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Abstract

We explore the applicability of a sampling method devised
by J. Garnier and L. Kallel (SIAM J. Discrete Math., 2002)
to approximate the number of local maxima in search spaces
induced by k-SAT instances and a simple neighbourhood re-
lation. The objective function is given by the number of
satisfied clauses. Although the problem setting for k-SAT
instances does not meet all pre-conditions required by the
Garnier/Kallel-approach, we obtain approximations of the
number of local maxima within the same order of magnitude
as the exact values that have been determined by complete
search. Since the comparison requires calculation of the com-
plete set of local maxima, only small k-SAT instances have
been considered so far. Furthermore, we outline a method for
obtaining upper bounds for the average number of local max-
ima in k-SAT instances, which shows changes in the average
number around the phase transition threshold.

1 Introduction
Much attention has been paid in recent years to local search
algorithms as one of the basic methods to solve k-SAT
problems. A first summary was presented in (Hoos and
Stützle 1999) along with an empirical analysis of run-
time distributions for various local search-based methods
such as WalkSAT (Selman, Kautz, and Cohen 1994). Im-
provements on run-time estimations for k-SAT problems as
well as for CNFs with unconstrained clause lengths are re-
ported in (Schöning 2002; Brueggemann and Kern 2004;
Schuler 2005; Dantsin and Wolpert 2005; Paturi et al. 2005),
which are partly based on randomised local search meth-
ods. Significant progress has been achieved in the analy-
sis of phase transitions since this effect was discovered in
(Mitchell, Selman, and Levesque 1992; Selman, Levesque,
and Mitchell 1992). Sophisticated methods from statis-
tical mechanics (Martin, Monasson, and Zecchina 2001;
Mézard and Zecchina 2002; Montanari, Parisi, and Ricci-
Tersenghi 2004) provided quite accurate estimates for the
crucial phase transition parameter, which eventually led to a
rigorous proof of a tight bound of 2k · log 2 − O(k) for the
phase transition threshold as presented in (Achlioptas and
Peres 2004).

In the present paper, we attempt to analyse the number
of local maxima in a combinatorial landscape induced by a
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k-CNF and a simple neighbourhood function, with the ob-
jective function being the number of satisfied clauses for a
given assignment of binary values. Combinatorial landscape
analysis has become a major tool in the design of search-
based algorithms, see (Reidys and Stadler 2002).

Reeves and Eremeev (2004) have demonstrated how to
incorporate the number of local optima into run-time es-
timates of local search algorithms. For landscapes that
can be partitioned into attraction basins, they proved that
with probability α all local optima have been covered by
local search with random restart after a waiting time of
ν · ln (ν+γ)+zα ·

√
(ν ·π)2/6+1−ν ·ln(ν+γ), where ν is

the number of local optima, γ is the Euler-Mascheroni con-
stant, and zα is an appropriate confidence coefficient. Thus,
estimates for ν provide information, e.g., for the selection of
the population size in parallelized versions of local search
algorithms.

In a slightly different context (Max-SAT and local min-
ima), Zhang (2005) proposes a landscape-based method that
performs especially well on overconstrained random Max-
SAT instances. Moreover, Zhang’s algorithm finds satis-
fiable solutions on large k-SAT instances more often than
WalkSAT. The paper highlights the importance of how to
deal with individual instances rather than with collections of
(randomly selected) problem instances.

In our paper, we utilise the approach devised in (Garnier
and Kallel 2002) to estimate the number of local maxima
for a given problem instance, where sample data are used
to approximate a probability distribution associated with the
landscape induced by the problem instance. The results are
discussed against the information gathered by a complete
analysis of the landscape for a limited number of k-SAT
problem instances. Given the nature of the problem, we
were able to analyse only small scale instances and overall
only a limited number of different, randomly generated k-
SAT instances. Apart from the experimental analysis based
on the Garnier/Kallel-approach, we derive a rough estimate
of local maxima in terms of parameters of individual prob-
lem instances for the given, simple neighbourhood relation.

2 Basic Notations
We follow mainly the notations from (Achlioptas and Peres
2004): for a set V of n Boolean variables let Ck(V ) de-
note the set of all

(
n
k

) · 2k different disjunctive k-clauses



on V , i.e. repeated literals and tautologies are excluded. A
k-CNF is formed by selecting m different clauses C from
Ck(V ) and taking their conjunction. We note that the se-
lection does not imply - as in (Achlioptas and Peres 2004)
- that the k-CNF strictly depends upon all n variables. The
set of all such k-CNF consisting of m clauses is denoted
by Fk(n, m). The set of m clauses forming F ∈Fk(n, m)
is denoted by C(F ), and ZF (σ̃) is the number of satisfied
clauses C ∈ C(F ) on the truth assignment σ̃ = (σ1, ..., σn),
i.e. 0 ≤ ZF (σ̃) ≤ m and F is satisfiable, if there exists η̃
such that ZF (η̃) = m.

In (Schuurmans and Southey 2001), various neighbour-
hood functions are analysed that employ information about
ZF (σ̃) and elements of C(F ) that maximise changes of the
objective function in one way or another. For example,
flipping values of truth assignments is determined by un-
satisfied clauses only, see also (Seitz and Orponen 2003;
Seitz, Alava, and Orponen 2005). We consider a simple,
unconstrained (i.e., features of clauses w.r.t. ZF (σ̃) are not
taken into account) neighbourhood function where the value
of a single variable is flipped, which makes it possible to
consider the elements of the unit cube {0, 1}n as elements
of the configuration space. Thus, the landscape L(F ) for F
is induced by ZF (σ̃), σ̃ ∈ {0, 1}n, and the neighbourhood
relation

N (σ̃) =
{
σ̃′|d(σ̃, σ̃′) = 1

}
, (1)

where d(σ̃, σ̃′) is the Hamming distance.
If ∀σ̃′(σ̃′∈N (σ̃) → (ZF (σ̃′) ≤ ZF (σ̃)

)
, then σ̃ is called

a local maximum (which also covers global maxima).

3 The Garnier/Kallel-Approach
In the present paper, we are solely concerned with the land-
scape analysis called inverse problem in (Garnier and Kallel
2002), i.e. M elements of the landscape are selected at ran-
dom as initial points of a pre-defined local search proce-
dure. Then, for j initial points, where 1 ≤ j ≤ M , the
local search procedure is started and executed until a (lo-
cal) maximum has been detected. The number of different
(local) maxima is denoted by βj . The local search proce-
dure is quasi-deterministic and follows the steepest ascent
rule: for the intermediate landscape element σ̃, all elements
of N (σ̃) are examined and one of the neighbours σ̃ ′ with
the highest value of ZF (σ̃′) among all neighbours is cho-
sen as the successor of σ̃ in the search procedure. The
search terminates, if no improvement of the objective func-
tion can be achieved. In (Garnier and Kallel 2002), and the
same applies to (Reeves and Eremeev 2004), a single ele-
ment σ̃′ ∈ N (σ̃) is assumed at each step that maximises
ZF (σ̃′), which implies a partition of L into attraction basins
Ai, where 1 ≤ i ≤ N for a total number of N local and
global maxima. The set Ai consists of all elements of L that
lead to the ith local or global maximum by the steepest ascent
local search. The assumption affects the normalised size
αi = |Ai|/|L| of attraction basins and

∑N
i=1 |Ai|/|L| = 1.

Since we employ the Garnier/Kallel-approach in an experi-
mental context, we assume in the following that the impact
of random selections among σ̃ ′ that maximise ZF (σ̃′) within
a given neighbourhood is negligible.

Garnier and Kallel (2002) assume that the normalised
sizes αi of attraction basins can be described by a distribu-
tion parametrized by some positive number γ as follows: let
(Zi)i=1,..,N be a sequence of independent random variables
whose common distribution has density pγ defined by

pγ =
γγ

Γ(z)
· zγ−1 · e−γ·z, (2)

where Γ(z) =
∫∞
0

e−t · tz−1dt. Let Hγ denote the as-
sumption that the (αi)i=1,...,N can be approximated by
(Zi/TN)i=1,...,N , where TN =

∑N
i=1 Zi with each Zi hav-

ing the density function pγ . Furthermore, let βj,γ = Eγ [βj ]
denote the expected value of βj , j = 1, ..., M . Garnier and
Kallel (2002) prove that

βj,γ = N ·
(

M

j

)
· Γ(γ + j)

Γ(γ)
· Γ(N · γ)
Γ((N − 1) · γ)

×

×Γ((N − 1) · γ + M − j)
Γ(N · γ + M)

. (3)

We note that for N = M/r, a fixed value of M , and ap-
propriate approximations of the Γ-function, the β j,γ can be
approximated according to (3) as functions of (j, γ, r). For
fixed r, Garnier and Kallel (2002) propose the χ2 test to ap-
proximate γ for H γ , which consists of calculating

Tγ =
M∑

j=1

(βj − βj,γ)2

βj,γ
, (4)

where the βj are given from observation and the βj,γ are
approximated according to (3). The goal is then to determine

γ0(r) = argmin{Tγ , γ > 0} (5)

by appropriate numerical methods. In our computational
experiments, we incorporate the approximation of γ 0(r) as
a sub-routine in calculations where the parameter r varies
(is decremented) until γ0(r) changes only marginally for
r = rappr, see Section 4. Thus, for a fixed (but sufficiently
large) value of M the number of local maxima is finally es-
timated by

N =
M

rappr
. (6)

4 Computational Experiments
4.1 Evaluation of random 3-SAT instances
We fixed k = 3 and n = 14, 20, and randomly generated
five instances from F3(n, m) for varying ratios m/n: two
below the phase transion threshold, two above the threshold,
and one instance for m/n ≈ 4.267.

For each of the five k-CNF we executed a complete search
for local/global maxima in {0, 1}14 and {0, 1}20. The cor-
responding values of the number N of maxima are shown in
the second column of Table 1 and Table 2, respectively.

We then selected three values for M , the number of ran-
dom points chosen in {0, 1}14 and {0, 1}20 as initial el-
ements for a deteministic steepest ascent search for local
maxima. For each of the values Mi, i = 1, 2, 3, and some



order of the Mi points we counted by β i
j , j = 1, ..., Mi,

the number of different maxima detected by the first j start-
ing points for steepest ascent search. The values of β i

M are
recorded in the fourth column of Table 1 and Table 2.

An example of one of the five 3-CNF for n = 14 is given
below:
x6∨x5∨x7 ∧ ¬x7∨x5∨x2 ∧ x0∨¬x7∨x4 ∧ ¬x8∨x13∨x1 ∧
x7∨¬x11∨¬x12 ∧ x10∨x3∨¬x9 ∧ x8∨x4∨x9 ∧ x3∨x12∨
x11 ∧ x12∨x10∨x9 ∧ ¬x3∨x2∨x11 ∧ x5∨x4∨x6 ∧ x7∨x5∨
¬x2 ∧ ¬x2∨¬x7∨x4 ∧ ¬x5∨x6∨x3 ∧ x2∨x0∨x3 ∧ ¬x0∨
x3∨x1 ∧ ¬x0 ∨¬x10 ∨x4 ∧ ¬x4 ∨¬x11 ∨x0 ∧ ¬x1 ∨¬x11 ∨
¬x9 ∧ x2∨x6∨x4 ∧ ¬x12∨x9∨¬x1 ∧ x6∨x0∨¬x2 ∧ ¬x2∨
x0 ∨¬x1 ∧ x2 ∨¬x11 ∨¬x3 ∧ ¬x5 ∨¬x8 ∨¬x0 ∧ x8∨¬x6 ∨
¬x3 ∧ x7∨x13∨x3 ∧ ¬x12∨¬x11∨x3 ∧ ¬x0∨x7∨x13 ∧ x6∨
¬x3∨x9 ∧ ¬x7∨x10∨x13 ∧ ¬x3∨x7∨¬x2 ∧ ¬x7∨x1∨x5 ∧
x4 ∨x2 ∨x13 ∧ ¬x11 ∨x12 ∨¬x10 ∧ ¬x8 ∨x10 ∨¬x6 ∧ x11 ∨
¬x6 ∨¬x2 ∧ x6 ∨¬x10 ∨x13 ∧ x3 ∨x1 ∨¬x8 ∧ x0 ∨¬x10 ∨
¬x4 ∧ x12 ∨x0 ∨¬x2 ∧ x3 ∨x12 ∨¬x13 ∧ ¬x2∨¬x8 ∨x12 ∧
x12∨x8∨¬x4 ∧ ¬x7∨x3∨x0 ∧ x6∨¬x4∨x8 ∧ x9∨x2∨¬x4 ∧
¬x5∨x8∨¬x3 ∧ x4∨¬x5∨x8 ∧ x12∨x9∨x0 ∧ ¬x5∨x8∨¬x9.

4.2 Approximation of Hγ

For the calculation of βj,γ according to (3) we implemented the
following procedure, which actually approximates βj,γ since we
employ an approximation of the Γ-function. We recall that in (3)
the (unknown) N is substituted by M/r, where M is selected as
described in Section 4.1 and r is a variable in our calculations.

At first, we represent Eqn. 3 by

βj,γ =
M

r
·
(

M

j

)
· A1

A2
· B1

B2
· C1

C2
, where (7)

A1 = Γ(a1) for a1 = γ + j; (8)

A2 = Γ(a2) for a2 = γ; (9)

B1 = Γ(b1) for b1 = γ · M

r
; (10)

B2 = Γ(b2) for b2 = γ ·
(M

r
− 1
)
; (11)

C1 = Γ(c1) for c1 = M − j + γ ·
(M

r
− 1
)
; (12)

C2 = Γ(c2) for c2 = M + γ · M

r
. (13)

Since in our case some of the values are very large, we use interme-
diately a representation by the natural logarithm, i.e. in the second
step we calculate

Z = ln

((
M

j

)
· A1

A2
· B1

B2
· C1

C2

)
(14)

= ln

(
M

j

)
+ lnA1 + ln B1 + ln C1 − (15)

− lnA2 − ln B2 − ln C2. (16)

For each of the ln Γ(x) we employ the following approximation
(due to Robert H. Windschitl, 2002):

ln Γ(x) ≈ 1

2
·
(
ln (2 · π) − ln x

)
+ (17)

+x ·
(
−1+ln

(
x+

1

12 · x− 1
10·x

))
, (18)

i.e. x = a1, ..., c2. For the binomial coefficient we use the formula

ln

(
M

j

)
=

M∑
s=1

ln s −
j∑

t=1

ln t −
M−j∑
u=1

ln u. (19)

Finally, we set

βj,γ =
M

r
· eZ . (20)

Eqn. 20 was then used as a sub-routine in the search for optimum
settings of (r, γ):

1. For a fixed r ≥ r0 we searched for γ such that Tγ from (4) is
minimised, i.e. Eqn. 4 and Eqn. 20 were repeatedly calculated
for γ ≥ γ0 = 0.1 and γ = γ + δ, until Tγ changed only
marginally or increased above the minimum value obtained so
far.

2. For r0 and r = r + ∆ ≤ rmax, the triplets (r, γ, Tγ) were
recorded and finally rappr with the minimum value of Tγ was
selected.

3. The output was then determined by Nappr = M/rappr.

The results are summarised in Table 1 and Table 2. Since
both the instances as well as the number of instances are small,
the values of N do not provide any statistical information. Our
main goal here is to demonstrate that the implementation of the
Garnier/Kallel-approach as described in the present section pro-
vides approximations Nappr in the region of the exact values N .

Since deterministic search is easy to implement and fast, if
neighbours can be identified in an easy way, the procedure can
be executed for large numbers of M , which has been done in the
present study, i.e. the Mi are relatively large compared to 214 and
220, respectively. As a result, we obtained values βM that are close
or even equal to the corresponding N for n = 14. We note that
for M = 512 the value of Nappr is in four out of the five examples
equal or close to N/2.

m N M βM γ(rappr) rappr Tγ(rappr) Nappr

51 6 128 5 2.2 0.1 1.37 2
51 6 256 5 2.2 0.1 1.37 2
51 6 512 6 2.0 0.1 1.54 3
55 13 128 8 2.6 0.4 81.2 3
55 13 256 8 2.5 0.4 90.7 3
55 13 512 10 2.3 0.2 308.6 4
59 11 128 6 2.8 0.1 1.35 2
59 11 256 8 2.4 0.3 156.0 3
59 11 512 8 2.1 0.2 12.8 4
63 32 128 20 2.4 0.1 4859 8
63 32 256 24 2.3 0.1 9185 10
63 32 512 27 2.2 0.1 17574 12
68 10 128 6 2.7 0.4 14.3 2
68 10 256 10 2 0.1 2.1 5
68 10 512 9 1.7 0.2 23.6 5

Table 1: Results for n = 14, k = 3

For n = 20 we see in all five sample functions a clear improve-
ment of the approximation with increasing M . The the value of
Nappr is again in four out of the five examples close to N/2 for the
largest M = 214.
Future research will focus on a wider range of parameter settings,
a larger size of k-CNF instances and significantly larger sets of
randomly selected k-CNF instances.

5 Local Maxima and k-CNF
For an arbitrary σ̃∈{0, 1}n and F ∈Fk(n, m), we set C0(F, σ̃) =
{C|C ∈ C(F ) ∧ C(σ̃) = 0} and C1(F, σ̃) = {C|C ∈ C(F ) ∧



m N M βM γ(rappr) rappr Tγ(rappr) Nappr

78 213 210 66 0.1 4.23 1×106 16
78 213 212 112 0.1 2.90 2×109 39
78 213 214 157 0.1 2.36 1×1014 67
82 35 210 19 0.1 2.64 321.39 7
82 35 212 32 0.1 2.09 5.06 15
82 35 214 33 0.1 2.06 2139.39 16
86 142 210 72 0.1 2.97 6×106 24
86 142 212 117 0.1 2.21 2×1011 53
86 142 214 136 0.1 2.04 6×1013 67
90 33 210 21 0.1 2.57 1012.02 8
90 33 212 31 0.1 2.06 134.94 15
90 33 214 33 0.1 2.00 2723 17
94 15 210 5 5.1 3.10 5.52 2
94 15 212 13 0.1 2.16 27.2 6
94 15 214 15 0.1 2.00 109.57 8

Table 2: Results for n = 20, k = 3

C(σ̃) = 1}. Thus, clauses from C1(F, σ̃) have at least one lit-
eral among the k literals that returns 1 on σ̃. Since in (1) we
have d(σ̃, σ̃′) = 1, clauses with at least two literals returning 1
on σ̃ do not affect the re-calculation of ZF in neighbourhood tran-
sitions out of σ̃. We therefore partition C1(F, σ̃) into C(1)

1 (F, σ̃)

and C(≥2)
1 (F, σ̃), i.e. C(1)

1 (F, σ̃) contains all C ∈ C(F ) with ex-
actly one literal that returns 1 on σ̃. We note the following simple
observation:

Lemma 1 The truth assignment σ̃ is a local maximum in L(F ) iff
for all σ̃′∈N (σ̃):

|{C|C(σ̃′)=1 ∧ C∈C0(F, σ̃)}| (21)

≤ |{C|C(σ̃′)=0 ∧ C∈C(1)
1 (F, σ̃)}|. (22)

Here, we do not exclude ZF (σ̃) = m.
For a literal xη we use xη ∈ C to express that xη is part of the

disjunctive term C. Let X0(σ̃) = {x|∃C ∈ C0(F, σ̃) ∧ xσ ∈C}|
and p = |X0(σ̃)| be the number of variables that occur in clauses
of C0(F, σ̃), where we employ σσ ≡ 0. Furthermore, we set q =

|C0(F, σ̃)|, r = |C(1)
1 (F, σ̃)|, and s = |C(≥2)

1 (F, σ̃)|. Thus, we
have for F ∈Fk(n, m)

m = q + r + s. (23)

For X1 = {x|∃C ∈ C(1)
1 (F, σ̃) ∧ xσ ∈ C}, t = |X1|, and hu =

|{C|C∈C(1)
1 (F, σ̃) ∧ x

σiu
iu

∈C}| we have

t∑
u=1

hu = r, (24)

since the corresponding subsets of clauses have to be dis-
joint (otherwise, a clause from the intersection would belong to
C(≥2)
1 (F, σ̃)).

Lemma 2 If xiu ∈ X1\X0 
= ∅, then the neighbourhood transi-
tion that involves xiu diminishes ZF (σ̃) by hu.

This follows from the definitions of C0(F, σ̃) and C(1)
1 (F, σ̃). For

fu = |{C|C ∈ C0(F, σ̃) ∧ x
σiu
iu

∈ C}|, Lemma 1 can now be
rewritten as

Lemma 3 The truth assignment σ̃ is a local maximum in L(F ) iff
X0 ⊆ X1 and for xiu ∈X0:

fu ≤ hu. (25)

We note that by definition

p∑
u=1

fu = q · k, (26)

and (24) and (25) imply for a local maximum

q · k ≤ r. (27)

Let Mσ̃
k(n, m) ⊆ Fk(n, m) denote the set of k-CNF that have

σ̃ as a local maximum for the neighbourhood defined by N (σ̃) and
the objective function defined by ZF , where we require ZF (σ̃) <
m, i.e. q ≥ 1 and σ̃ is not a satisfying assignment.

We are now going to derive a (rough) upper bound for Mσ̃ =
|Mσ̃

k(n, m)|. As will be seen later, the ratio 2n ·Mσ̃/|Fk(n, m)|,
when approximated by using an upper bound of Mσ̃, then provides
some information about typical values for the number of local max-
ima for k-CNF in terms of parameters (k, n, m).

For fixed (p, q, r, s), we consider the number of potential sets
C0(F, σ̃), C(1)

1 (F, σ̃), and C(2)
1 (F, σ̃) under the assumption that

the fixed truth assignment σ̃ is a local maximum. Here, it is use-
ful to consider bipartite graphs where one set of nodes represents
the clauses of C with fixed degree k, and the other set of nodes is
formed by the elements of {σi; i = 1, 2, ..., n}.

For C0(F, σ̃) we have to ensure that each of the p elements of
X0(σ̃) is present in at least one of the clauses from C0 and we
therefore need

q · k ≥ p ≥ k and

(
p

k

)
≥ q. (28)

Let A(p, q, k) denote the number of sets H of size q consisting
of k-selections S = {xi1 , ..., xik} out of p variables of X0(σ̃)

such that ∀x
(
x ∈ X0 → ∃S(S ∈ H ∧ x ∈ S)

)
. Since in the

given context the elements of X0(σ̃) are independent of each other,
we have

A(p, q, k) =

((
p
k

)
q

)
−p · A(p−1, q, k) −

−
(

p

2

)
· A(p−2, q, k) − ... −

−
(

p

sfin

)
· A(p−sfin, q, k), (29)

where sfin is defined by
(p−(sfin+1)

k

)
< q. By substituting the A(p−

i, q, k) recurrently, we obtain the inclusion/exclusion-type equation

A(p, q, k) =

sfin∑
i=0

(
−1
)i

·
(

p

i

)
·
((

p−i
k

)
q

)
, (30)

which represents the number of sets C0(F, σ̃). Taking
(

p
2·s−1

) ·((p−2·s−1
k )
q

) − (
p

2·s
) · ((p−2·s

k )
q

)
together and applying Stirling’s for-

mula, one can see that the impact of
∑sfin

i=1

(
−1
)i

· (p
i

) · ((p−i
k )
q

)
is

only marginal and we therefore employ
((p

k)
q

)
to upper bound the

number of sets C0(F, σ̃).



For C(1)
1 (F, σ̃) we consider the set X1: for fu clauses from

C0(F, σ̃) with x
σiu
iu

we have hu≥fu clauses from C(1)
1 (F, σ̃) with

x
σiu
iu

, if σ̃ is a local maximum. In each of the hu clauses, the lit-

erals different from xσi
iu

are of the type x
σj

j due to the definition of

C(1)
1 (F, σ̃). Thus, the number of different sets C(1)

1 (F, σ̃) can be
upper bounded by

n∑
t=p

(
n−p

t−p

)
·

∑
(h1, ..., ht)

h1≥f1, ..., hp≥fp

t∏
u=1

((
n−1
k−1

)
hu

)
. (31)

We recall that t ≥ p is required by Lemma 1.
For C(≥2)

1 (F, σ̃) we consider the set of all
(

n
k

) ·2k clauses: since
σ̃ is fixed, among the set of all clauses there are

(
n
k

)
clauses that

return 0 on σ̃ (the clauses of C0(F, σ̃) are drawn from this sub-
set); there are

(
n
k

) · k clauses with excatly one literal of type xσi
iu

(the clauses of C(1)
1 (F, σ̃) are drawn from this subset). Thus, the

number of different sets C(≥2)
1 (F, σ̃) can be upper bounded by((
n
k

) · (2k−k−1)

s

)
. (32)

We assume at first t = n (implicitly also q ≥ n/k) and set
r = q · k + ∆ for ∆ ≥ 0, cf. (27). Based on

(
K
a

) · (K
b

) ≥ (
K
a+b

)
(and the remark after (30)), we summarize (30), (31) and (32) to

Mσ̃ <

n∑
p=k

(
n

p

)
·
{ ∑

q + r + s = m

r ≥ k · q, q ≥ 1

((
p
k

)
q

)
·
( n∑

t=p

(
n−p

t−p

)
×

×
((

n−1
k−1

)
r
n

)n)
·
((

n
k

) · (2k−k−1)

s

)}
. (33)

(Note: we use
(

A
B

)n
for {(A

B

)}n.
We are now going to identify (q, r, s) such that the product on

the RHS of (33) is maximised for fixed (p, k, n, m). At first, we
consider for variable r and s the product

Pq(r; s) =

((
n−1
k−1

)
r
n

)n

·
((

n
k

) · (2k−k−1)

s

)
, (34)

where r+s = m−q. We analyse Pq(r; s) ≤ Pq(r−1; s+1), which
for r = a · n + b, 1 ≤ b < n, turns to((

n−1
k−1

)
a

)n−b

·
((

n−1
k−1

)
a+1

)b

·
((

n
k

)·(2k−k−1)

s

)

≤
((

n−1
k−1

)
a

)n−b+1

·
((

n−1
k−1

)
a+1

)b−1

·
((

n
k

)·(2k−k−1)

s+1

)
. (35)

For b = 0 we take a−1 and b′ = n. By straightforward calculations
one obtains that (35) is valid if r ≥ r̂ for

r̂ =
(m−q) · (k + ε1)−(n−b) · (2k−k−1)+k+ε2

2k − 1 + ε3
, (36)

where ε1 = n/
(

n
k

)
, ε2 = b/

(
n
k

)
, and ε3 = (n + 1)/

(
n
k

)
. Here, we

assume that m is sufficiently large in relation to n and 2k , which
will be discussed further below in more detail.

Thus, if we assume r̂ > k · q (cf. (27)), then (34) increases for
increasing s from 0 ≤ s ≤ ŝ and (34) decreases for increasing s
from ŝ < s ≤ smax, where ŝ = m−q− r̂ and smax = m−q−k ·q.

The condition r̂ ≥ k · q results in an upper bound for q:

k·q ≤ (m−q) · (k + ε1)−(n−b) · (2k−k−1)+k+ε2

2k − 1 + ε3

q ≤ q1 =
m·(k+ε1)−(n−b)·(2k−k−1)+k+ε2

k · (2k + ε4)
, (37)

where ε4 = (n + n/k + 1)/
(

n
k

)
. Furthermore, we need k · q/n ≤

r/n <
(

n−1
k−1

)
and k · q ≤ r = m− q − s ≤ m− q, which leads to

q < q2 =

(
n

k

)
, (38)

q ≤ q3 =
m

k + 1
. (39)

Summarizing these observations, we obtain that Pq(r; s) from
(34) is maximized (ignoring integer representations) at Pq(r̃; s̃) for
s̃ = m − q − r̃ with r̃ = max{k · q, r̂}, where q is fixed but
must obey the minimum upper bound defined by (37) until (39),
depending upon the value of r̃.

So far, we kept the parameter q fixed. Now we take into account((p
k)
q

)
from (33) for p = n and try to maximize (and to compare)((

n
k

)
q

)
· Pq(k · q; m − q − k · q); (40)((

n
k

)
q

)
· Pq(r̂; m − q − r̂). (41)

By using a representation similar to the one of (35) and setting
A =

(
n
k

) ·(2k−k−1), B =
(

n
k

)
, the assumption about an increasing

value of (40) for increasing q leads to(
A−m+(k+1) · q+1

m−(k+1)·q−k

)k+1

<

(
B−q+a/k

q+(n−a)/k

)k

· B−q

q+ 1
. (42)

Depending on the value of a, one has to consider two cases of the
type

A−m+(k+1) · q+1

m−(k+1)·q−k
<

B−q

q+ 1
. (43)

The resulting upper bound

q <
m−2k+1 + (m−1)/

(
n
k

)
2k + 2/

(
n
k

) (44)

is similar to the upper bound (37). Based on these observations we
conjecture that (40) and (41) are maximized for q∗ ∼ m/2k and
r̂ ≈ k · q∗. A detailed analysis of all sub-cases will be subject of
further research.

We note that q∗∼m/2k and r̂≈k·q∗ actually ignore the relation
of m to n and k. A more detailed analysis of (37) shows that
q1 ∼ m/2k−(n−b)/k, where 1 ≤ b < n. If m� (n−b) · 2k

k
and

1<<b<n, i.e. m is in the region of the phase transition threshold
(Achlioptas and Peres 2004), then q1 < 0 and, moreover, for q
from (44) the condition q > �n/k� might no longer be valid, which
is required by (26) for p = n. If this is the case, the maximum
value of (40) changes significantly. Therefore, we conjecture that
for m in the region of the phase transition threshold (and below)
the value of Mσ̃ (for a large fraction of σ̃) is significantly smaller
than for m >> O(n · 2k).

In Lemma 3, (30), (31), and (32) we exploit only information
about xσi

i vs. xσi
i , i.e. information about the actual values of σi

has no impact on Mσ̃ at all. Thus, Mσ̃ depends on structural pa-
rameters (n, k, m) only:



Lemma 4 If σ̃, η̃ ∈ {0, 1}n, then Mσ̃ = Mη̃ for a given class
Fk(n, m).

Given (n, k, m), we denote by R(n, k, m, q∗) the maximum

value of
((n

k)
q

) · Pq(r;m− q− r) as presented in (40) and (41).

In (33), the value of
∑n

p=k

(
n
p

)∑n
t=p

(
n−p
t−p

)
can be upper bounded

by (n−k)2 · 3(1+ε)n/3. We now have for m ≤ (n
k

) · (2k−k −1)
the upper bound

Mσ̃ < (n−k)2 · m2

2·(k+1)
·3 (1+ε)·n

3 ·R(n, k, m, q∗), (45)

where R(n, k, m, q∗) depends on the relation of m to n and k. For
an upper bound of the average number of local maxima per k-CNF,
one has to multiply the RHS of (45) by 2n (cf. Lemma 4) and to
divide the expression by the number of k-CNF of length m. To
obtain asymptotic expressions for different intervals of m requires,
however, a detailed analysis of R(n, k, m, q∗).

6 Concluding Remarks
The Garnier/Kallel-approach requires a partition of the search
space into attraction basins, i.e. within each neighbourhood a sin-
gle element with the maximum value of the objective function is
assumed. This assumption does not apply to the neighbourhood
in our study. Nevertheless, our computational experiments pro-
vide evidence that the sampling-based method for the approxima-
tion of the number of local maxima seems to work in the context
of k-SAT instances. Furthermore, the outline of our method for
obtaining upper bounds for the average number of local maxima
per k-SAT instance suggests that the fraction of local maxima rel-
ative to the total number of truth assignments changes around the
phase transition threshold. Future research will be directed towards
a more comprehensive analysis of the Garnier/Kallel-approach for
larger k-SAT instances and larger sets of parameter settings. Fur-
thermore, we intend to derive asymptotic formulas for the average
number of local maxima in terms of the basic parameters n, k, and
m.
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