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Abstract Worst-case execution time (WCET) analysis is
concerned with computing a precise-as-possible bound for
the maximum time the execution of a program can take. This
information is indispensable for developing safety-critical
real-time systems, e. g., in the avionics and automotive fields.
Starting with the initial works of Chen, Mok, Puschner, Shaw,
and others in the mid and late 1980s, WCET analysis turned
into a well-established and vibrant field of research and devel-
opment in academia and industry. The increasing number and
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diversity of hardware and software platforms and the ongo-
ing rapid technological advancement became drivers for the
development of a wide array of distinct methods and tools
for WCET analysis. The precision, generality, and efficiency
of these methods and tools depend much on the expressive-
ness and usability of the annotation languages that are used
to describe feasible and infeasible program paths. In this
article we survey the annotation languages which we con-
sider formative for the field. By investigating and comparing
their individual strengths and limitations with respect to a
set of pivotal criteria, we provide a coherent overview of the
state of the art. Identifying open issues, we encourage further
research. This way, our approach is orthogonal and comple-
mentary to a recent approach of Wilhelm et al. who provide
a thorough survey of WCET analysis methods and tools that
have been developed and used in academia and industry.

Keywords Worst-case execution time (WCET) analysis ·
Annotation languages · Path-oriented, constraint-oriented,
and hierarchy-oriented WCET annotation languages ·
WCET annotation language challenge

1 Motivation

Computing the time that the execution of a program can take
in the worst case is challenging. It requires to cope with anal-
ysis problems that are computationally intractable or unde-
cidable. Tools and methods for worst-case execution time
analysis (WCET) thus usually content themselves to com-
puting an upper bound of the actual WCET. The precision,
generality, and efficiency of these tools and methods depend
much on the accurate description and identification of feasi-
ble and infeasible program paths. A program path is feasible,
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412 R. Kirner et al.

if there is an actual program execution taking this path; it
is infeasible otherwise. In practice, this information is com-
puted by fully automatic program analyses, where possible; it
is manually provided by application programmers otherwise.
In both cases this requires a dedicated language in order to
annotate this information and to pass it on to a subsequent
WCET analysis. Such a language is commonly called an
annotation language. Over the past two decades, an array
of conceptually quite diverse annotation languages has been
proposed to support the needs of different WCET analysis
methods and tools.

In this article, we present a systematic and comprehensive
comparison of the various approaches for WCET annotation
languages. This acts on our suggestion of the WCET annota-
tion language challenge [32] complementing the WCET tool
challenge [17,22,62], and complements the recent survey of
WCET analysis methods and tools by Wilhelm et al. [66].

Focusing on annotation languages for WCET analysis, we
take a different angle, as Wilhelm et al. to add to character-
ize the state of the art in the field of WCET analysis. We
believe that this provides a new stimulus for further research
and development on WCET analysis methods and tools in
general and annotation languages in particular.

It is worth noting that there are also annotation lan-
guages for modeling real-time properties at system level like
response time, throughput, or jitter. Examples of such sys-
tem modeling languages are the modeling and analysis suite
for real-time applications called MAST [23] and the UML
Profile for Modeling and Analysis of Real-time and Embed-
ded systems (UML-MARTE) [49]. Such real-time modeling
languages at system level, however, are beyond the scope
of languages considered in this article, though, for example,
UML-MARTE could be extended by user-defined properties
to host annotation concepts specifically for WCET analy-
sis.

The contribution of this article is thus twofold: first, to
survey the annotation languages for WCET analysis which
have been influential and formative for the field. Second, to
identify open issues for further research which we consider
essential for its further development and advancement.

To this end we introduce a set of criteria that are pivotal
for the suitability and usefulness of an annotation language.
This leads us to a clustering of the various annotation lan-
guages and allows us to investigate and discuss their relative
strengths and limitations. Based on these findings we sug-
gest open issues for further research towards novel, easy to
use, and expressive annotation languages, which we believe
will support the further advancement of methods and tools
for WCET analysis. In the long run, this can also be seen
a step towards a universal WCET annotation language for a
wide range of WCET analysis tools. This would especially
enhance the interoperability of different supportive program
analysis tools for WCET analysis for their mutual benefit.

WCET annotation languages and WCET calculation
methods are closely tied and cannot meaningfully be con-
sidered in complete isolation. We thus provide a brief sum-
mary of the fundamental WCET calculation methods and the
fundamental kinds of flow information which are expressed
by means of annotation languages in Sects. 2 and 3, respec-
tively. This will set up the scene for our investigation and
comparison of WCET annotation languages.

Figure 1 summarizes the annotation languages we con-
sider, grouped with respect to the WCET calculation method
the WCET analysis tools using them are based on. This illus-
trates the close ties between WCET calculation methods and
WCET annotation languages.

2 WCET calculation: fundamental methods

2.1 Global versus scoped WCET calculation

The WCET of a program can be calculated for the whole
program at once. We call this global WCET calculation.
Alternatively, the WCET can be calculated in a hierarchical
bottom-up fashion. We call this scoped WCET calculation.

Some of the WCET calculation techniques are inherently
scoped methods, e. g., timing schema. But also WCET anal-
ysis performed intra-procedurally instead of inter-procedur-
ally is a form of scoped WCET calculation.

It is worth noting that scoped WCET calculation meth-
ods are only compatible with flow information that addresses
properties within the same scope, i. e., with flow information
that only addresses program parts within the same scope. The
degree to which scoped WCET calculation is used by a con-
crete WCET analysis tool is thus formative for the WCET
annotation language to be used with this tool.

2.2 Timing schema (hierarchy-oriented)

The timing schema approach is an efficient WCET cal-
culation method that is also simple to implement [52,54,
59]. Essentially, the timing schema consists of hierarchical
WCET calculation rules for each node of the syntax tree
representing elementary or composed statements. If T (A)

denotes the local WCET bound of a node A, the local WCET
of the sequential composition A; B of two nodes A and B is
computed as T (A) + T (B). Analogously, the local WCET
of a conditional statement if A then B else C fi; is
computed as T (A)+max (T (B), T (C)) and the local WCET
bound of a loop while A do B od; with at most LB iter-
ations is computed as (LB + 1) · T (A) + LB · T (B) (L B
shall remind to loop bound). Last but not least, if A rep-
resents an elementary statement, its local WCET T (A) is
simply the maximum execution time of A. Obviously, the
timing schema can analogously be formulated to calculate the
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WCET Annotation
Languages

I. Hierarchy-
oriented

Timing Schema

RealTime

Euclid

([KS86],

Sec. 6.1)
TAL

([MACT89],

Sec. 6.2)

Timing Tool

([PS91],

Sec. 6.3)

Modula/R
([Vrc92],

Sec. 6.4)

SPARK Ada

([CBW94],

Sec. 6.5)

Heptane
([CP01],

Sec. 6.6)

II. Path-
oriented

EPET

IDL
([Par93],

Sec. 7.1.2)

PL
([Par93],

Sec. 7.1.1)

RapiTime
([RAP06],

Sec. 7.2)

III.
Constraint-
oriented

IPET

Bound-T
([HLS00],

Sec. 7.3)

Mälardalen
([EE00],

Sec. 7.4) WCETC
([Kir02],

Sec. 7.5)

aiS
([FHT03],

Sec. 7.6)

F4/FFX
([CS06],

Sec. 7.7)Chronos
([LLMR07],

Sec. 7.8)

TuBound
([PSK08],

Sec. 7.9)

IV. Other
concepts

Symbolic
Annotations

([Bli94],

Sec. 8.1)

Assertion
Language

([Lis05],

Sec. 8.2)

Fig. 1 Formative WCET annotation languages (note: the gray line indicates that the WCET calculation tool using TAL is hybrid, enjoying char-
acteristics of hierarchy-oriented approaches as well as of unorthodox other ones). The various language aspects compared and discussed are listed
systematically in Table 1

best-case execution time. Its computational complexity is lin-
ear with the program size. It thus scales well and can effi-
ciently be applied to large programs.

The efficiency of this approach comes at the price of
lacking support for global flow information, i. e., flow infor-
mation that describes relations across the boundaries on
individual timing schema rules. This is because the timing
schema approach represents a fine-grained scoped WCET
calculation technique that uses the syntactical elements of
control-flow constructs as scopes. For some programs, this
can result in a much higher WCET overestimation compared
with other WCET calculation techniques. Further, the timing
schema approach does not provide an interface to model the
complex execution states of modern processors that have fea-
tures like pipelines and caches. This imposes an inherently
high pessimism on the WCET bound for such processors.

A refinement of the timing schema approach towards a
more precise handling of nested loops has been presented by
Colin and Puaut [10], cf. Sect. 6.6.

As shown in Fig. 1, all approaches that are based on a hier-
archy-oriented annotation language use the timing schema
for the WCET calculation.

2.3 EPET (path-oriented)

The explicit path-enumeration technique (EPET) searches
the longest execution path by enumerating and comparing
each program path. At a first glance, this seems a rather naive
approach, and in fact, it does not scale (well) in the case of
global WCET calculation. However, this approach has its
merits when using scoped WCET calculation because the
scoping allows to restrict the number of paths within each
cluster such that their enumeration becomes feasible. For
example, some path-oriented WCET calculation techniques
use loop scopes as scopes for the analysis [18,58], which,
however, implies that any flow information can address
only program parts within the body of a single loop; the
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body of nested loops or the scope outside the loop cannot be
mixed in.

There are static WCET analysis approaches [18,58]
and measurement-based timing analysis approaches [67,69]
based on EPET.

Static WCET calculation based on EPET is well suited to
analyze the effects of pipelines. It allows to model the impact
of the pipeline on an instruction sequence longer than just
basic blocks, and thus increases the precision of the WCET
bound. However, EPET itself is inappropriate to take rather
global timing effects into account, like cache behavior. Thus,
the cache analysis has to be done in a separate step prior to
the EPET step. The separate analysis of cache and pipeline
effects, however, can be unsound for processors showing tim-
ing anomalies [34,44].

For measurement-based timing analysis using EPET a
scoping is used to define the length of the paths for which
the timing is obtained by execution-time measurements. Note
that measurement-based timing analysis is a hybrid approach
that uses execution time measurements as well as program
analysis. The scoping used in measurement-based timing
analysis can be of quite different granularity. For example, the
pWCET tool of Bernat et al. [4] uses relatively fine-grained
scoping, down to the basic-block level. In contrast, the phi-
losophy of the MTime tool is to use a relatively coarse-grained
scoping to reduce measurement error [67]. MTime is looking
for a tradeoff between the maximum code length covered by
sub-paths and the number of sub-paths to be measured.

As shown in Fig. 1, all approaches that are based on a
path-oriented annotation language use EPET for the WCET
calculation.

2.4 IPET (constraint-oriented)

The implicit path enumeration technique (IPET) has been
pioneered by Li and Malik [42], as well as by Puschner
and Schedl [55]. In contrast to path-based WCET calcula-
tion where paths are explicitly enumerated, IPET performs
an implicit longest path search.

The basic idea is to model the control flow of the program
with constraints. To reduce the complexity, typically only
linear constraints are used, i. e., the program is represented
as an integer linear program (ILP). Subsequent to this basic
modeling, supplemental flow information is often included
smoothly in terms of additional constraints of the ILP prob-
lem. The finally formulated ILP problem is passed to an ILP
solver that computes the desired WCET bound. Due to the
broad availability of commercial and open-source ILP solv-
ers, such ILP problems can be solved conveniently. As the
IPET approach requires to solve a set of constraints describ-
ing the program behavior, it is per se a global WCET calcula-
tion method. It is also possible to use IPET as a scoped WCET
calculation technique, as e. g. done by Ermedahl et al. [14].

The IPET-based WCET calculation is currently the most
popular WCET calculation technique. It allows to directly use
rather flexible flow information like linear flow constraints.
Linear flow constraints are supported by so many annota-
tion languages such that we describe them in more detail in
Sect. 4. As shown in Fig. 1, all approaches that are based on
a constraint-oriented annotation language use IPET for the
WCET calculation.

2.5 Other methods

Hierarchy, path, and constraint-oriented WCET calculation
methods are currently most often used by WCET analysis
tools. However, there are further approaches using different
methods. For example, the WCET analysis method using the
TAL annotation language uses the timing schema approach in
combination with freely programmable algorithms. It is thus
not a pure hierarchy-oriented approach, but a hybrid one. In
Sect. 8 we consider methods falling in this group together
with their annotation languages in more detail.

We now continue with recalling the fundamental kinds of
flow information.

3 Flow information: fundamental kinds

Flow information describes aspects of the dynamic pro-
gram behavior that are relevant for WCET computation. It
is expressed by means of WCET annotation languages. In
the following we summarize the fundamental kinds of flow
information, distinguishing static and dynamic information.

3.1 Static control flow

The abstract syntax tree (AST) is a concise representation of
a program which is stripped from information that is unnec-
essary for its compilation [2]. Primarily, the AST describes
the syntactical structure of the program. Implicitly, it also
describes its control flow. The control flow graph (CFG) is an
explicit representation of a program’s control flow [19]. Since
branching constraints obeyed by actual program executions
are not taken into account, it describes the static control flow.
The nodes of the CFG represent the statements of the pro-
gram, and the edges denote where execution might continue
after executing a statement. Statements can be combined to
basic blocks. A basic block is a sequence of maximum length
of statements which can only be entered at the very first state-
ment and left after the last one. A CFG can be assumed to
have a unique start node representing the very first statement
and an end node representing the last statement. The static
control flow is then given by the set of paths leading from the
start node to the end node. Programs with functions or pro-
cedures are represented by a flow graph system, where each
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function and procedure is represented by an ordinary CFG.
An interprocedural control flow graph or super control flow
graph represents the control flow by function calls and returns
explicitly by splitting each call site into a new call and return
node, and introducing a call and a return edge connecting
the call node with the start node of the called procedure or
function and its end node with the return node of the corre-
sponding call site [47]. This way the CFGs of the flow graph
system are merged to a single graph. The set of paths in the
interprocedural control flow graph from the start node to the
end node of the program that respect the call/return-behavior
of procedure and function calls (also known as interproce-
durally valid paths [60]) denote the static control flow of a
program with procedures and functions. Like for the AST,
all branches are non-deterministically interpreted in a CFG
and its interprocedural extensions in order to avoid undecid-
ability issues. Hence, the static control flow of a program
describes a superset of the program paths, for which there is
an actual program execution, i. e., it describes a superset of
the set of feasible program paths [5].

Another representation which is often used to describe the
control flow induced by procedure and function calls is the
call graph of a program [47]. A call graph contains a node
for each procedure and function of a program. A directed
edge leads from node m to node n in the call graph, if the
procedure or function represented by m contains a call for
the procedure or function represented by n. The call graph
together with the flow graph system of a program can also
be used to describe its static control flow.

3.2 Dynamic control flow

The dynamic control flow constrains the static control flow
towards a more precise approximation of the set of feasi-
ble program paths. Typically, this is achieved by means of a
control flow analysis, which conceptually can be thought of
identifying a subset of the set of infeasible program paths.
The precision of the approximation depends thus on the abil-
ity of the control flow analysis to identify infeasible program
paths. To this end the control flow analysis can be guided
by flow information to enhance its capabilities, where the
flow information constrains and restricts the static control
flow. This flow information is what is usually provided in
terms of annotations of the program. Most important is here
the provision of upper bounds for cycles in the static control
flow representation of a program, which are due to loops and
(mutually) recursive procedure and function calls. Generally,
we distinguish the following kinds of dynamic control flow
information:

Loop bounds Loop bounds are the minimum informa-
tion required by WCET analyzers to come up with a

WCET bound for a program. For natural loops, i. e.,
loops with a distinct loop header dominating all nodes
in the loop body and a back edge pointing to the
loop header [2], loop bounds specify the maximum iter-
ation count of the loop body relative to the loop header.
For non-natural loops, e. g., for irreducible loops, the spec-
ification of loop-bounds is less intuitive since there is no
unique loop entry.
Recursion bounds Recursion bounds are similar in flavor to
loop bounds. They provide an upper bound for the number
of times a recursive function or procedure calls itself upon
each invocation. Specifying bounds for mutually recursive
procedure calls is less obvious and not directly possible.
Nested loops with non-rectangular iteration space If the
range of an iteration variable (i, j, k, ...) of an inner loop
depends on the current value of the iteration variable of
an outer loop, the shape of the iteration space becomes
non-rectangular [47]. Common examples are trapezoidal
and triangular iteration spaces, the latter are also called
triangle loops.
Call contexts Call-contexts provide information about the
context, in which a procedure is called at a particular call
site, e. g., the values of procedure arguments and global
variables. Call contexts allow to analyze a procedure call
site specifically. In general, this allows more precise anal-
ysis results. For example, the computation of loop bounds
that depend on the values of input parameters or global
variables at a call site, will usually be more precise if the
analysis can refer to call-context information at call sites
[38].
Loop contexts Loop-contexts are similar to call contexts
but focus on loops instead of call sites. Often, the first and
subsequent loop iterations behave differently, e. g., because
of cache effects. The precision of analyzing such loops can
be improved when, e. g., an annotation language allows for
annotating the first and subsequent iterations of a loop sep-
arately.
Application contexts Application contexts provide infor-
mation about the context an application is executed in,
e. g., the possible states of the environment. An application
context describes the environment of the program, while a
call context describes the local context of a particular call
site. Of course, a change in the application context can also
cause a change of a particular call context. A program often
behaves significantly different due to changes in the envi-
ronment. The precision of analyses can thus be improved if
annotation languages allow for the specification of specific
application contexts.
Execution order The WCET of a program can depend on
the concrete order in which its statements are executed,
e. g., because of effects of instruction pipelines, instruc-
tion/data caches, or processor parallelism. Most WCET-
calculation methods do not take this into account and
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content themselves with estimates of the execution fre-
quency of basic blocks. If, however, the method sup-
ports the modeling of a complex hardware architecture
where the instruction timing depends on the execution his-
tory, the annotation language should support the specifica-
tion of the execution order.

We conclude these introductory sections with discussing
an extended example of an IPET-based WCET analysis. The
IPET is the state-of-the-art WCET analysis technique in most
application domains (cf. Sect. 2.4)1 The example illustrates
the interplay of a WCET calculation method and a support-
ing annotation language, and it shows how flow information
is used to tighten the result of the WCET analysis.

4 Example: IPET and linear flow constraints

The IPET method supports the use of arbitrary constraints
of the form

∑n
j=1 fi j (x j ) ≤ bi between the flow of dif-

ferent program locations (modeled by flow variables x j ) as
flow information (index i). Though fi j () in general could
also be non-linear, we assume the use of an integer linear
programming (ILP) constraint solver for WCET calculation.
This limits the flow information to linear flow constraints. We
use the source code and the flow information of benchmark
B1 and B2 as example. They are shown in Table 2 together
with the corresponding CFG.

The universe of paths is defined by a general ILP prob-
lem. It consists of n decision variables x1, …, xn , an objective
function

Z =
n∑

i=i

ci · xi

that has to be maximized, m functional constraints

n∑

j=1

ai j x j ≤ bi

for all i ∈ [1, m] with ai j being integer constants, and the
non-negativity constraints xi ≥ 0.

To calculate the WCET as an ILP problem, the execu-
tion costs of all program actions are to be expressed as the
objective function to be maximized:

WCET(P) = max
∑

〈i, j〉∈E

fi, j · ti, j

In this equation, E denotes the set of edges in the CFG, the
constant ti, j the execution time of edge 〈i, j〉 ∈ E from node

1 Hierarchy-based WCET calculation is useful in domains where
WCET computation underlies very tight time constraints.

i to node j , and the variable fi, j the execution count of this
edge.

To make the maximization of the objective function a valid
and precise WCET bound, the values of the ILP variables fi, j

must be restricted by additional constraints:

1. Subjecting all ILP variables fi, j to integer solutions,
since the execution count of any CFG edge can only be
an integer value. For this we use the syntax int fi, j .

2. Adding flow constraints that reflect the CFG structure:
The incoming flow of any CFG node is equal to its outgo-
ing flow. For CFG node 5 of our example, this equation
is f4,5 = f5,6 + f5,8.

3. Bounding the value of the flow variable that represents
the program entry by one. This ensures the calculation
of the WCET for a single program execution: f1,3 = 1.

4. Adding constraints that reflect the flow information of
the benchmarks B1 and B2. For example, the upper loop
bound of the only loop in the example is 100. This can
be modeled by the additional constraint: f12,4 ≤ 100 f3,4

where edge 〈3, 4〉 is the entry and 〈12, 4〉 the back edge
of the while loop.

The resulting ILP problem for WCET calculation is shown
in Fig. 2. Note that for simplicity we assume that the execu-
tion time of each action in the program is one time unit, i. e.,
∀〈i, j〉 ∈ E . ti, j = 1.

There exist many off-the-shelf ILP solvers to solve the
ILP problem of Fig. 2, some of which are available for free,
e. g. lp_solve [43]. Figure 3 shows the solution of the ILP
problem. The first line shows the value of the objective func-
tion: The WCET bound is 653 time units. The remaining
lines show the execution count of all flow variables for the
particular solution. It is worth noting that in general it is
not possible to reconstruct a unique control-flow path from
the given execution-count values of the flow variables. For
example, the given solution can be instantiated to multiple
control-flow paths, depending on the order of the control-
flow edges 〈5, 6〉, 〈5, 8〉, 〈10, 12〉, and 〈10, 11〉.

This example clearly demonstrates that flow information
is indispensable for providing a limit on the number of iter-
ations of loops, and that the side constraints given in bench-
marks B1 and B2 (the last two constraints in Fig. 2) help to
tighten the WCET bound. If these two constraints were omit-
ted, the calculated WCET bound would rise from 653 time
units to 703 time units.

5 Comparison criteria

We compare WCET annotation languages with respect to a
set of language design characteristics, with respect to intui-
tiveness and the availability of a WCET analysis tool using
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Fig. 2 ILP problem for the CFG of benchmark B1 and B2 in Table 2

Fig. 3 Solution of the ILP problem given in Fig. 2

them. The language design characteristics are under control
of the language designer. Intuitiveness is mostly an outcome
of the language design characteristics. Tool availability is
an indicator for the general suitability and usefulness of an
annotation language. Though it does not refer to a specific
property or feature of an annotation language, we consider
tool availability a valuable information on its own. Our focus,
however, is on the annotation languages. We thus do not com-
pare or assess the quality of the WCET analysis tools. Read-
ers interested in this are referred to [66].

5.1 Language design

Expressiveness We use expressiveness to denote the
capability of an annotation language to describe (sets of)
control-flow paths as precisely as possible. Essentially, this is
an outcome of the types of flow information that can be anno-
tated. An annotation language, which is able to accurately
describe all feasible control-flow paths of arbitrary terminat-
ing programs, is called path-complete. Annotation languages
lacking this property enforce the usage of over-approxima-
tions of the set of feasible program paths for WCET analysis,
which generally leads to an overestimation of the WCET of
a program. In practice, it is most important if an annotation
language is capable of coping with interprocedural control
flow or with selected iteration ranges of loops.

The most important setscrews for tuning the expressive-
ness of an annotation language are the means for dealing
with loop bounds, specific loop-types such as triangle loops,
context sensitivity, and the execution order of statements.

Annotation placement and abstraction level These
involve pivotal design decisions: (1) Annotation placement:
Where to keep annotations? As part of the code, or separately
in another file? (2) Abstraction level: Which code to anno-
tate? High-level source code or low-level machine code?

Thinking in terms of the user’s effort of using an annota-
tion language it is obvious that these design options have a
strong impact on its usability.

Regarding the first design decision, none of the two design
options is consistently superior to the other. As a rule of
thumb: if annotations must be manually provided, it is usu-
ally considered less complex and error-prone to annotate the
source code. If annotations are computed automatically, it is
often advantageous to keep the annotations separate from the
program code as it simplifies multiple uses of them within a
tool chain.

For the second design decision, an other rule of thumb
might be helpful: for a user high-level source code anno-
tations are usually easier to understand and cope with than
low-level machine code annotations. This holds both for user-
provided (where it seems obvious) and automatically com-
puted annotations. Often it is necessary to manually verify
annotations, e. g., that the correct execution context has been
taken into account. If machine code has been annotated, this
makes it necessary to maintain a mapping between source
code and machine code, which is typically non-trivial. This
also holds if the behavior of high-level source code language
constructs shall be described in terms of object code anno-
tations. Often such a mapping is realized by defining a set
of language constructs, the so-called anchors, that will still
be recognized after compilation, such as loops or procedure
calls.
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If an annotation language supports object code path analy-
sis, this imposes additional challenges compared with source
code path analysis. One of the reasons is the construction of
the CFG. Whereas in high-level source code the control flow
is usually defined in terms of structured control-flow state-
ments, which allows for a simple computation of the CFG,
reconstructing it from object code requires usually additional
annotations.

Programming language The complexity of WCET
analysis depends much on the features of the program-
ming language, in which application programs are writ-
ten. Restricting the programming language to a subset used
for real-time application programming is thus an important
option which also allows for less complex annotation lan-
guages. One such example is to exclude language constructs,
for example, the goto statement in ANSI C, which can
be the source of irreducible code [47]. Irreducible code is
problematic for hierarchical WCET analysis like the timing
schema approach. In particular, it is non-intuitive to anno-
tate loop bounds for such code. Alternatively, programming
languages can implicitly be constrained for real-time appli-
cations. Typical reasons for this are compatibility constraints
between the WCET calculation method and a specific anno-
tation language, or the limited language coverage of program
analyses for the computation of flow information. Floating
point operations, for example, might not be supported by an
annotation language or a program analysis.

5.2 Intuitiveness

For a qualitative assessment of intuitiveness, we consider
the skills, the learning curve, the amount of work, and the
complexity imposed on a user as important characteristics.
A higher amount of implicitly assumed knowledge going
beyond the annotation language itself, e. g., about the sub-
sequent WCET analysis, or of specifics of its implementa-
tion diminishes intuitiveness. The amount and complexity
of work that is required to update program annotations in
response to a program update is another important character-
istic. In the following, we use the term intuitiveness to refer
to this set of characteristics; awarding annotation languages
one of the three grades high, medium, or low.

Concerning tool support, another issue that is related to
intuitiveness but not part of our comparison is how the results
of the WCET analysis are presented. A reporting tool of the
WCET analyzer could provide the user with information in
terms of annotations which explain the computed WCET.
Flow constraints as used by WCET analyzers based on ILP
solvers (cf. Sect. 2.4), e.g., could provide information about
the execution frequency of statements, but not about the exe-
cution order.

5.3 Tool availability

As mentioned earlier, the availability of a WCET analysis
tool using an annotation language is an indicator for the suit-
ability and usefulness of the annotation language in general.
We thus report the availability of a WCET analysis tool in our
comparison of WCET annotation languages, together with
the information if it is of academic or industrial origin. More
detailed, we additionally report if these languages are purely
consumers of annotations, or also producers, the latter pos-
sibly be realized by means of a separate tool as part of a tool
chain.

Retrospectively, it can be observed that the design of
WCET annotation languages went typically hand in hand
with the development of WCET analysis tools using them.
In the following, we use this observation in order to present
and discuss the various annotation languages in an evident
order. We group the annotation languages according to the
particular fundamental WCET calculation method applied
by the WCET analysis tool(s) using them. The annotation
languages of each group are then discussed in the order of
their advent. Fig. 1 presents a comprehensive overview.

6 Hierarchy-oriented annotation languages

6.1 Real-Time Euclid

Real-Time Euclid is one of the first real-time programming
languages that features annotations for timing analysis [37].
It is structurally restricted in order to ensure the analyzability
of programs. Recursive functions and dynamic data struc-
tures are not permitted. Instantiation and activation of tasks
can directly be specified, based on a period or on the occur-
rence of an event.

The specification of loop bounds is the only kind of flow
information which is supported by Real-Time Euclid. Loop
bounds can be specified in terms of the maximum number of
loop iterations or of the maximum amount of real-time units
the execution of a loop will take. In the latter case, the com-
piler deduces an upper bound for the number of loop itera-
tions from the given amount of real-time units. This requires,
besides knowing the execution time of the loop body,
information about the absolute time per real-time unit. The
compiler can be provided with this information using there-
alTimeUnit construct: realTimeUnit := timeIn-
Seconds.

6.2 TAL: equations with event markers

The Timing Analysis Language (TAL) has been developed
by Mok et al. [45]. A detailed description of TAL can be
found in [9]. TAL is an integral part of the Timing Analysis
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Fig. 4 C language program

Fig. 5 Automatically generated TAL-Script skeleton

System (TAS). This is a representative of the timing schema
approach. TAS not only consists of multiple tools, but also
requires user-assistance. The general work flow is a four-
stage process:

1. The annotate tool analyzes the C language argument pro-
gram and produces C code that is annotated with default
assumptions about the dynamic program behavior.

2. A modified C compiler translates the annotated C pro-
gram into annotated assembler code. Using the source
code annotations, the compiler produces a TAL-script
skeleton.

3. User assistance is required to manually refine the TAL-
script skeleton of the previous step. A graphical user
interface is provided to aid the user.

4. The timetool tool, finally, uses the refined TAL-script to
perform the actual WCET calculation on the assembler
code of the argument program.

Figure 4 shows a simple ANSI C program given in [45].
Figure 5 shows the corresponding automatically generated
TAL-script skeleton. The script contains references to labels
that occur in the assembler code generated by the compiler.
In Fig. 4 these references are made explicit by inserting their
locations into the C-source.

Figure 5 shows various examples of timing-analysis
relevant program constructs which can be addressed by
TAL: loop describes a loop construct where the execution

frequency depends on the data being processed; block
denotes a program fragment which may contain loops; how-
ever, the execution time of the block must be fixed. TAL
defines also the notion of an action, that is, any larger pro-
gram fragment whose execution time is of interest. TAL dis-
tinguishes primitive and composite actions. Each object is
associated with a set of attributes, such as the time and
(loop-)count expressions. The syntax for assigning attri-
butes is object#attribute = expression.

Considering the automatically generated TAL-script skel-
eton of Fig. 5, a programmer is likely to make two changes to
the script in the third stage: first, replacing MAXINT as loop
count attribute of lp1 by a more accurate value:

9 lp1#count = 100;

Second, parameterizing the function definition and changing
the calculation formula in line 12 of the script to express the
fact that the inner if-statement is executed only ten times:

1 func TAL_main(if_count)

and

12 blk2#begin = "IF_1";
13 blk2#end = "^-L5";
14

15 return (blk1#time - (lp1#count -
if_count)*blk#2time);

A particular strength of TAL is its expressiveness. TAL-
scripts may contain arbitrary calculations. In principle, this
allows users to specify formulæ to compute nearly perfect
execution time bounds. However, this is extremely challeng-
ing, since users have to devise the complex formulæ on their
own.

6.3 Interactive annotations with the timing tool

The Timing Tool (TT) has been developed by Park and Shaw
[54,59]. It is one of the first implementations of a timing
schema approach. It supports a subset of the C language and
addresses MC68010-based SUN workstations as target plat-
form. TT allows the user to interactively specify “software
timing property”-annotations at the source code level. In a
typical TT session, the user is shown the source code and
requested by the tool to specify both upper and lower bounds
for loops. An example is shown in Fig. 6. The numbers in
square brackets denote the estimate of minimum and maxi-
mum clock cycles the execution of last statement would take
on the target hardware.
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Fig. 6 Interactive session with the Timing Tool (from [54])

6.4 Modula/R

The Modula/R language has been developed by Vrchoticky
[63,64]. It comes together with a compiler system that pro-
vides support for timing analysis. Modula/R is derived from
Modula-2 with extensions tailored to timing and memory
consumption analysis. It supports the following annotations
for WCET analysis:

• impure: a flag that has to be given for the definition/call
of each procedure that has side-effects. This is also useful
for improving other static program analyses.

• maxConstExpr times: for each loop a fixed loop bound
has to be specified.

• loopsequence Ident max ConstExpr times Stmts
endsequence Ident: The loopsequence constant is the
bound (ConstExpr) of the overall iteration count of mul-
tiple loops. Each loop that belongs to a loopsequence
with symbolic identifier Ident has to be prefixed with “in
Ident”.

• scope Ident LoopStmt endscope Ident: a scope can
enclose a loop statement to express information about
the possible control flow inside the loop. The informa-
tion about the control flow is expressed by markers of the
form “in Ident max ConstExpr times” where Ident is
the symbolic name of the corresponding scope. Markers
are similar to loop bounds, but besides loops they can also
be attached to the then and else branches of if-state-
ments.

The Modula/R compiler allows to optionally check the
validity of the annotations at runtime. Modula/R, however,
does not support arbitrary linear flow constraints. It has been
developed before IPET-based WCET tools became available.

6.5 SPARK Ada: data value assertions

SPARK Ada is the programming language used in the Spark
Proof and Timing System (SPATS).2 Chapman et al. [7,8]
adopted SPARK Ada for WCET analysis. The SPARK lan-
guage is a subset of Ada83 that is extended by a special

2 SPARK is an acronym for SPADE Ada Kernel; SPADE is an acronym
for Southampton Program Analysis Development Environment.

kind of comments serving as annotations. The annotations
are used for both program verification and timing analysis.
Like the program verification framework, the WCET calcu-
lation in SPARK Ada is based on symbolic execution.

The edges of the CFG of the input program are attached
weights that describe the execution time of the corresponding
instructions. To keep flexibility, the weights in the CFG are
given in the form of symbolic expressions instead of specific
timing values. This makes the approach independent of the
target hardware.

The static semantics of SPARK Ada requires at least one
assertion to be placed at cut points. Cut points are at the entry
of every loop statement and before and after each function
body. Thus, the CFG can be decomposed into a set of cut
points and the so-called basic paths connecting them.

The problem of WCET computation is then equivalent to
finding the longest path of the weighted CFG. This can be
solved by a simplified version of Tarjan’s algorithm [61]:
applying a set of transformation rules, an acyclic directed
graph is mapped to a regular expression that is used to find
the shortest path. For SPARK Ada, the dual problem of find-
ing the longest path is considered. To handle loops, a special
bounded iteration operator is included in the regular expres-
sion syntax. Chapman et al. [7] give three graph rewriting
rules to collapse alternatives, inner loops, and outer loops
to a simplified graph containing fewer edges, but more com-
plex regular expressions as weights. SPARK Ada expects the
programmer to manually supply loop bounds.

A distinct feature of SPARK Ada is the provision of
modes. This allows the user to specify multiple behaviors for
a function that may be called from different contexts or with
different input values. For each mode, the user can specify a
distinct set of annotations, thereby enabling a more precise
analysis. Due to the nature of the annotations, however, it is
not possible to specify tight bounds for nested loops, where
the iteration space of the inner loop depends on the state of
the outer loop.

For illustration, consider the example of Fig. 7, which is
taken from [8]. It shows a program that implements the power
function.

6.6 The annotation language of heptane

The Heptane WCET analysis tool accepts two different input
formats, which are used by different WCET calculation
methods [20]: C source code, which is used by a tree-based
WCET analysis, and machine code, which is used by an
IPET-based WCET analysis. The concepts underlying Hep-
tane are described in [10]. A description of the annotation
language of Heptane can be found on the tool web page [20].

Annotations of the C source code are placed as additional
constructs inside the source code. Heptane supports two
kinds of source code annotations: loop bounds and absolute
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Fig. 7 Annotated SPARK Ada program (from [8])

time bounds for procedures, if the source code is not avail-
able.

The following C source code annotations are available to
bound loops:

• [ Expr ]: upper loop bound information. Expr may use
any existing function of Maxima or Maple [46,68].

• [ Expr1, Expr2 ]: upper loop bound information. Expr1

is the upper loop bound and Expr2 is a symbolic expres-
sion that describes the value of the loop induction variable
(using a special variable i as a representative of the current
iteration count starting with zero).

• NLast(P, Expr ): is a function that can be used within
a loop bound expression. It yields the current values of
loop induction variables in outer loops. The value 1 for
Expr addresses the immediate outer loop. P denotes the
immediate outer loop (i. e., “parent loop”).

The following C source code annotations are available to
analyze function calls where the source code of the callee
may not be available:

• [HEPTANE_EXTERNAL_ASM]: specifies within a func-
tion declaration that the assembly code for the function
is available.

• [HEPTANE_INLINE_TIMING, IntValue]: placed
inside a function, this specifies an absolute time of Int-
Value clock cycles to be used as WCET for this function.

An example of how to use the loop annotations of Heptane
is given in Fig. 8. The example shows the implementation of
a Fast Fourier Transformation, after slicing away all compu-
tational straight-line code.

Heptane machine code annotations are given in a sepa-
rate XML file. In principle, the IPET-based WCET analy-
sis approach could support arbitrary linear flow constraints.

Fig. 8 ANSI C program with
loop annotations for Heptane
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Fig. 9 PL-based on regular expressions [51]

However, the machine code annotations are restricted to
resolve dynamic branch targets and loop bounds.

7 Path-oriented annotation languages

7.1 PL and IDL

The Path Language (PL) and the Information Description
Language (IDL) have also been developed by Park and Shaw
[50,51].

7.1.1 Path language

PL has specifically been designed to provide advanced sup-
port for the specification of (in)feasible program paths of
programs of high-level languages like ANSI C. PL is based
on regular expressions as shown in Fig. 9. Recursive proce-
dure calls are thus not allowed (this would require pushdown
automata instead of regular expressions). The basic idea of
PL is to annotate instructions which are interesting to path
characterization with labels. PL can describe path patterns
representing a set of paths.

Multiple occurrences of a pattern can be abbreviated, e. g.,
A2−4 is an short-hand version of AA+ AAA+ AAAA. Using
this convention, it can be easily expressed, for example, that
a loop whose body is assumed to be labeled L B, has an itera-
tion count of at most 10: _(L B_)0−10. This convention could
be extended to also describe feasible paths of bounded tail-
recursive function calls; however, such an extension is not
considered in [50,51].

A particular strength of PL is its outstanding expressive-
ness. It allows to describe patterns of explicit execution order
of labeled statements. PL is in fact complete, i. e., it allows
to describe all paths of arbitrary terminating programs. To
specify the PL expression describing the set of feasible paths
of a given program one has to instantiate the possible shape
of input data, i. e., one has to take the possible valuations of
input data into account.

A significant drawback of PL is that even common path
patterns can result in very long expressions. For example,
linear flow constraints like fi < f j expressing that control-
flow edge fi is executed less frequently than edge f j can
only be described by explicitly enumerating all possible path
combinations containing fi and f j .

Path Analysis Path analysis based on regular expressions,
e. g., for figuring out the path with the maximum execution
time, can be computationally expensive.

�� represents the set of all possible paths to be constructed
with the code labels �. Park and Shaw use AP to denote
the set of all paths that are syntactically possible due to the
structure of the CFG (AP ⊆ ��). Every path information
Ii represents a set of feasible or infeasible paths I i

P ⊆ ��.
Since each path information Ii is an additional constraint that
does not include the syntactical structure of the CFG, it typi-
cally holds that I i

P\AP 	= ∅. The path analysis approximates
the set of feasible paths (denoted by X P by Park and Shaw)
by intersecting AP with the set of paths IP described by the
conjunction of all path information Ii : IP = ⋂

i I i
P . The set

of feasible paths X P is then approximated by X P ⊇ X ′
P ,

which is calculated as follows:

X ′
P = AP ∩ IP

Unfortunately, the computational costs of the central path
processing operations ¬ and ∩ are exponential in the worst
case [48]. In its generic form PL allows thus a user to spec-
ify expressions which are too complex for path processing.
Therefore, Park and Shaw complemented PL with a more
restrictive higher level information description language,
which we recall next.

7.1.2 Information description language

Information description language (IDL) is designed to
address and overcome the shortcomings of PL. The meaning
of high-level IDL expressions is given by a structured sub-
set of low-level PL expressions [51]. Park and Shaw provide
a transformation that transforms high-level IDL expressions
into low-level PL expressions. The advantage of IDL is that
the resulting PL expressions are only a subset of all possible
low-level PL expressions, resulting in a more efficient path
processing.

123



Beyond loop bounds 425

For example, the flow information that labels A and
B can only be executed together is expressed by the
IDL-expression samepath(A,B). Its meaning is defined
by the corresponding low-level PL-expression (∗A∗) ∩
(∗B∗) + ¬(∗A∗) ∩ ¬(∗B∗). As a second example, a
loop of scope A with constant iteration count K is speci-
fied by the IDL-expression loop AK times. Its mean-
ing is given by the low-level PL-expression ¬(∗A∗) +
(_A.entr y_A.body(_A.body)K ) � _.

The second example illustrates how difficult it is to get
descriptions of path sets using low-level regular expres-
sions right. The original low-level representation given
in [51] is indeed faulty. It does not take care of the
case that a loop may be nested within another loop.
The original low-level representation was like ¬(∗A∗) +
_A.entr y_A.body(_A.body)K _, which in case of nested
loops erroneously excludes paths with multiple executions
of the loop.

The strength of IDL (as well as of PL) is its ability to
express path patterns of explicit execution order.

Nonetheless, IDL still suffers from a weakness it inherits
from PL: information about relative execution frequencies
of code can only be expressed by explicitly enumerating all
possible path patterns. This can be of exponential length. The
example of Column 4 of Part 2 of Table 2, Benchmark B2,
illustrates this phenomenon.

7.2 The annotation language of RapiTime

RapiTime is a so-called measurement-based timing analy-
sis tool, i. e., it combines execution-time measurements and
program analysis to obtain the WCET estimate [57].

The annotation language of RapiTime focuses on place-
ment of annotation points describing where to instrument the
program for execution time measurements.

In general, measurement-based timing analysis may also
use flow information to specify the set of feasible paths. How-
ever, RapiTime currently does not use such annotations and
instead assumes that the user-given data trigger all worst-
case control flow, for example, the maximum iteration count
of loops.

Because the annotations supported by RapiTime are not
directly bound to WCET analysis, RapiTime is not included
in the comparison of annotation languages given in Table 1.

7.3 The Bound-T annotation language

Bound-T is a commercial WCET analysis tool. Originally
developed by Space Systems Finland Ltd, it is now marketed
and developed by Tidorum Ltd [24]. Bound-T operates on
the object-code and proceeds in four stages, where it relies
on debug information and in part on user-assistance for the
provision of additional assertions.

1. Call graph construction
2. Automatic loop bound computation
3. User-assistance for specifying missing loop bounds
4. WCET calculation

The first stage performs a control-flow analysis of the argu-
ment program and constructs its call graph.

The second stage applies a data-flow analysis to automat-
ically compute loop bounds, where possible. In this stage,
each loop body is analyzed by rewriting individual state-
ments into Presburger arithmetic, a decidable subset of inte-
ger arithmetic. By expressing each loop body as composition
of decidable formulæ, it is possible to compute the incre-
ment values of loop counters and based thereon bounds for
all counter-based loops.

The third stage involves user-assistance for loops which
could not automatically be bounded in the second stage.
Bound-T emits a warning for each missing bound, together
with the context of the loop in question. For such loops, the
user is prompted to provide an assertion which specifies the
missing bound.

The fourth stage, finally, computes the WCET bound for
the program under consideration. This WCET computation
proceeds bottom-up on the call graph, which has to be acy-
clic. The WCET calculation is then performed by transform-
ing the flow information and the program structure into an
ILP problem which is subsequently passed to the lp_solve
tool [43].

On modern processors, the execution time of a particular
instruction depends on the history of instructions that have
previously been issued. Bound-T handles this by simulating
the processor pipeline. It does not, however, model any cache
behavior.

Bound-T stores assertions computed in the second stage or
user-provided in the third stage in a separate file. This simpli-
fies to support multiple execution contexts for each function.
The assertion language itself is designed for flexibility and
generality in order to allow for annotations of both assem-
bler code and high-level languages programs. Assertions are
stated for a specific scope (= subprogram, loop or call). A
scope is identified by its name or—in the case of loops—its
nesting level. Debug information is used to locate entry points
of functions in the object code. This allows for sophisticated
specifications, e. g., loops which are nested inside other loops,
or loops which call a particular subprogram. For illustration,
consider the example of Fig. 10.

Conceptually, the annotations are driven by the structure
of the high-level language sources but they are closely tied
to the object code. Bound-T uses the object code as the basis
for its calculations. In principle, it thus gains language and
compiler independence. A drawback, however, is that anno-
tations are limited to anchors, i./,e., to program constructs that
can be recognized after the compilation and possibly applied
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Table 2 Flow information benchmarks and annotation examples, part II
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Table 1 continued
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Fig. 10 Example of a Bound-T annotation (from [24])

optimizations. Examples are call and loop statements; if-
then-else statements are not. A detailed description can be
found in [25]. Extensions for an improved mapping between
source and object code are announced for a forthcoming revi-
sion of the Bound-T annotation language [27].

7.4 The Mälardalen flow-facts annotation language

The Mälardalen flow-facts annotation language has been
developed by Engblom and Ermedahl [12,13]. Flow facts are
linear flow constraints with additional context information.

Engblom and Ermedahl assume that flow analysis is per-
formed prior to processor–behavior analysis. This means that
the flow analysis does not have access to information about
the execution time of code constituents. The flow analysis
identifies a set of infeasible paths of the CFG. Among the
remaining set of CFG paths, the WCET calculation deter-
mines those that exhibit the actual WCET. To this end exe-
cution time information on machine instructions is used.

To represent the dynamic behavior of a program Engb-
lom and Ermedahl introduce the concept of a scope. A scope
has a header node that dominates all nodes in the scope and
corresponds to a certain repeating execution environment,
such as a recursive function or a loop. The entry edges to the
scope may also point to nodes other than the header node.
In this case the scope describes an unstructured loop. All
scopes are associated with a loop count, even if that is just
zero or one time. Each scope is represented by a set of nodes
and edges. Scopes are connected by edges according to the
control flow in the program. Every scope has a set of associ-
ated flow information facts. A flow fact is composed of three
components:

i. the name of the scope, where the fact is defined,
ii. a context specifier, and

iii. a constraint expression.

The context specifier allows to specify the iterations of the
scope in which the constraint expression is valid. Context
specifiers are defined by their type and iteration space. By
means of types it can be specified that a fact is considered for
the sum over all iterations (total) or that it is considered
for each single iteration separately (foreach). This means

that the annotated iteration space can either be all iterations
(all) of one or more loops, or some specified sub-range of
iterations.

7.5 wcetC

The wcetC language has been developed by Kirner [30].
The WCET analysis tool using this annotation language is
called calcwcet167 [29]. wcetC is based on ANSI C and
provides language level constructs to annotate timing infor-
mation. Kirner et al. designed wcetC as a case study for
a technique to correctly transform flow annotations by the
compiler from source-code to machine-code level [31]. This
technique works even in case of complex code optimizations
performed by the compiler.

The design of wcetC concentrates on the research of
flow-facts transformation and thus introduces only syntactic
annotation constructs needed for this. The language wcetC
extends the marker concept of Modula/R (cf. Sect. 6.4) to
express arbitrary linear flow constraints (cf. Sect. 4). Such
“low-level” annotations have been considered sufficient to
demonstrate transformation of flow facts.

The language wcetC provides the following annotations
for timing analysis:

• maximum ConstEspr iterations: loop bound infor-
mation that has to be specified for each loop.

• scope Ident{Stmts Restrictions}: Similar to Modula/R,
a scope construct allows to specify flow facts relative to
a concrete control-flow location. However, the marker
statements in wcetC just label control-flow locations:
marker Ident. The flow facts themselves are given at
the end of the scope as a list of linear flow constraints:
restrictionConstExpr Ident ... <= ... ;Each restric-
tion keyword is followed by exactly one linear flow con-
straint that may use any markers that are defined within
the scope.

• wcet_buildinfo (String ): this construct allows
to specify information about the compilation process or
other information that may be relevant to document the
context of the timing analysis.

• addcycles (ConstExpr ): this construct allows to
add additional execution time cycles to the block where
it is embedded. This can be used to probe the impact of
local code optimizations on the WCET bound, respec-
tively, the worst-case path. Furthermore, this statement
can be used to add the cost for a function call in case that
the code of the callee function is not available.

• wcet_blockbegin (Ident , ConstExpr ) and
wcet_blockend (Ident ): A special feature of the
WCET tool chain developed by Kirner et al. is that
it is not restricted to taking source code as input pro-
grams. It also supports higher program abstractions like
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Fig. 11 (De-)activation of wcetC keywords

Matlab/Simulink models [35]. The two constructs are
used to enable the back-annotation of the WCET results
from machine-code level not only to the source code but
also further back to the model level. These constructs help
to identify the block boundaries of each Matlab/Simulink
block inside the source code.

The timing annotations in wcetC have intentionally been
integrated into the programming language instead of using
compiler pragmas for specifying them. This has the advan-
tage that the flow facts can be annotated exactly at the location
where they describe the program behavior while preserving
compatibility with standard C Compilers that do not under-
stand the timing annotations. As shown in Fig. 11, this is
achieved by using a header file that defines conditional pre-
processor macro definitions for the corresponding annotation
keywords.

7.6 aiS, the annotation language of aiT

Like Bound-T, aiT is a commercial WCET analysis tool [1].
It is developed by AbsInt Angewandte Informatik GmbH,
Germany, and available for different hardware architectures
including ARM7, Motorola Star12/HCS12, and PowerPC
555.

aiT features a value analysis to automatically calculate
flow information. Additionally, it can be supplied with var-
ious kinds of specifications and annotations that help it to
perform WCET analysis and to improve the precision of the
results. Specifications and annotations are provided in the so-
called aiS format. aiT accepts binary files as argument pro-
grams for WCET analysis. To make this more effective, aiT
supports a special kind of object code annotations to recon-
struct the CFG from the object code [15,21]. These anno-
tations allow, for instance, the user to annotate the possible
targets of a jump instruction in order to guide the object-code
parser when reconstructing the CFG.

Annotations often refer to program points. Program points
can be described not only by an address or a routine name
but also by more sophisticated descriptions, e. g., the third
computed call in a particular routine, or the loop beginning
in a specific source code line. Such descriptions consist of
more atomic elements like numbers, addresses, or names for
routines or files.

Source code lines in annotations are translated to code
addresses. Program points may refer to code lines, either
explicitly via file ‘Name’ line Number or implicitly via the
keyword ‘here’, which refers to the line where it occurs. The
source code lines are translated into code addresses by using
the line information in the executable. The line information,
however, is not always accurate. The rule is that line n refers
to the first instruction associated with a line number ≥ n.

The following types of aiS annotations are relevant for
source-code analysis and source-code annotations:

• loop here min m max n: The loop body contain-
ing the annotation is executed at least m and at most n
times each time the loop is first entered.

• recursion “function” min m max n: The func-
tion of the given name executes at least m and at most
n recursive calls each time it is called from another func-
tion.

• condition here is always[true or false]:
The branch condition has been determined to always eval-
uate to true or false, meaning that only one of the branches
can ever be taken.

• snippet here is never executed: The
piece of code containing the annotation is infeasible; it
can never be executed.

• accesses default “function” to addresses:
Inside the function denoted by the annotation, any mem-
ory access that could not be resolved by aiT is guaranteed
to access an address within the specified range.

• instruction here calls functions: The state-
ment the annotation is associated with makes a call
through a function pointer; the functions listed are the
possible targets of this call.

• flow each (here) <= n (“function”): This
annotation kind demonstrates the flexibility of aiT’s flow
constraint language; the annotated program point within
the given function is executed at most n times whenever
the function is called.

The following example illustrates the annotation of a
loop. Note that ‘here’ need not exactly denote the loop start
address. It suffices that it resolves to an address somewhere
in the loop.

1 for (i=3; i*i ≤ n; i+=2) {
2 if (divides(i,n))/* ai: loop here

max 20; */
3 return 0;
4 }

The aiS language also offers annotation variables (reg-
ister variables) for annotating context-sensitive informa-
tion. Assignments to these variables may be placed in any
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annotation and checked at other arbitrary locations in a pro-
gram for specific values. The values of annotation variables
are taken into account by the abstract interpretation when
analyzing the program. For example, if different values are
assigned to two branches of an if-statement, the analysis will
propagate a range containing both values in aiT’s value anal-
ysis. Annotation variables can also be used for enumerating
loop-contexts as well as calling-contexts and properly check
for such a context enumeration at an other point in the pro-
gram. Properties of calls can also be annotated, for example,
a call to return immediately or never. That a routine
never returns is important when handling calls of the operat-
ing system.

7.7 FFX/F4, the annotation language of OTAWA

The Open tool for adaptive WCET analysis (OTAWA) is
developed by Cassé et al. [11]. OTAWA is a framework for
building research WCET analyzers, and is available under
a free software license. It provides state-of-the-art WCET
analysis using IPET and is specialized to work on binary
programs.

Annotations in OTAWA can be specified in the Flow Fact
XML format (FFX) which is an XML representation of flow
information, and in the Flow Facts File Format (F4) which
is a simpler textual format with a more compact syntax [3].
Annotations can be associated with a code location via an
address, a pair of a label and offset, or a source code line num-
ber, with the caveat that compiler optimizations can make this
mapping ambiguous.

The FFX language is hierarchically structured and pro-
vides several constructs to describe properties of functions,
like noreturn for a function that will never return, and
nocall for a function that should be ignored by the anal-
ysis. Functions are enclosed by the <function> tag. The
annotations for sub-procedures can alternatively be nested
into the <call> tag. The most important kind of control
flow annotations are loop bounds. They are described by the
loop tag, e. g.

<loop LOCATION maxcount="12"
totalcount="20" />

In this example, maxcount denotes the maximum num-
ber of iterations in relation to the loop entry and totalcount
the maximum number of iterations since the program start.
Addresses in F4 can also describe specific call contexts, e. g.

loop ADDRESS ... in ADDRESS1 /
ADDRESS2 / ... ;

The above example describes the loop located at
ADDRESS, when its containing function is called by the

function at ADDRESS1, that in turn was called from
ADDRESS2, etc. If the sequence of addresses does not reach
back to the task entry point, the annotation is valid for all
contexts that share the specified prefix.

Since OTAWA is used to analyze binary programs, the
annotation language F4 also contains a

checksum OBJFILE SUM;

element to ensure that the annotated binary has not been
modified since the annotations were written.

7.8 Flow information in chronos 3.0

The Chronos WCET analysis tool has been developed by
Li et al. [41]. It uses Integer Linear Programming (ILP) to
statically compute a WCET bound for an argument pro-
gram. Chronos is based on SimpleScalar, a cycle-accurate
architectural simulator [Sim]. Chronos supports simplified
processor models of SimpleScalar. The constraints these
models have to obey involve omission of the data mem-
ory hierarchy, limiting the memory hierarchy to one level
and several limits on jump prediction. The exact limita-
tions can be found in the user manual [40]. Despite these
limitations, microarchitectural features like out-of-order and
dynamic global branch prediction can be modeled. By sim-
ulating the code using SimpleScalar, the WCET estimate
of Chronos can be compared against the actual execution
time.

Chronos does not have a specific annotation language on
its own: the ILP problem is solved by lp_solve [43] or CPLEX
[28]—the user may specify additional constraints for basic
blocks (in strict ILOG/CPLEX format) to supply additional
information, e.g., on infeasible paths or loop bounds. Ver-
sion 3.0 of Chronos features also an automatic infeasible
path analysis.

The graphical front-end also supports line numbers to ease
the formulation of constraints. The example below shows the
constraint “block c0.2 is executed 10-times as often as block
c0.3”, where c0 addresses function 0, with the basic-block
number following after the dot.

c0.2 - 10 c0.3 = 0

Alternatively, this can be expressed using line numbers:

line25 - 10 line42 = 0

7.9 The annotation language of TuBound

TuBound is a portable tool for WCET analysis of C++ pro-
grams developed by Prantl et al. [22,53,56]. TuBound aims at

123



Beyond loop bounds 431

increasing the productivity of the programmer by allowing
for high-level annotations to be placed in the source code
and by reducing the need for user-assistance by providing
multiple static program analyses at the source code level.

Annotations in TuBound serve two purposes: first, to
provide a programmer-friendly user interface to support the
timing analysis with domain-specific knowledge; second, to
represent a textual intermediate form for results automati-
cally generated by the static program analysis component.
Since the result of the static analysis is attached to the pro-
gram source code, the programmer can inspect it and then
decide where to manually refine the annotations, thus keep-
ing user-assistance at a minimum.

Annotation Syntax and Source Code Integration. TuBound
uses the #pragma-directive to embed annotations into C++
sources. With this mechanism, it is possible to place anno-
tations at each sequence point of the program. Currently,
annotations comprise the following four kinds:

1. Loop-bounds Loop bound annotations can be located
anywhere inside the scope of the loop body. They always
refer to the loop construct that directly dominates the
lexical scope containing the annotation. The annotation
consists of a numerical expression that denotes an upper
bound for the number of times a loop is executed in rela-
tion to the number of times the basic block that dominates
the loop entry is executed. By convention, a special loop
bound of −1 is used to indicate a diverging (main-)loop.

2. Markers The concept of a marker is closely related to
labels to identify addressable units in the argument pro-
gram. A marker creates a symbolic name for a basic block
that can be used in constraint specifications. A marker
is always associated with a scope. As default, this is the
global scope.

3. Constraints This is the most generic and powerful anno-
tation concept currently supported by TuBound. Con-
straints allow to express arbitrary relations between the
execution counts of basic blocks, referred to via markers.

4. (Marker-)scopes Marker-scopes are syntactic sugar
allowing to reduce the amount of typing when doing
manual annotation. Consider two basic blocks b1, b2

where b1 dominates b2: An occurrence of a local marker
m2loc ∈ b2 with a scope of b2 is equivalent to the expres-
sion m2 ∗ m1, where m2 ∈ b2 and m1 ∈ b1 are global
markers.

Figure 12 shows an example which makes use of different
kinds of annotation mechanisms supported by TuBound. The
annotations express the constraint that the loop construct is
executed up to 42 times upon entering the parent scope.

Fig. 12 Annotations [8,9] and [10] carry the same information

8 Other annotation concepts

8.1 Symbolic annotations

Blieberger proposed an approach which combines aspects
of a pure annotation language with those of a programming
language extension [6]. The clue to this approach is the inven-
tion of so-called discrete loops. Discrete loops can be con-
sidered a generalized kind of for-loops. Discrete loops allow
a very flexible update of the loop-variable, much more flex-
ible as for a for-loop. Like for for-loops, however, also for
discrete loops the loop bounds can often automatically be
computed by means of reasonably simple mathematical rea-
soning. The automatic computability is ensured by using
annotations which describe the possible update range of the
loop (induction) variable. Particularly well-suited for this
purpose are methods for symbolic analysis. We thus use the
term symbolic annotation for this approach here.

The following program fragment illustrates the essence
underlying the concept of discrete loops:

1 k:= ...;
2 discrete h := k in 1..N/2
3 new h := 2*h | 2*h+1 loop
4 < loop body>
5 end loop

Marked by the new key word discrete the expression
following the initialization of the loop variable h specifies
the range both the initial value of h as well as all other val-
ues of h during subsequent iterations of the loop must be
inside. Once the value is outside of this range, the loop ter-
minates. This captures the language extension portion of this
concept. The annotation language portion is captured by the
term following the keyword new. This term specifies the set
of legal values of the loop variable of immediately adjacent
loop iterations. The actual update of the loop variable h has
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to be programmed explicitly by additional code. In the exam-
ple above, the new value must be either the result of doubling
the old value (2*h), or the increment of this value (2*h+1).
The semantics given to discrete loops requires that these con-
straints are validated at compile-time, if possible, or checked
at run-time otherwise.

A very appealing feature of this approach is the seam-
less integration of the annotation and the program source
text. This elegance, however, comes at the cost that algo-
rithms, whose textbook version may often make deliberate
use of arbitrary loops, have to be adopted or replaced by
newly invented algorithms which comply with the program-
ming discipline imposed by discrete loops. Depending on
the algorithmic problem, this can be natural and easy, but
sometimes also difficult and demanding, or impossible at all.

8.2 Assertion language

The assertion language was developed by Lisper [39]. It is a
generic annotation language addressing annotations for quite
different aspects of program behavior. It has not been spe-
cifically designed for WCET analysis but can be used for
describing flow constraints for WCET analysis as well. The
assertion language was derived from the existing assertion
language used in Floyd/Hoare-style logic [16,26].

The assertion language allows to express assertions over
program states. As usual, a program state is defined as a
mapping of variables to values. In particular, PC denotes
the value of the program counter. Assertions are basically
constructed by first-order logic operators. For example,
(X+Y)[PC=L] < 17 says that the sum of the values of
the variables X and Y is less than 17 at program point L. The
form e@L is a synonym for e[PC=L]. In general, the con-
struct e[p] denotes that the scope of expression e is bound
to the program states where p holds.

Besides program variables, the expressions can also refer
to execution counters, for example, #L is the execution count
of program point L. Execution counters are initialized to
zero at program start and are incremented by one whenever
the corresponding program point is executed. For example,
#L <= 30 says that the statement at program point L is
executed at most 30 times.

The assertion language supports also the specification of
real-time constraints: T[p] denotes the elapsed time when
reaching any of the states where the property p holds. For
example, ∀i.T[PL=L ∧ I=i] ≤ T[PL=L’∧I=i] says
that the elapsed time reaching program point L is always less
than or equal to the elapsed time reaching program point L’
whenever the value of variable I is the same.

The assertion language has been proposed as a case study
for a generic annotation language. The language is Tur-
ing complete, i. e., it can be used to describe the behav-
ior of arbitrary complex programs. It does not yet include

mechanisms to modularize a program description. So far
there is no WCET calculation method that can take expres-
sions of the assertion language into account. For WCET anal-
ysis it could make sense to define a subset of the assertion
language that is less expressive but allows for efficient anal-
ysis and WCET computation.

9 Annotation examples

In order to highlight the different capabilities and annota-
tion mechanisms we created a set of benchmarks together
with appropriate flow information which allow to discrim-
inate them according to the comparison criteria for WCET
annotation languages introduced and discussed in Sect. 5. We
then formulated the specified flow information in multiple
annotation languages (cf. Table 2). To this end we picked
four languages, which each stand as a representative for a
class of similar annotation languages:

Language Represents
TAL Hierarchy-oriented (Timing schema) + Others
PL/IDL Path-oriented (EPET)
wcetC Constraint-oriented (IPET)
Bound-T Industrial language (IPET)

In detail: TAL is selected because it represents a hybrid of
hierarchy-oriented annotations and other concepts. TAL pro-
vides the programmer only with a hierarchical skeleton of the
program and, in consequence, a lot of freedom and respon-
sibility. PL and IDL are selected because they represent the
singular explicit path-oriented annotation languages. wcetC
is selected because it prototypically represents the many con-
straint-oriented annotation languages. Bound-T, though also
constraint-oriented, is selected, because it represents a cur-
rent commercially marketed annotation language.

In Table 2 the languages are compared by using the same
benchmark where each selected language is one represen-
tative of its respective group as explained in the beginning
of this section. Four such comparisons are shown in Table 2
ranging from execution order, to loop iterations, and con-
text-sensitive information. Each of those four benchmarks
B1 to B4 consists of a source program and additional flow
information that is specified informally. The first column of
Table 2 describes for each benchmark the flow information to
be annotated. The original source codes subject to annotation
are given in the second column of Table 2, their CFGs in the
third column. The annotated examples for each annotation
language are presented in the subsequent columns.
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10 Comparison

The grouping of WCET annotation languages according to
the WCET calculation method utilized by the WCET anal-
ysis tools using them yields a first classification scheme of
WCET annotation languages as we have seen in the previous
sections (cf. Fig. 1).

In this section we complement this scheme by a second
one. This second scheme is given by the set of orthogonal
classification criteria introduced and discussed in Sects. 3
and 5. These criteria refer to features and properties which are
inherent to the annotation languages themselves and are piv-
otal for their suitability and usefulness in theory and practice.

Together, the two schemes span a two-dimensional space,
in which we classify each of the languages. The results of
this classification are summarized in Table 1. They allow us
to identify and compare the relative strengths and limitations
of the languages from different angles.

10.1 Language design

Expressiveness The expressiveness of annotation languages
is closely tied to the calculation method applied by the tools
using them. As an example, in Table 1 the linear-flow-con-
straint-based calculation methods show more features than
the hierarchical computation methods. This can be attributed
to the more generic nature of data representation and the cal-
culation method. We consider this a consequence of the fact
that annotation languages were often designed ad hoc by tool
developers in need of a user interface.

For our comparison, we focus on the six kinds of flow
information discussed in Sect. 3 that users typically want to
annotate. These kinds span a spectrum ranging from obvi-
ous (such as loop bounds) to fairly advanced ones (such as
execution order).

Loop bounds Loop bounds are indispensable for successful
WCET analysis. It is thus not surprising that all annotation
languages in Table 1 support annotations for the specification
of loop-bounds.

Triangle loops Constraint specifications with inequalities
allow a more precise description of the iteration space of
triangle-loops than plain loop bounds. Inequalities are sup-
ported not only by the linear flow constraints based IPET
tools, such as Bound-T, but also by other approaches. This
includes timing schema and symbolic annotations. In case
of Bound-T, triangle-loops can only be annotated, if they
contain an anchor allowing to identify them, such as a call
statement.

Call contexts TAL, for example, supports call context anno-
tations in its calculation schema through a functional

abstraction: It is possible to define multiple (timing-)func-
tions to annotate one function of the program and choose a
different one for each call context. Bound-T, on the other
hand, does not expose context-sensitive information to the
annotation language. Nonetheless, it is aware of call con-
text information during the automatic computation of loop-
bounds.

Loop contexts As described in Sect. 7.4, the first and
subsequent loop iterations behave often very differently,
e. g., because of cache effects. The precision of analyz-
ing such loops would be improved, if annotation languages
would allow for annotating this accordingly. Heptane and the
Mälardalen Language directly support loop contexts.

Application contexts SPARK Ada provides a unique feature
called modes to describe application contexts.

Execution Order Only PL and IDL, which focus entirely
on modeling execution paths, allow to explicitly describe
the execution order. Neither constraint-based nor hierarchi-
cal methods support this.

Annotation Placement and Abstraction Level For the pro-
grammer it is usually easier and more convenient, if anno-
tations can directly be placed in the source code instead
of a separate file. However, source code annotations may
affect the readability of the program, especially in the case
of library functions, which usually have many different call
sites. Another important argument against direct source code
annotations is that in a production setting any modification
of the source code may require a new audit.

The decision of where to place annotations is also closely
tied to the question of the abstraction level provided by
the tool. Since object code annotations are impractical, all
tools of Table 1 that operate on the object code level (TAL,
Bound-T, aiS) choose to place the annotations in a separate
file.

In general, however, the following three choices of anno-
tation placement are possible:

Abstraction Level Annotation placement
Source Code 1. Inside source code 2. External file
Object Code (not practicable) 3. External file

Choosing the low-level representation, i. e., the object-
code abstraction, gains independence from the compiler, but
complicates the development phase where the source code
is frequently changing. Choosing the high-level representa-
tion, i. e., the source-code abstraction, the interaction with
the compiler becomes a delicate issue as optimizations that
change the control flow may invalidate the annotations.
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Programming Language In principle, a WCET annotation
language becomes independent of a particular programming
language, if it focuses entirely on the object code. This
advantage, however, is hardly exploited. For practical rea-
sons therefore many of the surveyed annotation languages
focus on subsets of the C language that is typically used for
implementing applications.

10.2 Intuitiveness

Typically, there is a trade-off between the expressiveness and
the complexity of annotations. This trade-off affects how
intuitively they can be used. Getting annotations describing
complex constraints right, can be costly and error-prone.

TAL, for example, leaves many aspects of the WCET cal-
culation to the user. It is possible to specify almost arbitrary
formulæ within a TAL-script. With this freedom it is theo-
retically possible to achieve the highest precision, but it also
demands an unrealistically high effort, since the user has to
implement details that later approaches would integrate into
the WCET calculation tool.

SPARK Ada, on the other hand, only supports loop-
bounds that are annotated directly into the source code.
This is much less demanding (albeit not of particularly high
expressiveness).

The annotation languages of aiT and Bound-T, finally,
strive for a balance. They support tailored language con-
structs for different kinds of flow information in order to
limit the demand on the user.

10.3 Tool availability

WCET Tool Most of the annotation languages considered in
this article are developed at academic institutions. aiS and
Bound-T are notable exceptions; they are currently being
marketed as commercial products. According to Praxis High
Integrity Systems, a future release of a SPARK Ada-based
source code annotation language is in progress.3

Industrial Application of the Tools All tools that are listed
in Table 1, including the academic prototypes TAL, SPARK
Ada, and wcetC/calcwcet167 (see column ‘WCET Tools’),
have been applied in numerous industrial application scenar-
ios, or at least for analyzing specific industrial applications.
The annotation languages of the academic tools Heptane,
wcetC, F4/FFX, Chronos, TuBound as well as the Mälard-
alen Language are still under active development.

Annotation Producer/Annotation Consumer The last two
columns of Table 1 report whether the WCET analysis tool

3 http://www.praxis-his.com/sparkada/examiner.asp.

resp. language approach (Real-time Euclid, wcetC, Sym-
bolic Annotations) consumes given annotations, or if it also
actively produces annotations (possibly by a separate analy-
sis tool). Roughly, a third of the tools also actively produces
annotations.

10.4 Summing up

The findings summarized in Table 1 show that each of the
WCET annotation languages considered takes care of a spe-
cific set of programming language constructs, for which it
provides support to annotate them. Obviously, each of the
constructs supported by some annotation language is useful
to support; but each of the languages fails to support all of
them. There is no annotation language which uniformly out-
performs the others. Instead, each of them has its own individ-
ual strengths and limitations. This would become even more
obvious, if we were to take further criteria into account, e. g.,
the possibility and ease of reconstructing the CFG on the
object-code level such that it precisely reflects its counter-
part on the source-code level [36], or if we were to consider
application domains of annotation languages beyond plain
WCET analysis, e. g., such as aimed at by Lisper with the
assertion language.

Moreover, there are many reasonable and practically jus-
tified demands on WCET annotation languages, which are
not yet met by any of the languages. One such demand is
that a WCET annotation language should support annota-
tions of both the source code and object code of a program
(Bound-T and aiT already have limited support for annotat-
ing both source and assembler code). Annotating the source
code is usually less costly and error-prone. Often, however,
the source code is not available (think of library code for
example), or source code annotations might be invalidated
by complex and intransparent optimizations applied by a
compiler. In such cases it is inevitable to annotate the object
code. Another demand is that WCET annotation languages
should allow for the annotation of characteristics which do
not directly refer to the application program but to the proces-
sor architecture, the operating system, the run-time environ-
ment, the programming language and compiler, the compiler
optimizations, etc., which are most relevant for WCET anal-
ysis, too.

We believe that uniform support for all this by a unifying
WCET annotation language would be most beneficial. Such a
language should also cover the features supported by current
WCET annotation languages in order to qualify it as a widely
usable exchange format for WCET analysis. By enabling the
mutual supplement of the various tools, this would yield a
strong impetus for advancing the field of WCET analysis as
a whole.
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11 Conclusions and perspectives

There is a significant body of work on WCET annotation lan-
guages. The precision, generality, and ease of use of WCET
analysis tools depend much on the kind and the expressive-
ness of the annotation language used to feed the tool with
program-specific timing-relevant information. The choice of
the annotation language is a crucial decision in the early
stages of designing a WCET analysis tool. This choice is not
trivial. The many conflicting properties an annotation lan-
guage is desired to enjoy, e. g., expressiveness versus ease of
use and analyzability, make the choice of a “good” language
a challenge of its own. It is thus by no means surprising that
annotation languages attracted so much attention of research-
ers working on WCET analysis and that so many different
kinds of annotation languages have been proposed and used
by WCET analysis tools.

The findings of our comparison, which are summarized
in Table 1, show that none of the annotation languages is
uniformly superior to the others. All of them leave room for
improvement in one way or the other. The WCET Annota-
tion Language Challenge has been proposed to strengthen
research efforts towards a universal WCET annotation lan-
guage for a wide range of analysis tools [32,65].

We plan to contribute towards mastering this new chal-
lenge. As a first step, we have proposed a list of ingredients
which we consider essential for a universal WCET annota-
tion language [33]. Currently, we are working on an extended
and refined version of this proposal, which shall be the basis
for a concrete language proposal.

Acknowledgments We gratefully acknowledge the helpful com-
ments of the anonymous referees and the feedback of the participants
of the WCET’07 workshop. Especially, we would like to thank Niklas
Holsti and Henrik Theiling for their many and very detailed comments,
which helped to clarify and improve the presentation of this article.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. AbsInt. aiT. Web page. http://www.absint.com/aiT. Accessed
online in February (2010)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers, Princi-
ples, Techniques, and Tools. Addison-Wesley, New York (2007).
ISBN 0-321-48681-1

3. Ballabriga, C., Cassé, H., Nemer, F., Rochange, C., Sainrat, P.:
OTAWA. Online Program Documentation. University of Toulouse,
France. http://www.otawa.fr/ (2008)

4. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilis-
tic hard real-time systems. In: Proceedings of the 23rd Real-Time
Systems Symposium, December, pp. 279–288, Austin, TX, USA
(2002)

5. Bodík, R., Gupta, R., Soffa, M.L.: Refining data flow information
using infeasible paths. SIGSOFT Softw. Eng. Notes 22(6), 361–
377 (1997)

6. Blieberger, J.: Discrete loops and worst case performance. Comp.
Lang. 20(3), 193–212 (1994)

7. Chapman, R., Burns, A., Wellings, A.: Integrated program proof
and worst-case timing analysis of SPARK Ada. In: Proceedings of
the ACM Workshop on Language, Compiler and Tool Support for
Real-time Systems, pp. K1–K11, June (1994)

8. Chapman, R., Burns, A., Wellings, A.: Combining static worst-case
timing analysis and program proof. Real-Time Syst. 11(2), 145–
171 (1996)

9. Chen, M.: A Timing Analysis Language—(TAL). Department of
Computer Science, University of Texas, Austin, TX, USA (1987).
Programmer’s Manual

10. Colin, A., Puaut, I.: A modular and retargetable framework for
tree-based WCET analysis. In: Proceedings of the 13th Euromicro
Conference on Real-Time Systems, pp. 37–44, Delft, Netherland,
June (2001). Technical University of Delft

11. Cassé, H., Sainrat, P.: OTAWA, a framework for experimenting
WCET computations. In: European Congress on Embedded Real-
Time Software (ERTS), Toulouse, 25/01/06-27/01/06, page (elec-
tronic medium), http://www.see.asso.fr, January, See p. 8 (2006)

12. Engblom, J., Ermedahl, A.: Modeling complex flows for worst-
case execution time analysis. In: Proceedings of the 21st IEEE
Real-Time Systems Symposium (RTSS), December, Orlando, FL,
USA (2000)

13. Ermedahl, A., Engblom, J., Stappert, F.: A unified flow information
language for WCET analysis. In: Proceedings of the 2nd Interna-
tional Workshop on Worst Case Execution Time Analysis. Techni-
cal University of Vienna, Austria, June (2002)

14. Ermedahl, A., Stappert, F., Engblom, J.: Clustered worst-case
execution time calculation. IEEE Trans. Comp. 54(9), 1104–
1122 (2005)

15. Ferdinand, C., Heckmann, R., Theiling, H.: Convenient user anno-
tations for a WCET tool. In: Proceedings of the 3rd International
Workshop on Worst-Case Execution Time Analysis, pp. 17–20,
Porto, Portugal, July (2003)

16. Floyd, R.: Assigning meaning to programs. In: Proceedings of the
AMS Symposia in Applied Mathematics, pp. 19–32 (1967)

17. Gustafsson, J.: The WCET tool challenge 2006. In: Preliminary
Proceedings of the 2nd Int. IEEE Symposium on Leveraging Appli-
cations of Formal Methods, Verification and Validation, pp. 248–
249, Paphos, Cyprus, November (2006)

18. Healy, C.A., Arnold, R.D., Mueller, F., Whalley, D., Harmon, M.G.:
Bounding pipeline and instruction cache performance. IEEE Trans.
Comp. 48(1) (1999)

19. Hecht, M.S.: Flow Analysis of Computer Programs. Else-
vier, North-Holland (1977)

20. Heptane (Hades embedded processor timing analyzer). Tool web
page: http://www.irisa.fr/aces/work/heptane-demo/heptane.html.
Accessed online in February (2010)

21. Heckmann, R., Ferdinand, C.: Combining automatic analysis and
user annotations for successful worst-case execution time predic-
tion. In: Embedded World 2005 Conference, February, Nürnberg,
Germany (2005)

22. Holsti, N., Gustafsson, J., Bernat, G., Ballabriga, C., Bonenfant,
A., Bourgade, R., Cassé, H., Cordes, D., Kadlec, A., Kirner, R.,
Knoop, J., Lokuciejewski, P., Merriam, N., de Michiel, M., Prantl,
A., Rieder, B., Rochange, C., Sainrat, P., Schordan, M.: WCET
2008—Report from the Tool Challenge 2008. In: Proceedings of
the 8th International Workshop on Worst-Case Execution Time
Analysis, July, pp. 149–171, Prague, Czech Republic (2008)

23. Harbour, M.G., Garcia, J.J.G., Gutierrez, J.C.P., Moyano, J.M.D.:
MAST: Modeling and analysis suite for real time applications.
In: Proceedings of the 13th Euromicro Conference on Real-Time

123

http://www.absint.com/aiT
http://www.otawa.fr/
http://www.see.asso.fr
http://www.irisa.fr/aces/work/heptane-demo/heptane.html


436 R. Kirner et al.

Systems, pp. 125 –134, Delft, The Netherlands. Euromicro
(2001)

24. Holsti, N., Långbacka, T., Saarinen, S.: Worst-case execution time
analysis for digital signal processors. In: European Signal Process-
ing Conference 2000 (EUSIPCO 2000) (2000)

25. Holsti, N., Långbacka, T., Saarinen, S.: Bound-T timing analysis
tool User Manual. Tidorum Ltd (2005)]

26. Hoare, C.A.R.: An axiomatic basis for computer program-
ming. Communications of the ACM 12(10), 576–580 (1969)

27. Holsti, N.: Bound-T assertion language: Planned extensions. Tech-
nical report. Tidorum Ltd, (2005)

28. IBM: IBM ILOG CPLEX—High-performance mathematical pro-
gramming engine. Web page. http://www.ibm.com/software/
integration/optimization/cplex/. Accessed in Feb. (2010)

29. Kirner, R.: User’s Manual—WCET-Analysis Framework based on
wcetC. Vienna University of Technology, July, Vienna, Austria,
0.0.3 edition, 2001. available at http://www.vmars.tuwien.ac.at/
~raimund/calc_wcet/

30. Kirner, R.: The programming language wcetC. Technical report,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria (2002)

31. Kirner, R.: Compiler Support for Timing Analysis of Optimized
Code: Precise Timing Analysis of Machine Code with Convenient
Annotation of Source Code. VDM Verlag, Germany, July 2008.
ISBN: 978-3-8364-6883-1

32. Kirner, R., Knoop, J., Prantl, A., Schordan, M., Wenzel, I.: WCET
analysis: the annotation language challenge. In: Proceedings of the
7th International Workshop on Worst-Case Execution Time Anal-
ysis, pp. 83–99, Pisa, Italy, July (2007)

33. Kirner, R., Kadlec, A., Puschner, P., Prantl, A., Schordan, M.,
Knoop, J.: Towards a common WCET annotation language: essen-
tial ingredients. In: Proceedings of the 8th International Workshop
on Worst-Case Execution Time Analysis, pp. 53–65, Prague, Czech
Republic, July (2008)

34. Kirner, R., Kadlec, A., Puschner, P.: Precise worst-case execution
time analysis for processors with timing anomalies. In: Proceed-
ings of the 21st Euromicro Conference on Real-Time Systems, pp.
119–128, Dublin, Ireland, July 2009. IEEE, New York

35. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully automatic
worst-case execution time analysis for Matlab/Simulink models.
In: Proceedings of the 14th Euromicro Conference on Real-Time
Systems, pp. 31–40, Vienna, Austria, June 2002. Vienna University
of Technology. IEEE, New York

36. Kirner, R., Puschner, P.: Classification of code annotations and dis-
cussion of compiler-support for worst-case execution time analysis.
In: Proceedings of the 5th International Workshop on Worst-Case
Execution Time Analysis, Palma, Spain, July (2005)

37. Klingerman, E., Stoyenko Alexander, D.: Real-time euclid: a
language for reliable real-time systems. IEEE Trans. Softw.
Eng. 12(9), 941–989 (1986)

38. Lokuciejewski, P., Falk, H., Marwedel, P., Theiling, H.: Wcet-
driven, code-size critical procedure cloning. In: Falk, H. (ed.)
SCOPES, ACM International Conference Proceeding Series, vol.
296, pp. 21–30 (2008)

39. Lisper, B.: Ideas for annotation language(s). Technical Report Oct.
25, Department of Computer Science and Engineering, University
of Mälardalen (2005)

40. Li, X., Liang, Y., Mitra, T., Roychoudhury, A.: Chronos user man-
ual. Web page. http://www.comp.nus.edu.sg/~rpembed/chronos/
chronos_manual.pdf. Accessed online in February (2010)

41. Li, X., Liang, Y., Mitra, T., Roychoudury, A.: Chronos: A tim-
ing analyzer for embedded software. Science of Computer Pro-
gramming, 69(1–3):56–67, (2007). http://www.comp.nus.edu.sg/
~rpembed/chronos

42. Li, Y.-T.S., Malik, S.: Performance analysis of embedded soft-
ware using implicit path enumeration. In: Proceedings of the 32nd

ACM/IEEE Design Automation Conference, June, pp. 456–461
(1995)

43. lpsolve. Tool web page: http://lpsolve.sourceforge.net/. Accessed
online in February (2010)

44. Lundqvist, T., Stenström, P.: Timing analysis in dynamically sched-
uled microprocessors. In: Proceedings of the 20th IEEE Real-Time
Systems Symposium (RTSS), December, pp. 12–21 (1999)

45. Mok, A.K., Amerasinghe, P., Chen, M., Tantisirivat, K.: Evaluating
tight execution time bounds of programs by annotations. In: Pro-
ceedings of the 6th IEEE Workshop on Real-Time Operating Sys-
tems And Software, May, pp. 74–80, Pittsburgh, PA, USA (1989)

46. Maxima Manual, 5.18 edn. Available online at http://maxima.
sourceforge.net/docs/manual/en/maxima.pdf

47. Muchnick, S.S.: Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco (1997). ISBN 1-55860-320-4

48. MacNaughton, R., Yamada, H.: Regular expressions and state
graphs for automata. IRE Trans. Electron. Comp. 9(39–47),
(1960)

49. OMG. UML Profile for Modeling and Analysis of Real-time and
Embedded Systems (MARTE). Object Management Group, June
(2008)

50. Park, C.Y.: Predicting Deterministic Execution Times of Real-Time
Programs. Ph.D. Thesis, University of Washington, Seattle, USA,
1992. TR 92-08-02

51. Park, C.Y.: Predicting program execution times by analyzing static
and dynamic program paths. Real-Time Syst. 5(1), 31–62 (1993)

52. Puschner, P., Koza, C.: Calculating the maximum execution time
of real-time programs. J. Real-Time Syst. 1, 159–176 (1989)

53. Prantl, A., Knoop, J., Kirner, R., Kadlec, A., Schordan, M.: From
trusted annotations to verified knowledge. In Proceedings of the 9th
International Workshop on Worst-Case Execution Time Analysis,
Dublin, Ireland, June (2009)

54. Park, C.Y., Shaw, A.C.: Experiments with a program timing tool
based on a source-level timing schema. Computer 24(5), 48–
57 (1991)

55. Puschner, P., Schedl, A.V.: Computing maximum task execu-
tion times—a graph-based approach. J. Real-Time Syst. 13, 67–
91 (1997)

56. Prantl, A., Schordan, M., Knoop, J.: TuBound—a conceptually
new tool for worst-case execution time analysis. In: 8th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET
2008), pp. 141–148, Prague, Czech Republic, 2008. ISBN: 978-3-
85403-237-3

57. RAPITA Systems Ltd. Worst-case execution time analysis. White
Paper (Automotive), Rev. 1.32, 21st Sep. (2006)

58. Stappert, F., Altenbernd, P.: Complete worst-case execution time
analysis of straight-line hard real-time programs. J. Syst. Ar-
chit. 46(4), 339–355 (2000)

59. Shaw, A.C.: Reasoning about time in higher level language soft-
ware. IEEE Trans. Softw. Eng. 15(7), 875–889 (1989)

60. Sharir, M., Pnueli, A.: Two approaches to interprocedural data
flow analysis. In: Muchnick, S.S., Jones, N.D. (eds.) Program Flow
Analysis: Theory and Applications, chapter 7, pp. 189–233. Pren-
tice Hall, Englewood Cliffs (1981)

61. Tarjan, R.E.: Fast algorithms for solving path problems. J.
ACM 28(3), 594–614 (1981)

62. Tan, L., Echtle, K.: The WCET tool challenge 2006: external eval-
uation—draft report. In: Handout at the 2nd Int. IEEE Symposium
on Leveraging Applications of Formal Methods, Verification and
Validation, Paphos, Cyprus, November 2006, 13 pp.

63. Vrchoticky, A.: Modula/R—Language Definition. Technical
Report 02/1992, Technische Universität Wien, Institut für Techni-
sche Informatik, Treitlstr. 1-3/182-1, 1040, March. Vienna, Austria
(1992)

64. Vrchoticky, A.: Compilation support for fine-grained execution
time analysis. In: Proceedings of the ACM SIGPLAN Workshop

123

http://www.ibm.com/software/integration/optimization/cplex/
http://www.ibm.com/software/integration/optimization/cplex/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.comp.nus.edu.sg/~rpembed/chronos/chronos_manual.pdf
http://www.comp.nus.edu.sg/~rpembed/chronos/chronos_manual.pdf
http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.comp.nus.edu.sg/~rpembed/chronos
http://lpsolve.sourceforge.net/
http://maxima.sourceforge.net/docs/manual/en/maxima.pdf
http://maxima.sourceforge.net/docs/manual/en/maxima.pdf


Beyond loop bounds 437

on Language, Compiler and Tool Support for Real-Time Systems,
June. Orlando FL (1994)

65. WCET annotation language challenge. Web page: http://costa.
tuwien.ac.at/languages.html. Accessed online in Feb. (2010)

66. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckman, R., Mitra, T.,
Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenstrom, P.: The
worst-case execution time problem—overview of methods and sur-
vey of tools. ACM Trans. Embedded Comput. Syst. (TECS) 7(3),
(2008)

67. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based
timing analysis. In: Proceedings of the 3rd Int’l Symposium on
Leveraging Applications of Formal Methods, Verification and Val-
idation, Porto Sani, Greece (2008)

68. Wright, F.: Computing with Maple. Crc Mathematics Series. Chap-
man & Hall, London (2001)

69. Wenzel, I., Rieder, B., Kirner, R., Puschner, P.: Automatic timing
model generation by CFG partitioning and model checking. In:
Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’05), March, pp. 606–611. Munich, Germany. IEEE
New York (2005)

Author Biographies

Raimund Kirner is Assistant
Professor at the Institute of Com-
puter Engineering of the Vienna
University of Technology. The
research focus of Kirner is
on system reliability, especially
worst-case execution time analy-
sis of real-time programs, includ-
ing compiler support and design
methodologies to make systems
predictable. Currently, Raimund
Kirner is principal investigator of
three research projects. R. Kirner
chaired the PC of WDES 2006
and WCET 2008. He is a member

of the IEEE Computer Society, the ACM, the IFIP WG 10.2 (Embedded
Systems) and the Austrian Computer Society (OCG).

Jens Knoop is a full professor
at the Faculty of Informatics
at the Vienna University of
Technology, where he leads the
Programming Languages and
Compilers Group. His research
interests include programming
languages and compilers, espe-
cially algorithms and tools for
static analysis, verification, and
optimization including resource
analysis for safety-critical emb-
edded real-time systems. He is
the Programme Committee Co-
Chair and Chair of PACT 2010

and CC 2011, a member of the IFIP Working Group 2.4 on Software
Implementation Technology, and elected board member of the European
Association for Programming Languages and Systems (EAPLS), the
European Association of Software Science and Technology (EASST),
and the Austrian Computer Society (OCG).

Adrian Prantl is PhD student
at the Institute of Computer
Languages at Vienna University
of Technology. He is currently
employed for the FWF-funded
project “Compiler Support for
Timing Analysis” (CoSTA) were
he is working on high-level anal-
ysis and optimizing program
transformations. He is the main
author of the TuBound WCET
analysis tool, which supports
source-based flow annotations
and annotation-aware source-
to-source program optimizations.

He is also a contributing author of SATIrE, an open-source framework
for static program analysis of C++ programs.

Markus Schordan is Deputy
Program Director for Multime-
dia and Software Engineering
and also for Game Engineer-
ing and Simulation at the Insti-
tute of Computer Science at
University of Applied Sciences
Technikum Wien. His research
interests include static analy-
sis of object-oriented languages,
worst-case execution time anal-
ysis, source-to-source transfor-
mation, high-level optimization,
and parallelization. In 2009 he
received an R&D 100 Award as

co-author of the compiler infrastructure ROSE. Furthermore he initiated
the development of the SATIrE framework, which is based on ROSE
and integrates tools for static analysis. In 2008 he co-organized a Dag-
stuhl Seminar on Scalable Program Analysis and serves as PC member
in conferences such as JMLC, SYNASC, and PACT 2009.

Albrecht Kadlec has spent
seven years developing compil-
ers for digital signal processors
and embedded processors at the
companies ATAIR and Mentor
Graphics. At Mentor Graphics,
he was lead engineer of com-
piler development. In 2007, he
joined the CoSTA research team
at the Institute of Computer Engi-
neering of the Vienna University
of Technology to obtain a PhD.
His research centers around tim-
ing analysis and computer archi-
tectures, focusing on compiler

countermeasures to timing anomalies.

123

http://costa.tuwien.ac.at/languages.html
http://costa.tuwien.ac.at/languages.html

	Beyond loop bounds: comparing annotation languages  for worst-case execution time analysis
	Abstract
	1 Motivation
	2 WCET calculation: fundamental methods
	2.1 Global versus scoped WCET calculation
	2.2 Timing schema (hierarchy-oriented)
	2.3 EPET (path-oriented)
	2.4 IPET (constraint-oriented)
	2.5 Other methods

	3 Flow information: fundamental kinds
	3.1 Static control flow
	3.2 Dynamic control flow

	4 Example: IPET and linear flow constraints
	5 Comparison criteria
	5.1 Language design
	5.2 Intuitiveness
	5.3 Tool availability

	6 Hierarchy-oriented annotation languages
	6.1 Real-Time Euclid
	6.2 TAL: equations with event markers
	6.3 Interactive annotations with the timing tool
	6.4 Modula/R
	6.5 SPARK Ada: data value assertions
	6.6 The annotation language of heptane

	7 Path-oriented annotation languages
	7.1 PL and IDL
	7.1.1 Path language
	7.1.2 Information description language

	7.2 The annotation language of RapiTime
	7.3 The Bound-T annotation language
	7.4 The Mälardalen flow-facts annotation language
	7.5 wcetC
	7.6 aiS, the annotation language of aiT
	7.7 FFX/F4, the annotation language of OTAWA
	7.8 Flow information in chronos 3.0
	7.9 The annotation language of TuBound

	8 Other annotation concepts
	8.1 Symbolic annotations
	8.2 Assertion language

	9 Annotation examples
	10 Comparison
	10.1 Language design
	10.2 Intuitiveness
	10.3 Tool availability
	10.4 Summing up

	11 Conclusions and perspectives
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


