tion is considered in sect. 5, where our results are discussed and
compared with previous findings.

2. Photometry: selecting WD candidates

The “Osservatorio Astronomico di Capodimonte” Deep Field
(OACDF, Alcalá et al. 2004) is a multi-band (B,V,RC plus shal-
low IC) photometric survey covering 0.5 square degrees at high
galactic latitude (RA2000≃12:25, DEC2000≃–12:49 orl ≃293.0,
b ≃49.56 in galactic coordinates), performed using the Wide
Field Imager (WFI) attached to the ESO 2.2 m telescope at La
Silla observatory. The 5σ limiting magnitudes are: BAB=25.3,
VAB=24.8 and RAB=25.1. Typical errors (including source ex-
traction, zero-points and extinction terms) at magnitude 20 (23)
are 0.06 (0.10) mag in theB band and 0.05 (0.08) mag inV and
RC.

2.1. Extra-galactic extended contaminants

From the original catalogs of the OACDF survey, we optimized
the selection criteria to isolate point source objects fromex-
tended ones, using theflux radiusparameter from SExtractor
(Bertin & Arnouts 1996).Flux radius is the aperture radius in
pixels (1 pix= 0.238 arcsec for WFI) where a defined fraction
of the light (50% in our case) is collected.

Fig. 1 represents theflux radiusversus magnitude, where
the stellar branch can be easily identified. The six panels refer
to the BVRC bands in two adjacent WFI fields (OACDF2 and
OACDF4). We can see that the contamination from extended
objects starts typically near magnitude 21-22, depending on the
photometric band considered, and becomes quite strong at mag-
nitude∼23 (or∼24 in theB band). The selected objects (black
points) are those falling inside the boxes indicated in Fig.1. This
criterion must be valid for the threeBVRC photometric bands
simultaneously. In this way we can exclude most of the extra-
galactic extended sources and saturated stars that lie in the left
upper part of each box.

2.2. WD candidates from the color-color diagram

To select the white dwarf candidates, in Fig. 2 the position of
the point-like sources in the (V − RC, B − V) plane is com-
pared with the theoretical WD tracks from Holberg & Bergeron
(2006) and with the location of the SDSS quasars (Data Release
5, Schneider et al. 2007), white dwarfs and hot subdwarfs (Data
Release 4, Eisenstein et al. 2006). The Sloan colors of the SDSS
objects were converted to the Johnson-Cousin system using the
color transformations of Jester et al. (2005). The small discrep-
ancy between WD tracks and hot SDSS white dwarfs (the latter
being∼0.05 redder inV−RC) is due to the fact that Jester’s equa-
tions are not optimized for very blue objects. We have verified
that in a (g−r, r−i) plane, the agreement between WD tracks and
hot SDSS white dwarfs is much better (Bergeron’s evolutionary
tracks are available also in Sloan colors).

Fig. 1. Selection of point sources objects from the OACDF cat-
alogs. The polygons represent the regions where the point-like
objects are concentrated (see the text for more details).

Considering only the hottest objects (B−V < 0.25), there are
21 WD candidates whose location is compatible with H or He
white dwarfs having an effective temperature higher than about
8,400 or 8,100 K respectively. Another∼19 objects falling on the
right side of the WD cooling tracks could be white dwarfs with
a red companion. However, in this region contamination from
quasi-stellar objects (QSOs) is very strong atB − V >∼ 0 (see
Fig.2), and therefore most of these objects must be QSOs. For
three of them, having very blue colors (B− V < −0.1), we can
exclude a QSO nature: these objects can be either white dwarfs
or hot subdwarfs with a cool companion. We know that a signifi-
cant fraction of hot subdwarfs (∼50% or even more for subdwarf
B stars, Morales Rueda et al. 2006) reside in binaries; however
hot subdwarfs are much more rare than white dwarfs (see Fig.2
and caption). Therefore these 3 objects are included in our list of
WD candidates. Extending our color limit toB− V = 0.35 (cor-
responding to Teff≃ 7,150 K for both H and He WDs), the total
number of WD candidates increases by a factor of∼2 but the
selection becomes more difficult because in this region the WD
cooling tracks are very close (almost inside) the QSO clump.
At B − V>∼ 0.25, also the contamination from OB stars (main
sequence objects and horizontal branch stars) starts. As a gen-
eral criterion we have considered as WD candidates the objects
whose error bars intersect the WD cooling tracks, excludingthe
regions where the QSO density dominates. In this way we add
8 more WD candidates, bringing to 32 the total number of WD
candidates withB− V < 0.35.

At B−V>∼ 0.35 - 0.40, stellar contamination becomes impor-
tant, in particular from halo objects (see section 4). In order to
be identified, cool white dwarfs require astrometric data and the
use of the reduced proper motion diagram. These objects are not
considered in this article.



R. Silvotti et al.: White dwarfs in the Capodimonte Deep Field 3

Fig. 2. Color-color plane of the OACDF point source
objects (blue dots) compared with Bergeron’s theoreti-
cal WD tracks with logg = 7.0, 7.5, 8.0, 8.5, 9.0,9.5 (H
WDs) or logg = 7.0, 7.5, 8.0, 8.5,9.0 (He WDs) from
http://www.astro.umontreal.ca∼bergeron/CoolingModels/ (see
Holberg & Bergeron 2006 and references therein for more
details). The objects with error bars represent the WD candi-
dates withB − V < 0.35. The three circled points represent
the WD candidates for which spectroscopy was performed (see
Section 3). Since galactic reddening is rather small (at most
E(B − V) = 0.05 and E(V − RC) = 0.03 mag for the hotter
objects, more distant from us and outside the disk), extinction
is not considered in this plot. The green, red and black points
represent, respectively, all the SDSS quasars, white dwarfs and
hot subdwarfs (see the text for more details). Note that the
black symbols of the hot subdwarfs are slightly larger in order
to enhance these rare objects. On the top of the QSO cloud,
near the upper right corner, the clump of OACDF red dwarfs is
visible.

3. Spectroscopy of three bright WD candidates

Among the WD candidates, three bright stars, marked with a cir-
cle in Fig. 2, were selected to perform spectroscopic follow-up.
The spectroscopic observations were carried out at La Sillaob-
servatory using EMMI at the NTT and EFOSC2 at the 3.6 m
telescope, both with the MOS (Multi-object spectroscopy) con-
figuration. In the case of EMMI, the grism number 5 was used,
with a spectral coverage from 4000 to 6600 Å, and a resolution
of 5 Å FWHM (implying a resolving power R∼1100 at central
λ). In the case of the EFOSC2 instrument, the grism number 1
was used, covering the spectral range from 3200 to 9000 Å with
a resolution of 40 Å FWHM (R∼150 at centralλ).

The data were reduced using the standard procedures within
the ESO-MIDAS1 reduction package. First the images were cor-
rected for bias and flat field; then the spectra were extractedand
wavelength calibrated using arc lamp observations; finally, they
were flux-calibrated. From an inspection of the spectra, twoob-

1 ESO Munich Image Data Analysis System
(http://www.eso.org/sci/data-processing/software/esomidas/).

jects with the unique presence of Balmer lines have been con-
firmed to be DA white dwarfs. Their flux calibrated spectra are
shown in Fig. 3. The third object (which has the up-right posi-
tion in Fig. 2) has colors compatible both with a 8,500 K WD
and a A8 main sequence star (e.g. Kenyon & Hartmann 1995).
However, its Hβ and Hγ lines are narrower than typical WDs
and therefore this star was identified as a A8 star. Its spectrum is
shown in Catalán et al. (2007).

The effective temperature (Teff) and surface gravity (logg) of
the two confirmed WDs have been obtained following the pre-
scriptions described in Catalán et al. 2007. The method consists
mainly in normalizing the spectra to the continuum and fitting
the theoretical models of DA white dwarfs by D. Koester (private
communication) to the observed Balmer lines using the pack-
age SPECFIT under IRAF2. This package is based onχ2 mini-
mization using the method of Levenberg-Marquardt (Press etal.
1992). The white dwarf models had been previously normalized
to the continuum and convolved with a Gaussian instrumental
profile with the proper FWHM in order to have the same resolu-
tion as the observed spectra. In Fig. 4 the fits of the white dwarf
models (sharp lines) to the observed Balmer lines of the two con-
firmed white dwarfs are shown. In the case of OACDF122406.4-
124855 the spectral range is from Hβ to Hǫ, while in the case of
OACDF122429.3-131413 the spectral coverage is narrower, in-
cluding Hβ and Hγ only.

Once we have defined Teff and logg for each star, we deter-
mine its mass (M⋆) and its cooling time (tcool, time elapsed since
the planetary nebula formation) using the cooling sequences of
Salaris et al. (2000). Moreover, comparing the apparent V mag-
nitude with the absolute magnitude expected from Bergeron’s
models, we obtain an estimate of the distance. Our results are
shown in Table 2.

The large errors associated with the hotter white dwarf are
due to the low resolution of the spectrum, implying poor Balmer
lines fitting. The formal error of 1,300 K in Teff is probably
underestimated and theB − V index would suggest a lower ef-
fective temperature near 23,000-24,000 K (considering a single
WD). Even though the location of this object in Fig. 2 is compat-
ible with a DB white dwarf, its spectrum does not show any He
line, confirming its DA nature. TheV − RC excess is likely due
to a cooler companion, as confirmed by the high value ofV − IC

(see Table 1).

4. Comparing the WD candidates with synthetic
stellar populations

Taking advantage of the stellar evolution theoryand galactic
structure, synthetic color-magnitude diagrams (CMDs) canbe
very useful to disentangle the stellar counts. Examples of this
kind of analysis can be found in Bahcall & Soneira (1984),
Castellani et al. (2002), Robin et al. (2003), Girardi et al.(2005).
Here we use the galactic model described in Cignoni et al.
(2008).

Basically, field stars are not randomly distributed along the
line of sight, but they are clumped according to the major galac-
tic components (thin disk, thick disk, halo). Star count models
exploit this point: although the distances are unknown, some as-
sumptions can be made on the underlying spatial distributions.
The following step is to convolve the spatial distribution with
the underlying stellar populations. Once the number of synthetic

2 Image Reduction and Analysis Facility, written and supported by
the National Optical Astronomy Observatories (NOAO) in Tucson,
Arizona (http://iraf.noao.edu/).

http://www.astro.umontreal.ca~bergeron/CoolingModels/
http://www.eso.org/sci/data-processing/software/esomidas/
http://iraf.noao.edu/
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Table 1.Photometric and stellar parameters of the spectroscopically confirmed white dwarfs

Name V B− V V − RC V − IC Teff (K) log g (cgs) M⋆ (M⊙) tcool (Gyr) d (pc)∗

OACDF122406.4-124855 19.44±0.03 –0.10±0.05 –0.02±0.04 0.61±0.06 32,400±1,300 8.40±0.90 0.88±0.34 <0.13 620±610
350

OACDF122429.3-131413 19.57±0.04 0.24±0.07 0.04±0.06 0.03±0.07 10,700±300 7.92±0.05 0.56±0.02 0.44±0.04 350±20

∗ Taking into account galactic extinction the distances are reduced by 20-25 pc.

Fig. 3. Flux calibrated spectra of the two confirmed white
dwarfs.

stars for each galactic population at each distance from theSun
is computed, masses and ages are extracted populating specific
initial mass functions (IMFs) and star formation rates (SFRs).
Next, absolute magnitudes and colors are obtained by interpo-
lating stellar tracks, whose metallicity is fixed by the assumed
age-metallicity relation. Finally, reddening and photometric er-
rors are applied to the synthetic photometry.

When a synthetic CMD is ready for a specific observed field
(and scattered as a result of the photometric errors), it is straight-
forward to determine CMD regions where the white dwarfs are
distinguishable from normal stars. In practice, dependingon
galactic latitude and WD colors, a galactic model is used to esti-
mate the probability of contamination by: 1) halo turn-off stars;
2) halo blue Horizontal Branch (HB) stars; 3) massive thin disk
stars in main sequence (which outnumber the WDs and have
similar colors). Moreover it is possible to estimate the number

Fig. 4.Model fits (sharp lines) to the individual Balmer line pro-
files of the two DA WDs detected in this survey. Lines range
from Hβ (bottom) to Hǫ (top) in the case of OACDF122406.4-
124855 and from Hβ (bottom) to Hγ (top) in the case of
OACDF122429.3-131413. Teff and logg from the best fit are in-
dicated.

of expected white dwarfs and distinguish thin disk white dwarfs
from thick disk and halo WDs.

In our model the Galaxy is described by the following ingre-
dients:

– Spatial distributions:The simulated Galaxy includes three
main structures, namely the thin disk, the thick disk and the
halo. The thin disk and the thick disk density laws are mod-
eled by a double exponential (Reid & Majewski 1993): the
main parameters governing these profiles are the scale length
(fixed at 3500 pc for both populations) and the scale height (1
kpc for the thick disk, 250-300 pc for the thin disk). The halo
follows a power law decay with exponent 3 (see Cignoni et
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Table 2. Ingredients for the galactic model. The IMFs are from
Kroupa et al. 2001.

Z SFR(constant) spatial parameters (H,L)
DISK 0.02 0.1-6 Gyr H=250 pc, L=3500

THICK DISK 0.006 5-10 Gyr H=1 Kpc, L=3500
HALO 0.0008 11-13 Gyr ρ ∝ R−3

Gal

al. 2007) and an axis ratio of 0.8 (Gould et al. 1998). A lo-
cal spatial density of 0.11 stars pc−3 (Reid, Gizis & Hawley
2002) is adopted for the thin disk, whereas thick disk and
halo normalizations are respectively 1/20 (Robin et al. 1996)
and 1/850 relative to the thin disk (Minezaki et al. 1998,
Morrison et al. 1993);

– Stellar tracks:For masses above 0.6 M⊙, our code makes use
of the Pisa stellar tracks (Cariulo et al. 2004), while, for the
low mass range, colors are empirically fit to the faint end
of nearby stars (thin disk) and the faint end of the cluster
47-Tucanae (thick disk). For the halo, the low mass range
is treated using the theoretical calculations by Baraffe et al.
(1997). To predict the CMD location of WDs we adopt the
following ingredients: 1) a WD mass - progenitor mass re-
lation (Weidemann et al. 2000); 2) WD cooling sequences
(Salaris et al. 2000); 3) suitable model atmospheres (for
Te f f < 4000 K the color relations are from Saumon &
Jacobson 1999, whereas for higher temperatures the calcu-
lations are from Bergeron, Wesemael & Beauchamp 1995).
The WD cooling age is given by the difference between the
age of the star and the age of the WD progenitor at the end
of the AGB. A further point of evolutionary significance con-
cerns the CMD position of the synthetic HB stars: due to the
unknown mechanism of mass loss during the red giant phase,
halo stars which are predicted along the horizontal branch
have been treated by assuming a Gaussian mass distribution
centered on a mean mass< MHB >, together with a mass
dispersionσM (see e.g. Castellani et al. 2005). Masses and
ages are then interpolated using HB stellar tracks.

– SFRs and chemical compositions:The thin disk SFR is as-
sumed constant and only the old SFR cut-off is allowed to
vary between 2 and 6 Gyr (see e.g. Cignoni et al. 2006). The
thin disk metallicity is fixed atZ = 0.02. SFR and metallic-
ity for halo and thick disk stars are derived from the compar-
ison between synthetic and observed CMD. In the interval
19 < V < 23 the CMD data shows a sharp cut-off in color
(0.38 < B − V < 0.45). This feature can be reproduced us-
ing a galactic halo with metallicityZ = 0.0008 (see also
Cignoni et al. 2007) and age 11-13 Gyr. Brighter than 19th
magnitude, the observed turn-offmoves to the red: although
a solution in terms of age and metallicity cannot prove to
be unique, a classical thick disk withZ = 0.006 and a star
formation activity older than 5 Gyr seems appropriate.

– IMFs: The IMF is a power law (m−α) for all populations: as a
range of variation we assume the uncertainty on the exponent
α as evaluated by Kroupa et al. 2001 (α = 2.3± 0.3).

Figure 5 shows the best synthetic diagram (only single stars,
photometric errors are included) over-plotted onto the CMD
data. The ingredients are indicated in Tab. 2. All stars bluer than
the halo turn-off are compatible with thin disk white dwarfs.
However, it is crucial to evaluate any source of contamination.
First, different halo models were considered: although the com-
bination Z = 0.0008 and age 11-13 Gyr reproduces well the
turn-off region, to isolate a pure WD sample it is essential to ex-
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Fig. 5. Color-magnitude diagram of the OACDF point source
objects (black dots) compared with synthetic populations (tri-
angles) of thin disk (upper panel), thick disk (middle panel) and
halo (bottom panel) stars. Simulated halo HB stars (emphasized
with big triangles) are computed using an HB mass dispersion
σM = 0.005M⊙ and a mean mass< MHB >= 0.68M⊙.

plore also a metal poor halo (which may dominate sufficiently
far out, see e.g. Carollo et al. 2007). In Figure 6 three halo mod-
els are compared with the observed color distribution (onlystars
with V < 23 are selected): interestingly, although the turn-off
region is sensitive to the particular model, it is clear thata con-
servative cut atB− V ∼ 0.35 significantly reduces the contami-
nation of halo stars. In particular, the turn-off stars, which make
the major contribution, never exceed 13 objects, while onlyfew
HB stars are present. To evaluate the maximum HB contamina-
tion, the HB mass dispersionσM is varied between 0.005 and
0.02M⊙, whereas the mean mass< MHB > is changed in the
range 0.70−0.60M⊙. The simulations indicate that no more than
8 HB stars (where this number is obtained with a mean mass
of 0.6 M⊙, which is quite extreme) are expected in our field for
B − V < 0.35 and that they are all brighter thanV∼19. It is
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−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Simulated Halo stars (V<23)

OACDF
Z=0.0002 age=9−11 Gyr
Z=0.0002 age=11−13 Gyr
Z=0.0008 age=11−13 Gyr

Fig. 6. Comparison between synthetic (only halo stars) and ob-
served color distribution (V < 23). Different curves represent
different halo models (HB stars follow the same prescription as
in Fig. 5,σM = 0.005M⊙ and< MHB >= 0.68M⊙). The yellow
excess atB− V <∼ 0.35 is largely due to the disk white dwarfs.

worth noting that about 25% of them are “lost” because they are
brighter than the saturation limit (V∼16 for the OACDF). So the
maximum number of visible HB stars is about 6. In our list of
OACDF WD candidates we have 2 stars brighter thanV=19, one
of them being indeed identified as a HB halo object (see sections
3 and 5 for more details).

As a final remark, we note that a few blue objects may be
thick disk WDs: to test this circumstance, the model thick disk
normalization is varied between 5% and 10% (which covers
most of the current uncertainty). According to the simulations,
the expected number of thick disk WDs withB− V < 0.35 and
V < 23 is lower than 6-7 objects.

In summary, following our best simulations in Fig. 5, besides
the thin disk WDs, the CMD region defined byB−V < 0.35 and
16 < V < 23 may host a few thick disk WDs (∼3, maximum 6)
and about 4 (up to 19 in the worst case) among turn-off and HB
halo stars.

In order to provide a more quantitative analysis concern-
ing the WD star counts, we have compared the observed num-
ber of WDs with the model predictions. Tab. 3 shows the pre-
dicted numbers assuming different IMFs, SFRs and thin disk
scale heights. As expected, the WD counts increase adopting
a shallower IMF, a younger SFR and a larger thin disk scale
height. From these simulations, if one assumes canonical values
for the IMF exponent (α = 2.3) and the SFR (constant between
0 and 6 Gyr), we obtain 22 thin disk white dwarfs for a thin disk
scale height H=300 pc. Adding also a few (∼3) thick disk WDs,
the total number of white dwarfs expected is not far from 32, as
derived in section 2.2. Note that our list of WD candidates con-
tains at least 4 (more likely 8-10, see Fig. 2) WDs in binaries,
not included in our simulations.

5. Discussion

In the previous section we have seen that the number of WD
candidates that we have found is comparable with the number

Table 3.Mean number of predicted thin disk WDs withB−V <
0.35 andV < 23, for different combinations of IMF (exponent
α) and SFR (constant in the indicated interval). Results for athin
disk scale height H=250 pc and H=300 pc are shown.

H=250 pc
α N( SFR 0-6 Gyr) N(SFR 0-4 Gyr) N(SFR 0-2 Gyr)

1.8 26 37 51
2.3 12 13 23
2.7 8 11 13

H=300 pc
α N( SFR 0-6 Gyr) N(SFR 0-4 Gyr) N(SFR 0-2 Gyr)

1.8 40 53 77
2.3 22 23 31
2.7 13 15 19

Fig. 7. WD space density at various values ofB − V. The con-
tinuous line is the space density obtained from our data with
a V magnitude limit of 23 (shaded areas represent the errors).
The long and short dashed lines represent, respectively, the
WD space density expected from Begeron’s DA models with
logg=8.0 (Holberg & Bergeron 2006 and references therein),
taking into account the mean duration of each evolutionary
phase, and the WD local space density of Holberg et al. (2008)
considering only objects withB− V < 0.35. At 0.25< B− V <
0.35 the model density is normalized at the value of Holberg et
al. (2008); note that their sample does not contain any hot white
dwarf with B− V < −0.15. The great difference in number den-
sities between our and Holberg’s data is due to the fact that we
are sampling much more distant regions, in which the WD space
density is much lower (see text for more details).

of disk white dwarfs predicted by synthetic color-magnitude di-
agrams (including a few thick disk WDs). In order to confirm
the WD nature of these candidates, spectroscopy was performed
for three of them: one is a non-degenerate star of spectral class
A8. The color of this object (B− V = 0.24), bluer than the halo
turn-off, and its magnitude (V = 17.7) suggest that it is a halo
star on the horizontal branch (HB) at 25-30 kpc from us and∼20
kpc from the galactic disk. This detection is consistent with the
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Fig. 8.Same as Fig. 7 but with same volumes sampled in all the
color bins. The continuous (blue) line is the space density within
897 pc from the Sun (shaded areas represent again the errors). In
this plot the lower density of bluer objects is related only to their
faster evolution.

synthetic CMDs in Fig. 5 and confirms that stellar contamination
is present in our sample.

In order to evaluate also the extra-galactic contamination(in
particular from QSOs) and to compare the number of our WD
candidates with previous results, we have calculated the space
density in differentB − V color bins (Fig. 7). Considering that
hotter and more luminous white dwarfs can be seen at larger
distances, we have calculated the maximum radius at which a
white dwarf can be seen with a magnitude limitV = 23 for 7
different ranges ofB − V (absolute magnitudes are calculated
using the Bergeron’s DA models, Holberg & Bergeron 2006 and
references therein, assuming logg=8.0). For each bin we have
divided the number of WD candidates observed for the volume
sampled. The WD density is then compared with what we expect
from Bergeron’s DA models, considering the mean duration of
the evolutionary phase corresponding to that particular color bin,
and with the WD local space density obtained by Holberg et al.
(2008). Note that what we can compare is only the slope of the
density function. The number densities are necessarily different
because Holberg et al. (2008) measure the local density (within
13 pc), whereas we are sampling more distant regions (see Table
4), up to the WD disk scale height and beyond, where the density
of white dwarfs is much lower.

Fig. 7 shows that, when we move to hotter white dwarfs, the
density decreases faster than Bergeron’s models and Holberg et
al. (2008). This is not surprising because hot WDs are observed
at larger distances, even well beyond the disk (atB− V = −0.3
the maximum distance is about 5,700 pc atV = 23), where the
space density is significantly lower. When we correct for this
effect and recalculate the space densities considering same vol-
umes in all the colors, the agreement with models and previous
observations is much better (Fig. 8). This fact suggests that the
residual contamination from QSOs in our sample is relatively
small. Otherwise we would find a greater density in the redder

color bin, where the frequency of QSOs is higher. Using small
number statistics (Gehrels 1986), we can estimate a maximum
QSO’s contamination of≈50% in the reddest color bin.

Fig. 9. White dwarf space density at different distances from
the galactic disk (z). The distribution is compatible with ascale
height of about 200 pc. The horizontal line is the WD local space
density (+ errors in dashed lines) of Holberg et al. (2008) con-
sidering only objects withB− V < 0.35.

When we sum the space densities over all the color bins, we
obtain the WD space density at various distances from the Sun
or from the galactic disk (Fig. 9). The number of WD candidates
in various colors and at various distances are given in Table4.
These densities do not include cool WDs withB − V > 0.35
(or Teff

<
∼7150 K for DA WDs with logg=8.0). In our smallest

volume (d < 357 pc) the WD space density, summing all the
color bins, is (3.5±1.7

1.2)×10−3 pc−3 (see Table 4), 1.7 times greater
than (but within the errors still compatible to) the local space
density of Holberg et al. 2008 (they obtain (2.1±0.5)×10−3 pc−3

considering only the WDs withB− V between –0.35 and 0.35).
If we consider aB limiting magnitude of 22.5, the number of our
WD candidates is reduced to 23±6 in 0.5 square degrees (or 46
per sq. degr.), which is 1.7±0.4 times higher than the sky surface
density of 27 degr.−2 obtained by Majewski & Siegel (2002) for
B<∼22.5 at the north galactic pole. The effective over-density is
reduced from 1.7 to about 1.3 considering the different galactic
latitude of the two fields (the OACDF is atb ≃ 50).

Conclusions:

– In the OACDF photometric survey we have identified 32 WD
candidates. This number is in agreement (within the errors)
with what we obtain from stellar synthetic populations in the
same field.

– Our sample may be partially contaminated by blue stars and
in particular by QSOs in the reddest color bins. As described
in section 4, the stellar contamination from HB and turn-off
halo stars can be estimated of the order of 10-15% (up to
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Table 4. Number of WD candidates detected and space densities. The errors are calculated using small number statistics from
Gehrels (1986).

V lim=21 Vlim=22 Vlim=23 d<357pc d<566pc d<897pc
(z<273pc) (z<434pc) (z<687pc)

–0.35<B–V<–0.25 0 0 1 0 0 0
–0.25<B–V<–0.15 0 1 1 0 0 0
–0.15<B–V<–0.05 1 1 2 0 0 1
–0.05<B–V< 0.05 0 1 1 0 0 0
0.05<B–V< 0.15 2 4 8 0 1 2
0.15<B–V< 0.25 5 6 11 3 5 6
0.25<B–V< 0.35 5 6 8 5 6 8

TOT 13 19 32 8 12 17

space density (pc−3) (3.46±1.71
1.20)×10−3 (1.31±0.50

0.37)×10−3 (4.64±1.42
1.11)×10−4

60% in very unlikely circumstances).3 As seen in this sec-
tion, the QSO contamination is estimated to be<∼50% in the
reddest color bin and almost zero elsewhere, giving a con-
tribution of 10-15% to the total number of white dwarfs.
Therefore we can consider a total contamination of the or-
der of 30%.

– A selection effect is present for the white dwarfs with red
companions. AtB− V>∼ 0.05 these objects are hardly iden-
tified because, in the color-color plane, they fall close to or
inside the QSO’s region (Fig. 2).

– The WD sky surface density that we find is slightly higher
than (∼1.3 times) the value obtained by Majewski & Siegel
(2002).

– The WD space density within∼350 pc is 1.7 times greater
than (but within the errors still compatible to) the measure-
ments of Holberg et al. (2008) in the solar neighborhood.

The results presented in this article represent a small exper-
iment in view of similar projects which are planned in the com-
ing years in much wider ground-based survey contexts, such as
KIDS/VIKING (see Arnaboldi et al. 2006), STREGA (Marconi
et al. 2006) and the Alhambra Survey (Moles et al. 2008).
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