
1 CELLML2SBML: CONVERSION OF CELLML INTO SBML

Running head: Conversion of CellML into SBML

Authors:

Maria J. Schilstra*
Biological and Neural Computation Group, STRI
University of Hertfordshire
Hatfield, AL10 9AB
UK

Lu Li
Computational Neurobiology
EMBL-EBI
Wellcome-Trust Genome Campus
Hinxton, Cambridge, CB10 1SD
UK

Joanne Matthews
Biological and Neural Computation Group, STRI
University of Hertfordshire
Hatfield, AL10 9AB
UK

Andrew Finney
Physiomics PLC
Magdalen Centre, Oxford Science Park
Oxford, OX4 4GA
UK

Michael Hucka
Control and Dynamical Systems
California Institute of Technology
Pasadena, CA 91125
USA

Nicolas Le Novère
Computational Neurobiology
EMBL-EBI
Wellcome-Trust Genome Campus
Hinxton, Cambridge, CB10 1SD
UK

* To whom correspondence should be addressed

ABSTRACT
Summary: CellML and SBML are XML-based languages for storage and exchange of molecular biological and
physiological reaction models. They use very similar subsets of MathML to specify the mathematical aspects of the
models. CellML2SBML is implemented as a suite of XSLT stylesheets that, when applied consecutively, convert
models expressed in CellML into SBML without significant loss of information. The converter is based on the most
recent stable versions of the languages (CellML version 1.1; SBML Level 2 Version 1), and the XSLT used in the
stylesheets adheres to the XSLT version 1.0 specification. Of all 306 models in the CellML repository in April 2005,
CellML2SBML converted 91% automatically into SBML. Minor manual changes to the unit definitions in the originals
raised the percentage of successful conversions to 96%.
Availability: http://sbml.org/software/cellml2sbml/
Contact: m.j.1.schilstra@herts.ac.uk
Supplementary information: Instructions for use and further documentation available on
http://sbml.org/software/cellml2sbml/

2 INTRODUCTION
The Systems Biology Markup Language (SBML, Finney and Hucka, 2003, Hucka, et al. 2003) and the Cell
Markup Language (CellML, Cuellar, et al., 2003) are XML-based markup languages designed to capture the
structure and content of models of molecular biological and physiological systems. They are used for model
exchange between software tools, and for storage in a standard format. The scope of CellML (“to describe the
mathematics behind any biological model”) is somewhat wider than that of SBML (“to represent models of
biochemical reaction networks”), but, fortuitously, both use almost identical mathematical expressions, and specify
these using an almost identical subset of MathML. Figure 1 shows the relevant CellML and SBML elements, and
gives a rough indication of the mapping. In this figure the CellML import element has not been taken into
account, whereas the SBML elements functionDefinition and event are irrelevant in this context, and the
containment structures (discussed below) are conceptually so different that they had to be ignored.

2.1 SBML Model Extraction

Identifiers: CellML uses a name attribute to uniquely identify model components, whereas SBML uses an id
attribute for the same purpose (the optional name attribute in SBML is used as a label); cellml:name and
sbml:id attributes are subject to the same limitations. Therefore, global CellML name attribute values are
simply retained as SBML id values; local name values (those of variable elements and of units defined
inside a component) are converted into a combination of the local name and the name of the parent
component. In that case, the converter retains the original CellML name under the SBML name attribute.

Units: The CellML units and SBML unitDefinition structures, which are used for the definition of
composite units, both contain a list of unit elements. The unit elements in both languages have essentially the
same attributes, and use the same set of basic (SI) units, so that conversion is straightforward. However, where
CellML permits nested use of units elements, SBML (Level 2 Version 1) requires its units to be defined in terms
of the basic SI units. Therefore, the CellML2SBML converter expands the units, and combines the resulting
base units as appropriate in a new SBML unitDefinition. A special unitDefinition element is created
to specify the time base for ODEs (ordinary differential equations; in rateRule and kineticLaw) if the time
base used in the CellML model differs from the SBML default unit of time. Furthermore, the cellml:units
associated with variable elements that convert to species (see below) are decomposed into units of
substance and units of spatial size, and corresponding unitDefinition elements are added to the list (if
necessary). These can then be referred to in the substanceUnits and spatialSizeUnits attribute fields
of species.

Compartments: SBML and CellML can both express physical containment: CellML in its nested group
structure, and SBML through its compartment element and outside attribute. However, SBML requires explicit
definition of compartment size, and computation of concentration changes associated with inter-compartmental
transport is left to the interpreter. CellML lacks fields to specifically delimit compartment dimensions, and any
transformation rules must be explicitly defined. Therefore, automatic conversion between a CellML group and
SBML compartment is impossible, and the converter simply generates a single compartment, with which it then
associates all species (see below).

Species and parameters: All variable instances that, through a CellML variable_ref structure, assume
the role of “reactant”, “product”, “modifier”, “catalyst”, “inhibitor”, or “activator” in a cellml:reaction, are
converted into sbml:species instances; all other variable instances are converted, in the first instance (but
see the section on model reduction), to sbml:parameter.

Reactions and rules: A CellML reaction (contained in a component) is conceptually almost equivalent to
an SBML reaction. A CellML variable_ref element whose role is “reactant” or “product” is converted
to a speciesReference in an SBML reaction; one with a “modifier”, “catalyst”, “inhibitor”, or “activator”
role becomes a modifierSpeciesReference. The variable_ref element whose role is “rate” is
converted into a kineticLaw element, whereby the right-hand side of the MathML math block inside the
variable_ref is copied into the math element of the new kineticLaw. The kineticLaw math must be
expressed in units of substance over time. If the rate in the original CellML is in units of concentration over time, a
multiplier to the kinetic law expression is generated, and a local parameter of value 1, and with the units of volume
(or area, or length, where appropriate) is added to the reaction element. The variable_ref elements with
role “delta_variable” are dealt with in the model reduction phase (below).

The math blocks that are direct children of component instances (i.e., are not contained in a role element
within a CellML reaction) are converted to the appropriate rule: an assignmentRule when the left-hand
side of the equation is a single token (MathML ci) that refers to a variable, and a rateRule when the left-hand
side encodes a time-based ODE. Furthermore, all CellML connection elements, which effectively specify
equalities, are, in the first instance, converted to assignmentRule instances, thereby making the equalities
explicit.

2.2 SBML Model Reduction and Adjustment
After a first-pass conversion as described above, the resulting model is likely to contain a high degree of
redundancy, and is, at this stage, not necessarily syntactically valid SBML. In the next stage of the CellML2SBML
conversion process, redundancy is reduced by tracking the chains of input-output connections to their source,
substituting the id of the elements in the chain and their references with the id of the source, removing all
assignmentRule instances that, as a result, specify an identity, and removing multiple copies of parameter
or species instances. If, after reduction, the original CellML identifier that was retained in the SBML name is
found to be unique across the model, CellML2SBML replaces the current composite id with the value of the
name attribute.

To avoid potential conflict through over-specification, SBML, unlike CellML, leaves construction of ODEs
from the rate equations in its kineticLaw constructs to interpreters. Therefore, the converter removes from the
final model each parameter that functions solely as a “delta_variable” in a CellML reaction, as well as any
ODE whose right-hand side is a simple sum of parameter instances that are referred to as “delta_variable”.

The SBML specification stipulates that assignmentRule instances in the listOfRules be listed in
topological order (i.e., if a parameter or species appears as an independent variable in one of the equations, it can
only function as a dependent variable in equations that are listed later in the sequence). Therefore, a topological
sort on the remaining assignmentRule instances is carried out as a final step. Circular references are
eliminated by a process of replacing one member of the cycle by its equivalent algebraicRule (i.e.,
transformation of y = f(x) into 0 = f(x) – y) and re-sorting, until all circular references have disappeared.

3 RESULTS
Out of the 306 models in the CellML repository on 5 April 2005, CellML2SBML was able to convert 279 (91%)
of the models automatically into valid SBML, and 14 more (5%) could be converted after the 14 models had their
newly defined base units (legitimate in CellML, not in SBML) replaced by their equivalent SI units. The validity
of the SBML document was assessed by the libSBML-based validator that is provided on-line on
http://sbml.org/tools/htdocs/sbmltools.php. Eight models contained ODEs that combined delta-variables with
parameters that were not specified as delta-variables, a complication that in many cases may be solved by limited
manual modification of the CellML model, such as addition of source or sink components to reactions. The
remaining six models had certain aspects, such as partial differential equations, that are incompatible with SBML
Level 2 Version 1.

ACKNOWLEDGMENTS
The authors would like to thank Poul Nielsen and Autumn Cuellar of the CellML team, and the SBML Forum, for
fruitful discussions.

REFERENCES
Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P. and Hunter, P.J. (2003) An Overview of CellML 1.1, a Biological

Model Description Language., SIMULATION: Transactions of The Society for Modeling and Simulation International., 79, 740–747.
Finney, A., and Hucka, M. (2003) Systems Biology Markup Language: Level 2 and Beyond, Biochemical Society Transactions 31:1472–1483.
Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. and the rest of the SBML Forum (2003) The systems biology markup

language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, 19, 524–531.

Fig. 1 Class structure of CellML (black boxes) and SBML (white boxes), and their MathML elements (gray boxes). The CellML
import and group, and the SBML compartment and event elements have been omitted (see text). Solid lines indicate
encapsulation (a CellML element is encapsulated by the elements on its left; the SBML elements by the one on its right). Dashed
arrows indicate how the CellML elements translate into their corresponding SBML elements.

