Developing and Evaluating Cognitive Architectures with Behavioural Tests

Peter C. R. Lane

School of Computer Science, University of Hertfordshire,
College Lane, Hatfield AL10 9AB, Hertfordshire, UK

Pet er. Lane@ocs. or g. uk

Abstract

We present a methodology for developing and evaluating cog-
nitive architectures based on behavioural tests and suitable
optimisation algorithms. Behavioural tests are used to clarify
those aspects of an architecture’s implementation which are
critical to that theory. By fitting the performance of the ar-
chitecture to observed behaviour, values for the architecture’s
parameters can be automatically obtained, and information
can be derived about how components of the architecture re-
late to performance. Finally, with an appropriate optimisation
algorithm, different cognitive architectures can be evaluated,
and their performances compared on multiple tasks.

I ntroduction

Cogpnitive architectures are an important component of sev-
eral disciplines, including: artificial intelligence, cognitive
science and psychology. Within these disciplines, architec-
tures are variously used as: an explanatory framework, from
which to deduce reasons for observed behaviours; an imple-
mented ‘agent,” which can be observed to carry out some
task; and, a system for making predictions, which can be
used to test the principles of the architecture. Our interest
here is in how a cognitive architecture can be evaluated. In
particular, we focus on the use of cognitive architectures to
generate working models (or agents), which are then given
some task to perform. The architecture’s quality is judged
based on whether the models it generates capture some as-
pect of intelligent behaviour.

One specific motivation for developing cognitive archi-
tectures is to create a unified theory of cognition (Newell
1990) — a cognitive architecture which explains a wide range
of intelligent behaviours, in a domain-independent fashion.
We shall focus on two issues regarding the scientific accept-
ability of cognitive architectures: their implementation, and
their parameters. We propose a methodology for improving
the quality of an implementation, and show how this sup-
ports automated techniques for analysing the architecture’s
parameters. Finally, we show how our automated techniques
enable empirical comparisons to be made between different
cognitive architectures.

The key elements of our methodology are:

1. develop the implementation of a cognitive architecture us-
ing a robust-testing methodology (Lane & Gobet 2003);

Fernand Gobet
School of Social Sciences, Brunel University,
Uxbridge UB8 3PH, Middlesex, UK
Fer nand. Gobet @r unel . ac. uk

2. optimise the parameters of the architecture, using a suit-
able search technique (Gobet & Lane 2005; Lane & Gobet
2005a; 2005c¢);

3. use knowledge-discovery techniques to determine the im-
portant variables (Lane & Gobet 2005b); and

4. use data-analysis and visualisation techniques to compare
the different architectures.

We explain these four elements in the following sections, af-
ter briefly introducing a case study in developing a model of
categorisation, which we use to illustrate the ideas and show
their benefits. We finish by relating our methodology to open
questions on the evaluation of cognitive architectures.

Case-Study: Models of Categorisation

As a case study, we have used the problem of developing a
model of categorisation. Our models are drawn from four
different theories: two mathematical theories, neural net-
works (McLeod, Plunkett, & Rolls 1998) and CHREST (Go-
bet et al. 2001). Categorisation is the problem of assign-
ing instances into categories. We use the five-four task,
and specifically the experimental data collected by Smith
and Minda (2000) from 29 different experiments on hu-
mans. A theory is judged on its ability to produce mod-
els which match the performance of human participants in a
wide range of experiments and measures, such as response
time and number of errors. Each experimental result forms
a constraint on the range of admissable models provided by
a theory. We define an experimental constraint from the fol-
lowing information:

1. The experimental setting, consisting of its stimuli, and the
separation of the stimuli into training and transfer sets.

2. The data collected from the participants.

3. The measure of fit used to compare the model’s perfor-
mance with the participants’.

Each constraint can then be applied to a model by running
the model on the experiment, collecting similar data to that
obtained from the participants, and then computing the mea-
sure of fit between the performances of the model and that of
the participants. In Figure 1 and Table 1 constraints are re-
ferred to by ‘SSE 1st’, ‘AAD Time’ etc; SSE/AAD refer to
the computation of fit (Sum-Squared Error/Average Abso-
lute Deviation), and 1st/Time to the data compared against.

Robust-Testing M ethodol ogy

Cognitive architectures are typically implemented as com-
puter programs, which are then run and their behaviour ob-
served. As running architectures are computer programs,
we can look for lessons in how software engineers ascertain
the correctness of their programs. There are two basic ap-
proaches, prescriptive and descriptive.

Prescriptive approaches rely on a high-level specification
language to formalise what the program is meant to achieve.
For example, specifications in the Z language (Lightfoot
2001) can be used to define cognitive architectures, as was
done with Soar (Milnes 1992). The problem with such def-
initions is that they require a new implementor of a cogni-
tive architecture to prove that their implementation meets the
specification. Proofs of program behaviour are difficult, and
may themselves be flawed.

Descriptive approaches are better because they automate
the checking process in a set of tests. Test-driven develop-
ment requires that a program is developed along with a set
of tests, which verify the program’s behaviour. In Lane and
Gobet (2003) we highlighted two groups of tests important
for verifying a cognitive architecture: these behavioural tests
are process tests and canonical results. The process tests
verify that the implementation correctly carries out the pro-
cesses described in the cognitive architecture, and the canon-
ical results verify that the complete implementation has the
desired, observed behaviour. For example, with a neural net-
work, the process tests may confirm that a particular weight
update is carried out correctly, whereas the canonical results
will verify that the network produces a pattern of behaviour
similar to that observed with humans.

The behavioural tests are “designed to satisfy the user that
the [program] does indeed implement the intended cognitive
theory” (Lane & Gobet 2003). Developing an implementa-
tion with explicit tests is not simply a matter of good pro-
gramming practice, but enhances the scientific value of the
implemented architecture. Firstly, the tests explicitly docu-
ment the desired behaviour of the model. This enables a pro-
grammer to identify elements of the implementation which
are critical to the theory, and those which are not. Secondly,
the tests support a user trying to reproduce an implementa-
tion. In many sciences, all aspects of an experiment should
be reproduced before results can be accepted. Supporting
a user in creating a new implementation will aid in clarify-
ing the nature of the architecture and, most importantly, en-
sure that hidden details of the implementation do not affect
the interpretation of results; some difficulties in reproducing
the implementation of the Soar cognitive architecture are re-
ported by Cooper and Shallice (1995).

The third and final way in which behavioural tests en-
hance the scientific value of the implemented architecture is
that they support natural algorithms to optimise, explore and
compare the parameters in this and other architectures. Our
proposed methodology further uses tests to improve the em-
pirical analysis of the behaviour of cognitive architectures
on multiple tasks. The experimental constraints, described
above, form the set of ‘canonical results’ for our models to
meet, and are not architecture specific; hence, canonical re-
sults can be used to compare different architectures.

Optimising Parameters

The ultimate goal of developing cognitive models is to pro-
duce better theories of human behaviour. However, most
theories in psychology and cognitive science have a number
of parameters, and this number can sometimes be consider-
able. In spite of some efforts in this direction (Ritter 1991;
Tor & Ritter 2004), few modellers routinely use formal, au-
tomated techniques to optimise the parameters and/or the
structural components of their models. It is unclear whether
this state of affairs is due to researchers’ unawareness of op-
timisation techniques regularly used in engineering and in
other scientific fields, or whether it is due to the fact that
these techniques have not been tailored to the specific chal-
lenges of developing cognitive models, such as the complex-
ity of the models used, the number of parameters present, the
noise in the empirical data, and so on. However, the fact that
most cognitive models are not optimised poses important
problems for building and evaluating theories. For exam-
ple, what is the meaning of comparing two theories if their
parameters have not been optimised (Gobet & Ritter 2000;
Ritter 1991)? One of the goals of our research is to develop
a method of optimising cognitive architectures, tailored to
the needs of cognitive scientists.

The problem of locating an optimal cognitive model is
usefully considered as an optimisation problem. In addition,
because we require each model to perform as well as possi-
ble in multiple experiments, the problem is a multi-objective
optimisation problem. However, in such problems it is not
always possible to rank two different solutions: one may
be better on one objective, but the other better on a second.
Hence, we look for a set of solutions, where no member
of the set can be outperformed everywhere by another so-
lution; this set is known as the pareto-optimal set, and will
contain the optimal models. In common with other applica-
tions, the nature of our models precludes the use of an ana-
lytic technique to calculate the pareto-optimal set. Instead,
search techniques, which gradually approximate the pareto-
optimal set, are used to find approximations to the optimal
models.

There exist a range of techniques for finding pareto-
optimal sets in the literature. Genetic algorithms (Holland
1975) are one of the must suitable techniques for multi-
objective optimisation, due to the parallel nature of their
search, and several different such algorithms are used; e.g.
see Coello Coello (2000; 2003) for an overview.

L ocating Predictive Parameters

Some parameters will have optimal values, especially in
relation to particular tasks. We can find these associated
parameter-task pairs by analysing the collection of models
created during optimisation. For example, Figure 1 shows
the performance of the time parameter for 10,000 instances
of the neural-network type of model evaluated on two dif-
ferent tasks. As is readily apparent, the performance of the
model has a clear global minimum for task ‘AAD Time’ (the
lower graph), but no such optimum value is apparent for task
‘SSE 1st’ (the upper graph). A statistical measure, Pear-
son’s product moment correlation, can locate those param-

Architecture Parameter Value Task Correlation
Context response time | 1174.74 | SSE Time 0.97
Prototype response time | 1129.73 | AAD Time 0.99
Connectionist | response time | 1130.62 | AAD Time 0.98
CHREST reactiontime | 242.52 | AAD Time 0.82
CHREST sortingtime | 512.60 | AAD Time 0.86

Table 1: (Selected) reported parameter values and tasks with high (> 0.8) correlation.

eters which take on optimal values in individual tasks. By
storing every model tested, along with its fitness on all of
the tasks, we test the degree to which any parameter’s value
correlates with task performance. Specifically, we find the
value of the parameter, p, in the stored models which corre-
sponds to the lowest fitness value for each test. The degree of
correlation is then computed between the value of the fitness
and the absolute difference of each parameter value from p.
A high degree of correlation (> 0.8) means that the param-
eter acts like the lower graph in Figure 1.

T
SSE 1st

Performance
w
T

0 1 1 1
0 500 1000 1500 2000

Response Time

T T T
AAD Time B

1400

1200 b
o 1000 R b
o
g
c 800 | B
s
S 600 | 4
a

400 B

200 q

0 1 1 1
0 500 1000 1500 2000

Response Time

Figure 1: Graph of performance of 10,000 neural-network
models against parameter value on two categorisation tasks.

The correlations detected in this manner are useful in ex-
plaining what elements of the architectures are most impor-
tant in particular tasks. Table 1 lists selected correlations
detected by the system. The correlations mostly agree with
what might be expected. There are strong, and readily ap-
parent, correlations between the different models’ timing pa-
rameters and the task involving a timed response. No be-
havioural effects were apparent for most of the other param-
eters (Lane & Gobet 2005b).

Comparing Architectures

A unique feature of our case study and the scientific goal of
comparing cognitive architectures, is that different kinds of
model will be compared. For example, neural-network mod-
els will be compared with CHREST models. We have dis-
cussed the challenges in managing a population of different
theories elsewhere (Lane & Gobet 2005c¢). More recently,
we have resolved the challenges by maintaining separate,
equal-sized populations for each type of theory, or cogni-
tive architecture, and computing comparisons (for calculat-
ing the non-dominated members of the pareto-optimal set)
across all the populations. This ‘Speciated algorithm’ pro-
duces optimal members from all competing theories.

Discussion

Our robust-testing methodology provides an initial answer
to the question ‘How should we validate the design of a cog-
nitive architecture?” A key element in validating an archi-
tecture is its implementation. We argue that it is not just
‘good practice’ to provide tests for software, but also impor-
tant scientifically. The tests provide a means to document
the key behaviour of the architecture within the implemen-
tation, making it easier to understand, and easier to repro-
duce (Lane & Gobet 2003). An additional benefit is that two
kinds of behavioural tests support optimisation of parame-
ters and comparison between architectures.

By making important behaviours explicit in experimen-
tal constraints (as described above), we also provide an an-
swer to the question ‘How are architectures to be compared
in an informative manner?’ Before we can begin qualita-
tive evaluation of two architectures, it must first be clear that
they both achieve the desired empirical results. Our opti-
misation algorithms also ensure that examples from differ-
ent architectures are suitably optimised, and multiple exam-
ples of each are provided for detailed comparison. As an
aside, there is clear evidence that using automated optimisa-
tion techniques produces better results than hand optimisa-
tion: we routinely find a 40% improvement in our case study
over figures reported in the literature, supporting the earlier
findings of Ritter (1991).

Comparing multiple architectures simultaneously enables
us to analyse their performance, and so consider the ques-
tions: *“How can we determine what architectures to use for
different tasks or environments? Are there any trade-offs in-
volved?’ Even in our small case study, we found that differ-
ent theories performed better on some tasks than on others.

More interestingly, our methodology enables us to iden-
tify properties of an architecture which are suited for differ-

ent tasks. For example, in our case study we used a tech-
nique to seek a correlation between one parameter’s value
and behaviour. This produced some natural correlations, be-
tween parameters relating to time and tasks measuring time
taken. Something to be improved is to seek correlations be-
tween groups of parameters and behaviour. Most parame-
ters, such as the weights within the mathematical models,
work together to produce a behaviour, and more sophis-
ticated analysis techniques are required to locate such de-
pendencies; individually, their correlation with task perfor-
mance was of the order of 0.3.

However, it may also be the case that for many of the pa-
rameters, e.g. the learning rate for a neural network, there
simply is no correlation of the parameter value with the
model’s performance. This would make the parameter a
‘free” variable; one needed to make the implementation
work but which has no explanatory power. Identifying crit-
ical and free variables is important in understanding how
an architecture relates to its environment and other archi-
tectures.

Conclusion

We have argued that a correct, scientific use of cognitive ar-
chitectures requires careful evaluation of the implementation
of that architecture, automated optimisation of its param-
eters, and semi-automated comparison of the performance
of different architectures. Some of these ideas have been
implemented and tested in a system to evolve models from
four theories of categorisation, fitting the models against
psychological data; this system can be downloaded from:
http://homepages.feis.herts.ac.uk/“comqgpcl/
evolving-models._html.

In conclusion, we propose the following guidelines for
working with cognitive architectures, particularly when
modelling observed behavioural data:

1. Use the robust-testing methodology to document impor-
tant elements of the implementation.

2. Use optimisation to ensure parameters are set to their best
values.

3. Use data-analysis and visualisation techniques on the
range of models generated during optimisation, to better
evaluate aspects of the architectures and their relation to
particular behaviours.

4. Compare different types of architectures, to locate those
behaviours which are common to multiple theories, or
specific to only one.

References

Coello Coello, C. A. 2000. An updated survey of GA-based
multiobjective optimization techniques. ACM Computing
Surveys 32:109-143.

Coello Coello, C. A. 2003. Recent trends in evolution-
ary multiobjective optimization. In Abraham, A.; Jain, L.;
and Goldberg, R., eds., Evolutionary Multi-Objective Op-
timization. London, UK: Springer-Verlag. 7-32.

Cooper, R., and Shallice, T. 1995. Soar and the case for
unified theories of cognition. Cognition 55:115-49.

Gobet, F., and Lane, P. C. R. 2005. A distributed frame-
work for semi-automatically developing architectures of
brain and mind. In Proceedings of the First International
Conference on e-Social Science.

Gobet, F., and Ritter, F. E. 2000. Individual data analysis
and Unified Theories of Cognition: A methodological pro-
posal. In Taatgen, N., and Aasman, J., eds., Proceedings
of the Third International Conference on Cognitive Mod-
elling, 150-57. Veenendaal, The Netherlands: Universal
Press.

Gobet, F.; Lane, P. C. R.; Croker, S. J.; Cheng, P. C.-H.;
Jones, G.; Oliver, I.; and Pine, J. M. 2001. Chunking
mechanisms in human learning. Trends in Cognitive Sci-
ences 5:236-243.

Holland, J. H. 1975. Adaptation in natural and artificial
systems. Ann Arbor: The University of Michigan Press.

Lane, P. C. R., and Gobet, F. 2003. Developing repro-
ducible and comprehensible computational models. Artifi-
cial Intelligence 144:251-63.

Lane, P. C. R., and Gobet, F. 2005a. Applying multi-
criteria optimisation to develop cognitive models. In Pro-
ceedings of the UK Computational Intelligence Confer-
ence.

Lane, P. C. R., and Gobet, F. 2005b. Discovering predictive
variables when evolving cognitive models. In Singh, S;
Singh, M.; Apte, C.; and Perner, P., eds., Proceedings of
the Third International Conference on Advances in Pattern
Recognition, part I, 108-117. Berlin: Springer-Verlag.
Lane, P. C. R., and Gobet, F. 2005c. Multi-task learn-
ing and transfer: The effect of algorithm representation. In
Giraud-Carrier, C.; Vilalta, R.; and Brazdil, P., eds., Pro-
ceedings of the ICML-2005 Workshop on Meta-Learning.

Lightfoot, D. 2001. Formal Specification Using Z. Bas-
ingstoke, UK: Palgrave.

McLeod, P.; Plunkett, K.; and Rolls, E. T. 1998. Introduc-
tion to Connectionist Modelling of Cognitive Processes.
Oxford, UK: Oxford University Press.

Milnes, B. 1992. The specification of the Soar cognitive
architecture using Z. Technical report: CMU-CS-92-169,
Carnegie-Mellon University.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Ritter, F. E. 1991. Towards fair comparisons of connection-
ist algorithms through automatically optimized parameter
sets. In Hammond, K. J., and Gentner, D., eds., Proceed-
ings of the Thirteenth Annual Conference of the Cognitive
Science Society, 877-881. Hillsdale, NJ: Lawrence Erl-
baum.

Smith, J. D., and Minda, J. P. 2000. Thirty categoriza-
tion results in search of a model. Journal of Experimental
Psychology 26:3-27.

Tor, K., and Ritter, F. E. 2004. Using a genetic algorithm
to optimize the fit of cognitive models. In Proceedings of
the Sixth International Conference on Cognitive Modeling,
308-313. Mahwah, NJ: Lawrence Erlbaum.

