Secure Sessions from Weak Secrets

Bruce Christianson!

Michael Roe?
David Wheeler?

1 Computer Science Department, University of Hertfordshire, Hatfield
? Microsoft Research Limited, Cambridge
8 Computer Laboratory, University of Cambridge
England, Europe

Abstract. Sometimes two parties who already share a weak secret k
such as a password wish to share also a strong secret s such as a ses-
sion key without revealing information about k to an active attacker.
We assume that both parties can generate strong random numbers and
forget secrets, and present new protocols for secure strong secret sharing,
based on RSA, Diffie-Hellman, and El-Gamal. As well as being simpler
and quicker than their predecessors, our protocols also have stronger
security properties. In particular, our protocols make no cryptographic
use of s and so do not impose subtle restrictions upon the use which is
subsequently made of s by other protocols. Neither do we rely upon the
existence of hash functions with serendipitous properties. In the course
of presenting these protocols, we also consider how to frustrate some new
types of cryptographic and system attack.

1 Introduction

Sometimes there is a requirement to establish a secure session between two
parties who initially share only a weak long-term secret. “Secure” includes
the requirement that the parties can be sure that they are talking to each
other, as well as properties of integrity and secrecy. By “weak secret”
we mean a secret that is chosen from a moderately small set, so that
an attacker could search through all possible values. Passwords are often
weak secrets, as the total number of words in a dictionary is searchable.

A weak secret cannot be used directly as a cryptographic key to se-
cure the session, as this is vulnerable to a known plaintext attack. If the
attacker knows (or can guess with high probability of being right) the
message plaintext m corresponding to a known encrypted text Ei(m)
then they can search through all possible values of the password until
they find the value k which decrypts the cyphertext to m. This reveals
the password, which can then be used to decipher the session.

Suppose that the parties who wish to communicate have good random
number generators. This means that they can generate secrets which are
strong (chosen from a set which is too large to search) but not shared.
We would like to have a protocol which starts with a weak shared secret
and a pair of strong non-shared secrets and which ends up with a secret
which is both strong and shared. We refer to such a protocol as a Strong
Secret Sharing Password (S3P) Protocol.

Previous attempts at solving this problem include Bellovin and Mer-
ritt’s Encrypted Key Exchange [3], Jablon’s SPEKE [9], and Lucks’ Open
Key Exchange [12]. A related, but slightly different approach is taken by
Gong et al in [7]. In this paper, we present new protocols for solving this
problem, based on Rivest-Shamir-Adleman (RSA) [14], Diffie-Hellman
(DH) [4] and El Gamal (EG) [5]. As well as possessing stronger security
properties, our protocols have the advantage of being simpler and quicker
than their predecessors.

In the next section, we give a careful specification of the properties
which we desire S3P protocols to have, and of the assumptions under
which we believe our protocols to have these properties. In Section 3,
we present an S3P protocol based on RSA and show that it resists a
number of attacks, some known and some novel. In section 4 we consider
various DH-based S3P protocols which have stronger security properties
than the conventional versions, and discuss some novel threats. In section
5 we consider the implications of using EG in place of DH when the
requirement is to transfer an existing secret rather than to agree a new

BS
4
v

one. In section 6, we discuss what should be done when an active attack
is detected, and introduce the notion of a robust protocol wrapper. In the
final section we summarize our conclusions.

2 S3P Protocol Properties and Assumptions

In this section, we give a careful specification of the properties which we
desire S3P protocols to have, and of the assumptions under which we
believe our protocols to have these properties.

The S3P protocols described in this paper are peer-to-peer proto-
cols, which operate directly between two principals rather than between
a principal and a server. In accord with tradition, we assume that the two
parties trying to operate the S3P protocol are unambiguously known to
each other as A and B.

2.1 Properties

We turn now to describing the features which we desire the S3P protocol
to have. At the start of the protocol A and B share a weak secret k.
Following a run of the protocol which A believes to have ended correctly, it
should be the case that B really did participate in that run of the protocol,
and that the two of them really do now share a fresh strong secret s. The
corresponding statement should also be true for a run which B believes to
have ended correctly. The protocol should not reveal information about
the weak secret k in any case.

The protocol should be secure against active attacks in which the
attacker creates or modifies messages. Leakage or cryptographic compro-
mise of a strong secret s shared using a protocol run should not reveal
information about the password k. If several strong secrets s; are shared
by different runs using the same password k then obtaining one such s;
should not help an attacker to obtain s; with j # 1.

An attacker should not be able to obtain any information about
whether a guessed value of the password is correct without making an
active attack: effectively the attacker should be forced to masquerade
as one of the participants to the other. An active attack should be de-
tectable by at least one of the genuine participants, unless the guessed
value is correct, and each such failed attack should eliminate no more
than one possible value of the password (ie the unsuccessful guess) from
the attacker’s list of possible password values. Approaches such as [1] do
not satisfy this requirement. Finally, if the password is compromised (by

F-3

whatever means) this should not assist the attacker to obtain strong se-
crets agreed using the protocol with that password prior to the point of
compromise, or to obtain subsequently agreed strong secrets by passive
attack.

2.2 Assumptions

We assume that neither party can reliably maintain the integrity of a
strong secret s from one protocol run to another: in other words if A
tries to use a strong secret from one run in another run, then there is a
good chance that s either leaks, or is forgotten, or changes (or is changed)
without A noticing that it has. This assumption may correspond to the
fact that the parties move frequently from one piece of hardware to an-
other, or may be because the hardware is initialized in some way between
protocol runs to erase secret information. We discuss this issue further in
section 6.

We assume that both parties can reliably maintain the integrity of
public, slowly varying data such as software and public keys: other pro-
tocols are available to assist with this [11].

The protocols which we consider include the operations “generate a
random bit pattern n” and “forget the bit pattern m”. We assume that
both ends have good irreproducible random bit generators and can forget
secrets. By the first assumption we mean that our threat model does not
consider the possibility of an attacker determining n by examining other
bit patterns produced (previously or subsequently) by the same or other
generators. By the second assumption we mean that our threat model
does not consider the possibility of an attacker subsequently determining
m from from an examination of the hardware which has been instructed to
forget it. Note that the hardware which must forget includes the random
generator. This assumption is probably the most difficult requirement to
realize in practice.

We wish to make no assumptions about what the strong shared secret
will be used for. The S3P protocol run used to agree the strong shared
secret s ends as soon as both parties can be sure that s has been appropri-
ately shared. In the light of known chosen protocol attacks [10] we wish
to impose no restrictions upon the nature of the cryptographic protocols
or algorithms to which s is handed off for subsequent use, or upon the
length of s itself. It may be intended to reveal s (for example s may be
used as a one-time pad) or it may be that s is not intended to be used as
a key at all, but as a salt or initial value. In particular, the S3P protocol
should not assume that s is strong: it may be feasible for an attacker

to search for s in the time available between steps of the protocol. This
may be because s is required to be weak (less than 40 bits, suppose) or
because the protocol is running very slowly (the messages may be carried
by a diskette sent through the post, for example.)

2.3 System Context

In the protocol descriptions that follow, we omit from each message the
header information identifying which protocol is being used, which parties
it purports to operate between, which run of the protocol the message
relates to, and the sequence number of the message within that protocol
run. These data will be conveyed by the outer wrapping protocol, which
will be discussed in section 6. Also, we have not yet specified explicitly
what conditions cause a participant to treat a particular run as having
failed (eg receiving an incorrect bit pattern or timing out.) We shall also
consider these points further in section 6, but first we describe the inner
S3P protocols themselves.

3 RSA based Protocol

In this section, we present an S3P protocol based on RSA. Correct proto-
cols of this form have previously resisted construction, to the point where
some have doubted their possibility. We show that this RSA-S3P protocol
resists the known attacks as well as some novel ones.

3.1 Basic RSA-S3P Protocol Description

A generates an RSA modulus N = pq with p, ¢ prime and so that (p —
1)/2,(g — 1)/2 each contains a large prime factor. We assume that the
bit-lengths of p,q and N are prescribed exactly.

We assume that there is a publicly known function e which converts
a password k into a large prime number e(k) suitable for use as an RSA
exponent. By large we mean that the bit length of e(k) is strictly larger
than that of both p and g, and strictly smaller than that of N, for all
candidate passwords k. The function e could be implemented by some
suitable algorithm. For example, supposing that the password k is en-
coded in such a way that the bit length of k is small relative to that of
v/N, then one suitable algorithm would be to search through ascending
values of 7 until a prime of the form 1+ k(a + ib) is found, where a,b are
published co-prime constants guaranteed to exceed max(p, q).

The RSA-S3P protocol runs as follows:

A—B:N (1)
B — A: 220 4 2¢(F) mod N (2)
A — B:n, (3)
B — A:mny (4)

Here z = c|s|ng|ny where s is the session key, ¢ is a strong random number
called a confounder, and n,,n, are random numbers called nonces. The
vertical bar | denotes concatenation of bit strings, with the high order -
bits on the left.

Note that a fresh key N is required for each run of the protocol, but
the function e(k) can remain constant. Only A need verify the strength
of the public key N, although B must check that N has the correct bit-
length. A must forget d(k), the decryption key corresponding to e(k), as
well as p and ¢. Both A and B must forget c. B must forget the whole of
z if the protocol fails at step (3).

In the RSA protocol, the key s and all nonces are chosen by B. Al-
though s need not be strong, it must contain no redundancy and must not
be predictable. Prior knowledge of the value of s which B will choose al-
lows an attacker masquerading as A to determine k. Also note that s must
appear random and so can’t be a public key. Although the confounder c
must be strong, the nonces n, and n, need not be strong, although they
should be significantly harder to predict than k.

3.2 Design Discussion

The presence of ¢ prevents an attacker using a compromised session key
and a copy of message (2) to search for k.

It is vital that there be no redundancy in the plaintext z = c|s|nq|np
which is encrypted in message (2). If there were, then an attacker mas-
querading as A could use this to search for k in time to generate message
(3) correctly and complete the protocol run. Note that consequently z
must be a random number in the range 1... N. The statistical distribu-
tion of the high order bits of ¢ is thus skewed, because N is not a power of
2. However, this effect dies away exponentially with bit order, so the low
order bits of ¢ plus all bits of s cannot contain enough skew to be useful
to an enemy after any achievable number of protocol runs. It must be
infeasible for an attacker to search over the low-order bits of ¢. Otherwise
after s is revealed for a completed run, passive search would reveal k by
a match on message (2).

The purpose of messages (3) and (4) is to convince A and B that they
are not experiencing an active attack. Instead of using the nonces n, and
np in messages (3) and (4), we could use cryptographic hashes of them
instead. But nothing is gained by doing this, and it requires us to exhibit
a cryptographic algorithm with suitable subtle properties, a commitment
which we prefer to avoid. A more dangerous alternative is to allow the
contents of messages (3) and (4) to depend on s or ¢, for example by
encrypting n, or n, under s. This is undesirable: cryptographic use of s
in the S3P protocol may place subtle restrictions upon the cryptographic
or other uses to which s may subsequently be put [10]. Similarly, we could
derive s as a cryptographic hash of z, with similar objections. Worse still
is to place encryptions with s of texts containing redundancy or known
bit patterns in messages (3) and (4). This allows interactive breaking of
the protocol between steps (3) and (4) by an attacker masquerading as
B, who finds s in time to send message (4). Effectively, if s is used in this
way and is not sufficiently strong, then the attacker gets an undetected
guess at k.

It is tempting to try and shorten the protocol run to three messages
by combining the texts of messages (2) and (4) into a single message. This
doesn’t work, because there must be no redundancy in message (2).

3.3 Number-Theoretic Attacks

Factorization of N by an attacker gives the attacker k and, worse, allows
the attacker to obtain old values of s. The public key N must therefore be
many times longer than s, consequently a large number of bits is available
for ng,ny and c. However the protocol must specify the exact bit-length
of N, and B must check that N has the correct number of bits, in order
to ensure that an attacker does not insert an extra factor into /V in order
to gain residue information about e(k).

The term 2¢*) in the second message is required to block the Bleichen-
bacher attack: if this term is omitted, then an attacker masquerading as
B can send 2° mod N in message (2), where e = []; e(k;) and the k; are
candidate passwords. Comparison of n, with z¢/¢k:) for each i now re-
veals the correct k;, and this can even be done in time for the false B
to generate message (4) correctly and finish the protocol run. Variations
are possible in message (2), for example using 3¢(k) as the added term or
using the exclusive-or @ in place of modulo—N addition.

We conclude this section with some remarks illustrating the con-
straints on the function e(k). Suppose that e is a large fixed prime, and

—

F7

consider a broken variation of the RSA protocol where message (2) con-
tains 2¢ + kK mod N in place of z¢®), An attacker masquerading as A
chooses N = pq where p is a prime of the form r.e+ 1. Then the Euler to-
tient ¢(IN) = re(q— 1) so for almost all values of z we have (z6)le=1) =1
(mod N). Exhaustive search following a single foiled active attack now
reveals k.

A similar argument applied to the RSA-S3P protocol shows that if
values of e(k) contain prime factors much less than v/N, then an attacker
masquerading as A can eliminate several candidate values of k£ in a single
run. Suppose p; are small odd primes and the attacker would like to know
which p; divide e(k). Define p = 1+ 2], evenPi» ¢ = 1 + 2]]; 0gq Pi and
arrange the indexing of p; so that p and ¢ are prime. Setting N = pg we
have (almost certainly) that p;le(k) iff (2¢*))P/Pi = 1 (mod N) where
P = 477 ,n ;pi- Other number-theoretic attacks are considered by Patel
[13).

To block attacks of this form it suffices to ensure that all e(k) are
primes with a one somewhere in the high order bits, since the bit-length
of N is prescribed by the protocol and checked by B. This still allows an
attacker to eliminate two values of k per active attack, but no more.

We also need to ensure that the mapping from k to e(k) is, as nearly
as possible, one-to-one. The fact that a and b are relatively prime and
ab > N ensures this. The density of primes below N implies that a prime
will be found on average for i of order In N and almost always for ¢
very much less than V/N. There are other subtle constraints upon the
algorithm for e. For example, if the function e(k) were instead defined to
be the first prime after a+ b.k, then the density of prime numbers implies
that e(k) = a+ b.k + ¢ for small ¢. The fact that i is typically bounded by
a small multiple of In IV gives the attacker information about e(k) mod b.
An attacker pretending to be A can choose N to contain a factor of the
form br + 1, and hence deduce information about z mod br + 1 which
can be used to recover z from message (2) with a greater probability of
success than guessing k.

4 Diffie-Hellman based Protocol

In this section 4 we consider various DH-based S3P protocols which have
stronger security properties than the conventional versions, and which
make less use of superencypherment. We also discuss some novel threats.

™
\

oo
wh

4.1 Basic DH-S3P Protocol Description

Let ¢ be a publicly known large prime of prescribed length, and let g be a
publicly known residue modulo ¢. To prevent various known subtle attacks
[3,9,13] we assume that p = (¢ — 1)/2 is a prime and g is a generator
modulo g, so that g" has period 2p. Note that in case p mod 4 = 1 we can
take g = 2 [8, Theorem 95]. We assume that & has a smaller bit-length
than ¢ and is encoded in such a way that any two candidate values for &
differ in at least three bit positions. The last requirement is for technical
reasons which will be discussed later, but can be guaranteed by adding a
small amount of redundancy to k.

A and B select strong random numbers z,y respectively. By strong
we mean that exhaustive search is infeasible. The basic version of the
DH-S3P protocol runs as follows:

A— B:g®"+kmodg (1)
B — A:g¥modq | ny (2)
A= B:n, (3)

where we write g?®¥ mod q = z = c|s|ng|ny with semantics as in the RSA
protocol.

Both A and B should check to ensure that z # 0 and z # 1. If
2z =0 or z = 1 then the run fails, since otherwise an active attacker could
masquerade as B by using these values in message (2).

The nonces ng, np and the confounder ¢ need not be strong, although
they should be significantly harder to predict than k. We require that z,y
strong and large relative to log, g.

A must forget z and g%, while B must forget y. Both A and B must
forget c. A must forget the whole of z if the protocol run fails at message
(2). The DH protocol ensures that s appears random, but does not allow
it to be chosen or predicted by A or B.

4.2 Design Discussion

Whereas the RSA-based protocol required four messages, the Diffie-Hellman
variant can be done in three, effectively by combining both texts uttered
by B in the same message. Consequently, in marked contrast to the RSA
case, the second message in the DH protocol contains verifiable redun-
dancy in the form of ny. The reason an attacker cannot use this to break
the protocol is that the redundancy is only detectable by an entity who

[

knows z or 4. These are not searchable by hypothesis, and the value of =
is not deducible from message (1) even with a guessed value for k.

The confounder c is required to prevent quadratic residue attacks from
revealing bits of information about s. Note that no superencypherment
by k is required in message (2).

As with RSA, eventual cracking of the chosen public key will give the
attacker k and, worse, allow the attacker to obtain old values of s. For
this reason the public parameter ¢ must be many times longer than s,
and so a large number of bits is again available for ny,n, and c.

The purpose of the Hamming-distance restriction alluded to earlier
upon the encoding of k is to prevent the attacker testing multiple values of
k in a single run. If g = 2, then the attacker knows the discrete logarithms
of small powers of 2, and can use this fact to test simultaneously a set
of candidates for k, each of which differs in only one bit from some value
ko. The attacker sends ko as the first message and inspects g% for all
i less than the bit-length of k, to see if one contains ny. If all candidate
values for k are at least three bits apart then this attack is defeated. For
example including a Hamming code would add only 10 bits to a 1,000 bit
k.

4.3 Choosing the Modulus

In this sub-section, we consider possible alternative approaches to the
choice of g and g. This in turn leads to some variations on the DH-based
S3P protocols.

To avoid narrowing attacks, we require that ¢ be a prime of the form
2p + 1 for some prime p, and that g be a primitive root modulo ¢. Such
parameters are relatively expensive to generate, and in the DH protocol
both A and B must check that ¢, g are suitable values, since using poor
values can reveal k. In the RSA case only A need check. However, while
the RSA protocol needs a new key N for each run, the DH protocol can
use same parameters g and ¢ many times. Consequently the parameters g
and q could be relatively long-term and chosen by A and B jointly prior
to the first run of the protocol, or else chosen, certified and published by
some party, protocol or algorithm trusted for this purpose by both A and
B.

Alternatively, A could choose the public parameters ¢,¢g and send
them to B in the first message. B must carry out a deterministic test to
verify that the parameters have the required properties. A deterministic
test should be used, since many non-deterministic tests assume random
rather than malicious choice of candidate primes. To enable B to carry

Foio %

out such a test efficiently A can send a witness along with the parameters.
However, we still need ¢ to be many times longer than s. If A chooses
g, g each run then it may be more efficient to find a prime ¢ of the more
general form ¢ = rp + 1 where p is a large prime and r is relatively
small, since these primes can be sieved for more quickly, although it is
then more difficult to find a generator g. The previous case corresponds
to r = 2, whereas for this case r = 2" for a small n might be better.
To avoid narrowing attacks when ¢ is of this more general form, take
g™ mod q = z = ¢|s|ng|nyp to force z into the large subgroup, and check
z # 1 and z # 0. Another option is to replace g¥ mod ¢q by g¥ + k mod ¢
in message (2).

A further possibility is where a fresh ¢ of the prescribed length is
chosen in some way for each particular run of the protocol. For example,
the value of ¢ may depend in a deterministic way upon both k£ and an
unpredictable random value 7, so that ¢ = ¢(k,r), where r is produced
during or just prior to the protocol run. This unpredictable value of r
need not be kept secret, and may published by a beacon, or agreed by A
and B using some other protocol. In this case the protocol requires no
superencypherment by k at all. The first message contains just g* mod ¢
with the provision that trial values for z must be picked and discarded
until one is found for which the high order bit of ¢g* mod ¢ is zero, and
similarly for y. This ensures that the protocol run gives no information
about which ¢ was used, and hence leaks no information about k. By
forcing all q(k,r) to have high-order bits 100...0 for some fixed number
of zeros, we can make the probability of a high order one in ¢* mod ¢ as
small as desired.

4.4 Modified DH-S3P Protocol

We conclude this section by considering in more detail the case where
the random number r is produced during the S3P protocol run itself.
The simplest method is for A to send 7 in the first message along with
¢* mod ¢. However the protocol which follows is designed to illustrate a
more paranoid scenario. We assume that A and B wish to use part of the
value of s to settle a bet [16]. Even if they have no doubt of one another’s
honesty, they must be able to prove to a sceptical third party that neither
of them has the capability to influence the value of the shared secret s
in a predictable way. The random values such as z,y actually generated
during the course of the protocol run must be destroyed, and so cannot
subsequently form part of an audit trail.

S I R

A picks strong random numbers m, z and y'. B picks strong random
numbers m’/,z’ and y. In the protocol description which follows, ¢ =
q(0|lm, k), ¢’ = q(1|m’, k) and g,¢’ are the corresponding generators. We
assume that ¢ = r.p+1,¢' = '.p' + 1 for large primes p,p'. The functions
unzip0 and unzipl denote the even and odd-numbered bits respectively.

The DHm-S3P protocol runs as follows:

A— B:m|g¢g%modg (1)
B — A:m' | unzip0 ((g')ml mod ¢ | g¥ mod q) (2)
A—B: (g')yl mod ¢ (3)
B — A : unzipl ((g')ml mod ¢' | ¢¥ mod q) | np (4)
A — B:in, (5)

Here z = c|s|ng|ny = (¢"*¥ mod q) @ (¢" " mod ¢') where ® denotes
bitwise XOR. Effectively the DHm-S3P protocol runs two instances of
the basic protocol back to back, but reveals information only about the
exclusive-or of the two results. This means that an attacker must crack
discrete log for both ¢ and ¢’ simultaneously, rather than searching log
tables one at a time. The unzip functions force A to commit y' before
learning g"*¥, but after B commits to y.

5 El Gamal based Protocol.

In this section we consider the implications of using EG in place of DH,
when the requirement is to transfer an existing secret rather than to agree
a new and unpredictable secret. The EG variation of the S3P protocol
allows B to pick the session key and nonces, as was the case in the RSA
protocol. The EG-S3P protocol runs as follows:

A— B:¢g*+kmodg (1)
B—A:¢gmodq |z g*®¥ modq | ny (2)
A— B:in, (3)

where z = h|s|ng|ny as for the DH protocol, except that instead of the
confounder ¢, z contains a known fixed bit pattern h chosen so that it
is not invariant under shifts or subtraction from ¢. The constraints on
h will be further discussed below. The password k is encoded as in the
DH protocol. As in the Diffie-Hellman case, A and B should check that

O 12— b

g**¥ ¢ {0,1}. A should also check that z contains the expected value for
h.

A must forget z and g%, while B must forget y. A must forget the
calculated value of ¢?®¥ and z if the protocol run fails at message (2).
Apart from this, h need not be kept secret. The EG protocol allows s as
well as ng,np to be chosen by B so as to contain redundancy or known
text.

The El Gamal variant shares some features with the RSA case and
some with the DH case. As with DH, it is a three-message protocol and
the middle message must contain redundancy. In the RSA protocol the
value of s is chosen by B but s must contain no redundancy discernible
to the attacker: otherwise k is in danger. The DH protocol ensures that
s appears random, but does not allow it to be chosen or predicted by the
participants. The EG protocol allows B to choose s, and for s to contain
redundancy in any form desired. Indeed for the EG protocol even prior
knowledge of s by the attacker does not assist in an active attack against
k. Also, in the EG protocol n, and n, may contain redundancy or known
text. As with the other protocols, the nonces n, and n, need not be strong,
although they should be significantly harder to predict than k. However
in the EG protocol h is not a confounder at all. Instead, it contains
redundancy to prevent a person in the middle modifying messages (2) and
(3) in such a way that the protocol appears to complete successfully, but
with A and B disagreeing on s. For example an attacker can multiply z by
two in the second message and shift n, and n, one bit to the left and right
respectively, with a 50% chance of escaping detection. The result is that
s is shifted left one bit in transmission. Division and complementation
are also possible. Such attacks can be prevented by placing a fixed bit
pattern in h, for example a single 1-bit with n 0-bits on either side will
suffice, provided 27" is small relative to the chance of guessing k.

The EG protocol, like the DH protocol, can use the same parameters
g and ¢ many times. As in the DH protocol, both A and B must check
that g, g are suitable values, since using poor values will reveal k. As with
RSA and DH, eventual cracking of the chosen public key will give the
attacker k and, worse, allow the attacker to obtain old values of s. For
this reason the public key must be many times longer than s, and so a
large number of bits is available for ng, n, h.

An alternative approach (which we do not pursue here) is to obtain
ng,ny from ¢?®¥ as in the DH protocol, rather than from z.

6 System-level Considerations

In this section, we discuss what should be done when an active attack is
detected, and introduce the notion of a robust protocol wrapper. We also
discuss the system context for the deployment of S3P protocols, and the
hardware support required.

6.1 Action following a Detected Attack

An important feature of all the S3P protocols we consider is that it is
not acceptable to ignore an active attack. If active attacks are ignored,
the attacker can make one active attack for each possible k, and will
eventually succeed. If suitable emergency action is taken in the event of
an active attack being detected (eg switching to a more expensive but
physically secure channel, or to another, previously agreed, password,
after a certain number of failed runs), then the attacker never gets enough
information to improve his chances of guessing correctly by more than
some previously agreed security parameter.

In an extreme case we can confine the attacker to two guesses, one
with each of A and B. In a less extreme case, with (say) a million equally
likely values for &, we could choose to allow the attacker 32 guesses with
each of A and B. The attacker has less than a one in ten thousand chance
of obtaining the true value of k. Of course, this strategy requires some
assumptions about the physical locations of A and B, and their ability
to remember the number of active attacks detected over an appropriate
time scale such as the expected life of the long term password k. We also
need to specify, in any particular system context, how these numbers are
stored and whether they are secret.

In particular, if the protocol is used by many pairs of participants,
then an attacker can make a small number of attacks against each of a
very large number of passwords, and will almost certainly succeed against
one. The effects of this form of penetration, and the countermeasures
for containing it, depend upon the interactions between the system-level
protocols for which the strong shared secrets are used.

An attractive alternative to using a deterministic counter and a thresh-
old is to invoke emergency action with a certain constant probability after
each detected attack. For example, if we set this probability at 2% then
the alarm will almost certainly be raised after 70 detected attacks, regard-
less of who detects them. Since we assume that all parties who use the
S3P protocols are able to generate good random numbers, this stochastic
technique imposes no new system constraints.

A

6.2 Robust Protocol Wrappers

The primary system context which we consider for the S3P protocol is
one of paranoia rather than hostility. In other words, we assume that the
world is full of very clever and hardworking attackers, but at the same
time we are confident that things will go right most of the time. In effect,
we assume that the S3P protocol is nested inside another protocol, which
we call the wrapper, and that the outer wrapping protocol works nearly
all the time unless there really is an active attack by an extraordinarily
malicious and ingenious entity. The inner S3P protocol is intended both
as a trip-wire to indicate whether the outer wrapper has been deliberately
breached, and as a last-ditch defence.

A primary purpose of the outer protocol wrapper is to ensure that the
inner S3P protocol is under no accidental misapprehension about whether
an offered bit pattern represents an attempt to engage in the S3P protocol,
and if so in which run, at what stage, and as whom. A similar two-
layer scheme for distinguishing accident from malice was used by Lomas
and Christianson [11] and a related notion of robustness is discussed by
Anderson and Needham [2]. The S3P run must fail if any such presented
bit pattern is incorrect, otherwise the enemy gets a free guess.

We also assume that “eventually” a run of the protocol which does
not proceed will be regarded as having failed by at least one of the par-
ticipants. However this timeout may be very long. One reason for this
is that we do not wish to have too many false alarms, but there is an-
other reason. We wish also to allow a system context in which a run of
the S3P protocol is transported by a slow non-cryptographic outer pro-
tocol such as fax, snail-mail, or sneakernet. This gives rise to two further
considerations: re-entrancy and interactive breaking.

If an S3P protocol run can take a long elapsed time, then the S3P
protocol must be re-entrant. The total number of active runs (plus the
number of previously detected failures) must be less than the threshold
value for the number of active attacks which we are prepared to toler-
ate. This ensures that all runs which terminate successfully are safe. In
particular, runs can be pipelined or used back-to-back between the same
two parties on tamper-proof hardware such as smart cards which are kept
locked up when not in use.

The possibility of a long elapsed time also provides one motivation
for our consideration of the possibility that a value of s could be broken
between steps of the S3P run, for example if it were used to encrypt a
known plain text as part of the S3P protocol. In any protocol involving
key agreement, it is possible to specify the agreement of a much longer

iS5 %

shared key than required, and to forget all but the required number of
bits. Many applications of other published protocols would benefit from
doing this.

Just as we do not assume s to be strong, neither do we require k to be
weak: although the S3P protocols were originally designed to work with
passwords k drawn from a space of order 220 possibilities, the protocols
also have particularly nice properties when a 40-bit shared key k is being
traded up to a series of 120-bit keys s;.

6.3 Tamper-proof Hardware Platform

One possible system context for S3P is where we wish to ensure that the
right person is using a particular box. The box may be designed to be
used by several different people (eg a workstation in a shared area) or
by only one person (eg a mobile telephone or a hand-held authenticator).
The box may be stateful (eg able to retain session keys) or stateless (all
mutable information is deliberately erased between uses). However a box
may be stolen or tampered with. We wish to ensure that the box can only
be used by a person who knows the correct password.

To deploy the S3P protocol we assume that the box is tamper-evident,
and unviable to forge. We assume that the user checks the tamper-evident
seal before entering the password at the start of each run. We assume that
the box forgets the password once the S3P protocol run ends or fails, and
that while the run is in progress the box is tamper-proof, in the weak
sense that that the box will irrevocably destroy (forget) secrets rather
than allow them to be read. This property might require that the box is
used in a different environment from the one in which it is stored between
runs.

Under these assumptions, the S3P protocol suffices to ensure that the
box cannot be used by a person who does not know the password. In
the case where the box may be used by more than one person, each user
may have a different password. Note that tamper-proofing is not required
except while the protocol is running. Tamper-evidence suffices the rest
of the time even in the stateful case. State which persists between runs
can therefore be used to support the outer wrapping protocol, so long
as the state of the box between runs can reveal no information about
the password. However the inner protocol must not rely upon the outer
protocol preserving state correctly. This point will be illustrated at the
end of the section by discussion of a reflection attack.

F-lg

6.4 Blocking Reflection Attacks

We conclude this section with a brief consideration of how to block a
reflection attack. The inner S3P protocol is assumed to be stateless, and
so a new run cannot reliably determine which other protocol runs are still
active when it begins. Suppose that A attempts to run the protocol with
B. The attacker takes the first message from A and replays it to A as
if it came from B initiating a different run of the protocol. A’s reply to
this is in turn reflected as a reply to A’s initial message, and so on for
the subsequent messages. If A is not careful, she will end up sharing a
fresh strong secret with herself, rather than with B, in violation of our
requirement that the other intended participant must actually be involved
in any apparently successful run.

Of course, this attack cannot actually succeed against the protocols
as we have described them here, since A always sends the odd-numbered
messages and B the even. But suppose we wish to allow either party to
initiate the protocol, possibly re-entrantly, so that A may legitimately use
k to speak the lines attributed to B in the script.

We can block the reflection attack by associating the nonces firmly
with principals. In respect of each password, one party is (by mutual
agreement) the a—end and the other is the b—end. Suppose that Carol
is the a—end and that Ted is the b—end. Then whenever Carol has to
place a nonce in a message she always uses n,, regardless of whether she
is playing the part of A or of B.

7 Discussion

The protocols given in this paper are provocatively weak. For example, we
use bit selection in place of a hash function, modulo addition to perform
superencypherment, and a base of 2 for certain exponentiations.

This weakness is quite deliberate. From a practical point of view, our
protocols could doubtless be strengthened by the judicious inclusion of
“one-way” hash functions, or the use of more complex forms of superen-
cypherment and convolution. We have instead put forward very concrete
versions of the protocols, with primitives which rely upon specific number-
theoretic relations between, for example, modular exponentiation, and ad-
dition or “unzip”. Following Ockham, we wish to understand these simple
protocols before we propose anything more complicated.

We have not provided correctness proofs for these protocols here. This
is an area in which we anticipate future progress. The major present dif-
ficulty lies in determining precisely how the threat model interacts the

c- " &

desired properties of the protocol with those of the underlying cryptoal-
gorithm. For example, one standard reductio approach might be to prove
that, if the RSA-protocol reveals more information than it should about
k, then it also gives an attacker the ability to decrypt unpredictable RSA
cyphertexts. However attacks in the spirit of Bleichenbacher show that
such an outcome need not constitute a break of the RSA cryptoalgorithm,
and hence ought not simply to be presumed counterfactual. Conversely, a
protocol continues to satisfy the assertion of a correctly proved predicate,
even after the protocol has been broken by another means.

On the positive side, cryptographic innovations which we claim for
this paper include the successful use of RSA as a vehicle for encrypted
key exchange, and the modified versions of the DH protocols given in
section 4.4. As a minor point, we also draw attention to the lack of su-
perencypherment by k in the second message of the basic version of our
DH protocol. However, we regard as primary our original contribution to
consideration of the system context given in section 6, including the in-
troduction of robust protocol wrappers and their application to the case
of “stateless” platforms.

The protocols in this paper owe an obvious debt to the original dis-
cussion by Bellovin and Merritt [3], which opened up a number of fertile
research directions. We make no attempt to give a systematic account of
all this related work here. (An excellent roadmap is provided by Jablon’s
website at http://www.IntegritySciences.com.)

Some of the material in this paper appeared in preliminary form in
University of Cambridge Computer Laboratory Technical Report 458
(1998). We would like to thank Daniel Bleichenbacher, David Jablon,
David Wagner and everyone else who provided attacks and related com-
ments on these early versions of the protocols.

8 Conclusions

Although the primary purpose of the S3P protocol is to share strong se-
crets, the design of the protocol does not assume that s is strong. The S3P
protocol can also be used simply to allow a remote authentication service
to authenticate a user to a “stateless” host which is local to the user. In
this case s may be an authenticator for the audit trail. In our design we
make no restrictions upon what the shared secret s is used for once the
S3P protocol run has ended: s may be revealed, used as a one-time pad, a
cryptographic key, as a salt or an initial value. At a slightly more general
level, we remark that it appears very difficult abstractly to model secu-

& &

rity protocols in a formal way that takes adequate account both of the
cryptographic properties assumed, and of the security service provided.
Protocols may legitimately be used in ways not explicitly considered by
their designers, and the safety of the resulting applications can depend in
an unknown way upon the safety of obscure number-theoretic hostages
which were abstracted away in the construction of the threat model.

Our S3P protocols make no use of hash functions or symmetric cryp-
tography. However our protocols rely completely for their properties upon
the security of the public key systems used. Consequently it is necessary
for the moduli to be uncrackable for at least the lifetime of all secrets
(weak or strong) used or agreed with that modulus. This provides a suf-
ficient number of bits to provide a strong secret and a strong confounder,
together with two nonces. In contrast with the confounder, the nonces can
be searchable, so long as the most likely nonce is less likely than some sys-
tem threshold parameter. Again, we remark at a general level the need to
balance the bit-budget carefully when tuning the performance of security
protocols which use public key cryptography.

Our S3P protocols also rely upon the ability of those using them to
generate irreproducible random bit patterns, and to delete information
irrecoverably. These are both interesting technical challenges. In particu-
lar the task of finding a suitable source of randomization, upon which (in
the context of a particular system) it would be impractical to eavesdrop
is one which would repay further study. As a final remark of a general
nature, we stress the importance of explicit consideration, when specify-
ing the threat model, not only of the hardware platform supporting the
security protocol, but also of the system context, and the security policy
under which the hardware will be configured.

June 2000 Contact: B.Christianson@herts.ac.uk

% F-iq

References

10.

11.

12.

13.

14.

15.

16.

Anderson, R., Lomas, M., 1994, Fortifying Key negotiation Schemes with Poorly
Chosen Passwords, Electronics Letters, 30(13) 1040-1041.

. Anderson, R., Needham, R., 1998, Programming Satan’s Computer, Springer

LNCS 1000.

Bellovin, S.M., Merritt, M., 1992, Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks, Proc IEEE Computer Society Sym-
posium on Research in Security and Privacy, Oakland 92, 72-84.

. Diffie, W., Hellman, M., 1976, New Directions in Cryptography, IEEE Transac-

tions on Information Theory, 22(6) 644-654.

ElGamal, T., 1985, A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory, 31(4) 469-
472.

Gong, L., 1995, Optimal Authentication Protocols Resistant to Password Guess-
ing Attacks, Proc 8th IEEE Computer Security Foundations Workshop, 24-29.
Gong, L., Lomas, M., Needham, R., Salzer, J., 1993, Protecting Poorly Chosen
Secrets from Guessing Attacks, IEEE Journal on Selected Areas in Communica-
tions, 11(5) 648-656.

Hardy, G.H., Wright, E.M., 1978, An Introduction to the Theory of Numbers,
5th edition, Oxford University Press.

Jablon, D.P., 1996, Strong Password-Only Authenticated Key Exchange, Com-
puter Communications Review, 26(5) 5-26.

Kelsey, J., Schneier, B., Wagner, D., 1998, Protocol Interactions and the Chosen
Protocol Attack, Security Protocols 5, Springer LNCS 1361, 91-104.

Lomas, M., Christianson, B., 1995, To Whom am I Speaking? Remote Booting
in a Hostile World, IEEE Computer, 28(1) 50-54.

Lucks, S., 1998, Open Key Exchange: How to Defeat Dictionary Attacks Without
Encrypting Public Keys, Security Protocols 5, Springer LNCS 1361, 79-90.
Patel, S., 1997, Number Theoretic Attacks on Secure Password Schemes, Proc
IEEE Computer Society Symposium on Research in Security and Privacy, Oak-
land 97, 236-247.

Rivest, R., Shamir, A., Adleman, L., 1978, A Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems, Communications of the ACM, 21(2)
120-126.

Steiner, M., Tsudik, G., Waidner, M., 1994, Refinement and Extension of En-
crypted Key Exchange, Operating Systems Review, 29(3) 22-30.

Wheeler, D., 1997, Transactions using Bets, Security Protocols 4, Springer LNCS
1189, 89-92.

Secure Sessions from Weak Secrets

(Transcript of Discussion)

Bruce Christianson
University of Hertfordshire

This story starts with a specific protocol, which we thought up in the Eagle
back in 1997, and which was inspired by an earlier Security Protocol Workshop®.
Here'’s the protocol, which is intended to leverage a weak shared password k up

into a fresh random strong shared secret s:

A— B:(N,e) an RSA public key

B — A:(2°+k)mod N where z = c|s|ng|n is random
A— Bing A knows k,d

B— A:ng

We thought it would be nice if we could prove that our protocol had the
properties which we wanted to have. Then we discovered that there was a gap
between what we could prove (or what other people did prove) and the kind of

property that we actually wanted.

The Scenario. Here is the scenario in a little more detail. Alice and Bob have
already agreed a weak secret (which I shall refer to as a password) and they
want to agree a fresh strong secret. Neither of them can preserve both (1) the
secrecy and (2) the integrity of a (3) strong bitstring in between protocol runs,
but they both can meet any two out of these three requirements.

I won’t go at any length into the motivation for this restriction. Maybe Alice
or Bob is moving from one piece of hardware to another in between protocol runs.
Maybe the hardware is unsecure between runs. Maybe Alice and Bob really are
human. But a good application to have in mind for this kind of protocol is the

! Blake-Wilson and Menezes, Entity Authentication and Authenticated Key Transport
Protocols, LNCS 1361, 137-158.

task of ensuring that the right person is using something like a mobile telephone.
We look into the camera on telephones, we touch them with our fingertips, we
type PIN numbers into them, we speak into them, it’s a biometric paradise.
Local authentication shouldn’t be a problem.

However the best way to ensure that an attacker can’t get an important
secret out of the telephone when it’s not being used is to ensure that there are
no secrets in there in between runs. So Alice checks the hardware for tampering,
types in her password and then runs the protocol with Bob (who might be a
server) to agree a strong fresh key and perform mutual authentication. Then she
can download all her bits.

This sort of scenario places further assumptions on the hardware: that the
hardware can create good random numbers, do cryptography, exchange messages
(subject to active attacks) and forget secrets. This last assumption is particu-
larly problematic at the moment. I also assume that the implementations of the
protocol are good, and in particular Alice and Bob perform all the specified
checks, on the correct bit patterns.

Any assumption is really a statement that certain threats are going to be
ignored. I'll come back to this point later. However subject to the assumptions
listed there, the position paper contains several protocols that (we assert) do
more or less what we want.

At the end of the run, Alice and Bob know that each of them has engaged
in a protocol run with the other, and that they now share a fresh strong secret
with each other and with nobody else.

Questjon: What are you assuming about the active attacker?

Reply: We assume that Eve can’t access Alice or Bob’s hardware while
they’re actually using it, and that Eve doesn’t know the real password. Since
the password is weak, the attacker could get lucky and guess it correctly. Then

there’s no hope. But we want to limit the guessing attack by forcing it online.

Hash Functions with Mystic Properties. We looked at what was done by people
who analyse these kinds of protocols. The protocols which they analysed had

things like strong hash functions in them, which seemed to be there just in order
to make the proofs work. Essentially, if you assume that the hash functions had
certain mystic properties, then the protocol is correct. (Or equivalently, if the
protocol doesn’t have the required properties then the hash functions were not
magic after all.)

But these papers didn't quite provide implementations for any genuinely
magic hash functions. And we rather wanted to analyse the protocol that we
actually had, which generates a particular set of bits at each stage. We can even
tell you exactly what these bitpatterns are.

I'm one of those philistines who likes to understand a simple protocol before
trying to understand a more complicated protocol. And as with any countermea-
sure, I want to know what value-added security the hash functions are actually
buying. What threat are they protecting against. What attacks would succeed
if they were not there?

Here’s an example. The protocol I started with uses n, and ny as verifiers
to prove knowledge of the shared secret s. Now versions which are formally

analysed? usually use (in effect)
ha(2), he(2), hs(z) in place of ng,np, s.

Here the h, are a family of hash functions with the necessary mystic properties,

which we can deduce by looking at the proof.

There’s no harm in the verifier space being searchable, so long as the verifier
is much harder to guess than the password k. On the other hand, hash function

source values mustn’t be searchable.

2 For an excellent example of an analysis of an RSA-based protocol similar to the
one at the start of this talk, see MacKenzie, Patel and Swaminathan, Password-
Authenticated Key-Exchange based on RSA, Proc Asiacrypt 2000, LNCS 1976 pp
599-613. For an analysis of a protocol based instead on Diffie-Hellman see MacKen-
zie, More Efficient Password-Authenticated Key-Exchange, Proc Top Crypt 2001,
LNCS 2020 pp 361-377.

This gives the implementer a dilemma. If the implemetations of the hash
functions really do have the properties required of the idealizations, then the
more bits input to the hash the better.

But now suppose it turns out that my implementation of h, {(and remember,
this implemetation is not supplied with the kitset and so isn’t covered by the
warranty) is not really one-way. Then the protocol with the hash functions is less
secure than the version without them. Indeed, the more things are added to the
hash input, and the less searchable the verifiers are made, the more information
the protocol leaks.

This sort of dilemma is a genuine practical problem. There are some valuable
things to be learned from looking at practical details. For example, it’s often a
good idea to agree a key that’s much longer than the one you actually need, and
then throw most of it away, but you won'’t learn this if you just follow the logic,
which usually doesn’t address bit-budget issues carefully.

A reasonable compromise, given that z is much longer than we need, would
be to set ng = hqe(2,) etc, where now z = z.|2s|24|25. But of course this in turn

changes the nature of our reliance upon assumptions about the hash functions.

Changing Assumptions. Another reason for trying to keep protocols very simple
is that a protocol implementation which works will often end up being used in
a slightly different context. (laughter) It’s so tempting isn’t it.

For example I might decide that I don’t want to assume that the fresh strong
secret which the protocol shares is actually strong: I might want to use the S3P
protocol to agree one or two bits that I'm going to hand off to another protocol
to settle a bet®. I might not want to assume that the secret which I'm agreeing
is going to be used as a secret key. It might be used in a way that makes it
public as soon as it's agreed, for example as a shared pseudorandom seed. I
might not want to assume that the password is weak. There was a time when I
might have wanted to assume that the password was exactly forty bits long, and

that I was using this protocol to agree a 128 bit key. I might want to change my

3 D. Wheeler, Transactions using Bets, LNCS 1189, 89-92.

assumptions about what can be done in between runs with the hardware, and
about interactive breaking attacks.

And as I said earlier, from the analysis point of view, each of my assumptions
really corresponds to a constraint on the threat model. When I say, the system
can create random numbers, what I'm saying is my threat model doesn’t consider
an attack where the attacker learns a later value of the random seed and uses
that to work out what the pseudo-random sequence was yesterday.

When a proof assumes tamper-proof hardware that means that the proof
doesn’t consider any threat that involves tampering with the hardware. And
when a proof assumes magic hash functions that means that the threat model
just doesn’t consider any cases where the magic wears off, potentially even years
later.

Changing the threat model changes the properties which we need the hash
functions to have. Inserting hash functions in such a way as to make a protocol
have one set of properties, very often mucks up the other properties that the
simple protocol might have had if the magic hash functions hadn’t been added. I
don’t mind having to re-prove properties under new assumptions, or even having
to restate the properties slightly. But I really don’t want to have to re-implement
the protocol. Think of the testing.

And at some point we really do have to implement these things. So how do
we model the protocol, and how do we model all the threats, in such a way as

to capture all the security properties that we might want it to have?

Changing Abstractions. The essential problem is that in real life we need to
consider security protocols at several different levels of abstraction, and the
various refinements which we need to make to get to an implementation typically

do not respect the abstraction boundaries*

4 For more on this theme see for example Chapter 10 of the book “Modelling and
Analysis of Security Protocols” by Ryan, Schneider et al, Addison-Wesley 2001,
ISBN 0201674718.

For example, the protocol I showed you at the beginning can be subjected
to a narrowing attack. Suppose the part of Alice is played by Eve, and Eve
deliberately chooses a bad value of N, which forces Bob into a narrow semigroup.
For example, if Eve could choose N = pg where p = o-e+1 then (z¢)7@=1) mod
N =1, and so Eve can find the password by a process of elimination, possibly
quickly enough to complete the protocol run.

One cure for this is to ensure that e is relatively prime to ¢(IV), for example
by requiring that e be a prime with e > N, or alternatively® with e > N and
N mod e neither zero nor a divisor of N.

But it’s really very hard to see how to model the protocol in a way that
captures all the horrible potential for interactions between the number theory
used by the cryptography and the protocol interleaving caused by the application
semantics®.

Another example is the shifting attack on the ElGamal version of the S3P
protocol (this attack is described in section 5 of the position paper). Adding
hash functions with appropriate properties would avoid the need to consider
interaction attacks like this one explicitly. But understanding the properties
which the hash function needs to have is enough to see how to block the attack.
Then we don’t need actually to put the hash functions into the implementation
at all.

The dangerous temptation is to attempt to define away such, by inserting
protocol elements such as random hash functions in such a way as to “remove”
the possibility of bad interactions, and then to prove properties of clean abstrac-
tions instead of of the implementations which refine them?.

5 If prime e divides ¢(N) then either e® divides N (impossible if e > N) or else
e divides p — 1 for some prime factor p of N. But then pmode = 1, Nmod e =
N/pmod e = N/p < e < p. The condition is sufficient not necessary: 7 is relatively

prime to ¢(15) = 8 but 15 mod 7 = 1.
6 For a splendid example in the symmetric key case see the presentation “Title?” by

Anderson and Bond in these procedings.
7 1 should make it clear that the people who actually do the formal proofs are careful

to a fault about making clear their limitations. The lovely papers by Phil Mackenzie

But there’s another, possibly deeper, problem arising from the necessary use

of abstractions.

Protocol Layering. When we deploy protocols like S3P, we typically want to
layer them in with other protocols, or compose them with some sort of optimistic
regime® or with some kind of fault-tolerance®, or to hand off the artefacts (such
as a fresh session key) to some other protocol which does something else with it.
This introduces further subtleties into the modelling process.

I want to talk in a bit of detail about one important case, where the S3P
protocol is used as a tripwire. In this case the S3P protocol is enclosed within an
outer protocol wrapper. The outer protocol header on the front contains all the
robustness fields that good sense says should be there: which protocol is this,
which run does this message belong to, which message is this in that run, what’s
the hash of all the shared protocol states you’ve been in during this run, and so
on.

Now there may be good reason to believe that this outer wrapper is itself
a completely secure protocol, so there’s no way that that Alice could not be
talking to Bob to begin with. The inner key agreement protocol is being used
as a tripwire to find out if anybody has breached the outer defences. It’s both
a tripwire and last line of defence: even if Eve can get into the Castle she still
can't get into the Keep, and now Alice or Bob knows that she is inside, and
maliciously so. If Eve trips over the tripwire then it’s not an accident, it means
she climbed over the dyke, swam the moat, scaled the battlements, and then
tripped. Eve can’t claim she was just on her way home. (laughter)

But this means that we need to have very clear models of what constitutes a
failure. What constitutes somebody going over the tripwire? When does some-

which I mentioned in an earlier footnote, and the book “Modelling and Analysis of
Security Protocols” by Ryan, Schneider et al, are models of good practice in this

regard. The problems with maladapted refinement and abstraction boundaries tend

to occur further along the food chain.
8 LNCS 2845, 74-95.
9 LNCS 2133, 155-169.

body intend to present a particular bit pattern to this protocol? What if a

message got corrupted accidentally in transit?

Suppose Alice sends a message, it doesn’t seem to get through, Alice sends
it again, OK, now Bob receives the same message twice: is that a replay attack?
Or just a protocol failure at a lower level? How do we model the interactions
between the different levels of abstraction here? At what level(s) of abstraction

do we log events?

What is a timeout, at the S3P level of abstraction? These messages may be
travelling by fax, or by post, or by courier. There’s a huge conceptual difference
between a timeout of three seconds and one of three Megaseconds. It’s not just
a matter of putting a larger integer in a configuration file, it’s a qualitatively
different threat model. Similar remarks apply to interactive breaking and the

level of re-entrancy, and I'll come back to this point in a minute.

Non-deterministic Failure Detection. What should we do when we detect a fail-
ure? One possibility is the Strangelove scenario: set off a doomsday device that
will immediately bring the world to an end. That seems to be what usually
happens in the model. But in real life, protocol failures are bound to happen
eventually, probably more than once. Sometimes it’s significant, and sometimes
it’s not. Somtimes we just have to push the car back up the cliff and see if it

happens again.

For example, consider Eve’s fundamental attack of attempting to guess the
password k. It really isn’t acceptable to allow no wrong guesses at all. Even users
as experienced as Alice and Bob do occasionally mistype. But if you have a fixed
limit (say three wrong guesses on a single user ID and you're out) then Eve can
make just two guesses for each user. Provided there are enough users and their
passwords are chosen semi-independently then Eve is sure to find somebody’s

password, and then she is in.

So there are advantages to taking non-deterministic actions on failure detec-

tion, because then the defenders don’t need to collude. If everybody follows the

same probabilistic regime, then the alarm is raised with the acceptable degree

of certainty after a distributed guessing attack above a certain threshold level.

Once again, the combination of layering of abstractions and non-determinism
at some of the layers, means that it is not easy to see how to do the modelling
with the current approaches.

Remember that non-determinism is a property of the model, the abstraction,
not something which is “really” there in a fielded system. Consequently there’s
the potential for horrible interactions between the abstractions, just like the

interactions between number theory and application semantics.

Re-entrancy. We've got to allow re-entrancy, because the S3P protocol might
legitmately be run several times back to back. Alice establishes a one-way session
with Bob, Bob immediately establishes a call-back channel with Alice, and so
on. But maybe what appears to be Bob is actually Eve, using message reflection
to get Alice to act as an oracle and tell Eve what the correct response is (see

section 6.4 of the paper).

In this case, at the end of the run Alice shares the secret only with herself.
True, nobody else knows the secret, but remember one of our primary security
requirements was that if Alice thinks she has successfuly completed a protocol
run with Bob then she must have done so. Now Alice is going to be willing
to swear that Bob was alive at 9.30 yesterday evening, when in fact he was
murdered that morning.

But we need the boxes running the protocol code to be stateless, or rather
we don’t want to assume that the state mechanism is reliable. We don’t want to
have to retain or correlate state between protocol runs, except for performance

reasons.

There are various nice solutions, but which the usual models would not only
obscure but actually make harder to use. You've got to model the state at dif-
ferent levels of abstraction, and you’ve got to model persistence of state at each

level, and the interactions between the levels.

The idea is that protocols should proceed optimistically, to get good perfor-
mance. Verification can usually afford to go more slowly'® Usually everything
will turn out to have worked OK, and when you find out that it didn’t you have
a possibly non-deterministic action'! which you take when that happens.

In this way you can even tell whether the violation of the inner state is

deliberate or accidental'?, a point which the conventional analysis doesn’t catch.

Every proposition is affirmative, therefore no proposition is negative. To con-
clude, here is another version of the RSA protocol which I showed you at the

begining of this talk.

A— B:(N,e)

B A:(z¢+k)mod N,w

A — B:ing,v where v¢ =w (mod N)
B A:n

Usually in order to prove that a protocol like this is correct I would prove
something like P = @, if Eve can learn more about the password than the fact
that her guess was wrong, then RSA is broken in the sense that Eve can decrypt
unpredictable plaintext, or something like that. But for this protocol it is trivial

to prove the proposition @ in the form:

Y(N, e) chosen by Alice
Vw chosen by an independent referee and given to Eve

Eve can determine v : v¢ =w (mod N)

whence P = @ for any P.
Far from establishing the correctness of this particular protocol, however, this
‘proof’ doesn’t help at all to determine whether or not the protocol is broken.

10 Again, see LNCS 2845 pp 74-95 for details.
1 Remember once again, that non-determinism is a property of the abstraction, not

the thing. See LNCS 1796, pp 60-64.
12 Mark Lomas and Bruce Christianson, To Whom am I Speaking?, IEEE Computer

28(1) 1995, 50-54.

Is it? I wanted to to finish by having a dig at the random oracle model but I'll

leave the details as a homework exercise.

