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ABSTRACT

Potential anomalies are analysed for the local spin-3 and spin-4 classically
conserved currents in any two-dimensional sigma model on a compact sym-
metric space G/H, with G and H classical groups. Quantum local conserved
charges are shown to exist in exactly those models which also possess quan-
tum non-local (Yangian) charges. The possibility of larger sets of quantum
local charges is discussed and shown to be consistent with known S-matrix
results and the behaviour of the corresponding Yangian representations.

1. Introduction

Sigma models in two spacetime dimensions are known to be quantum integrable if their

target manifolds are compact Lie groups or certain other symmetric spaces [1]-[8], namely

SO(n+1)/SO(n) , SU(n)/SO(n) , SU(2n)/Sp(n),

SO(2n)/SO(n)×SO(n) , Sp(2n)/Sp(n)×Sp(n) , (1)

together with a finite number of examples involving exceptional groups. It is a long-

standing result [2] that a sigma model on a symmetric space G/H with H simple1 possesses

a conserved non-local charge at the quantum level, which implies integrability. The real

and symplectic Grassmannians in (1) have H non-simple, however, and are comparatively

recent additions to this list of integrable models. S-matrices for these new cases were

proposed and tested in [3, 4, 5] and it was subsequently shown [6] that they too possess

quantum non-local charges.

1Here, and throughout this paper, we shall use ‘simple’ to mean that the corresponding Lie algebra has
no non-trivial ideals. Hence U(1) is simple in our terminology, in addition to the usual non-abelian simple
groups of the Cartan-Killing classification [9].
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An alternative criterion for integrability, either classical or quantum, is the existence of

higher-spin, local conserved charges (see e.g. [7, 8, 10, 11, 12, 13]). These offer an inde-

pendent check on whether the list in (1) is now correct and complete, which is particularly

important in view of the fact that two families were overlooked until recently. In this

paper we give a uniform treatment of sigma models on (irreducible [9]) symmetric spaces

G/H where G (simple) and H are compact classical groups: we investigate the quantum

behaviour of all local conserved currents of spin three or four using an approach due to

Goldschmidt and Witten [8] which is based purely on symmetry arguments.2

We discuss general aspects of the classical symmetric space sigma models in section 2,

before outlining how the analysis of the local currents is carried out, and also stating our

results, in section 3. Sections 4 and 5 provide the case-by-case details of the analysis

on which the results rest. Our findings are in complete agreement with the studies of

non-local charges cited above. In addition to the basic question of integrability of the

models, however, there are also very interesting consequences which follow from the co-

existence of local and non-local conserved quantities. Both constrain the S-matrix in

powerful ways (beyond factorisation) and the consistency of these constraints is highly

non-trivial [15, 14, 17, 11]. We discuss, in section 6, how the existence of quantum local

charges fits with the properties of the Yangian quantum groups generated by the non-local

charges (see e.g. [18, 19, 20, 21]).

2. General aspects of the models

One way to formulate the sigma model with target space G/H is to introduce a field

g(xµ) ∈ G which transforms under both a global symmetry g(xµ) 7→ Ug(xµ), for U ∈ G,

and also under local gauge transformations g(xµ) 7→ g(xµ)h(xµ) for h(xµ) ∈ H , thereby

ensuring that physical degrees of freedom are properly confined to the coset space.3 An

alternative approach, which we shall adopt, is to construct the model without any gauge

redundancy. To do this we use the fact that each symmetric space can be parametrised

by a particular set of unitary matrices, so there is a field Φab(x
µ) obeying ΦΦ† = 1 as well

as certain additional constraints. We will describe the precise nature of these constraints

for each family of classical symmetric spaces in sections 4 and 5; in this section we will

concentrate on features common to all the models.

We must specify how Φ transforms under G, and we will distinguish two possibilities:

(a) Φ 7→ UΦU † or (b) Φ 7→ UΦUT (2)

where U ∈ G. The constraints on Φ ensure that it can be related to a canonical form, by

2Goldschmidt and Witten [8] established quantum integrability for sigma models on spheres and classical
Lie groups (see also [11]); the method was also used in [6], but only for a rather special set of currents, to
confirm the integrability of the SO(2n)/SO(n)×SO(n) models (see section 5).

3All groups are classical and elements of them are unitary matrices in the defining representations;
similarly, elements of the corresponding Lie algebras are traceless antihermitian matrices.
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which we mean some fixed, unitary matrix N , as follows:

(a) Φ = gNg† or (b) Φ = gNgT . (3)

Any given Φ(xµ) thus corresponds to (many) g(xµ), and this is exactly the field introduced

in the coset description. The correspondence between the two approaches is completed by

identifying H as the subgroup which preserves N :

(a) hNh† = N or (b) hNhT = N . (4)

Note that cases (a) and (b) coincide if G is an orthogonal group. Case (b) applies to

the families SU(n)/SO(n) and SU(2n)/Sp(n), while case (a) applies to all other classical

symmetric spaces. For example, if Φ is a traceless, hermitian, 2n×2n matrix transforming

under G = SU(2n) as in (2a), then (3a) certainly holds with N = diag(1, . . . , 1,−1, . . . ,−1)

and (4a) implies that H = S(U(n)×U(n)). In this way we recover one of the complex

Grassmannians. On the other hand, the coset SU(n)/SO(n) is obtained by taking Φ to be

a complex, symmetric, n×n matrix with det Φ = 1. It transforms under SU(n) according

to (2b), so (3b) holds with N the identity matrix and the subgroup H is indeed SO(n).

Underlying this construction, in general, is the Cartan immersion G/H → G [20, 22].

But the validity of the approach can be checked case by case when G and H are classical,

using basic results from linear algebra, as in the examples above (and as in [3, 4, 23]).

When we consider the various families of symmetric spaces in more detail in sections 4 and

5, we will simply state the properties required of Φ and specify the canonical form N .

The lagrangian for the G/H sigma model, with field Φ(xµ) is Tr(∂µΦ∂µΦ†) supplemented

by the relevant constraints, among them ΦΦ† = 1 (these can be enforced by Lagrange

multipliers). The theory is invariant under G, with Noether current

jµ = 1
2
Φ ∂µΦ† ∈ g , (5)

where g is the Lie algebra of G. This current transforms

jµ 7→ UjµU † (6)

under (2) in cases (a) and (b). The equations of motion for the model are4

∂−j+ = −∂+j− = [j+, j−] (7)

or in terms of the fields,

∂+∂−Φ = 2{j+, j−}Φ . (8)

Note that this is independent of the details of the constraints.

4Orthonormal and light-cone components of spacetime vectors are related by u± = u0 ± u1.
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The form of equation (7) is responsible for the classical integrability of the symmetric

space sigma models. It allows us to construct local conserved currents of spin m:

∂−Tr(jm
+ ) = 0 (9)

(and similarly with ± interchanged). It is, of course, essential to know when such currents

are non-zero, and this leads us to the question of invariants on symmetric spaces.

Let h be the Lie algebra of H and m its orthogonal complement in g; then

g = h ⊕ m with [h, h] ⊂ h , [h, m] ⊂ m , [m, m] ⊂ h . (10)

It follows from the definition of H in (4a) or (4b) that h and m are the ±1 eigenspaces of

the following map on g

(a) σ : X 7→ NXN † or (b) σ : X 7→ NX∗N † . (11)

In other words, σ is the involutive automorphism of g which defines the symmetric space.

Now although jµ belongs to g, it is conjugate to something in the subspace m, specifically

jµ = −gkµg
−1 where kµ = 1

2
( g−1∂µg − σ(g−1∂µg) ) ∈ m (12)

which follows on substituting (3) in (5). In considering Tr(jm
+ ) = (−1)mTr(km

+ ) we are

therefore concerned not merely with symmetric G-invariant tensors on g, but actually with

symmetric H-invariant tensors on m. We shall refer simply to invariants on G/H from

now on. An analysis of these symmetric G/H invariants, including the question of which

of them are primitive, meaning that they are not combinations of invariants of lower order,

has been given in [12] (see also [13]) in the context of classical conserved charges; we shall

have frequent recourse to these results.

Discrete symmetries of the G/H sigma models also play a very important role. All models

are invariant under

Φ 7→ Φ∗ , jµ 7→ j∗µ = −jT
µ . (13)

Even if this symmetry is trivial, in that Φ is real, the resulting antisymmetry of the

current has important consequences, e.g. for the vanishing of certain trace invariants. Other

discrete symmetries will be discussed as they arise.

3. Overview of anomaly counting and statement of results

Suppose that in some model there are nC independent, local quantities Ck which obey

classical conservation equations ∂−Ck = 0 and which have identical behaviour under all

symmetries, continuous and discrete. The Goldschmidt-Witten (GW) approach [8] to

investigating the effect of quantization is to count the number of independent, local terms

Ai with the correct symmetries to appear as quantum modifications of these equations,

making free use of the classical equations of motion, and to count similarly the number of
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independent terms Bj which have the correct symmetries and which are derivatives of local

expressions. Let the number of these terms be nA and nB respectively. If nC > nA−nB then

there is at least one combination of conservation equations which survives quantization,

because its quantum modification is a derivative. When this occurs for a given class of

conservation equations (characterised by their symmetries, including spin) we will say ‘GW

works’, and if not, ‘GW fails ’. Note, however, that ‘GW fails’ does not imply that there

is no quantum conservation equation, only that we can draw no definite conclusion from

the counting.

We will investigate the quantum modifications to (9) with m = 2, 3, 4. The anomalies

(A’s) and derivatives (B’s) must be G-invariant and so can be expressed in terms of5

(a) Tr(D1Φ D2Φ . . .DrΦ ) or (b) Tr(D1Φ D2Φ
† . . . D2s−1Φ D2sΦ

†) (14)

depending on the transformation in (2), where each Di is a product of powers of ∂+ and

∂−, or the identity operator. But it follows from ΦΦ† = 1 and consequences of it such as

(∂µΦ)Φ† = −Φ(∂µΦ)† that all derivatives of Φ can be re-expressed in terms of the Noether

current jµ, its derivatives, and Φ fields without derivatives. Moreover, any quantity of the

form (14b), or (14a) with r even, can be written entirely in terms of jµ and its derivatives,

while any quantity (14a) with r odd can be written in terms of jµ, its derivatives, and a

single Φ. Finally, we can use (7) to eliminate any occurrences of ∂−j+ or ∂+j−.

The simplest application of GW counting is to energy-momentum conservation. The

classical equation ∂−Tr(j2
+) = 0 will be modified in the quantum theory (scale-invariance

is broken) but we can check, in each model (see sections 4 and 5), that the only relevant

anomaly terms with the correct symmetries are those involving just jµ and its deriva-

tives. The quantum modification must be even under (13) and so must be proportional to

Tr(j−∂+j+) = ∂+Tr(j−j+), on using the equations of motion. Thus energy-momentum is

conserved quantum-mechanically, as expected.

Consider next the classical spin-3 current, C = Tr(j3
+), which is odd under (13). For this

to be non-vanishing, the symmetric space must have a 3rd-order invariant, which occurs

only for SU(n)/SO(n) and SU(2n)/Sp(n) with n ≥ 3 [12]. But in these families the field

Φ transforms as in (2b), so G-invariants are of type (14b) and, as argued above, anomalies

and derivatives can once again be written entirely in terms of jµ and its derivatives. The

only terms with the correct symmetries, changing sign under (13), are

A = Tr(j−{j+, ∂+j+}) , B = ∂+Tr(j−j2
+) . (15)

Hence GW works (in fact A = B) and the spin-3 current survives quantization.

5When G is SO(n) or SU(n) we can also construct invariants using ε tensors. These are never relevant
for the anomalies and derivatives associated with currents (9), however, because the ε invariants either
reduce to traces or else can be distinguished from trace-type invariants by symmetries. Some details are
given in sections 4 and 5.
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Now consider the conserved quantities of spin-4:

C1 = ( Tr(j2
+) )2 , C2 = Tr(j4

+) , (16)

which are both invariant under (13). These are distinct if there is a primitive symmetric

4th-order invariant on G/H ; if there is not, C2 is proportional to C1. Thus nC = 1 or 2,

the number of independent symmetric 4th-order invariants on G/H .

Before listing possible anomalies and derivatives for the spin-4 case it is helpful to intro-

duce some new notation by defining:

j++ = ∂+j+ , j+++ = ∂+j++ + [j+, j++] , j++++ = ∂+j+++ + [j+, j+++] . (17)

The advantage of working with these modified derivatives, all of which clearly belong to g,

is that they each obey j = −gkg−1 for some k ∈ m, generalising (12). This, and properties

which follow from it, will prove very convenient. Note also j 7→ j∗ = −jT under (13).

The counting of anomalies and derivatives is much more intricate for the spin-4 case. Let

us first write down all possible anomaly terms which are constructed from jµ alone and

which are invariant under (13). There are five independent terms in general:

A1 = Tr(j−j++++)

A2 = Tr(j−j+)Tr(j+j++)

A3 = Tr(j−j++)Tr(j2
+)

A4 = Tr(j+j−j+j++)

A5 = Tr(j2
+{j−, j++}) (18)

Other possibilities which involve Φ fields and which we encounter in some models are:

A6 = Tr(Φj−j+)Tr(Φj+j++)

A7 = Tr( Φj2
+{ j−, j++} ) (19)

The derivative terms which involve jµ alone and which have the correct symmetries are:

B1 = ∂+Tr(j−j+++)

B2 = ∂−Tr(j2
++)

B3 = ∂+( Tr(j−j+)Tr(j2
+) )

B4 = ∂+Tr(j−j3
+) (20)

It will turn out that these are the only derivative terms that are relevant. (Note that

∂−Tr(j+j+++) is proportional to B2, using the equations of motion.)

It is clear that B1, B2, B3 are always independent, but B4 is an additional independent

quantity iff there is a primitive 4th-order invariant on G/H , otherwise it is proportional

to B3. Thus

nC = 1 ⇒ nB = 3 , nC = 2 ⇒ nB = 4 . (21)
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The question of how the various anomaly terms are related when nC = 1 is more subtle

for two reasons. First, the lack of a primitive 4th-order invariant implies only that to-

tally symmetrized traces reduce to lower-order invariants. For instance, the appropriate

combination of A4 and A5 in (18) must reduce in these circumstances, but they need not

be individually reducible. Second, G-invariant quantities simply work differently if they

involve Φ, such as A6 and A7 in (19), because, unlike the currents, Φ does not belong to

g. These cases require special consideration (one approach is explained in the appendix).

We have kept the presentation as general as possible for as long as possible; to go further

we must state explicitly the constraints obeyed by Φ, the discrete symmetries of the sigma

model, and so on. We provide these details in the following sections, 4 and 5, and we

specify exactly which anomaly and derivative terms are allowed and independent for each

classical symmetric space. In the interests of clarity, however, we state, in advance, the

conclusions which follow from GW counting:

(i) All sigma models in (1) possess at least one higher-spin quantum conserved charge.

(ii) GW fails for sigma models on those classical symmetric spaces G/H not in (1).

These broad conclusions provide independent confirmation of the quantum integrability of

the models in (1) and also lend support to the suggestion that this list is complete. At a

finer level of detail, however, we find:

(iii) The sigma models on SU(n)/SO(n) and SU(2n)/Sp(n) possess a spin-3 quantum

conserved current for n ≥ 3 (these are the classical symmetric spaces with a 3rd-order

invariant).

(iv) All sigma models in (1) possess a spin-4 quantum conserved current, with the possible

exceptions of SU(3)/SO(3) and SU(6)/Sp(3), for which GW fails.

We will also summarise, and clarify in one small respect, the status of local charges in

principal chiral models (PCMs) with target spaces simple classical Lie groups G [8, 11]:

(v) There is a quantum spin-3 conserved current when G is SU(n) for n ≥ 3 (these are

the classical groups with a 3rd-order invariant); and there is a quantum spin-4 conserved

current for all G, with the possible exception of SU(3), for which GW fails.

The analysis of spin-4 currents in PCMs was given in [8, 11] for classical groups G which

possess a primitive 4th-order invariant. Of the few classical groups which lack such an

invariant, the case SU(2) = S3 was also dealt with in [8], as one of the family of sigma

models on spheres, and SO(3) is similar. This leaves just the case of SU(3) to consider,

which is easily done (see section 5).

It is striking that there are just three examples—in (iv) and (v)—where the sigma model

is integrable yet GW fails to show the quantum conservation of a spin-4 current (even

though it shows the existence of a quantum spin-3 current). We shall return to this point

in section 6.
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4. Details for the Grassmannian models

The real, complex and quaternionic (or symplectic) Grassmannians:

SO(p+q)/SO(p)×SO(q) , SU(p+q)/S( U(p)×U(q) ) , Sp(p+q)/Sp(p)×Sp(q)

are each parametrised by a hermitian matrix Φ and (2a,3a,4a) hold. In the real and complex

cases Φ is (p+q)×(p+q) with6

Φ† = Φ , Φ2 = 1 , Tr Φ = p − q , N =

(

1p×p 0
0 −1q×q

)

. (22)

In the quaternionic case Φ and N are doubled in size, with TrΦ = 2(p−q). For the real

and quaternionic families Φ also satisfies reality conditions

Φ∗ = Φ or Φ∗ = JΦJ−1 , (23)

respectively, where J is a 2(p+q)×2(p+q) symplectic structure (a real antisymmetric matrix

with J2 = −1). All three families of Grassmannians have a special feature which arises

iff p = q, namely, a discrete symmetry τ : Φ 7→ −Φ, j 7→ j, where j is any of the

currents j± or j+...+. (Note that if p 6= q this map does not respect the condition on TrΦ.)

The conserved quantities (9) are clearly invariant under τ . This symmetry was crucial in

showing the existence of quantum conserved non-local charges for the special families of

Grassmannians in (1) [6] and it will play an equally important role here.

Using Φ = Φ† and the definitions (5) and (17) we find, for any current j,

Φj = −jΦ or ΦjΦ−1 = −j , (24)

and this has useful consequences: (i) The trace of any odd number of currents vanishes,

whether or not it contains a factor of Φ. (ii) Tr(Φj2) = 0 for any j, from cyclicity of the

trace. (iii) Tr(Φjj′) is odd under (13); in the real and symplectic cases (23) then implies

that it actually vanishes; in the complex case it need not vanish if j 6= j′, but we must

multiply two such expressions to obtain something even under (13), an example being A6

in (19). (iv) Similar restrictions can be derived for traces of Φ with four currents; thus

A7 in (19) is non-zero and even under (13), whereas other candidates for anomalies and

derivatives, such as Tr(Φj+j−j+j++) and ∂∓Tr(Φj±j3
+), either vanish or are odd under (13).

These remarks justify the assumption made in section 3 (of using only j’s, no Φ’s) when

establishing quantum conservation of energy-momentum. They also imply that for spin-4

currents, the possible anomalies are limited to Ai in (18) and (19) while the only derivatives

with the correct symmetries are Bj in (20). We now complete the treatment of the spin-4

6There is a subtlety in the real case: the matrix Φ actually parametrises O(p+q)/O(p)×O(q) =
SO(p+q)/S(O(p)×O(q) ) rather than SO(p+q)/SO(p)×SO(q) and so it does not quite provide a ‘faithful
representation’ of the latter symmetric space. The relationship between these spaces is analogous to that
between SU(2) and SO(3) (which is actually the case p = 3, q = 1).
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case for each family. (Some additional comments, mainly of use in confirming the counting

in the q = 1 cases, are relegated to an appendix.)

Spin-4 for real Grassmannians

• If p ≥ q ≥ 2 then nC = 2 and nB = 4. The possible anomalies are Ai with 1 ≤ i ≤ 5 and

A7 if p 6= q. If p = q, however, then A7 is ruled out by τ . Thus for p 6= q we have nA = 6,

nB = 4 and GW fails; but for p = q we have nA = 5, nB = 4 and GW works.

• If p > q = 1, the target manifolds are spheres Sp. There is no primitive 4th-order

invariant so nC = 1 and nB = 3. But A4, A5 and A7 can now each be expressed in terms

of A2 and A3. Hence nA = nB = 3 and GW works for all p.

We have not considered invariants involving ε tensors above, because the real Grass-

mannians possess a symmetry µ : Φ 7→ MΦMT , where M is an orthogonal matrix with

det M = −1. Trace-type invariants, and so all the higher-spin currents, anomalies and

derivatives, are inert under µ. But an invariant constructed from a single ε tensor changes

by a factor det M = −1 under µ. Precisely this property was used in [6] to show that

the conservation of the classical Pfaffian7 current ∂−Pf(j+) = 0, which exists iff p = q,

generalises to the quantum theory. The anomaly must be odd under µ but even un-

der τ , which leaves ∂+( εa1b1a2b2...apbp
ja1b1
− ja2b2

+ . . . j
apbp

+ ) as the only possibility. Hence the

SO(2p)/SO(p)×SO(p) models contain both a quantum current of spin 4 which is even

under µ and a quantum current of spin p which is odd under µ.

Spin-4 for complex Grassmannians

• If p ≥ q ≥ 2 then nC = 2 and nB = 4. The possible anomalies are Ai with 1 ≤ i ≤ 6 and

A7 iff p 6= q. Hence, nA = 7 if p 6= q, nA = 6 if p = q, and either way GW fails.

• If p ≥ q = 1, the target manifolds are projective spaces CP p with nC = 1 and nB = 3.

If in addition p ≥ 2, then A2, A3 and A7 are independent, but A4, A5 and A6 can be

expressed in terms of them, so nA = 4 and GW fails. If p = q = 1, however, then A7 also

reduces to a combination of A2 and A3, so nA = nB = 3 and GW works; this is the case

SU(2)/U(1) = CP 1 = S2.

We need not consider ε tensors for the complex Grassmannians because the field Φ

transforms under SU(p+q) according to (2a), i.e. in the tensor product of the defining

representation and its conjugate. We need ε tensors associated to each of these representa-

tions (one with indices up and one with indices down in traditional notation) to construct

an invariant, but the product of two such tensors reduces to a combination of δ tensors,

and hence to traces.

Spin-4 for quaternionic/symplectic Grassmannians

• If p ≥ q ≥ 2 then nC = 2 and nB = 4. The counting is exactly like the real case, in

keeping with the remarks following (24). Hence GW works for p = q but fails for p 6= q.

• If p ≥ q = 1 then nC = 1 and nB = 3. The anomalies behave more subtlety here. For

7The Pfaffian is defined by PfX = cn εa1b1a2b2...anbn
Xa1b1Xa2b2 . . . Xanbn

, for any 2n×2n antisymmetric
matrix X (real or complex), where the constant cn = (2nn!)−1 ensures (PfX)2 = detX .
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p ≥ 2, one combination of A4, A5 and A7 remains independent of A2 and A3, so nA = 4

and GW fails. But for p = q = 1 we find A4, A5 and A7 all reduce to A2 and A3, so nA = 3

and GW works; this is the case Sp(2)/Sp(1)×Sp(1) = SO(5)/SO(4) = S4.

5. Details for the remaining models

The remaining families of classical symmetric spaces are

SU(n)/SO(n) , SU(2n)/Sp(n) , SO(2n)/U(n) , Sp(n)/U(n)

The first two and last two sequences are very similar in character.

For SU(n)/SO(n): Φ is an n×n complex matrix and (2b,3b,4b) hold with

ΦT = Φ , ΦΦ∗ = 1 , det Φ = 1 , N = 1 . (25)

There is a symmetry µ : Φ 7→ MΦMT where M is a unitary matrix with det M = −1.

Trace-type invariants (14b), and hence all conserved quantities, anomalies and derivatives,

are even under µ. Any SU(n)-invariant constructed using an ε tensor is odd under µ,

however, so we disregard these.

For SU(2n)/Sp(n): Φ is a 2n×2n complex matrix and (2b,3b,4b) hold with

ΦT = −Φ , ΦΦ∗ = −1 , Pf Φ = 1 , N = J , (26)

where J is a symplectic structure chosen to have PfJ = 1. The condition PfΦ = 1 implies

Φ[a1b1Φa2b2 . . .Φanbn] =
2nn!

(2n)!
εa1b1a2b2...anbn

(27)

and hence any ε invariant can be re-expressed in terms of traces.

In these two families of sigma models the anomalies and derivatives can be written entirely

in terms of j’s (because the G-invariants are of type (14b)), so we can restrict attention

to the lists (18) and (20). We noted in section 3 that this was sufficient to show quantum

conservation of the spin-2 (energy-momentum) and spin-3 currents, the latter existing when

n ≥ 3 (so that there is 3rd-order invariant [12]). For the spin-4 currents, the counting is

identical for members of either family with a common value of n. In fact, exactly the same

anomalies and derivatives occur for the spin-4 current in the SU(n) PCM, to which the

same lists (18) and (20) apply [11].

Spin-4 in SU(n)/SO(n), SU(2n)/Sp(n) and SU(n) (PCM)

• If n ≥ 4 then nC = 2, nB = 4. The anomalies are Ai in (18): nA = 5 and GW works.

• If n = 3 then nC = 1, nB = 3. One combination of A4 and A5 reduces to A2 and A3, but

any distinct combination remains independent, so nA = 4 and GW fails.

• If n = 2 then nC = 1, nB = 3. Now A4 and A5 each reduce to combinations of

A2 and A3, so nA = 3 and GW works. These target spaces are SU(2)/SO(2) = S2,
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SU(4)/Sp(2) = SO(6)/SO(5) = S5 and SU(2) = S3.

(Further details relevant to the behaviour of these invariants are given in the appendix).

For SO(2n)/U(n): Φ is a real, antisymmetric 2n×2n matrix and (2,3,4) hold with

Φ∗ = −ΦT = Φ , Φ2 = −1 , Pf Φ = 1 , N = J , (28)

where, again, J is a symplectic structure with PfJ = 1. When n is even there is a symmetry

τ : Φ 7→ −Φ; when n is odd there is a symmetry τ : Φ 7→ −RΦRT where R is orthogonal,

det R = −1, and RJ = −JR (this ensures Pf Φ = 1 is preserved); the currents (9) are

unchanged by τ . Once again we may disregard ε invariants because (27) holds.

For Sp(n)/U(n): Φ is an anti-hermitian 2n×2n matrix and (2a,3a,4a) hold with

Φ∗ = −ΦT = JΦJ−1 , Φ2 = −1 , det Φ = 1 , N = J . (29)

There is a discrete symmetry τ : Φ 7→ −Φ under which the higher-spin currents are inert.

For these last two families the field Φ is antihermitian and this implies (24) again (compare

with the Grassmannians, for which Φ is hermitian). Consequently: (i) The trace of any

odd number of currents vanishes, with or without a Φ term. (ii) Tr(Φj2) = 0 for any j,

from cyclicity of the trace. (iii) Tr(Φjj′), which need not vanish if j 6= j′, is even under

(13) and odd under τ .

Spin-4 in SO(2n)/U(n) and Sp(n)/U(n)

• If n ≥ 4 in the first family, or n ≥ 2 in the second family, then nC = 2 and nB = 4. The

anomalies are Ai with 1 ≤ i ≤ 6, A7 being ruled out by τ , so nA = 6 and GW fails.

• The remaining cases are models we have already considered:

SO(6)/U(3) = SU(4)/S( U(3)×U(1) ) = CP 3 and SO(4)/U(2) = Sp(1)/U(1) = S2.

6. The co-existence of local and non-local quantum charges

Returning to our results, stated at the end of section 3, points (i) and (ii) imply that the

integrable symmetric space models (1) always possess local (as well as non-local) quantum

conserved charges. To discuss the significance of this, let us recall the situation for a

PCM based on G. In this model the non-local charges extend the Lie algebra g of G to a

quantum group structure, known as a Yangian Y (g) ⊃ g (see e.g. [18, 19]) and the particle

multiplets Vi are irreducible representations (irreps) of Y (g) [24, 11] (actually there are

‘left’ and ‘right’ copies of this symmetry in the PCM, but this is not important here). Let

us denote by (µ) the g-irrep with highest weight µ, and let λi be the fundamental weights

dual to the simple roots and thus associated to the nodes of the g Dynkin diagram. The

PCM particle multiplets are Y (g)-irreps in one-to-one correspondence with these nodes.

For the A (SU) and C (Sp) families, Vi = (λi), while for the B/D (SO) families the

Y (g)-irreps are not g-irreps in general, but they take the form Vi = (λi) ⊕ {more}.

One can, therefore, view the masses and 3-point couplings or fusings in the PCM S-

matrices [24] as arising from properties of Yangian (non-local charge) representations and
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their tensor products. What is remarkable is that the same fusings and masses occur in

affine Toda theories [14], where they follow from the existence of a set of quantum, con-

served, commuting, local charges, with a particular set of spins equal to the exponents of

g modulo its Coxeter number h(g) [15]. Actually, this statement requires careful interpre-

tation in the non-simply-laced cases, since these involve a restricted fusing rule based on

a dual pair of Kac-Moody algebras [16, 17]. Now, it was shown in [11] that the PCMs

possess classical, commuting, conserved local charges with precisely this same set of spins

(see [13] for the exceptional groups) and, as described in section 3, some of them survive

quantization. It is natural to conjecture [11] that all these commuting charges survive,

thereby fitting very nicely with the Yangian structure.

G exponents h(g)

An = SU(n+1) 1, 2, . . . , n n+1

Bn = SO(2n+1) 1, 3, . . . , 2n−1 2n

Cn = Sp(n) 1, 3, . . . , 2n−1 2n

Dn = SO(2n) 1, 3, . . . , 2n−3; n−1 2n−2

Exactly the same ideas can now be applied to the G/H symmetric space sigma models.

Here too the quantum non-local charges [1, 2] (see also [20, 21]) generate a Yangian, Y (g) ⊃

g, and the S-matrix constructions of [3, 5] can be interpreted in these terms, although the

Y (g) irreps differ from those in the PCMs (see below). It is also known [12] (and [13] for

the exceptional cases) that the G/H model possesses classical, commuting, conserved, local

charges, with spins equal to the exponents of K, a certain Lie group/algebra which should

be regarded as encoding the simple root structure of G/H [9]. The obvious question is

whether all these commuting charges could survive quantization, and in particular whether

this would be consistent with the S-matrices proposed in [3] and [5].

G/H K Vi

Sn = SO(n+1)/SO(n) A1 (λ1)

SU(2n+2)/Sp(n+1) An = SU(n+1) (λ2i)

Sp(2n)/Sp(n)×Sp(n) Cn = Sp(n) (λ2i)

SU(n+1)/SO(n+1) An = SU(n+1) (2λi)

SO(2n)/SO(n)×SO(n) Dn = SO(2n) (2λi) ⊕ {more}

For a basic test of this suggestion, consider the more detailed conclusions (iii), (iv) and

also (v), at the end of section 3. Noting that a conserved charge of spin s corresponds to a

conserved current of spin s+1, we see that, for those models which are actually quantum
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integrable, a classical conservation law with s = 2 always survives. We have shown that

conservation laws with s = 3 also survive quantization in these theories, with the possible

exception of the SU(3) PCM and the SU(3)/SO(3) and SU(6)/Sp(3) sigma-models, for

which GW fails. But these are exactly the integrable examples for which there is no charge

of spin 3 in the classically commuting set constructed in [11, 12], as can be checked from

the data in the tables. Thus the GW analysis is precisely compatible with the claim that

the classical commuting charges generalise to the quantum theory.

Much more stringent consistency requirements follow by taking the fusings that would

be predicted by the quantum local charges, according to Dorey’s rule [15], and comparing

these with the behaviour of the Yangian representations Vi given in the table. We have

included the Sn models for completeness; these have just a single irrep which is the vector

of so(n+1) [25]. For the remaining families, the representations Vi with i = 1, . . . , n are

those proposed in the S-matrix constructions of [3, 5]. Note that (2λi) appears in the

symmetrized product of the (λi) with itself. The SO(2n)/SO(n)×SO(n) case is by far the

most complicated, because in general the Y (so(2n))-irreps are not so(2n)-irreps. However,

those built from the vector (i = 1) and spinor (i = n−1, n) representations are: Vi = (2λi),

for i = 1, n−1, n.8

For three of the families it is relatively straightforward to compute the three-point-

couplings. For SU(2n+2)/Sp(n+1) and Sp(2n)/Sp(n)×Sp(n) the multiplets are just a

subset of the fundamental Y (g)-irreps (the even-labelled ones), which are also g-irreps,

and so their tensor products and associated S-matrix structure is fully understood. It is

clear from [5] and references therein that the fusings are indeed those of the An and re-

stricted Cn cases respectively, as would be expected from Dorey’s rule [15, 17]. In the latter

case, however, the masses are those of the A
(2)
2n Toda theory [27] (for which the R-matrix

fusings are the same as Cn); it would be interesting to investigate this case in more detail

(similar subtleties arise in comparing the non-simply-laced Toda models and PCMs [11]).

For SU(n+1)/SO(n+1) the irreps Vi are still g-irreps, but they are not fundamental, so

some work must be done. Using the tensor product graph (TPG) [28], one can show that

Vj = (2λj) and Vk = (2λk) fuse to give, for example, Vj+k = (2λj+k) at θ = iπ(j+k)/(n+1)

if j + k < n+1. In general we find exactly the same fusings and rapidity differences as for

the irreps (λj) and (λk) with the original, undoubled, weights. The couplings and masses

are therefore those of An, in accordance, once again, with expectations based on quantum

local charges.

The SO(2n)/SO(n) × SO(n) case is, of course, harder, and we are unable to carry out

all the necessary calculations because the TPG cannot handle g-reducible representations.

However, one can compute the TPGs for the irreps V1, Vn−1 and Vn with one another

(V1 ⊗ V1 is given in [3, 28]) and it is remarkable that once again the same couplings occur,

8The first few higher tensor multiplets after V1 are V2 ≡ (2λ2) ⊕ (λ2) ⊕ (0), (2λ3) ⊕ (λ3 + λ1) ⊕ V1,
(2λ4) ⊕ (λ4 + λ2) ⊕ (λ4) ⊕ V2; the full formula is given in [26].
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and at the same rapidity differences, as for (λ1), (λn−1) and (λn) in Dn. It is natural to

expect, therefore, that the same applies for all the Vi and that the masses and couplings

are just those of Dn.

Given our findings, it would be interesting to investigate whether the central result of

[17]—on the Dorey’s-rule structure of tensor products of fundamental Y (g) representations—

holds more generally when the highest weights of the representations are doubled, or per-

haps even multiplied by some integer. Another very natural question is whether there is

any deeper significance to the root system K from which one could gain a more direct

understanding of the multiplet structure in the quantum G/H model.
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Appendix: more on certain 4th-order invariants

To apply the GW counting argument, we need to know which of the anomaly terms Ai

with 2 ≤ i ≤ 7 in (18) and (19) are independent when there is no primitive 4th-order

invariant.

• SU(n), SU(n)/SO(n) and SU(2n)/Sp(n): These spaces have a primitive symmetric

4th-order invariant when n ≥ 4 [12] and the anomalies Ai with 2 ≤ i ≤ 5 in (18) are then

independent. When n < 4 there is no primitive 4th-order invariant and so one combination

of A4 and A5 can be expressed in terms of A2 and A3. To see whether or not there is still

one combination of A4 and A5 which is independent of A2 and A3 it suffices, by linearity,

to determine whether or not

Tr(X2Y 2) , Tr(X2)Tr(Y 2) , (TrXY )2 (30)

are independent for X, Y ∈ m (where, for SU(n), m = su(n), its Lie algebra).

It is easy to check that TrX4 = 1
2
(TrX2)2 for X ∈ m = su(2) or su(3) and that

Tr(X2Y 2) = 1
2
(TrX2)(TrY 2) for X, Y ∈ su(2) ( or, in a different representation, Tr(X2Y 2) =

1
4
(TrX2)(TrY 2) + 1

4
(TrXY )2 for X, Y ∈ so(3) ). But the quantities (30) are independent

for X, Y ∈ su(3), as may be checked by judicious choices of these matrices.

The symmetric spaces SU(n)/SO(n) and SU(2n)/Sp(n) behave very similarly. For the

first family, m ⊂ su(n), consisting of symmetric, imaginary matrices. For the second fam-

ily, m consists of matrices of the block form

(

x y
y∗ −x∗

)

with x ∈ su(n) and y complex and

n×n with yT = −y. In both cases the quantities (30) are easily seen to be independent

for n = 3, but for n = 2 standard properties of su(2) matrices imply that X2 and Y 2 are

multiples of the identity matrix and hence the first two expressions in (30) are proportional.
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• Grassmannians: For X, Y ∈ m we have the block forms

X =

(

0 x
−x† 0

)

, Y =

(

0 y
−y† 0

)

, N =

(

1 0
0 −1

)

, (31)

where x, y are p×q real or complex matrices, or in the quaternionic case 2p×2q complex

matrices obeying a symplectic reality condition. Using the fact that g−1Φg = N with

g−1jg ∈ m for each current j, any relations among Ai with 2 ≤ i ≤ 7 in (18) and (19) are

equivalent to relations among:

TrX2 TrY 2 = 4 Tr x†x Tr y†y

TrXY TrXY = ( Tr x†y + Tr y†x )2

Tr NXY Tr NXY = ( Tr x†y − Tr y†x )2

Tr XY XY = Tr xy†xy† + Tr x†yx†y

TrX2Y 2 = Tr xx†yy† + Tr x†xy†y

Tr(NX2Y 2) = Tr xx†yy† − Tr x†xy†y (32)

These formulas can be used to check various statements made in section 5. In particular,

in the real and complex cases with q = 1, x and y are p-component column vectors. In

the real case, with p ≥ 2, there are clearly 2 invariants x2y2 and (xT y)2. In the complex

case there are 3 independent combinations if p ≥ 2, namely (x†x)(y†y), (x†y)(y†x) and

( x†y + y†x )2; but these reduce to 2 if p = 1, namely (x∗x)(y∗y) and (x∗y + y∗x)2. In the

quaternionic case x and y are 2p×2 matrices, even when q = 1. The independent combina-

tions are ( Trx†x )( Tr y†y ), ( Tr x†y )( Tr y†x ) and a third, Tr(x†yx†y) = Tr(y†xy†x) which

is independent if p ≥ 2, but not if p = 1.
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