
Improving Learning for Embodied Agents in Dynamic

Environments by State Factorisation

David Jacob, Daniel Polani, Chrystopher L. Nehaniv
Adaptive Systems Research Group, University of Hertfordshire

College Lane, Hatfield, Herts AL10 9AB, UK
D.Jacob, D.Polani, C.L.Nehaniv@herts.ac.uk

Abstract

A new reinforcement learning algorithm de-
signed specifically for robots and embodied sys-
tems is described. Conventional reinforcement
learning methods intended for learning general
tasks suffer from a number of disadvantages in
this domain including slow learning speed, an in-
ability to generalise between states, reduced per-
formance in dynamic environments, and a lack
of scalability. Factor-Q, the new algorithm, uses
factorised state and action, coupled with mul-
tiple structured rewards, to address these is-
sues. Initial experimental results demonstrate
that Factor-Q is able to learn as efficiently in dy-
namic as in static environments, unlike conven-
tional methods. Further, in the specimen task,
obstacle avoidance is improved by over two or-
ders of magnitude compared with standard Q-
learning.

1. Introduction

Reinforcement Learning (hereafter RL), in its var-
ious forms, has long proven to be useful in
many areas of Machine Learning, in particular,
robot control of various kinds (Maes and Brooks, 1990,
Morimoto and Doya, 1998, Smart and Kaelbling, 2002).
It works as follows: having decided on a task for the
agent to learn, we reward it after every action by send-
ing it a signal (a real value) which tells it how well it
is performing. If we correctly design the structure of
the reward function, the agent will perform the desired
task as a by-product of attempting to maximise its rein-
forcement reward; the better the task performance, the
greater the reward. However, RL’s versatility (an agent
can be trained by RL to any task which can be repre-
sented as a Markovian decision process) is obtained at
a significant cost: classical RL methods require a very
large number of training examples to arrive at a good
policy, which presents practical difficulties for many real-
world applications.

It has been shown that learning time increases as a
(low-order) polynomial with the size of the state-space
(Koenig and Simmons, 1996), which is in turn exponen-
tial in the number of state-variables. One basic approach
to improving performance is therefore to attempt to re-
duce the dimensionality of this space. Clearly, in the
general case, this is defined by the structure of the agent
and environment. But a concrete embodied agent de-
fines in a natural way a structuring of the state-space,
in particular the existence of a causal relation between
sensor observation, action and reinforcement. Classical
RL, being designed for the general case, does not and
cannot assume anything of this kind. The identification
and exploitation of this causal relation, then, is the basis
of the current work.

Generality of application, as we have seen, is one of
the chief strengths of the RL paradigm. However it is
also the cause of perhaps its greatest weakness, an inabil-
ity to generalise. This is because a truly general learning
process cannot make any prior assumptions about the ef-
fects of the same nominal action taken in different states.
In other words, if in half the states in the world, action 1
moves the agent north and action 2 rotates it clockwise
90 ◦, and in the remaining states action 2 moves it north
and 1 rotates it, it makes no difference to a classical RL
algorithm: it will learn a task just as quickly as if all the
states behaved the same. Clearly, on encountering a new
state, the algorithm cannot predict whether it will be-
have like the first case, like the second, or indeed neither.
Generalisation, on the other hand, requires exactly this
predictive ability, based on some concept of similarity
between different global states.

It is therefore clear that, so far as robots and em-
bodied real-world agents are concerned, generality per
se is not really what we want. More useful would be a
learning algorithm which could recognise relevant simi-
larities between global states and act accordingly. This
would for example enable our robot, visiting a state for
the first time, to avoid actions which have yielded re-
duced reward when taken previously in a ‘similar’ state.
It would also have a beneficial effect on learning in dy-
namic environments, where local observations may not



always be the same for a given location; this is a par-
ticular area of weakness for conventional RL algorithms.
The question then is how to link perception, action and
reward to achieve this outcome.

The central thrust of our approach derives from the
regular, orderly nature of physical space, which induces
constraints on the behaviour of natural objects. The
generalisation we make use of in our work arises only
because we are considering learning in the context of
robots and other physically embodied agents acting in
the real world.

The remainder of this paper introduces a new learn-
ing algorithm, Factor-Q, which is designed specifically
for this case. Conventional RL is task-based, which is to
say that the agent starts each task from scratch, know-
ing nothing about the world and the effects of its own
actions. By contrast, Factor-Q makes the quite differ-
ent assumption, applicable in many real-world scenar-
ios, that given a set of local observations by an agent,
some actions are inappropriate whatever the task: this
knowledge once learned is bound to the agent and can
be applied from the outset in unseen states and new
tasks. In the example experiment reported in this pa-
per, we use this idea to provide obstacle-avoidance in
a simple navigation task. This has a dramatic effect
on learning outcomes, particularly in dynamic environ-
ments with non-stationary obstacles, where obstacle-
avoidance is improved by at least two orders of mag-
nitude over the Q-learner’s performance.

2. Related Work

2.1 Reducing the size of the state-space

Recognising that the sheer size of the state space in clas-
sical RL formulations causes learning to be slow, many
methods have been proposed for reducing the size of this
state-space. This has often been done by exploiting task
structure: for example, McCallum’s utile distinctions
(McCallum, 1993) distinguishes between states only on
the basis of their utility in the context of the current task,
and to that extent generalises between spatially-distinct
states with the same utility. The process used however is
computationally expensive and does not make use of any
intrinsic properties of the problem under consideration.
It starts with no distinction between states and its early
learning is therefore entirely random. As a consequence
it is too general in application to be particularly suited to
embodied systems; further, being explicitly task-based,
it cannot help us when the task is changed.

2.2 Multiple sources of reinforcement reward

The principle of combining multiple sources of reinforce-
ment reward is treated in (Shelton, 2000), but this differs
from the current work in that the sources are themselves

considered to be agents, competing to influence the out-
comes of an overall policy. Shelton’s work therefore fits
better within the established framework of multi-agent
RL, for example (Hu and Wellman, 1998).

2.3 Reward shaping through multiple rewards

Multiple sources of reward are also used in the form of
subsidiary rewards to bias system behaviour, so-called
‘reward shaping’ (Ng et al., 1999). However, the authors
here are aiming more towards the introduction of heuris-
tic reward to provide dense reward functions, which al-
though difficult to construct may give performance ad-
vantages (Smart and Kaelbling, 2002). Although super-
ficially similar to some aspects of the current work, there
is no direct intervention in the action selection process
of the learning algorithm, and thus no a priori generali-
sation between unvisited global states.

2.4 Hierarchical task decomposition

Hierarchical RL is another area which has attracted
much research. The term “Modular Reinforcement
Learning” is often used in this context: a large overall
task is decomposed into smaller tasks which can be
individually learned, for example (Dietterich, 2000),
the module-based RL of (Kalmár et al., 1998), and the
options framework introduced by (Sutton et al., 1999).
This approach can give benefits in speed of learning and
the availability of training examples for sub-tasks which
occur multiple times. Unfortunately the decomposition
is hard to achieve autonomously, although some suc-
cess has been attained by state occupation frequency
analysis (McGovern and Barto, 2001). In general, how-
ever, it appears that domain or world knowledge may
be required: the Hierarchy of Autonomous Machines
(Parr and Russell, 1997) is an example. Also notable are
sequential decompositions (Morimoto and Doya, 1998),
where intermediate sub-goals assist in the performance
of larger tasks by effectively limiting divergence from a
desired trajectory.

Factor-Q, the approach presented here, differs from most
of the above in that it is explicitly designed for embodied
agents acting in the real world (or models thereof). It
attacks the problem of the combinatorial explosion of
state space by maintaining, throughout the learning
process, a separation between learning a particular
task, and learning basic competences which facilitate
any task. Whilst in classical reinforcement learning
all the state information is ‘condensed’ to an atomic
index variable, Factor-Q maintains this information
as a vector throughout the learning process, enabling
partial matching between states; on the assumption that
locally-similar states require similar actions, it is able
to use these similarities to select appropriate actions in



states not previously visited. This ability to generalise
arises from natural constraints on a physical system,
and is particularly valuable in dynamic environments.

3. Reinforcement Learning

Before moving to a detailed description of the Factor-Q
algorithm, we recapitulate conventional (tabular) rein-
forcement learning to motivate the ensuing discussion1.
Note that for the purposes of the current model, we make
the standard assumption that the agent has full knowl-
edge of its global state.

3.1 Conventional Reinforcement Learning

As an agent explores its world, it maintains for each state
a table of reward for each possible action in that state.

1. Agent in state s selects an action a according to some
policy π. An example of such a policy is the ε-greedy
policy, which selects the greedy (highest valued) ac-
tion with probability (1−ε) and an exploratory (ran-
dom) action with probability ε (where 0 < ε < 1).

2. Agent makes transition to state s′ and receives im-
mediate reward r.

3. Agent, now in state s′, can see the reward table in
that state, and also knows r. This information can
be combined and incorporated in the existing entry
in the reward table for state s under action a. The
rule governing this combination and incorporation is
known as the update rule; it constitutes the means
by which the agent is able to use past experience
as a guide to future action, since the agent is able to
consult the table for its current state to help it decide
what to do next.

In this way the agent builds a statistical, probabilis-
tic model of reward for each action in each state.
There exist convergence proofs for the established
RL methods (for Q-learning itself for example see
(Watkins and Dayan, 1992)): under certain technical
conditions, if we continue the process for long enough we
will get arbitrarily close to the optimum policy, which is
obtained from the table by selecting the highest-valued
action in each state.

An important point to note about conventional RL is
its abstract, dimensionless quality: s and a are index
values, and r is a single scalar real. While this allows for
the maximum generality in the learning process, it is in-
evitable that dimensionally structured inputs such as the
sensors on a mobile robot lose potentially valuable infor-
mation when they are represented this way. Likewise,
a single scalar reward is not the most useful indicator

1A comprehensive treatment of RL techniques including Q-
learning is provided by (Sutton and Barto, 1998); here we describe
the basic principle by which discrete RL methods operate.

Figure 1: shows, left, the gridworld agent, and right, the grid-

world with obstacles and goal. Agent is shown in its starting

position

of outcomes in an embodiment situation since it cannot
indicate any ‘reason’ for the reward assigned.

Conventional RL builds a retrospective statistical
model of the relationship between state index, action
index and reward, but it is a fundamental assumption
in Factor-Q that in real-world interactions the local ef-
fect of the same action will often be similar whatever
the global state. In this scenario, for example, if the
agent detects an obstacle and moves towards it, it will
collide with it; this will happen regardless of where in
the world the agent happens to be. This natural causal
relationship between local action and local observation
is characteristic of real-world systems.

With the addition of locally-generated reward, we may
be able to learn this local relationship separately from,
but at the same time as, the global task. This task is
in turn made easier to learn by the corresponding re-
duction in the dimensionality of the underlying process.
Factor-Q provides a framework within which the learned
local and task-based reward functions may be combined
to produce actions which take account of both local con-
ditions (which in a dynamic environment are transient)
and global goals.

4. Purpose and description of experi-
ment

The experiment to be described demonstrates the ad-
vantages to be gained from maintaining this dimensional
information throughout the learning process. An agent
(see figure 1) is placed in a 4-connected gridworld, which
in this experiment can be considered actually to repre-
sent a physical agent on a 10 × 10 chess-board with a
perimeter wall, rather than an abstraction of a general
process. The agent has four actuators each of which can
move it one square in one of the four possible directions
north, west, south, east (it moves by translation only
and does not rotate). The actions are shown as arrows
in the diagram. Exactly one of the actuators fires at



each action step. The grid has randomly-placed obsta-
cles (shown as black squares) in it each of which occupies
a single square: in some experiments these obstacles are
static, in others they move at random. The task is for
the agent to move from the starting position in one cor-
ner of the world to the goal (G in the figure) in the corner
diagonally opposite, without hitting the walls or the ob-
stacles. To achieve this the agent is equipped with four
proximity sensors which indicate the presence or absence
of an obstruction in the four adjoining squares. Bump
sensors on each face detect when contact has occurred.
The position of these pairs of sensors is indicated by the
triangles in the figure.

4.1 Conventional representation

In the conventional formulation of this task, the reward
function would typically have three components:

• A reward for reaching the goal (typically +1) added
to

• A reward for each step taken (typically −1) – this en-
courages the agent to complete the task in the mini-
mum possible time, since the longer the task contin-
ues, the greater the negative reward

• A reward for collisions (typically −1) – this in addi-
tion to the step reward

The state-space for this representation would have the
dimensions 100 (cells in the grid) times 16 (to represent
every possible combination of the four binary proximity
sensors), and for each of these 1600 states there would be
4 action values, giving a total size for the reward table
of 6400 entries.

However, if the task changes so that another state be-
comes the goal, only the first reward function component
is affected, as it is now triggered in a different state: the
second and third components are unaltered. These lat-
ter are therefore not so much related to a particular task
as to tasks in general. Thus we can factor them out
of the task and apply them separately: this is the idea
underlying Factor-Q.

4.2 Factor-Q representation

In this formulation, the task is defined only in terms of
the goal and step rewards. The avoidance of obstructions
(walls, obstacles) is achieved using a separate reinforce-
ment mechanism which is local to the agent. This reflects
the relationship between the agent’s sensors, its actions,
and reward signals generated internally in response to
collisions in the environment.

One effect of this representation is greatly to reduce
the size of the state-space. Obviously there is the same
number of cells (100) in the grid, but this grid now has
only to represent the task reward function; the agent’s

sensors need not be included here. The cells now rep-
resent physical locations in the world on a one-to-one
basis: with four possible actions in each state, the grid
now contains 400 action-values.

To this number has to be added the number of action-
values needed by the agent’s obstruction-avoidance
mechanism. In this deliberately simple example, sen-
sors and actions grouped in pairs which are orthogonal
and therefore mutually independent. We can therefore
deal with each sensor/actuator pair separately as follows.
The state-space for each pair has cardinality 2 (repre-
senting the binary sensor input); for each of these states
there are 2 action-values. The size of the reward table
associated with each pair is therefore 4. (We use the
term ‘local’ for these tables and rewards, and ‘task’ to
denote the main table and its associated action-values.)
To assess the overall reward for each action, the agent
combines the projected reward from local and task ta-
bles as will be described in section 5.2 below; it uses this
information to select its next action.

The number of action-values to represent the whole
task using Factor-Q is thus 100 cells times 4 actions,
plus 4 instances of 2 states times 2 actions, a total of
416. This represents a reduction of 93.5% over the con-
ventional representation. The practical advantages of
this more compact representation will be clearly seen in
the results of the experiment.

One further way in which Factor-Q differs from the
conventional representation is that the agent preserves
the dimensionality of the collision reward by represent-
ing it as a binary vector (of length 4 in this case). The
four actions and the four sensor observations are rep-
resented in the same way, as vectors. In the current
case, this vector representation is not strictly necessary
for the actions, nor for the local reward provided it is
kept separate from the task reward signal. However, it
must be borne in mind that this is a simple example in-
tended for didactic purposes and proof of concept. More
complex situations would require dependencies between
sensors, actuators and rewards to be learned2. Moreover,
in future work we plan to investigate the possibility of
multiple independent simultaneous actions, necessitating
the use of an action vector; clearly in this case correct
reward assignment is made much easier if the various re-
wards arising from the actions are kept separate rather
than aggregated into a whole, discarding valuable di-
mensional information which must then be imperfectly

2In the worst case, where no factorisation is possible, all pos-
sible combinations of local observation and action would need to
be separately learned. There are, however, strong indications that
real-world cases allow for at least partial factorisation, and that
these dependencies can be learned using a more modest extension
of the system described here. Naturally, for a given embodiment,
this would only have to be done once (since it relates to the agent
and is independent of any particular task). For this reason, and
because of its ability to treat task and local rewards separately,
thereby reducing the size of the overall state-action space, Factor-
Q would still confer worthwhile benefits.



reconstructed statistically.

5. Details of algorithm

For the reader’s convenience and for purposes of compar-
ison we begin with details of the Q-learning algorithm
and extend them to Factor-Q. (We consider only the
episodic case here: the formalism extends without modi-
fication to the infinite-horizon case where the agent tries
to maximise the rate of receipt of reward.)

5.1 Q-learner

Assume the agent is in state s. It selects its next action
a with probability 1− ε according to:

a = argmaxaQ(s, a)

where Q(s, a) is the expected future discounted reward
which will be obtained from taking action a in state s and
following the optimum policy thereafter, and 0 < ε < 1 is
the probability of an exploratory (random) action. If a is
not unique, one of the contenders is selected at random.
The agent moves to state s′ and receives immediate re-
ward r according to the outcome of the action. It now
updates Q(s, a) according to the Q-update rule:

Q(s, a)← (1− α)Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)

]
(1)

(where 0 < α ≤ 1 is the learning rate and 0 < γ < 1
is the future reward discount rate) and repeats until the
goal is reached.

Note particularly that nothing is known a priori about
any unvisited state, and actions in that state are there-
fore random.

5.2 Factor-Q

Assume the agent is in state s and has local observation
vector ~o. The local expected reward for action i under
observation ~o is ρi(~o): we write ρi by abuse of notation.

The underlying idea here is to maintain a (small) table
of immediate local reward for each action under differ-
ent local observations; sufficient observations should be
included to make these rewards as far as possible deter-
ministic. Action selection is performed using these re-
ward tables in conjunction with a conventional Q-table
(which now deals only with task rewards) to predict the
overall outcome of an action.

(In the current work, actions are orthogonal, each ac-
tion has an associated observation, and index i is tied
to action a. However, the fundamental assumption of
Factor-Q is that in real circumstances in the best case
there will be a one-to-one relationship between action
and observation, and in many other cases few-to-few.
There are strong indications that it will be possible to
learn these more complex relationships autonomously,
and this will be explored in future work.)

The vector ~C(s) of combined expected future dis-
counted reward on which the agent will base its action
selection is given by

~C(s) = ~Q(s) + G~ρ (2)

where ~ρ is the vector of projected immediate local reward
and G is a normalisation factor. To obtain G we first
find the greedy action â (for which the task reward is
highest):

â = argmaxaQ(s, a)

and the mean Q̄ of the expected future discounted re-
wards of all the other actions:

Q̄ =
1

N − 1

∑
a6=â

Q(s, a),

N being the number of actions from which to select.
Similarly, we find the action ǎ for which the local reward
is the minimum:

ǎ = argminiρi

and the mean P̄ of the local rewards for all other actions:

P̄ =
1

N − 1

∑
a6=ǎ

ρa

Finally we can combine these elements to give G:

G =
Q(s, â)− Q̄

P̄ − ρǎ
× (1 + η) (3)

G is needed because the relationship between the task
and local action values is of its nature arbitrary (all we
require of the local reward is that worse outcomes are
punished harder) but some means must be found to com-
bine them for action selection. G achieves this by scaling
the size of variation in the local reward to the size of vari-
ation in task reward for the current state.

It is necessary for the local reward term slightly to
dominate the reward sum, since we do not want actions
to be selected which will result in collisions – these will
not further task fulfilment. A value of η = 0.1 has been
found by experiment to work well, but the algorithm
does not appear sensitive to the particular value chosen,
so long as it is greater than zero. For the same reason, G
is subject to a small minimum value so that it dominates
‘empty’, previously unvisited, states.

After action we update the task reward table, but
this time using the same combined rewards used for
action selection:

Q(s, a)← (1− α)Q(s, a)+

α
[
r + γ max

a′

(
Q(s′, a′) + Gρa′

)]
(4)



Figure 2: demonstrates the calculation of G and its applica-

tion in combined reward action selection. x = Q(s, â) − Q̄

and y = P̄ − ρǎ in equation (3). See text for details.

The local reward tables too are updated, according to

~ρ← (1− αL)~ρ + αL ~rL (5)

where αL is the local learning rate and ~rL is the imme-
diate local reward vector generated in response to action
a.

Here we note that Factor-Q is able to base its action
selection on both the global (task-based) and the learned
local reward functions; the advantages that this confers
are best illustrated by consideration of the results ob-
tained in this experiment.

5.2.1 Update rule

The update rule of (4) is equivalent to the normal Q-
update rule of (1) here because in both cases the max-
imum expected future discounted reward of the greedy
action (which for Factor-Q is calculated by (2)) is used
for the update. It is important not to use the raw value
from the task reward table since this will be an over-
estimate of the future discounted reward from that state
(under the current conditions); this promise of high re-
ward will attract the agent and may cause endless loops,
particularly in states adjacent to permanent obstacles.

5.3 How it works

Figure 2 shows a possible action-selection scenario from
the gridworld experiment. In Q-learning the greedy ac-
tion corresponds to the highest value for Q(s, a) in the
global reward table. This is shown in grey in fig. 2.1 .
Suppose that for the state s shown in 2.1 the expected
rewards for the observation vector ~o corresponding to s
is as shown in 2.2 . The mean Q(s, a) for actions other
than the greedy action is shown by the dotted line in
2.1 . Thus the numerator in equation (3) is x in 2.1
and the denominator is y in 2.2 . Applying these val-
ues in equation (2) results in the situation shown in 2.3,
where the new greedy action is shown in grey. The value
of this action as shown in 2.3 corresponds to the term

maxa′(Q(s′, a′) + Gρa′) in the update equation (equa-
tion (4)). Thus action 3 is suppressed and action 4 is
substituted.

6. Experiments

The experimental set-up is described in section 4. We as-
sume ε-greedy action selection in all cases, with ε = 0.01.
All reward tables are pre-initialised to 0, task learning
rate α = 0.2, local learning rate αL = 1/κ (where κ
is the number of times this action has been taken, in
other wordsthe expected local reward is the mean of all
rewards so far received) and γ = 0.9. (In these exper-
iments we always consider a fixed learning rate for the
task, which may be advantageous in some dynamic en-
vironments. A control experiment in the static world
using a task learning rate which decays such that the
expected future reward is always the mean of all the re-
wards so far received produced statistically identical re-
sults to those reported.) An experiment comprised ten
runs of 200 episodes each. One series of experiments was
performed using standard Q-learning; the reward table
was re-initialised to 0 before each run of 200 episodes. In
the other experiments, Factor-Q was used; in this case
only the task reward table was re-initialised before each
run, the local tables being initialised only at the start
of each experiment3. One experiment in each series was
performed in each of the following worlds:

6.1 Static world

Ten stationary obstacles, each occupying one square,
were placed on the grid in the positions shown in fig-
ure 1.

6.2 Dynamic world: changes every ten moves

The ten obstacles were reset to new random positions
after every ten actions by the agent. The only constraint
on the position of the obstacles was that they could not
occupy the start cell, the goal cell or the cell occupied
by the agent. In the results this world is referred to as
‘semi-dynamic’.

6.3 Dynamic world: changes every move

The ten obstacles were reset to new random positions
after every action by the agent.

7. Results

The results of the experiments are summarised in fig-
ure 3. Each of the three graphs shows the mean of

3Because the local reward is learned so quickly in this simple
example, the agent could very quickly have learned it anew for each
run of 200 episodes. However it is fundamental to the operation
of Factor-Q that the agent can learn local rewards and is able to
retain that knowledge and apply it to new tasks.



Figure 3: summary of experimental results

the results obtained over ten runs each comprising 200
episodes. The following points are worth noting:

• On every performance measure, Factor-Q outper-
formed Q-learning.

• Learning rates in static environments are not signifi-
cantly different, as one would expect: the underlying
task learning process in both systems is the same.
However, collision avoidance in the static world was
dramatically better in Factor-Q

• Factor-Q learns the dynamic environments nearly as
quickly as the static one, whereas Q-learning’s learn-
ing rate is badly affected by the moving obstacles

• Factor-Q improves on Q-learning’s collision perfor-
mance by over two orders of magnitude when colli-
sions due to exploratory moves, when a non-greedy
action was selected,are discounted.

8. Discussion

Factor-Q’s performance in the dynamic environments is
the most interesting aspect of these results. Taking into
account the increases in mean path length which arise
because of the non-static obstacles, the performance was
not significantly degraded over the static case. The col-
lision performance also was better than it appears from
the results, since nearly all collisions occurred when the
agent was completely surrounded by obstacles and then
had no choice but to collide with them.

Two factors contribute to this improved performance:
the ability of a vectorised representation to attribute re-
inforcement reward directly to the actions and observa-
tions which give rise to it, and the predictability of the
local effect of actions irrespective of global state which we
can assume only because we are dealing with embodied,
real-world agents. This predictability is exploited by the
new action-selection mechanism which is able to avoid
actions which it predicts to be bad, unlike Q-learning
which can only avoid actions which it has tried before
and found to be bad. This is clearly highly advantageous
in dynamic environments, where local observations (and
therefore optimal actions) may vary for the same global
state (position) and need to be taken into account the
first time they are encountered.

Clearly the example given is a simple system, where
orthogonal actions and their effects are able to be com-
pletely separated from one another rendering the local
learning process very quick4. However, even in a com-
plex real system, there will as a rule be certain natu-
ral associations between actions and consequences which

4In these experiments, sensor and actuator noise were not mod-
elled. In the presence of these, the speed of local learning might
need to be reduced somewhat to reduce the disproportionate ef-
fects of noise early in the learning process; nonetheless, the general
point still holds.



can be exploited to reduce the overall burden of learn-
ing. Considering that the size of a global state-space is
exponential in the number of state variables, and lin-
ear in the cardinality of each, any factorisation which
can be done will make the learning problem much more
tractable. This will be even more the case if simultane-
ous actions are taken, where there is no temporal separa-
tion between actions and their associated rewards, mak-
ing the reward assignment problem much more acute.
All of which, coupled with the ability of the new algo-
rithm to act on predicted reward, holds the promise of
improved performance in more realistic scenarios than
explored so far in the current work.

9. Conclusions and further work

A new algorithm specifically for reinforcement learn-
ing in robots and embodied agents, Factor-Q, was in-
troduced. The algorithm uses vectors for state, action
and reinforcement to preserve dimensional information
through the learning process and to maintain separation
of reinforcement reward due to the task from reward re-
lated to the agent’s local interaction with its environ-
ment (in this case represented by collisions with obsta-
cles). In addition, this vector representation is more scal-
able than conventional methods because of the factori-
sation of the state-space which it induces. Experimental
results from an example simulated scenario show learn-
ing speed remains largely unaffected by a dynamic envi-
ronment, in contrast to conventional Q-learning, whose
learning rate falls to 57% of its static-world rate in the
worst case encountered here. Much more serious than
this degradation in overall learning rate however is the
inability of the Q-learner to act in accordance with lo-
cal observations. The agent frequently finds itself in a
state which it has never previously visited (because a
moving obstacle has induced a change in state index for
that particular grid cell) and has to act at random, often
resulting in collisions.

The authors are currently developing a new method-
ology for reinforcement learning in robots and embod-
ied systems based on a modular decomposition of the
learning process to reflect the structure of the agent’s
embodiment. The distributed learning algorithm pre-
sented here will be an integral part of this methodology,
augmented to accommodate positive as well as negative
local rewards, and an ability to learn interdependencies
between actions, local observations and rewards where
these exist. It will also be necessary to provide an ar-
bitration mechanism, probably based on reward struc-
ture, to decide when the task should take priority. For
example, in the current experiments, the task might re-
quire the agent to strike an obstacle – under the existing
framework this would not be possible.

As previously mentioned, Factor-Q may also present
possibilities for agents to select and perform more than

one action at a time and still be able to make the correct
assignment of reward: this will also be explored in future
work.

References

Dietterich, T. G. (2000). Hierarchical Reinforcement Learn-
ing with the MAXQ Value Function Decomposition. Ar-
tificial Intelligence Research, 13:227 – 303.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Fifteenth International Conference on Machine Learn-
ing, pages 242 – 250.

Kalmár, Z., Szepesvári, C., and Lorincz, A. (1998). Module-
Based Reinforcement Learning: Experiments with a
Real Robot. Machine Learning, 31:55 – 85.

Koenig, S. and Simmons, R. G. (1996). The effect of rep-
resentation and knowledge on goal-directed exploration
with reinforcement-learning algorithms. Machine Learn-
ing, 22(1-3):227–250.

Maes, P. and Brooks, R. A. (1990). Learning to Coordinate
Behaviors. In National Conference on Artificial Intelli-
gence, pages 796–802.

McCallum, A. (1993). Overcoming Incomplete Perception
with Utile Distinction Memory. In International Con-
ference on Machine Learning, pages 190–196.

McGovern, A. and Barto, A. G. (2001). Automatic Discov-
ery of Subgoals in Reinforcement Learning using Diverse
Density. In Eighteenth International Conference on Ma-
chine Learning, pages 361–368.

Morimoto, J. and Doya, K. (1998). Reinforcement Learn-
ing of dynamic motor sequence: Learning to stand up.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 1721 – 1726.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy in-
variance under reward transformations: Theory and ap-
plication to reward shaping. In Sixteenth International
Conference on Machine Learning.

Parr, R. and Russell, S. (1997). Reinforcement Learning
with Hierarchies of Machines. In Advances in Neural
Information Processing Systems, volume 10.

Shelton, C. R. (2000). Balancing Multiple Sources of Re-
ward in Reinforcement Learning. In Advances in Neural
Information Processing Systems, pages 1082–1088.

Smart, W. D. and Kaelbling, L. P. (2002). Effective Rein-
forcement Learning for Mobile Robots. In International
Conference on Robotics and Automation.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112:181–211.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279–292.


