
The Development of a Software Clone Detector

N. Davey*, P.C. Barson†*, S.D.H. Field†*, R.J. Frank*, D.S.W. Tansley†

†BNR Europe Limited
London Road, Harlow, Essex, UK, CM17 9NA

P.C.Barson@bnr.co.uk, S.D.H.Field@bnr.co.uk,
D.S.W.Tansley@bnr.co.uk

* University of Hertfordshire
College Lane, Hatfield, Herts, UK, AL10 9AB

N.Davey@herts.ac.uk, R.J.Frank@herts.ac.uk

Abstract: Cloning, the copying and modifying of blocks of code, is the most
basic means of software reuse. Code cloning has been very extensively used
within the software development design community. Unofficial surveys
carried out within large, long term software development projects suggest that
25-30% of the modules in this kind of system may have been cloned. A
system to detect clones of procedures in large software systems is described.
The system uses a self organising neural net, a SOM, to cluster feature
vectors associated with the procedures. We report how a prototype system
was developed and subsequently enhanced into a full product quality tool.
The limitations of the SOM-based tool are the long training times and the
fixed number of clone classes that are created. A second neural net model,
the Dynamic Competitive Learning (DCL) net, which overcomes both these
limitations is also discussed as a possible component: the results of our initial
trials with the SOM-based tool and the DCL-based prototype are given.

1 Introduction

In 1992 a collaboration began between the Software and Systems Engineering department
of BNR Europe and the University of Hertfordshire, to investigate the problem of the
detection of clones in software systems. Initially a prototype using a self organising neural
net was built and, as this proved to be successful, a fully functional, product quality tool
has been constructed and tested. The tool is now in use. This project has been unusual as
an application of neural computational technology in that the problems of the integration of
this type of technology into conventional software systems, with their inherent need for
quality interfaces and reliable functionality, has been tackled and overcome.

In this paper we discuss the problem of software cloning and its relation to software reuse.
We describe the initial prototype and show how it was modified to produce a full system.
During the productisation phase a second type of neural net was investigated and tested in
an effort to improve some aspects of the current system. The new network architecture is
described here and we give our initial results.

Section 2 discusses software cloning, Section 3 describes how self organising neural nets
can be used to identify such clones and Section 4 describes the final system. Section 5
describes the alternative neural network model we are investigating, Section 6 presents an
evaluation of the project and Section 7 concludes.

2 Software Cloning

2.1 Large Software Systems

In 1968 the NATO Science Committee convened a meeting of top programmers, computer
scientists and captains of industry to discuss the difficulties and concerns with building
large software system, and it was at this meeting that the term software engineering was
coined. In spite of the concerns at that time, over the last 25 years the size and complexity
of software has increased tremendously. For instance, the amount of code in most
consumer products is doubling every two years - televisions may contain up to 500
kilobytes of software, and even an electric shaver may have 2 kilobytes (Wayt Gibbs,
1994).

A typical digital telephone exchange in the 1970’s would have possessed a software system
of a few hundred thousand lines of source code. Today a digital telephone exchange may
incorporate tens of millions of lines of code. Such systems have evolved over the years,
with the current systems incorporating code from the very first system. The development
of these systems began in a time when software development methods were in their
infancy. For example, structured analysis and design were not the norm and the
sophisticated re-usability of object oriented implementation techniques were not in use
outside computer science research laboratories.

Error rates increased as these systems grew in complexity. Errors in real-time software are
notoriously difficult to detect because they often occur only under certain conditions. It is
often not practical to re-build existing systems using new techniques and technology
because of the immense costs involved, with the average cost for well-managed code
running at over $100 per line (Wayt Gibbs, 1994).

Improving software product quality, performance and development team productivity has
therefore become a primary priority for almost every organisation that relies on computers
(Moller & Paulish, 1993). For instance, in Table 1, the US NASA Space Shuttle software
system required 25.6 million lines of code, 22,096 staff-years of effort, and cost $1.2
billion. With the large capital investment necessary to develop such software then the
management of these systems becomes ever more vital, both during and after the actual
development. It is as much a managerial problem as a technical one.

As an example of the maintenance concerns, United Airlines Covia subsidiary spends $120
million each year maintaining and updating software for its Apollo reservation system, and
according to KPMG Peat Marwick, this activity typically consumes 80% of most corporate
software budgets (Schendler, 1989).

Table 1: Typical Software Application Size and Investment [Moller & Paulish, 1993;
Schendler,1989]

Product Application Size
(million lines of

code)

Development
Cost

($millions)

Manpower
Required

(staff-years)
Space Shuttle 25.6 1 200 22 096

Operating System 2 – 5 150 – 350
Mid-sized Communication

System
1 – 2 50 – 100

Citibank Teller Machine 0.78 13.2 150
Lotus 1-2-3 v3 0.4 22 263

IBM Checkout scanner 0.090 3 58
1989 Lincoln Continental 0.083 1.8 35

2.2 Cloning

The copying and modifying of blocks of code constitutes the technique of cloning - it is the
most basic means of software reuse. Code cloning has been very extensively used within
the software development design community. Unofficial surveys carried out within large,
long term software development projects suggest that 25-30% of the modules in this kind
of system may have been cloned. In some cases entire modules had been cloned though
more usually part of the module was copied and used in another module.

The main advantage of cloning, as a means of software reuse, is that it is very simple to do.
It can provide a development team with a quick start, and often a rapid solution to the
problem. Copying procedures that have a function close to that required, and then
modifying that code, allows customisation without any software ownership negotiations.
The designer copying the procedure does not have to discuss with the original designer the
procedure interface or function modification required, or wait for the original designer to
update the procedure to incorporate the new functionality. It is obviously particularly
tempting if contractors are paid by lines of code produced.

2.3 Problems of Software Systems with Cloned Software.

Software cloning is a major contributor to the steadily increasing complexity of software
systems. Whilst it is anticipated that copying working code will produce correct new code,
there is a danger that as yet unknown bugs may be copied and that the resulting code may
include large numbers of redundant statements. Cloning produces a rapidly expanding
library of procedures which have to be maintained; so that if the situation arises where a
modification or enhancement is required to be made to an original piece of code then it
may also be required in the cloned copies. This propagation is time consuming and may be
impossible due to the likely lack of documentation of the cloning process. Additional
problems may arise from the cloning process itself: the engineers of cloned software may
be unaware of dependencies involved in the original software, causing the new code to be
error prone.

Cloned software is therefore a major problem in large software systems that have evolved
over a long period of time. The problem is not amenable to a simple solution - to
completely re-engineer the system is a possible answer, but one of great cost and potential
difficulty. Alternatively an attempt can be made to track down and log potential clones,
and in this way manage the problem. It is this approach we are using, and to do so we have
built a tool to detect clones.

An additional benefit of such a tool is that software components that have been cloned on
several occasions can be identified. These units of code will therefore have demonstrated
their reusability and this suggests that populating a software library with such code will
provide an effective set of reusable components.

2.4 Types of clone

Some clones are easy to spot, for example, similar names may be used between related
procedures, or it may even be noted in the cloning programmer's comments to the code,
such as: "Cloned from..."! However, there are many more subtle clones and it is these that
a clone detection tool will prove most useful for, as well as for finding the more obvious
clones.

In general, clones may be described using the following typology:

Type I An exactly identical source code clone, i.e. no changes at all.
Type II An exactly identical source code clone, but with indentation,

comments, or identifier (name) changes.
Type III A functionally identical clone, but with small changes made to

the code to tailor it to some new function.
Type IV A functionally identical clone, developed possibly with the

originator unaware that there is a function already available that
accomplishes essentially the same function.

These types follow an increasing level of subtlety from type I through IV. Similarly, the
level of sophistication required by any process designed to detect such clones, increases
from I through IV - with type IV being particularly hard to detect without a great deal of
background knowledge about program construction and software design. This scale applies
whether the process is automatic or not.

Whilst a neural net approach could be used to address any of these types, currently we are
addressing the problem of types I, II and III, which form by far the majority of clones
present in existing systems. Future work may address type IV.

3 A Neural Computational Solution

3.1 Potential Neural Network Models

Unsupervised neural nets provide a powerful technique for clustering unlabelled data.
They are particularly suited to the kind of problem described here as they scale up well to
very large data sets and are a robust and relatively straightforward technology to use. To
employ such networks the data set must first be encoded as a set of real valued vectors,
which will then constitute the training set. The way in which this was accomplished is

described in section 3.2. After the net is trained the data set will be partitioned into a set of
clusters of similar vectors. With most unsupervised neural nets the weight vector of the
classifying output unit will be the centroid of its class, so that the network is performing a
form of k-means clustering (Butchart et al, 1995a).
Moreover any novel vector can be presented to the trained net, which will identify the class
in the training set to which the novel vector belongs, and therefore will identify the likely
clones of this software module. More formally the set of N software modules: Si{ }i≤ N

 is

first converted to a set of vectors: vi{ }i≤ N
. An unsupervised neural net consisting of M

output units (with M << N), Χ j{ } j≤ M
 is then trained on these vectors and will produce a

classification of the training set. That is a discrete partition of the training set is produced:

c: vi{ }i≤ N
→ Χ j{ } j≤ M

so that the set of clusters: c−1(Χ j){ }
j≤ M

 identifies the potential clones.

For a system design team the major issue to be initially confronted with is the specific
choice of neural net architecture. The available models were: simple competitive and its
refinements, ART (Carpenter & Grossberg, 1988) type networks and self organising maps
(SOMs) (Kohonen 1990). At a later stage a more recent model, the dynamic tree network
(DCL) (Racz and Klotz, 1991) became available.

Our analysis of this choice was informed by a study we undertook on a different, albeit,
related data set, in which the three unsupervised neural nets were investigated (Field et al,
1995). Here, data representing the complexity structure of software units was clustered and
analysed. Our results showed favourable performance from the SOM type model.

An important feature of the SOM is that the classification, or output, units are arranged in a

two dimensional grid: the Χ j{ }
j≤ M

 are each given a Cartesian co-ordinate x j , y j(). This is

useful in two respects:

• Any global structure in the data may be extracted.
• As can be seen in Figure 1, three distinct areas in the classification space are visible.

• Neighbourhoods of output units, in their Cartesian space, provide additional, similar
clusters. So that in looking for clones of software module A, the search can be extended
to the neighbours of the unit that classifies A.

3.2 Representation of software units as fixed length vectors

As described above the training set of source code modules had to be represented as a set
of feature vectors. Such an encoding is central to the success of an application such as this
since it is imperative that similar blocks of code have similar representational vectors. It is
important to note here that the notion of ‘similar’ is different in either case; for the source
code similarity relates to the probability of the code being cloned, and for the
corresponding vectors that they are close in Euclidean space. More specifically we require
that if software unit A is represented by vector v A and B by vB then if B is a clone of A

v A − vB 2
 should be relatively small.

Figure 1. Frequency activation of the nodes contained in a 55 by 55 SOM trained on
10,257 vectors.

In fact the set of source code units can be thought of as a set of indexed taxonomic trees,
where the root of each tree corresponds to the first occurrence when a unit was cloned and
branching points further down the tree correspond to further instances of cloning — the
whole structure is analogous to a set of phylogenetic trees. The index of each tree denotes
the degree of divergence of the clone from its parent, see Figure 2.

Due to the equivalence of indexed hierarchical trees and ultrametric (Rannal et al, 1986)
spaces it can be seen that the task of detecting clones becomes one of inducing an
appropriate ultrametric in the space of representational vectors. Clustering the source code
vectors with a SOM provides a similarity metric, whereas our newer model produces the
desired ultrametric - the vectors are organised into a tree structure.

3.3 Representation Vector Definition

To represent all the information in a source code unit would not be feasible due to the
resulting size of the vector and the need to represent a variable length structure in a fixed
length format. Some degree of abstraction is therefore required. Our first simplification
was that the user chosen tokens (e.g. identifiers or operators), should be largely ignored;
this gives a big reduction to the size of the problem. We were therefore left with the
problem of capturing the information in the parse tree of the software unit. We do this in
three ways: firstly the frequency of keywords in the unit are accumulated, secondly the
indentation pattern is represented and lastly the length of each line is recorded. The

method is applicable to any source code language - it has even been suggested that
intermediate code may be usefully examined.

Original Block of CodeClone A Clone B

Index: the
degree of
divergence of
the copy from
the original

Clone C Clone D

Figure 2: An indexed taxonomic tree for the clones of a single block of code. It can be
seen that A and D were cloned and subsequently B and C were cloned from D.

As all the code is printed in a standard format (or can be easily filtered to a standard
format), generated by the programming environment, the indentation pattern is isomorphic
to the structure of the parse tree. The problem with representing it is that the number of
lines in a unit of software, and therefore the number of indentations, is variable. To map
this to a fixed length vector we first took the raw indentation values and viewed them as
ordinates on a graph; we then sampled one hundred points from this graph, using linear
extrapolation where necessary. This coding method is relatively stable against minor
modifications to the source code, such as the addition or removal of a line. See Figure 3.

The line length gives some indication of the user defined tokens; it was coded in a similar
way to the indentation pattern, again being mapped to one hundred points across the
software unit.

Finally, each field in the vector was normalised, so that each field had roughly the same
importance. Each keyword frequency was divided by the maximum frequency for that
keyword averaged over a large set of source code units. Each indentation and line-length
value was divided by a mean value calculated as before. That is the j’th component of the

i’th vector is calculated as:xij
' =

xij

mean
k

(xik)

The overall structure of the vector is seen in Figure 4.

Key
Indentation

Line Length

Additional Line

Figure 3: The stability of the sampled indentation pattern when lines are inserted

 BLOCK
 DCL Index GH_Audit_Index;
 DCL GHRc GH_Audit_rc;

 IF ^Enter_Command (Activate_Doc, DESC LvInd [], ComInd)
 THEN
 TypeMess ('Put Help here');
 RETURN;
 END IF;
 END BLOCK Activate_Com;

3 16 29 21 8 10 22 32 12 8 33 58 1 1 0 2 0

sample to 200 dimensions

Indentation Line Length Keywords

(100) (100) (96)

3 32 3 583 29

3 33 32 29 58

Character Positions of start and end
 for each line

Figure 4: Illustrates how a feature vector is produced to represent a procedure.

4 The Current System

4.1 Introduction

Once the data has been represented as a set of fixed length feature vectors it was then
possible to use this to train a neural net to identify clusters in the data. Currently we have
used two different types of net, a SOM and subsequently a dynamic tree based net. The
former has been incorporated in a full clone detecting tool. This section describes the
SOM based system; the following section describes the DCL network.

4.2 Initial Requirements

The system in which the search for clones takes place is organised around specific
products, such as a telecommunications switch. This decomposition of the complete
system is not disjoint, but product managers will normally only be concerned with
identifying clones in their particular product. Typically a product will contain in the order
of 10,000 procedures. The initial requirement was therefore to produce a tool that allowed:
1. The selection of all the software from a specific product
2. The encoding of the procedures in this software as feature vectors
3. The training of a SOM based neural net using these vectors
4. The user to identify likely clones and to find clones of a particular procedure

4.3 The Self Organising Map

In a SOM the output units are arranged in a fixed topology, usually a two dimensional grid.
In this work we use a grid, wrapped around at the boundaries. Winning units pull their
neighbours in the grid with them, towards the input. The neighbourhood of a unit should
initially be set to a value which is a large fraction of the output space, and decrease over
time. A useful heuristic for setting the neighbourhood is that it should start at roughly half
the output space and decrease to unity, to ensure global order.

The key parameter that must be identified when using a SOM is the size of the grid to use.
This is dependant on the number of input vectors and the inherent clustering in the data.
After extensive experimentation we found that a grid of 55 by 55 units produced a good
classification across different product sets. Figure 1 shows how a typical data set is
classified.

4.4 The System Architecture

The finished system can be viewed as consisting of two logical components, that support
administrative tasks and user tasks. The administration task is to produce the classification
data for a set of source code and the user task is to support the interrogation of the resulting
classification in the search for clones. The whole process can be seen in Figure 5.

Figure 5: The clone detector tool process

4.4.1 The System Administrator

This main function of this part of the system is to produce a database of clone information.
Initially a collection of source code procedures, which will be used to populate the database
is down loaded and pre-processed to produce a set of feature vectors, as described in 3.2.
This is a non-trivial task and involves a partial source code parser built using the UNIX
tools byacc, flex and newyacc, to extract the structure of the code, and then a C program to
put together the feature vectors. These vectors are then used as a training set for an
encapsulated SOM, which was developed using Neuralware’s neural network tool
NeuralWorks Professional II. Due to the number of vectors in the training set the network
requires several hours of training time.

Once the SOM is trained the training set is used in a test phase to associate a grid reference
with all the source procedures. This information is stored in the clone database, and for
these procedures no further reference is needed to the SOM. However, if a search is
required for clones of an unseen set of procedures an additional test phase is required;
when this occurs the clone database is updated with the new information. The tool
currently runs on both a HP9000 7xx and 4xx series workstation.

4.4.2 The User View and the Graphical User Interface (GUI)

Once a database has been generated, the navigation and interrogation of the results
produced by the neural network is controlled through a GUI. The GUI was developed
using GNU C++ and Neuron Data's Open Interface.

The main window of the GUI is shown in Figure 6. There are five different areas to the
main window. The first area contains the source procedure (top left). The second contains
all the possible clones of that procedure (top right), and the three areas below display the
actual code and where the differences between the two procedures occur. Once a potential
clone has been identified, the user is then able to view the code not only of the source
procedure, but also that of the potential clone. The two sections of code are displayed along
side each other in the bottom half of the main window. The user is then able to view the
code and see exactly how the sections differ and verify if that clone identified is actually a
clone of the source procedure. In figure 6, the only difference between the source
procedure and the clone which has been identified is that the procedure name and one of
the identifiers has been changed. The cloniness value is shown as 100% because the
differences are so minor as to make the vector representation of the two procedures
identical.

4.4.3 Finding Cloned Procedures

Once a database has been selected and loaded into the GUI the users must then identify a
source procedure, this is done by using area 1 of the main window. The tool then
automatically generates a list of possible clones. The criteria to which this list must
conform to is identified by the attributes in the top right hand corner of the main window.

The attributes which determine the search criteria are contained in the top right hand side
of the window. They are:
• Cloniness - A simple similarity value. It uses the cosine measure of similarity of the

feature vectors.
• Threshold% - The minimum similarity that the reported clones have to match. This acts

as a tolerance measure, a high value indicates that a high degree of accuracy is required.
• Threshold (lines) - The minimum number of lines which the potential clones must have.
• Neighbourhood Value - The size of the area of the neural network were clones might be

found. A high proportion of all clones for a particular procedure will be within the
immediately surrounding area.

Neighbourhood defines the search area, in the neural network, with the selected procedure
belonging to the neural network class at the centre of the search area. Closely matching
neural network classes are situated close together in the network. If the user wants to
increase the search area to bring in more potential clones then the neighbourhood search
size can be increased. Increasing the search area will introduce more potential clones, but
these will have a lower cloniness value.

Rather than searching for clones for each procedure independently the tool allows for a list
of all the clones in any particular database to be produced. However, as the size of the
database grows the time to perform the operation grows exponentially.

Figure 6: The user interface of the productised clone detector.

4.5 SOM Results

Results were produced using input vectors from 1775 procedures extracted from a file of
approximately 5Mbytes of arbitrarily selected source code. A SOM was trained using
these vectors. At the end of training the output from the SOM was further processed to
populate a clone database. Experiments using various input vector representations were
carried out, and these results showed that the Keyword/Indentation representation was
sufficiently rich to classify procedures. Clones were also deliberately created and seeded
into the source code. The detector was able to find almost all of these.

5 Dynamic Competitive Learning (DCL) Model

5.1 Introduction

The limitations of the SOM-based tool are the long training times and the fixed number of
clone classes that are created. Using the same input vector representation we have
implemented a prototype tree based dynamic neural network.

As described in section 3 the ideal classification structure for the type of data used here is a
tree structure, rather than the flat structure induced by a SOM. As a simple example
consider the tree in Figure 7.

Here the classification space has been divided into two clusters at the top level: one
containing E only and the other, which is further subdivided, the other four vectors. The
advantage of this structure is twofold:

A,B

C,D

E

Figure 7: A simple tree structure representing the similarity of five vectors A…E.

• The depth in the tree of the nearest common ancestor of two vectors is a measure of
their similarity. This is useful in the test phase - it is easy to specify the type of clone
required, for example: look as far as second cousins.

• A search through such a data structure is significantly reduced in comparison to a search
through a flat data structure. Specifically, to find an item in the tree takes O logb N() ,

where N is the depth of item in the tree and b the average branching factor, whereas a
search in a linear structure is O N(). This has implications for both the training and test
phases - both are reduced in time.

To produce such a tree structure we used a recently proposed unsupervised architecture, the
Dynamic Competitive Learning model (Racz and Klotz, 1991). For an evaluation of the
DCL network and other related models see (Butchart 1995b).

5.2 The DCL algorithm

The nodes in the DCL network are arranged in a tree structure with a dummy node as root.
When an input is presented to the network it is passed to the first layer of the tree, where
the standard competition takes place between nodes at this level. If the winner is not
sufficiently close to the input, that is the distance is greater than a quality value, a new node
is created at this level to classify the input. This process is analogous to the use of a
vigilance parameter in ART. The quality value determines the radius of the hypersphere,
that is the classification volume of a node; this value must therefore decrease as the tree
grows deeper, so that lower levels provide a finer classification than higher levels.

If a new node is not required then the winner moves towards the input, mediated by a
learning rate, as in standard competitive learning. The learning process is then recursively
applied to the children of the winner, until a leaf node of the tree is reached.

At any stage of the learning process a winning node without children may procreate. This
occurs if the relative frequency of wins of the node against its parent exceeds a threshold
value. In order to prevent unbounded growth in the tree the threshold value is increased for
lower levels in the tree.

More formally the training algorithm is:

Initialise learning rate, r, threshold, t , quality q and Tree to be the root node
Repeat until convergence criterion met

Set x to the next input vector
Select the child of Tree that is closest to x, w say
If | w - x | < q then

move w towards x, according to w' = w + r(x - w)
Increment the win count of w
If w has children then set Tree to w, increment t, decrement q and recurse
else if the ratio of the win count of w to the win count of Tree > t

generate for w a child with weight vector = x
Else

Create a new child of Tree that has weight vector identical to x
End Repeat

The shape of the resulting tree is determined by the input vectors and the choice of learning
parameters. The following factors must be specified:

• The quality value of the top level nodes
• The rate at which the quality factor decreases for successive layers, as a proportion of

the previous value
• The threshold value of the top level nodes
• The rate at which the threshold value increases for successive layers, as a proportion of

the previous value
• The schedule for the learning rate - which should decrease after each epoch to promote

stability as a proportion of the previous value

The Quality Factor was arrived at with the aim of producing a reasonably large initial
cluster. With this setting the initial cluster contains 20 nodes with 4 developing a sub
classification. So the initial space is divided up into 16 outlier clusters and 4 larger clusters
which are sub-divided.

The Quality Reduction rate was chosen so that the network developed the appropriate
amount of decomposition and clustering. The very low initial value of the threshold allows
the tree to rapidly deepen, but with an increment rate of 1.15, the threshold quickly
becomes large: at ten ply the threshold is 0.12, so that a unit must account for 12% of its
parents wins before it can gain a successor.

In the test phase the node closest to the input vector is found by a straightforward search of
the tree:
• If x is the input set current-node to the root of the classification tree.
• Find the child of current-node that is closest to x. If this node is a leaf then return it,

else repeat with current-node set to this child.

5.3 Training

With these parameters the network converged rapidly; with 10,257 296–ary vectors only
two or three epochs were required for reasonable convergence. The training time was less
than forty minutes on an HP 712/80.

5.4 Results

A typical classification tree produced by the DCL is described below:

No of nodes 1500
Maximum Ply 19
Average Branching Factor 2.84
Widest point 298 nodes, at depth 5

The leaf nodes of the tree classified, on average, about 20 input vectors. A fraction of the
tree is shown in Figure 8.

The quality of the classification was similar to the SOM, but this net has some advantages.
The training and recall time is significantly better than the SOM, and the tree structure aids
in the search for clones more distant than those in the immediate neighbourhood, as
discussed in 5.1.

6 Evaluation

6.1 Productising the prototype

The major challenge that we overcame in this project was moving from the original small
scale prototype to a full product quality tool. The task here was not simply scaling up the
prototype, but more of improving the overall quality of the system. It soon became
apparent that all the components of the system would have to be rebuilt, and it is worth
noting that in the final system the neural net component is a relatively small part.

6.2 Use

The tool has been extensively trialed by a number of product groups throughout BNR
world-wide. The response was favourable with some groups finding surprising clones in
their source code.

One product group were quite adamant that no clones existed within their code. However,
this proved to be incorrect: in fact over thirty clones were found in their database of 2139
procedures. The source displayed in Figure 6 is one of several sets of clones that were
discovered.

1722 0.25

1290 0.24
1292 0.28
3859 0.16

9747 0.25

3863 0.45

221 0.55

 222 0.65
 225 0.72
 227 0.69

1582 0.72
1581 0.56

3862 0.60

3855 0.69
 27 0.76
 29 0.58
 627 0.85
3858 0.74

3861 0.95
9746 1.00

Layer 19

Layer 18

Layer 17

Layer 16

Layer 15

Layer 14

Layer 13

Layer 12

Layer 11

 228 0.01
1917 0.20
1919 0.02

 223 0.00

Layer 10

Figure 8: Classification produced by the DCL net, shows the input (left) and the Euclidean
distance (right) from a given test input. For the test input 223 procedure 228 is the closest.

6.3 Future Developments

As identified above, more work must be done in selecting a representative set of data for a
complete switch (which may contain tens of millions of lines of code and hundreds of
thousands of procedures).

In order to improve performance, in terms of reducing training times and network
complexity, experiments are being carried out using the Dynamic Competitive Learning
network described in section 5. The prototype has already demonstrated the potential
benefits of using this approach, but before productisation the problems of representing a
large tree based structure with a GUI to the user must be solved.

7 Conclusions

Cloned software is prevalent in large software systems and this project has shown how it
can be managed without complete re-engineering of the code. It has also been shown how
neural computation can be used and integrated into fully functional tools. In fact one of

appeals of using neural nets is their relative ease of use when compared with other
sophisticated techniques.

Over the period of this work, however, it has become apparent that the task of moving from
a successful, neural net based prototype to a full system should not be underestimated. All
neural network applications depend heavily on the appropriate pre-processing of the input
data and post-processing of the output data. A major part of our work has been concerned
with the pre-processor, the user interface and the overall quality of the system. The
lessons learnt from the production of this clone detector software tool are being
incorporated into a neural network application development method (Field et al, 1995).

Acknowledgements

We would like to acknowledge the financial assistance of the Department of Trade and
Industry of the UK Government, who have partly funded the placement of Paul Barson and
Simon Field on a Teaching Company Scheme at BNR Europe Limited, through the
Teaching Company Directorate organisation, under grant no. TCS–1326.

References
Barson, P. , Davey, N. , Field, S. , Frank, R. and Tansley, D.S.W. (1995). “Dynamic

Competitive Learning Applied to the Clone Detection Problem”, in Proceedings of the
International Workshop on Applications of Neural Networks to Telecommunications.

Butchart, K. , Davey, N., and Adams, R. G. (1995a). “A Comparative Study of Three
Neural Networks that use Soft Competition “, in Proceedings of International
Workshop on the Applications of Neural Networks.

Butchart, K. , Davey, N., and Adams, R. G. (1995b) “A Comparative Study of two Self
Organising and Structurally Adaptive Dynamic Neural Tree Networks”, in Proceedings
of Applied Decision Technologies

Carpenter, G. & Grossberg, S. (1988), “The Art of Adaptive Pattern Recognition by a
Self-Organising Neural Network”, IEEE Computer 21(3), 77-88.

Carter, S. , Frank, R.J. and Tansley, D.S.W. (1993), “Clone Detection in
Telecommunication Software Systems: A Neural Net Approach”, in Proceedings of the
International Workshop on Applications of Neural Networks to Telecommunications
pp. 273-280.

Field, S. , Davey, N. and Frank, R. (1995), “Using Neural Networks to Analyse Software
Complexity”, in Proceedings of the International Workshop on Applications of Neural
Networks to Telecommunications 1995.

Kohonen, T. (1990) “The Self-Organising Map”, Proceedings of the IEEE, Vol. 78, No 9.
Möller, K.H. & Paulish, D.J. (1993), Software Metrics, London: Chapman & Hall.
Racz, J. & Klotz, T. (1991), “The Dynamic Competitive Learning Method”, Computers in

Industry, 17, 155-158.
Rannal, R., Toulouse, G. & Virasoro, M.A. (1986), “Ultrametrics for Physicists”, rev. mod.

phy., 58, 765.
Schendler, B.R. (1989), “How to Break the Software Logjam”, Fortune, pp. 72-76, 25

September 1989.
Wayt Gibbs, W. (1994), “Software’s Chronic Crisis”, Scientific American pp 72-81,

September 1994.

Trademarks
NeuralWorks Professional II is a trademark of Neuralware inc.
HP is a trademark of Hewlett Packard.
Open Interface is a trademark of Neuron Data.

