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Abstract: A missile during air carriage is subjected to high vibratory forces. These forces 
consequently impose high levels of stress on the attachment points to the aircraft. A repetitive 
application of stress causes fatigue. However, since the vibratory forces cannot be measured 
directly at the interface, an inverse method utilising missile accelerometer data has been used to 
determine the forces. This paper presents two frequency domain techniques of reconstructing 
loads. Both techniques utilise the Moore-Penrose pseudo-inverse method, although the second 
procedure incorporating a normal modes analysis is perhaps better suited for embedding within a 
health and usage monitoring system (HUMS). Both techniques enable discrete dynamic loads, 
which are applied to a finite element model in the time domain, to be successfully reconstructed. 
Consequently, by identifying forces on a missile structure successfully, the presented techniques 
enable a better structural integrity assessment to be undertaken. 
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1 Introduction 

Engineering problems can broadly be categorised as a direct 
or inverse problem. A direct problem is one where the 
system response can be determined when the system is 
subjected to a particular input. However, the inverse (or 
indirect) problem is the opposite, whereby system responses 
are measured to establish the system inputs (Bekey, 1970; 
Wang, 2010). Load reconstruction plays a vital part in 
structural health monitoring/structural integrity assessment 
(Kankar et al., 2012; Wang et al., 2010), since the 
identification of real-time flight loads can be used to 
improve the fatigue assessment. The current study proposes 
two finite element (FE)-based procedures which incorporate 
a pseudo-inverse method to reconstruct applied loads. 

The Moore-Penrose pseudo-inverse method has been 
used on several occasions to reconstruct loads. One of the 
earliest investigations into load reconstruction was 
undertaken by Giansante et al. (1982), which was based on 
the work completed by Barlett and Flannelly (1979). The 
work undertaken by Giansante et al. (1982) involved 
determining rotor vibratory forces of an AH-1G Helicopter. 
This was done by using a ground flying test (Giansante  
et al., 1982) to establish a calibration matrix [which was 
composed of transfer functions (TF)]. The calibration matrix 
was used in conjunction with the in-flight acceleration to 
determine flight loads. These flight loads were applied to 
the ground flying test rig and the acceleration was 
measured. The comparison of the predicted responses to the 
in-flight acceleration produced excellent correlation which 
indicates successful load reconstruction. 

Prior to using the Moore-Penrose method, Okubo et al. 
(1985) established the impact of noise contamination on  
the accuracy of force identification, and validated a 
computer programme via a simple beam structure. The 
Moore-Penrose method was then used to determine the 

operating forces acting on three real structures: a machine 
tool, automobile gas engine, and an air conditioning unit. In 
all three a known excitation force was applied, and the 
acceleration response was used to establish the frequency 
response function’s (FRF’s). The machines were then run 
under operating conditions and the acceleration response 
was used with the FRF’s to calculate the operating forces. 
Since the calculated forces were reasonably identified, the 
reconstruction can be described as robust. 

Hillary and Ewins (1984) also used the methodology 
with measured strain and acceleration responses to 
determine forces acting on a cantilever beam. This work 
was used in a larger investigation to estimate the impact 
forces on an aircraft engine turbine blade (Hillary, 1983). 

The Moore-Penrose pseudo-inverse method was also 
employed by Yu and Chan (2003) whilst reconstructing 
moving loads of two-axle vehicle model in a laboratory 
experiment using the bridge responses. 

The work presented here is a part of a larger 
investigation. This paper seeks to establish two techniques 
of reconstructing a known applied force acting on the 
missile’s attachment points (hangers), to the aircraft in the 
time domain. Both of the frequency domain techniques 
involves the use of an FE model of a missile structure. By 
successfully reconstructing forces on a missile structure, the 
presented methodologies will enable a better structural 
integrity assessment to be undertaken. 

There are six sections to the paper. Section 2 provides 
some theoretical background to the reconstruction method. 
The two reconstruction techniques, which utilise the theory, 
is outlined in Section 3 and applied in Section 4 to a FE 
representation of a beam model. Section 5 of the paper 
outlines the results obtained from the two techniques, and 
general comments are made in the concluding Section 6. 
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2 Theoretical aspect 

The theoretical aspects surrounding the reconstruction 
Moore-Penrose pseudo-inverse method are outlined in this 
section. Further details regarding the theoretical aspects are 
given by Karlsson (1996), Golub and Kahan (1965), and 
Vishwakarma et al. (2010). 

For a discrete linear dynamic system, the equation of 
motion in the frequency domain (Karlsson, 1996) can be 
defined as: 

Y(ω) H(ω)F(ω)=  (1) 

where F(ω) is the excitation force, H(ω) is the FRF and 
Y(ω) is the response vector. 

Consequently, the excitation force can theoretically be 
determined by rearranging equation (1): 

1F(ω) H(ω) Y(ω)−=  (2) 

The superscript –1 represents the inverse of the matrix. 
However, this can only be used directly if the FRF matrix is 
square and non-singular (Stevens, 1987), which implies that 
the number of unknown forces and responses are equal. If 
the FRF matrix is rectangular and singular i.e. either over-
determined (when the number of known responses exceeds 
the number of unknown forces), or under-determined 
(which has the opposite definition to over-determined), the 
forces can be estimated through: 

estF (ω) H (ω)Y(ω)+=  (3) 

where for an over-determined problem: 
1T TH (ω) H H H−+ = ⎡ ⎤⎣ ⎦  (4) 

And for an under-determined problem: 
1T TH (ω) H H H −+ = ⎡ ⎤⎣ ⎦  (5) 

Furthermore, HT is the Hermitian transpose of H and 
superscript + is the pseudo-inverse. 

3 Description of signal preprocessing 

Two reconstruction techniques are outlined in this  
section. The reconstruction can be used with any kind of 
responses (accelerations, velocities, displacements or  
strains – provided the relevant FRF’s are also considered). 

3.1 Reconstruction via frequency response analysis 

The reconstruction technique which uses a direct frequency 
response analysis can be defined through the flow diagram 
in Figure 1. 

The flow diagram in Figure 1 illustrates that the 
technique utilises acceleration time history and FRF data 
from the missile structure. A FRF matrix was derived using 
the direct frequency response analysis in MSC NASTRAN. 
The elements composing the FRF matrix were determined 
by applying a unit load to each of the load input positions in 

turn and thereafter measuring the acceleration response at 
accelerometer locations (x, y, and z directions) for all 
frequencies in the range of 0 – 1025 Hz. 

Figure 1 then also exercises the fast Fourier transform 
(FFT) to convert the acceleration data into the frequency 
domain. The Moore-Penrose pseudo-inverse method is 
employed to invert the FRF matrix used in the 
reconstruction of the applied load. 

Figure 1 Reconstruction via frequency response analysis 
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3.2 Reconstruction via normal mode shapes 

An alternative technique for load reconstruction is shown in 
the flow chart depicted in Figure 2. The technique employs 
modal superposition to generate the FRF matrix and 
involves the use of mass-normalised mode shape vectors. 

The first ten natural frequencies and mode shape data of 
the missile structure were obtained using the Lanczos 
extraction method in MSC NASTRAN. The missile 
structure displayed six rigid body motions (0 Hz) and four 
elastic modes. In order to account for the rigid body motions 
the value of Bp in (6) was set to 1 for all frequencies. 
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Equation (6) was used in parallel with the mode shape 
displacements for the respective input (m) and response 
positions (n) (see (7)) to derive the FRF matrix in (8): 
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As well as using mode-shape data and natural frequencies, 
the reconstruction process in Figure 2 also utilises 
acceleration data to reconstruct the initial load curve. 

Figure 2 Reconstruction using normal mode shapes 
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4 FE missile structure 

The two reconstruction techniques outlined in Section 3 
were explored using finite element method (FEM). Prior to 
undertaking the reconstruction, a FE model of a missile 
structure was generated in MSC NASTRAN. This section 
provides details of developing the structure shown in  
Figure 3. 

Figure 3 FEM representation of a missile structure using beam 
elements 

 

The missile depicted is 1.1 m long and is composed of 3D 
elastic beam (CBAR) elements (MSC NASTRAN User’s 
Guide, 2005). The geometric properties of the missile model 
are outlined in Table 1. 

Also illustrated are the three accelerometer positions at 
nodes 253, 254 and 255, which are attached to the missile 
using rigid bar (RBAR) elements (MSC NASTRAN User’s 
Guide, 2005). The missile structure has two 0.05 m long 

hangers which are composed of RBAR and scalar spring 
(CELAS2) elements (MSC NASTRAN User’s Guide, 
2005). The location of the hangers and accelerometers are 
summarised in Table 2. 

The stiffness’s of the CELAS2 elements are summarised 
in Table 3. 

Table 1 Geometric properties of FE missile model 

Geometric property Value Units 

Radius 0.025 m 
X-sectional area 1.963 × 10–3 m2 
Moment of inertia 3.067 × 10–7 kg.m2 
Torsional moment of inertia 6.134 × 10–7 kg.m2 

Table 2 Nodal positions of hangers and accelerometers 

Structure Node x y z 

Accelerometer 253 1.05 0.525 0.175 
Accelerometer 254 0.1 0.475 0.125 
Accelerometer 255 0.75 0.475 0.15 
Forward hanger 226 0.3 0.5 0.11 
Rear hanger 227 0.7 0.5 0.11 

Table 3 Stiffness on Fwd and Aft hangers 

Position Element Stiffness 
(N/m) 

Degrees of 
freedom 

Fwd hanger 226 108 x 
Fwd hanger 226 108 y 
Fwd hanger 226 108 z 
Aft hanger 227 108 x 
Aft hanger 227 108 y 
Aft hanger 227 108 z 
Aft hanger 227 106* Rx 

Note: *The unit for this stiffness is N-m/rad. 

The missile mass representations include point masses of 
0.8 kg placed at the missile node positions and a  
non-structural mass of 20 kg/m. The point masses have been 
modelled using CONM2 elements (MSC NASTRAN User’s 
Guide, 2005). 

The structure is homogeneous and is constructed using 
an aluminium alloy. The material properties of the 
aluminium alloy can be summarised in Table 4. 

Table 4 Nodal positions of hangers and accelerometers 

Parameter Quantity 

Young’s modulus 70 GPa 
Poisson’s ratio 0.32 
Density 2,730 kg/m3 

A constant modal damping ratio of 0.02 has been used 
throughout. 
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The resulting FE model was subjected to the two 
impulse loading conditions. The loading conditions were 
modelled using TABLED1 card in MSC NASTRAN. 

4.1 Step load condition 1 

This load condition is depicted in Figure 4. 

Figure 4 Applied step load condition 1 
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The diagram in Figure 4 depicts a unit load applied as an 
impulse on node 226 (z-direction) of the structure in  
Figure 3, Furthermore, after a break of 0.200568 seconds,  
a – 2 N load was applied to the structure at node 227  
(y-direction). Figure 4 outlines that the load on node 226 
was applied for duration of 0.399184 seconds, and the load 
applied on node 227 was for duration of 0.189832 seconds. 

4.2 Step load condition 2 

This load condition is depicted in Figure 5. 
The diagram in Figure 5 depicts a unit load applied as an 

impulse on nodes 226 and 227 (y-direction) of the structure 
in Figure 3, Furthermore, a – 2 N load was applied to the 
structure at node 226 and 227 (z-direction). Each of the 
impulses outlined Figure 5 was applied to the structure for 
0.12 seconds. 

Figure 5 Applied step load condition 2 

 

‐2.5

‐2

‐1.5

‐1

‐0.5

0

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

A
pp

lie
d 
Lo
ad

 (z
‐d
ir
ec
ti
on

 ‐
N
)

A
pp

lie
d 
Lo
ad

 (y
‐d
ir
ec
ti
on

 ‐
N
)

Time (Seconds)

Step Load Condition 2

Load Applied (Node 
226 y‐direction)

Load Applied (Node 
227 y‐direction)

Load Applied (Node 
226 z‐direction)

Load Applied (Node 
227 z‐direction)

 

 

5 Results 

Figure 6 and Figure 7 outlines some of the results which 
have been predicted using the two techniques depicted in 
Figures 1 and 2, when the FE missile model is subjected to 
the load profiles depicted in Figure 4 and Figure 5. 

Figure 6 Step load condition 1: reconstructed loads, (a) point 
226 reconstructed forces via frequency response 
analysis (b) point 226 reconstructed forces via normal 
mode shapes (c) point 227 reconstructed forces via 
frequency response analysis (d) point 227 reconstructed 
forces via normal mode shapes (see online version  
for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 6 Step load condition 1: reconstructed loads, (a) point 
226 reconstructed forces via frequency response 
analysis (b) point 226 reconstructed forces via normal 
mode shapes (c) point 227 reconstructed forces via 
frequency response analysis (d) point 227 reconstructed 
forces via normal mode shapes (continued) (see online 
version for colours) 

 
(d) 

The correlation coefficient (ρxy) and normalised root mean 
square error (NRMSE) between the applied and 
reconstructed loads, for step load condition 1, are indicated 
in Table 5: 

Table 5 Correlation coefficients and NRMSE for step load 
reconstruction 

226 (z direction)  227 (y direction) Reconstruction 
technique ρxy NRMSE  ρxy NRMSE 

Via frequency 
response analysis 

0.98 0.05  0.98 0.05 

Via normal mode 
shapes 

0.98 0.05  0.98 0.05 

The correlation coefficient (ρxy) and normalised root mean 
square error (NRMSE) between the applied and 
reconstructed loads, for step load condition 2, are indicated 
in Table 6: 

Table 6 Correlation coefficients and NRMSE for step load 
reconstruction 

226 (y direction)  226 (z direction) Reconstruction 
technique ρxy NRMSE  ρxy NRMSE 

Via frequency 
response analysis 

0.99 0.03  0.99 0.03 

Via normal mode 
shapes 

0.99 0.03  0.99 0.03 

227 (y direction)  227 (z direction)  

ρxy NRMSE  ρxy NRMSE 

Via frequency 
response analysis 

0.99 0.03  0.99 0.03 

Via normal mode 
shapes 

0.99 0.03  0.99 0.03 

The results depicted in Figures 6 and 7 and Tables 5 and 6 
indicates a successful prediction of the applied loads 
outlined in Section 3. The results also indicate that the loads 
predicted by the two pseudo-inverse techniques are similar. 

Figure 7 Step load condition 2: reconstructed loads, (a) point 
226 reconstructed forces via frequency response 
analysis (Y direction) (b) point 226 reconstructed 
forces via normal mode shapes (Y direction) (c) point 
226 reconstructed forces via frequency response 
analysis (Z direction) (d) point 226 reconstructed 
forces via normal mode shapes (Z direction) (e) point 
227 reconstructed forces via frequency response 
analysis (Y direction) (f) point 227 reconstructed forces 
via normal mode shapes (Y direction) (g) point 227 
reconstructed forces via frequency response analysis  
(Z direction) (h) point 227 reconstructed forces via 
normal mode shapes (Z direction) (see online version 
for colours) 

 
(a) 

 
(b) 
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Figure 7 Step load condition 2: reconstructed loads, (a) point 
226 reconstructed forces via frequency response 
analysis (Y direction) (b) point 226 reconstructed 
forces via normal mode shapes (Y direction) (c) point 
226 reconstructed forces via frequency response 
analysis (Z direction) (d) point 226 reconstructed 
forces via normal mode shapes (Z direction) (e) point 
227 reconstructed forces via frequency response 
analysis (Y direction) (f) point 227 reconstructed forces 
via normal mode shapes (Y direction) (g) point 227 
reconstructed forces via frequency response analysis  
(Z direction) (h) point 227 reconstructed forces via 
normal mode shapes (Z direction) (continued)  
(see online version for colours) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 7 Step load condition 2: reconstructed loads, (a) point 
226 reconstructed forces via frequency response 
analysis (Y direction) (b) point 226 reconstructed 
forces via normal mode shapes (Y direction) (c) point 
226 reconstructed forces via frequency response 
analysis (Z direction) (d) point 226 reconstructed 
forces via normal mode shapes (Z direction) (e) point 
227 reconstructed forces via frequency response 
analysis (Y direction) (f) point 227 reconstructed forces 
via normal mode shapes (Y direction) (g) point 227 
reconstructed forces via frequency response analysis  
(Z direction) (h) point 227 reconstructed forces via 
normal mode shapes (Z direction) (continued)  
(see online version for colours) 

 
(f) 
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(h) 
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The results obtained from the two reconstruction techniques 
are similar and demonstrates that the two loading cases have 
been predicted successfully. Figures 6 and 7 depicts that the 
forces predicted by the two methods have a similar 
magnitude and frequency in comparison to the applied load 
curves. The accuracy of the reconstruction is highlighted in 
Table 5 and Table 6 through the correlation coefficients, 
which is greater than 0.9, which further supports the success 
of the reconstruction techniques. 

The predicted forces from the two reconstruction 
techniques do consist of some discrepancies. Figure 6 and 
Figure 7 indicates that the two techniques reconstruct an 
overshoot at the particular instants in time whereby the 
impulse force has been applied and removed from the 
structure. The presence of the overshoot has occurred due to 
Gibbs phenomenon, when a point of discontinuity is 
analysed with the FFT process (or iFFT process) (Kammler, 
2000; Kreyszig, 1999). 

The two techniques are very consistent in terms of the 
reconstructed loads, since the correlation coefficient is 
similar. The consistency of the two techniques is also 
highlighted through the calculation of the NRMSE. The 
NRMSE is the same for each reconstruction technique 
which would suggest that the two techniques are as 
successful as each other. 

From an experimental perspective, it can be suggested 
that the calculation of the FRF’s from both techniques will 
be inaccurate due of noise. Whilst calculating the FRF’s, 
noise will occur due to the size of the frequency increment 
whilst using a swept sinusoidal wave. Consequently, a 
smaller frequency increment may incur larger noise between 
adjacent frequencies. Whilst using the normalised mode 
shapes, the measurement of the mode shape data influences 
the accuracy of the FRF’s. 

With respect to efficiency, it can be suggested that  
the use of normalised mode shape vectors (via modal  
super-position analysis) is better than using the direct 
frequency response analysis. The use of normalised  
mode-shape vectors provides compact storage and improves 
computation time and effort as the FRF matrix can be 
calculated as required. 

Experimental work has been undertaken to validate the 
two reconstruction methods (depicted in Section 3), and has 
been documented in Vishwakarma (2012). 

6 Concluding remarks 

1 Load reconstruction is a useful tool to determine the 
magnitude of the excitation initially applied to the 
structure. Two techniques have been employed to 
successfully predict the loads at the interface of the 
missile and the wing. 

2 The two frequency domain techniques were examined 
whilst reconstructing two loading conditions applied to 
a FE missile model. 

3 The investigation indicated that the Moore-Penrose 
pseudo-inverse technique can provide good estimations 
of applied forces. 

4 With respect to composing the FRF matrices, two 
approaches were investigated. One of the approaches 
utilises a frequency response analysis whilst the other 
utilises mass-normalised mode shape vectors (via 
modal super-position). It is evident that the later 
approach provides extremely compact storage  
and allows the FRF matrix to be calculated as  
required. Consequently, the technique which uses  
mass-normalised mode shapes maybe suitable for use 
within a health and usage monitoring system (HUMS) 
to identify forces more efficiently. 
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