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ABSTRACT

The construction of flat currents, and hence conserved non-local charges, for
the superstring on AdS5 × S5 is generalised. It is shown that such currents
exist for sigma-model type actions on all coset (super-)spaces G/H in which,
at the level of the Lie algebras, h is the grade-zero subspace of a Zm-grading
of g. This is true for an essentially unique choice of the Wess-Zumino term,
which is determined.

1 Introduction

There has been much recent interest in the role of integrability in the world-sheet theory

of type IIB strings in AdS5 × S5. In [1], Bena, Polchinski and Roiban found an infinite

number of non-local classically conserved charges for the Green-Schwarz superstring in

this background. Subsequently Vallilo showed [2] that such charges also exist in the pure-

spinor formalism for the superstring. These charges are the analogues of the non-local

charges which have long been known to exist in the sigma models on symmetric spaces

[3, 4, 5, 6], and their discovery allowed ideas from integrable field theory to be applied

to the world-sheet theory of superstrings on AdS5 × S5 [9, 10, 11]. In the pure-spinor

formalism it has been argued that the charges survive quantum-mechanically [12, 13]. In

the context of the AdS/CFT correspondence[14], which was the initial motivation for the

search for these charges, it was subsequently shown by Dolan, Nappi and Witten [15] that

the same Yangian symmetry algebra is present in the weakly coupled limit of SYM on the

gauge theory side. (Further connections with supersymmetric gauge theory are made in

[16, 17, 18].)
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The charges are constructed by first identifying a family of currents a(µ), depending

smoothly on a spectral parameter µ, that are valued in some Lie-algebra and that are flat:

da(µ) + a(µ) ∧ a(µ) = 0. (1)

One then constructs the monodromy matrix

T(µ)(t) = P exp

∫ (+∞,t)

(−∞,t)

a(µ) (2)

which is conserved by virtue of the flatness of a, and the non-local charges are obtained by

expanding T(µ) in powers of the spectral parameter (for the details see e.g. [1, 19]). The

crucial step in [1] was thus the identification of the family of flat currents a(µ). The fact

that this was possible appeared to be something of a coincidence.

In this paper we put these currents in a more general context, with the hope that this

will eventually allow a deeper understanding of why they exist at all, and what role they

play. Let us first recall what it is about the target space AdS5 × S5 that allows their

construction.

The space AdS5 × S5 is the bosonic part of the coset superspace

PSU(2, 2|4)

SO(1, 4)× SO(5)
. (3)

and the Green-Schwarz superstring action can be thought of as a sigma model-type action

on this space [20] (see also [21], in which the coset space is chosen slightly differently).

This space is not a symmetric space but it does have similar properties. Recall that a coset

space G/H is said to be symmetric if H is the fixed point set of an automorphism σ of G

of order 2. That is, at the level of the algebras,

σ : g → g, σ[X, Y ] = [σX, σY ], σ2 = 1 (4)

so that the decomposition

g = h + m (5)

into the (+1)- and (−1)-eigenspaces of σ is a Z2 grading of g:

[h, h] ⊂ h, [h, m] ⊂ m, [m, m] ⊂ h. (6)

The existence of this automorphism σ, and the resulting Z2 grading, turn out to be crucial

in the construction of flat currents in bosonic sigma models. In the coset superspace (3) the

subgroup H is again the fixed point set of an automorphism of G, but this automorphism

is now of order 4 [22]. There is thus a Z4 grading of g and it is this grading which allows

the construction of the flat currents.
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As was noted in [2], this means that the same construction applies equally well to other

coset superspaces with a Z4 grading, including for example

PSU(1, 1|2) × PSU(2|2)

SU(2) × SU(2)
and

PSU(1, 1|2)

U(1) × U(1)
(7)

whose bosonic parts are AdS3 × S3 and AdS2 × S2 respectively [22].

But in fact nothing in the construction even relies on G being a supergroup. As we

shall discuss, it is possible to take any Lie group G whose algebra g admits a Z4-grading

and construct actions on the coset space G/H , where H is the subgroup corresponding to

the grade-zero subalgebra h. Provided the WZ term is correctly normalised, the resulting

theories possess non-local charges.

One natural question this raises is: if there are non-local charges for theories on the coset

spaces associated with Z2 gradings and Z4 gradings, what about gradings of arbitrary finite

order m? In fact, before one even addresses the issue of non-local charges, the question

of what actions exist for fields in such coset spaces is interesting in its own right. For, as

we recall below, even when m = 4 there are two natural choices: the Green-Schwarz-type

action, which has kinetic terms only for the target-space bosons, and the “hybrid” action

(as in [22]) which has kinetic terms for both the target-space bosons and fermions and

which is used in the pure-spinor description of the superstring.

This paper thus has two aims: first, to construct actions on general coset spaces defined

by gradings of g of finite order, and second to identify actions that possess non-local

symmetries. For this latter step we shall restrict our attention to the simplest (sigma-

model, or “hybrid model”-type) kinetic term, and will find that there are flat currents and

so non-local symmetries for a suitable choice of the Wess-Zumino term.

In section 2 we deal with the simplest new case, that of coset spaces G/H defined by third

order automorphisms. Then in section 3 we generalise the discussion to automorphisms of

arbitrary finite order.

1.1 Notation

We begin by fixing some notation and assumptions. In what follows the worldsheet coor-

dinates are (t, x) = (x0, x1) and worldsheet vector indices are drawn from µ, ν, ρ, . . . . The

worldsheet metric and alternating symbol are

ηµν =

(

1 0
0 −1

)

, ǫµν =

(

0 1
−1 0

)

. (8)
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The identities ∗∗a = +a and a ∧ ∗b + ∗a ∧ b = 0 for differential one-forms a, b are used

frequently.

Let g(t, x) be a field valued in a faithful matrix representation of a (super-)group G.

Currents, like g−1dg, are valued in the corresponding matrix representation of the Lie

(super-)algebra g. Let

tr (X) (9)

denote the trace (or the appropriate supertrace) of X in our chosen representation.1

We assume that g is Zm-graded. That is, we assume there is a decomposition

g =
m−1
∑

k=0

g(k) (10)

(here g(0) = h is the Lie algebra of H) that respects the Lie bracket:

[

g(i), g(j)

]

⊂ g(i+j) (11)

where the addition of the indices is understood to be modulo m. Further, we assume that

the trace is compatible with the grading, in the sense that if X ∈ g(i) and Y ∈ g(j) then

trXY = 0 unless i + j ≡ 0 mod m. (12)

The other properties of the (super)trace we shall require are cyclicity

tr WX . . . Y Z = trZWX . . . Y (13)

(which in particular implies Ad(G)-invariance of the inner product: trXY = tr UXU−1UY U−1

for all U ∈ G) and non-degeneracy, in the sense that if Y ∈ g(i) then

trXY = 0 ∀X ∈ g(m−i) =⇒ Y = 0. (14)

1.2 Gradings, automorphisms and a family of examples

It is worth commenting briefly on the construction of Zm gradings. The Zm gradings of a

complex Lie algebra gC correspond to automorphisms of gC of order m, and for the simple

Lie algebras these automorphisms are known and classified (see [23, 24] for the bosonic

cases and [25, 26] for the supersymmetric cases). However, not every real form g of gC will

be compatible with a given grading.

1In what follows we will sometimes refer simply to the “trace”, with the understanding that this is a
supertrace when g is a superalgebra.
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An example makes this clear: let a, b, c be positive integers and consider the Z3 grading

of aa+b+c−1 = sl(a+ b+ c, C) defined by the automorphism (in the defining representation)

σ : X 7→ NXN † where N =





e2πi/3 1a×a

1b×b

e−2πi/3 1c×c



 . (15)

The subspaces of grades 0, 1, 2 are the eigenspaces of σ with eigenvalues 1, e2πi/3, e−2πi/3

respectively, and consist of the matrices of the block form





A
B

C



 ∈ h,





D
E

F



 ∈ g(1),





G
H

K



 ∈ g(2), (16)

where tr A + trB + tr C = 0.

For real A, B, . . . , G, H, K these are subspaces of the real form sl(a + b + c, R), which

therefore does admit a Z3 grading. But they are clearly not subspaces of the compact real

form su(a + b + c).

Obviously, by redefining N to have the all m-th roots of unity down the diagonal, one

can construct Zm gradings of SL(a1 + a2 + · · · + am, R) in exactly the same way. These

coset spaces,
SL(a1 + a2 + · · ·+ am, R)

S (L(a1, R) × L(a2, R) × · · · × L(am, R))
, (17)

provide one concrete class of examples for the results that follow.

2 Z3 gradings and sigma model actions

We consider first models constructed using Z3 gradings. Let us write the decomposition of

g, and of the current j = g−1dg ∈ g, as

g = h + g(1) + g(2), j = A + q + q̄. (18)

We are interested in models whose physical degrees of freedom take values in the space

of cosets {gH : g ∈ G} = G/H , so we look for actions in which

g 7→ Ug, U ∈ G (19)

is a global symmetry, while

g 7→ gh(t, x), h ∈ H (20)
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is a local symmetry. Under the former, j is invariant, while under the latter,

j 7→ h−1jh + h−1dh (21)

so that A transforms like a gauge connection while q, q̄ are covariant.

Given the grading property (12), the only kinetic term one can write down2 with the

correct symmetries is

−
1

λ2
tr qµq̄

µ = −
1

λ2
tr q ∧ ∗q̄. (22)

(Here, and throughout, λ is some overall coupling which provides a scale for the model.

It will not be important since we are concerned only with the classical dynamics.) This

is nothing but the usual sigma-model kinetic term on G/H (see e.g. [27]) since it may be

re-written

−
1

2λ2
tr (j − A)µ (j − A)µ = −

1

2λ2
tr (j − A) ∧ ∗(j − A). (23)

In addition to the kinetic term, the symmetries may also allow Wess-Zumino terms –

that is, terms of the form
∫

B
ω, where B is a 3-manifold whose boundary is the worldsheet

and ω is a closed 3-form [29]. We must thus find all closed 3-forms with the correct

symmetries. There are only two linearly independent 3-forms constructed using tr , given

the Z3 grading, and only one closed linear combination of these, which is

tr (q ∧ q ∧ q − q̄ ∧ q̄ ∧ q̄) . (24)

This is in fact also exact: it is

d tr q ∧ q̄. (25)

One computes these exterior derivatives by first noting that the zero curvature identity

for j,

dj + j ∧ j = 0, (26)

implies, grade by grade, the identities

F + q ∧ q̄ + q̄ ∧ q = 0 (27)

Dq + q̄ ∧ q̄ = 0 (28)
2This is at least the only possibility constructed from the symmetric second-rank tensor tr (XY ) on g

(which, it should be noted, is not in general negative definite). It is the invariance of this tensor under
the adjoint action of H which guarantees that the action has local H-symmetry. In many particular
cases (G, H, σ) there are other independent tensors on g with this property. Similarly, to construct WZ
terms one requires antisymmetric third-rank tensors invariant under AdH , and there may be others besides
tr [X, Y ]Z. (The cases with G simple are discussed in [27], for the symmetric tensors, and [28], for the
antisymmetric tensors, and references therein.) For simplicity we shall consider here only the invariants
constructed from tr (), which are generic.
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Dq̄ + q ∧ q = 0 (29)

where

Dω = dω + A ∧ ω − (−)|ω|ω ∧ A (30)

for a Lie algebra valued form ω of degree |ω|, and

F = dA + A ∧ A. (31)

Then by invariance of the trace one has for example

d tr q ∧ q ∧ q = D tr q ∧ q ∧ q = tr (Dq ∧ q ∧ q − q ∧ Dq ∧ q + q ∧ q ∧ Dq) . (32)

Thus the most general action with the required symmetries is actually local. (This is also

true in the Z4 case [22].) We have

S = −
1

λ2

∫

d2x tr
(

qµq̄µ +
γ

3
ǫµνqµq̄ν

)

= −
1

λ2

∫

tr
(

q ∧ ∗q̄ +
γ

3
q ∧ q̄

)

, (33)

where we leave coefficient of the WZ term arbitrary for the moment.

The resulting equations of motion are

Dµq
µ − γǫµνDµqν = 0 (34)

Dµq̄µ + γǫµνDµq̄ν = 0 (35)

or, in form notation,

D∗q − γDq = 0 (36)

D∗q̄ + γDq̄ = 0, . (37)

These are most conveniently derived by considering variations of the action of the form

g 7→ g(1 + X), so that

j 7→ j + dX + [j, X] = j + DX + [q + q̄, X] (38)

and if X has grade 2 under σ then

δq = [q̄, X] (39)

δq̄ = DX (40)
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and we find the equation of motion (36) for q. The equation of motion for q̄ is obtained by

considering X of grade 1.

The complete set of equations of motion can be written as the conservation law d∗J = 0

for the Noether current associated with the left-G symmetry G 7→ (1 + X)G, which is

J = g
(

q + q̄ −
γ

3
∗(q − q̄)

)

g−1. (41)

2.1 Flat currents

We now seek flat currents, and, we hope, a one-parameter family of them. There is a choice:

we can try to construct flat currents invariant under the gauge symmetry g 7→ gh, or flat

currents that transform in the same way (21) as j = g−1dg. But the two are essentially

equivalent, for suppose ̃ is any flat current of the latter type, and write the flatness

property as the vanishing of the curvature of the corresponding covariant derivative:

ǫµν [∂µ + ̃µ, ∂µ + ̃ν ] = 0; (42)

then clearly the derivative operator g(∂µ + ̃µ)g−1 also has vanishing curvature, and, by

construction, it is gauge-independent. Now

g(∂µ + ̃µ)g
−1 = ∂µ + g (̃µ − jµ) g−1 (43)

and so the current g (̃ − j) g−1 is flat and gauge-invariant. It is straightforward to verify

that this is the relationship between the flat currents of Das, Maharana, Melikyan and

Sato [10] and those originally constructed by Bena, Polchinski and Roiban [1].

Since it is easiest to work with objects having definite grade, we shall look for flat gauge-

dependent currents. These must be of the form

j(µ) = A + e(µ)q + ē(µ)q̄ + f(µ)∗q + f̄(µ)∗q̄ (44)

where µ is some parameter and e, ē, f, f̄ are functions to be determined (and the coefficient

of A must clearly be unity). The curvature of this current is

dj(µ) + j(µ) ∧ j(µ) = F + eDq + ēDq̄ + fD∗q + f̄D∗q̄ (45)

+(e2 − f 2)q ∧ q + (ē2 − f̄ 2)q̄ ∧ q̄ +

(ef̄ − ēf)(q ∧ ∗q̄ − q̄ ∧ ∗q) + (eē − f f̄)(q ∧ q̄ + q̄ ∧ q).

On making use of the equations of motion (36 and 37) and the zero curvature identity for

j (27, 28, 29), one finds that this vanishes provided

eē − f f̄ = 1, ef̄ − ēf = 0 (46)
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e + γf = ē2 − f̄ 2, ē − γf̄ = e2 − f 2. (47)

The first two of these may be re-written as

(e + f)(ē − f̄) = (e − f)(ē + f̄) = 1 (48)

and therefore, using now all the equations,

1 = (e2 − f 2)(ē2 − f̄ 2) = (e + γf)(ē − γf̄). (49)

Thus there are extra solutions, in addition to the current j = g−1dg (e = ē = 1, f = f̄ = 0),

only when γ = ±1. Henceforth we shall take γ = +1. (There is no loss of generality in

this, because reversing the sign of γ is equivalent to replacing the defining automorphism

σ with σ2.)

Let us express all the coefficients as functions of the parameter µ according to

µ = e + f = (ē − f̄)−1 = (ē + f̄)
1

2 = (e − f)−
1

2 (50)

so that

e =
µ3 + 1

2µ2
f =

µ3 − 1

2µ2
(51)

ē =
µ3 + 1

2µ
f̄ =

µ3 − 1

2µ
. (52)

2.2 The monodromy matrix and conserved charges

The current j = g−1dg corresponds to µ = 1. Let us perturb around this by setting

µ = exp θ, so that, to second order in θ,

e = 1 −
1

2
θ +

5

4
θ2 + . . . f =

3

2
θ −

3

4
θ2 + . . . (53)

ē = 1 +
1

2
θ +

5

4
θ2 + . . . f̄ =

3

2
θ +

3

4
θ2 + . . . . (54)

The physical, gauge-invariant flat current, defined as in (43), is thus

g (j(exp θ) − j) g−1 = g
(

(e − 1)q + (ē − 1)q̄ + f∗q + f̄∗q̄
)

g−1

=
3

2
θ ∗g

(

q + q̄ −
1

3
∗(q − q̄)

)

g−1

+
3

4
θ2 ∗g

(

−q + q̄ +
5

3
∗(q + q̄)

)

g−1 + . . .

=:
3

2
θ ∗J +

3

4
∗J̃ + . . . . (55)
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Note that the Noether current (41), or rather a multiple of its hodge dual, appears here at

first order in θ. This is as expected, since it means that in the expansion of the monodromy

matrix

T(θ) = P exp

∫ x=+∞

x=−∞

g (j(1 + θ) − j) g−1 (56)

(as defined in (2)) the usual local Noether charge appears at first order in θ, with a

numerical prefactor:

Q(0)(t) = −
3

2

∫ +∞

−∞

dxJ0(t, x). (57)

The non-local charges are obtained by expanding to higher orders, but there is some

freedom in how this expansion is performed and hence in the definitions of these charges.

We have already made one choice in setting µ = exp θ rather than, say, simply µ = 1 + θ.3

There is also the choice of how to expand the monodromy matrix. Let us choose to set

T(θ) =: exp
(

θQ(0) + θ2Q(1) + . . .
)

. (60)

With these conventions one finds that the first non-local charge is

Q(1)(t) =

∫ +∞

−∞

dx

(

−
3

4
J̃0(t, x) +

9

8

∫ x

−∞

dy [J0(t, x), J0(t, y)]

)

(61)

where J̃ is defined in (55).4

3 The construction for higher order automorphisms

We now generalise the discussion to Zm gradings, for m > 3. We shall consider in parallel

the cases in which m = 2n + 1 is odd and in which m = 2n is even. There are a few

differences but the bulk of the argument is the same. (In both cases, n will always denote

the greatest integer ≤ m/2.)

3The virtue of the choice µ ∝ exp θ is that it preserves the symmetry between q and q̄ in the expansion
(55). Other choices must still yield conserved charges of course, and indeed setting

µ = 1 + θ + (
1

2
+ α)θ2 + . . . (58)

has the effect of sending
Q(1) 7→ Q(1) + αQ(0). (59)

4As a check, it may be verified directly that this charge is conserved using the equations of motion
(36,37), together with the identity d(gXg−1) = g(DX + [q, X ] + [q̄, X ])g−1.
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Let us write the decomposition of g and of the current j = g−1dg, as

g = h +
m−1
∑

k=1

g(k), j = A +
m−1
∑

k=1

q(k). (62)

The flatness property of j now implies that

F +
m−1
∑

i=1

q(i) ∧ q(m−i) = 0 (63)

and that for every k ∈ {1, 2, . . . , m − 1}

Dq(k) +

i+j≡k
∑

(i,j)∈(Zm\{0})2

q(i) ∧ q(j) = 0, (64)

where ≡ denotes congruence modulo m. (The apparent double counting in the summations

is deliberate: for example in (64) whenever q(i) and q(j) are distinct, both q(i) ∧ q(j) and

q(j)∧q(i) must appear in the sum. But conversely for any j with j+j ≡ k the term q(j)∧q(j)

appears only once.)

Once again we seek actions invariant under the global left action of G and under the local

right action of H . The most general local action with these symmetries is

S = −
1

λ2

∫ n
∑

i=1

tr
(

βiq(i) ∧ ∗q(m−i) + γiq(i) ∧ q(m−i)

)

, (65)

for some couplings βi, γi, i = 1, . . . n.

The natural choices of the couplings βi in the kinetic piece are

β1 = β2 = · · · = βn = 1 (66)

when m = 2n + 1 is odd, and

β1 = β2 = · · · = βn−1 = 1, βn =
1

2
(67)

when m = 2n is even. (The factor 1
2

here is natural because when m = 2n there are

quadratic terms in q(n).) In both the odd and even cases, with these values of the βi the

kinetic part of the Lagrangian is simply

−
1

2λ2
tr (j − A) ∧ ∗(j − A) (68)

which is nothing but the usual sigma-model Lagrangian on the coset space G/H . Hence-

forth we shall specialise to this choice.
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(In the case particular case

G/H =
PSU(2, 2|4)

SO(1, 4)× SO(5)
, (69)

and more generally whenever g is a Lie superalgebra and σ has order 4 and respects the

bose-fermi grading, in the sense that the subspaces of g of grades 0 and 2 are bosonic while

those of grades 1 and 3 are fermionic, then this choice is called the “hybrid” action [22]

because it includes kinetic terms for both the target space bosons and fermions. The other

natural choice is the Green-Schwarz action, β1 = 0, β2 = 1
2

[20], which has a kinetic term

only for the bosons. We will not address the interesting question of how this action should

be generalised when m 6= 4.)

The motivation for specialising to the kinetic term (68) here is that it produces the

simplest equations of motion, as follows. Consider the case of m = 2n + 1. To find the

equation of motion involving derivatives of q(1) we apply the variation g 7→ g(1 + X) with

X of grade −1 ≡ 2n. The kinetic terms vary as follows:

δ(q(1) ∧ ∗q(2n)) =
(

q(2)X − Xq(2)

)

∧ ∗q(2n) + q(1) ∧ ∗DX (70)

δ(q(2) ∧ ∗q(2n−1)) =
(

q(3)X − Xq(3)

)

∧ ∗q(2n−1) + q(2) ∧ ∗
(

q(2n)X − Xq(2n)

)

...

δ(q(n) ∧ ∗q(n+1)) =
(

q(n+1)X − Xq(n+1)

)

∧ ∗q(n+1) + q(n) ∧ ∗
(

q(n+2)X − Xq(n+2)

)

and so if one makes the simplest choice and sets βk = 1 for all k then terms cancel (by

cyclicity of the trace in the case of the q(n+1) term) and one is left with an equation of

motion of the form

D∗q(1) = . . . (71)

where the right hand side is the variation of the WZ terms. And, crucially, the same applies

to all the other q(i), because the choice β1 = β2 = · · · = βn = 1 always produces the correct

cancellations.5

But consider now the variation of the WZ terms, and again for definiteness suppose that

m = 2n + 1 is odd. The calculation initially looks very similar, but the crucial difference

is that the q(n+1) term does not vanish:

δ(q(1) ∧ q(2n)) =
(

q(2)X − Xq(2)

)

∧ q(2n) + q(1) ∧ DX (72)

δ(q(2) ∧ q(2n−1)) =
(

q(3)X − Xq(3)

)

∧ q(2n−1) + q(2) ∧
(

q(2n)X − Xq(2n)

)

...

δ(q(n) ∧ q(n+1)) =
(

q(n+1)X − Xq(n+1)

)

∧ q(n+1) + q(n) ∧
(

q(n+2)X − Xq(n+2)

)

5When m is even the cancellations work slightly differently and one is forced to set β1 = β2 = · · · =
βn−1 = 2βn, but the argument is similar.
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There are n coefficients γk to choose and, on making use of the relevant identity in (64), n

independent terms on the right-hand sides of these equations. So there is enough freedom

to arrange for the total variation from the WZ terms to be proportional to Dq(1) and hence

for the equation of motion to take the simple form it did in the Z3 case,

D∗q(1) ∝ Dq(1). (73)

However, the important point is that, for 2n+1 > 3, it is not possible to put the equations

of motion for all the q(i) in this form simultaneously, because one requires a different choice

of the γi in each case.

This looks rather discouraging at first sight, because in the Z3 case the equations of

motion (36,37) at the critical value of the WZ term were particularly simple – they said

that q was covariantly holomorphic while q̄ was covariantly anti-holomorphic, and in fact

it is known [22] that the same is true of q = q(1) and q̄ = q(3) in the Z4 case – so one might

suspect that the construction of families of flat currents somehow relies on this, and that

in general the equations of motion have to be

D∗q(k) − Dq(k) = 0, D∗q(m−k) + Dq(m−k) = 0 (74)

for k = 1, 2, . . . n when m = 2n + 1 (and k = 1, 2, . . . n − 1 when m = 2n; the equation for

q(n) takes a different form).

But in fact what will emerge below is that there is a choice of the γk for which, although

the equations of motion do not appear to be so elegant, families of flat currents do never-

theless exist, and these currents are the most natural generalisation of the those in the Z3

and Z4 cases.

To proceed then, we will work backwards by starting with the most obvious ansatz for

families of flat currents, and then reverse-engineering the correct equations of motion and

(the most non-trivial step) the action which produces these equations.

3.1 Flat currents and the WZ couplings

Candidate flat currents are of the general form

j(µ) = A +
m−1
∑

i=1

(

ei(µ)q(i) + fi(µ)∗q(i)

)

, (75)

and from the discussion above we know that the equation of motion for each q(k) is of the

form

D∗q(k) +

i+j≡k
∑

(i,j)∈(Zm\{0})2

Cij
k q(i) ∧ q(j) = 0 (76)
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for some coefficients Cij
k = Cji

k . Given these equations of motion, together with the iden-

tities (63,64), one finds that the current j(µ) is flat if and only if for each k ∈ {1, . . . 2n},

ekem−k − fkfm−k = 1, ekfm−k − em−kfk = 0 (77)

(these are the conditions at grade 0) and further for all i, j such that i + j ≡ k,

eifj − fiej = 0, eiej − fifj = ek + Cij
k fk (78)

(these are the conditions at grade k).

One can usefully re-express these conditions as follows: For each k = 1, . . . , m − 1

(ek + fk)(em−k − fm−k) = 1, (79)

and further for all i, j such that i + j ≡ k

(ei + fi)(ej − fj) = ek + Cij
k fk. (80)

Let us try to solve these equations by setting

ek + fk = µk, ek − fk =
1

µm−k
(81)

with µ the sole remaining free parameter. This is the natural generalisation of the solution

(50) in the Z3 case, and it has the merit of automatically satisfying (79) and also (ei +

fi)(ej − fj) = (ei − fi)(ej + fj), which is necessary if (80) is to hold.

Given (81), the coefficients Cij
k are uniquely determined by (80): we must have

Cij
k =

{

+1 i + j > m,

−1 i + j < m.
(82)

(Here the relations ≷ refer to the ordering of Z. So for example when m = 5, C12
3 = −1

since 1 + 2 < 5 but C44
3 = +1 since 4 + 4(≡ 3 mod 5) = 8 > 5.)

Thus it is certainly possible to choose equations of motion such that a one-parameter

family of flat currents exists – this is not so surprising in itself. What is not at all obvious

is that these equations of motion may be obtained from an action of the form (65). When

m = 2n + 1 there are only n free real parameters γk to choose, and it is necessary to get

the values of 2n2 coefficients Cij
k correct; when m is even the counting is slightly modified

but the apparent problem is the same.

However, it turns out there is a solution. The values

γk = 1 −
2k

m
(83)
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for the WZ couplings do produce the equations of correct equations of motion. The cal-

culation is straightforward but lengthy, so we shall only sketch it. One computes all the

coefficients Cij
k in the equations of motion (76) by varying the action (65). There are six

cases to consider, which occur naturally in pairs

k ≤ n, i, j > n; k > n, i, j ≤ n; (84)

k ≤ n, i, j < k; k > n, i, j > k; (85)

k < i ≤ n (and j > n); k > i > n (and i ≤ n). (86)

When one demands that the Cij
k take the values given in (82) the first pair of cases both

produce the same condition:

for all i, j ≤ n such that i + j > n, γi + γj + γ2n+1−i−j = +1, (87)

while the final four cases all separately produce the condition

for all i, j ≤ n, such that i + j ≤ n, γi + γj − γi+j = +1. (88)

Naive counting would suggest that these conditions still constitute an over-determined set

of equations for the γi, but nevertheless they are satisfied by (83).

Our result is thus that, for this choice of couplings γi, there exists a one-parameter family

of flat currents, of the form (75) with the coefficient functions

e(k) =
µm + 1

2µm−k
, f(k) =

µm − 1

2µm−k
. (89)

As in the Z3 case, the trivial solution is µ = 1 and we expand around this by setting

µ = exp θ and find, to first order in θ,

e(k) = 1 −
1

2
(m − 2k)θ + . . . , f(k) =

1

2
mθ + . . . . (90)

so that once again it is possible to expand the corresponding gauge-invariant current

g(j(µ)− j)g−1 and find at first order (a multiple of the hodge dual of) the Noether current

J of the global G symmetry, which is

J =
m−1
∑

k=1

g

(

q(k) −

(

1 −
2k

m

)

∗q(k)

)

g−1. (91)

As an additional check, in the particular case of automorphisms of order m = 4, the flat

currents found here coincide with those found in [2]. (To connect the notations: the (A, Ā)

of [2] is here j(µ)−j, and this accounts for the many subtractions of one which occur in the
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parameterisation (3.7) of the flat currents in that paper. The solutions are then identical,

with the spectral parameters related by µhere = µ
− 1

2

there.)

It is worth noting that the argument above also shows that the equations of motion (74)

that one might naively prefer to have, but which we showed were incompatible with actions

of the form (65), are not compatible with the existence of flat currents either, at least in

any obvious way.

We conclude by remarking that the values (83) of the WZ couplings make the WZ 3-form

look particularly simple: one finds

d

n
∑

k=1

(

1 −
2k

m

)

tr q(k) ∧ ∗q(m−k) =

i+j+k=m
∑

{i,j,k}⊂Z

tr
(

q(i) ∧ q(j) ∧ q(k) − q(m−i) ∧ q(m−j) ∧ q(m−k)

)

,

(92)

and it is only for this choice of the 2-form on the left that all the coefficients of the traces

in the sum on the right are unity.
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