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Abstract: This paper analytically investigates a bit error rate (BER)
performance of radio over free space optical (FSO) systems considering
laser phase noise under Gamma-Gamma turbulence channels. An external
modulation using a dual drive Mach-Zehnder modulator (DD-MZM) and
a phase shifter is employed because a DD-MZM is robust against a laser
chirp and provides high spectral efficiency. We derive a closed form average
BER as a function of different turbulence strengths and laser diode (LD)
linewidth, and investigate its analytical behavior under practical scenario.
As a result, for a given average SNR with normalized perturbation, it is
shown that the difference of average BER corresponding to two LDs (with
linewidth of 624MHz and 10MHz) under weak turbulence is almost 3 times
larger than that under strong turbulence.
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1. Introduction

The volume of data traffic continues to increase due to the demand of subscribers for multimedia
services that require the access network to support high data rates at any time, in any place inex-
pensively. Such demands require broadband communication systems. Free space optical (FSO)
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Fig. 1. Overall architecture of the FSO system considering of optical transmitter, turbulence
channels, and optical receiver.

systems have been good candidates for next generation broadband services since FSO systems
support large bandwidth, unlicensed spectrum, excellent security, and quick and inexpensive
setup [1]. In spite of these advantages, the performance of FSO systems can be unreliable due
to atmospheric turbulence. The Gamma-Gamma distribution well represents atmospheric tur-
bulence channels with a multiplication of two parameters of small-scale and large-scale irradi-
ance fluctuations–of which pdfs are independent Gamma distributions–and provides excellent
agreement between theoretical and simulation results [2].

One of the well-known modulators of FSO systems is the external modulator, with a dual
drive Mach-Zehnder modulator (DD-MZM), since it is robust against a laser chirp and provides
high spectral efficiency [3]. Fig. 1 represents the FSO system employing a DD-MZM. In this
system, the laser phase noise from a laser diode (LD) is one of the decisive factors limiting
the performance of FSO systems because the optical system is sensitive to laser phase noise.
However, to the best of our knowledge, an analysis of the BER of FSO systems, with a DD-
MZM impaired by the laser phase noise under turbulence channels, has not been carried out in
the research due to the complexity of the analysis.

Therefore, in this paper, we first represent the optical signal model from a DD-MZM with
laser phase noise using the Bessel expansion. We then analyze an average BER according to
an average SNR, with normalized perturbation under atmospheric channels, where Gamma-
Gamma distribution describes the turbulence-induced fading. Also, numerical results are pro-
vided to illustrate the degradation of performance according to the depth of scintillation and
LD linewidth.

2. FSO System Architecture and Signal Model

Figure 1 shows the overall architecture of the FSO system. Data is modulated to a binary phase
shift keying (BPSK) signal by the RF modulator. A BPSK signal from the RF modulator is split
by a π/2 phase shifter. This BPSK signal is optically modulated by a LD with a DD-MZM.
The output signal of the DD-MZM is transmitted via atmospheric turbulence channels between
telescopes. The received signals are detected by the photodetector (PD), and the photocurrent
corresponding to the transmitted BPSK signal is extracted by the bandpass filter (BPF). Finally,
data is extracted by the RF demodulator module. The optical signal,xLD(t) [4] from the laser
and the BPSK signal,xRF(t) from the RF modulator are modeled respectively, as follows:
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In (1), VLD andVRF are the optical carrier amplitude and the BPSK signal amplitude, re-
spectively, andωc and ωr f are angular frequencies of the signals from the LD and the RF
modulator. The laser phase noise processΦLD(t) is commonly characterized as a Wiener pro-
cess [6].θ(t) = ∑∞

m=−∞ dmP(t−mT) whereP(t) is a unit amplitude pulse of the bit durationT
anddm is the information of themth bit duration, which takes on{0,π}.

After optically modulatingxRF(t) by xLD(t) with a DD-MZM, the output signal of a DD-
MZM is represented as [3], [5]
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whereε(= VRF/Vπ) defines a normalized ac value,Vπ is the switching voltage of a DD-MZM,
andL is the modulator insertion loss in decibels. Using the Bessel function, (2) can be expanded
to
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We assume that high-order components of the Bessel function can be negligible since the value
of επ in the Bessel function is very small due to the fact thatVπ ÀVRF in general. The output
signal at a DD-MZM is transmitted via turbulence channels experiencing different group delays
due to the chromatic dispersion. After the transmission of turbulence channels, the received
optical signal is expressed as
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whereδ (t) = ∑∞
m=−∞ δmP(t−mT), andδm is the turbulence channel coefficient for themth

data duration,τ0 andτ1 are group delays, andψ0 andψ1 are phase-shift parameters.
Through direct detection, the optical signal can be detected at the PD, and the BPSK signal

is extracted by the BPF. After the BPF, the photocurrenti(t) can be obtained as follows:
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whereR is the responsivity of the PD andnth(t) is a random fluctuation which has an unit of
current due to thermal noise in the load resistance. In general FSO systems, as thermal noise
is dominant due to the high operating temperature [7],nth(t) is modeled as a Gaussian process
[8]. Also, ΦLD(t− τ0) andΦLD(t− τ1) are independent–not of t–but of the differential delay
(τ1−τ0). Thus, using a Wiener process property, the difference of two random processes can be
simplified as a zero mean Gaussian random variableΨ with the varianceσ2 of 2π∆ν∆τ where
∆ν is LD linewidth and∆τ is the differential delay [6]. Accordingly, (5) can be represented as

i(t) = δ ·ϒ ·cos

(
ωr f t +Ψ+θ(t)+ψ2

)
+nth(t), mT≤ t ≤ (m+1)T (6)

whereϒ is 2
√

2R(VLD/10L/20)2J0(επ)J1(επ), ψ2 = ψ0−ψ1. When we assume that the coher-
ence time is larger than a bit time duration,{δm} can be modeled as independent and identically
distributed (i.i.d.) random variables, i.e.,δm = δ with Gamma-Gamma distribution. After the
matched filter in the RF demodulator,

∫ T
0 i(t)dt , thermal noise becomes a random variable,nth

with normal distribution,N[0,σ2
th = (4kT/RL)∆ f ] wherek is the Boltzmann constant,RL is the

load resistance, and∆ f is the effective noise bandwidth [8].
Gamma-Gamma distribution [2] is
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whereδ > 0, α andβ are the scintillation parameters,Kε(·) is the modified Bessel function
of the second kind of orderε, andΓ(·) is the Gamma function. According to the atmospheric
conditions,α andβ are defined as in [2]
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where,σ2
R = 0.5C2

nκ7/6L11/6 is Rytov variance which has been used as an estimate of the inten-
sity variance,σR is the turbulence strength,d = (κD2/4L)1/2, D is the diameter of the receiver
collecting lens aperture,κ is the optical wave number,L is the propagation distance, andC2

n
stands for the altitude-dependent index of the refractive structure parameter and varies from
10−13m−2/3 for strong turbulence to10−17m−2/3 for weak turbulence. Moreover, according to
α andβ the scintillation index (SI) is defined as [2]

SI =
1
α

+
1
β

+
1

αβ
. (10)

3. BER Analysis of FSO systems

In this section, we derive a closed form of the average BER considering turbulence channels and
the laser phase noise. We can define the instantaneous electrical SNR asΛ = (ϒδ )2/σ2

th. For the
convenience of the analysis, we introduce a new measure,µ(= ϒ2/σ2

th) which corresponds to
the average SNR withE[δ 2] = 1, i.e., the average SNRE[Λ] = µ ·E[δ 2] = µ. When we assume
that the random phase noiseΨ is fixed over the bit duration, the conditional BER is represented
as [9]

Pb(E|Ψ,Λ) =
1
2

er f c(
√

Λ cos2[Ψ]) (11)



whereer f c is the complementary error function. Consequently, the average BER (E[Pb]) can
be obtained by using the following integral calculus as
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whereN is the order of approximation,xi , i = 1, ....,N are the zeros of theNth-order Hermite
polynormial, andwi , i = 1, ....,N are weight factors for theNth-order approximation. Using the
following Meijer G functions [10]:
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the average BER is represented as
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Finally, by using the classic Meijer integral of the two G functions [10, Eq.

07.34.21.0011.01], (16) is simplified as
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which is as a function of LD linewidth (∆ν) and scintillation parameters (α,β ).

4. Numerical results

Figure 2 illustrates the results of the average BER according to the average SNR withE[δ 2] = 1.
We show two examples of practical LDs with∆ν=10MHz and∆ν=624MHz, which correspond
to typical values of a DFB LD and a FP LD, respectively. We consider that the optical wave-
length is 1.55µm, the responsivity is 0.8 A/W, and the differential delay∆τ is 10−10 sec.

We numerically evaluate performance under three different turbulence channel
conditions:(α,β ,SI) ∈{(4,1,1.5),(4,2,0.875),(4,4,0.5625)}. As β decreases andSI in-
creases, the turbulence effects become stronger. The numerical results show that the difference
of average BER corresponding to two LDs (with linewidth of 624MHz and 10MHz) under
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Fig. 2. Average BER according to average SNR whenE[δ 2] = 1 according to
(α,β ,SI)∈{(4,1,1.5),(4,2,0.875),(4,4,0.5625)} and 624MHz and 10MHz of LD linewidth.

weak turbulence is almost 3 times larger than that under strong turbulence and the effect of the
laser phase noise of LD linewidth 624MHz degrades almost 5dB to the SNR than that of LD
linewidth 10MHz at all turbulence conditions. It is noteworthy that in (17), we useN = 10 for
the Gauss-Hermite formula.

5. Conclusions

In this paper, we present an optical signal model from the transmitter output and the receiver in-
put using the Bessel expansion. Also, we derive a close form average BER performance by con-
sidering the laser phase noise from LD under atmospheric turbulence channels with Gamma-
Gamma distribution using the Gauss-Hermite quadrature formula and Meijer G function. As a
result, we can more easily predict BER performance without complicated calculations. In prac-
tical terms, when we establish FSO systems, we can make an engineering table by using this
derived BER formula according to each LD, which enables us to determine efficient LD under
turbulence channel conditions.
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