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Abstract

We argue that programming high-end stream-processing applications
requires a form of coordination language that enables the designer to rep-
resent interactions between stream-processing functions asynchronously.
We further argue that the level of abstraction that current programming
tools engender should be drastically increased and present a coordination
language and component technology that is suitable for that purpose.
We demonstrate our approach on a real radar-data processing application
from which we reuse all existing components and present speed-ups that
we were able to achieve on contemporary multi-core hardware.

1 Introduction

The needs of signal processing rarely receive attention of contemporary com-
puter science. The arsenal of tools for programming DSP and systems on chip
tends to be limited to low-level languages, such as C and assembler. Whenever
DSP problems grow large enough to warrant an extraordinary hardware and
software investment, as they do in massively parallel applications of radar tech-
nology, radio astronomy, military communications and control, etc., bespoke
tools are being developed (e.g. Thales’ SPEAR). The tools target certain types
of specialised hardware and help the programmer to express algorithms in a
more abstract way that exposes algorithmic properties and promotes concur-
rency, and a reduction in implementation overheads.

Yet why not consider stream processing from first principles? Its defining
features in DSP applications are

• first and foremost, the existence of a static dataflow graph whose nodes
represent components that process data streams and whose edges represent
those streams;

• the fact that the nodes are effectively stream-processing functions as their
output streams depend solely on the data they receive on the input streams;
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• computational algorithms as the nodes and the fact that they process ar-
rays of data in some regular manner with a high degree of data parallelism;

• the stream communications, which can be either synchronised and stat-
ically defined in terms of their throughput, or asynchronous and highly
dynamic, or indeed something in between;

Those are purely technical features whose pre-eminence stems from the fact
that data-processing schemes are naturally described in terms of some fixed
stagewise, highly pipelined application of several algorithms to array data.
There are, additionally, other features that reflect general design requirements of
any complex system, and those high-end DSP systems tend to be quite complex
at the top of their range:

• Adaptability. That is defined narrowly as the ability of a system to tolerate
variations in latency/throughput requirements due to changing parame-
ters, and the ability of the processing nodes to receive such parameters
from time to time.

• Component reuse. A stream-processing system is almost by definition a
componentised system: the nodes are components that represent standard
and bespoke algorithms. It should be possible to replace components by
their improved versions without destroying the consistency of the links,
interfaces and protocols across the component network.

• Abstraction and hierarchical design. Some flavour of encapsulation, in-
heritance and extension should be supported by the programming tech-
nology/tools themselves. The challenge is: to do so in a very different
setting that is dramatically parallel and devoid of shared global memory.
Moreover, this setting, as we argue below should also be permitted to be
asynchronous.

Why asynchronous behaviour? Section 6 will enumerate some existing solu-
tions for synchronous stream processing, which are being used in practice or are
intended for such use by tool researchers. The common feature of these systems
is the static production rate of all nodes and generally a static schedule of all
activities. Although quite effective in many scenarios, this approach offers lim-
ited adaptability in the situation of node behaviour variation. What is needed
is the ability to respond to the readiness of data to be processed by using it as a
trigger. That is what asynchrony is all about, and that requires a mechanism of
synchronisation and data-driven communication. The HPC community has al-
ready wised up to these factors and introduced message-driven computing and
one-sided communication. Similar notions are required in stream processing,
though they may appear in a different form.

This paper is about using a new tool: The coordination language S-Net[1],
for the purposes of asynchronous stream processing. S-Net addresses the tech-
nical features listed above and provides convenient solutions for the aforemen-
tioned design requirements taking the specific nature of stream processing into
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account. S-Net provides for a drastic separation of concerns: the network struc-
ture and component interfaces are described hierarchically in S-Net, while the
components themselves are reused from the original C application.

This work is a joint project of THALES Research, Paris, France and Univer-
sity of Hertfordshire, UK. The rest of the paper is organised as follows. Section
2 describes the application that THALES Research have provided as a repre-
sentative example of a high-end DSP problem. Section 3 briefly describes the
relevant features of the coordination language. The next section shows how
the application can be coded in that language. Section 5 presents a perfor-
mance comparison between the original application and the S-Net version on
multi-core hardware. Section 6 surveys related work, and finally there are some
conclusions.

2 The MTI Application

The radar application we present here is an implementation of MTI (Moving
Target Indication). The purpose of MTI is to detect moving objects on the
ground from an aircraft. The main feature here is the detection of slow mov-
ing objects, whereas non-adaptive, classical radar processing is limited to the
detection of fast moving objects.

The MTI application (Fig. 2) receives a ground echo of a periodic sequence of
radar pulses and attempts to distinguish moving objects from all other, generally
still, reflecting surfaces (ground clutter) under the radar beam. The position
of a target is estimated by measuring the delay between the transmission of a
radio pulse and the reception of its echo. The speed of an object is measured by
analysing the Doppler effect that affects echoes of several identical pulses which
are sent periodically. The movement of the object results in small variations
of its distance to the radar. This distance variation is detectable as a phase
shift of the radar signal, e.g. at around 10GHz. In this basic approach, Doppler
processing consists of a bench of filters, each tuned towards a particular phase
shift between successive echoes. This kind of Doppler processing is in some
situations sufficient to separate reflecting objects on the basis of their speeds.
When the beam is directed towards the ground, the largest part of the echoed
energy is assumed to be a reflection of static objects that compose the ground
(clutter). The moving object we are interested in send a weak, phase shifted
echo. However, as the radar beam is not perfectly sharp and has a width of a few
degrees, some still objects at the border of the beam appear to be moving with
a speed relative to the aircraft’s speed. This causes undesired interference over
the moving target’s echoes and creates an ambiguity between intrinsic speeds
and azimuths of targets.

More acurate are adaptive filtering techniques, where filters are computed
at runtime: In this paper we use an implementation of ’Space Time Adaptive
Processing’ (STAP) [2, 3], which computes a set of filters from signals received
by the antenna array at different time steps. Fig. 1 shows the setup of the
antenna array. The antenna array consists of a number (nant) of equidistant
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Figure 1: The an-
tenna consists of 5
sensors, which receive
a ground echo of the
radar beam of period-
ically sent pulses. The
signal is a 3D array of
axes ant (sensor), rec
(pulse sequence) and
rg (range gate).

aligned sensors. The aircraft illuminates the ground with a beam orthogonal
to its velocity. The sequences of periodic pulses (bursts) may vary in timing
and amount of bursts. The reception time of an echoed pulse depends on the
number of the pulse and the distance of the reflecting surface on the ground.
Measuring the latter is achieved by sampling the received signal at a given
frequency, resulting in the distance being sampled into range gates (rg), which
is typically 15 meters for 10MHz sampling. The detected signal is received by
the radar processing chain as a 3D array with dimensions Nrg,Nrec,Nant. The
processing chain is subdivided into independent modules, as shown in Fig. 2.

For simulation purposes, we also implement a ’Stimuli Generation’ module,
which simulates the signal received by the radar antenna array. This is achieved
by computing a 2D array representing the Radar Cross Section (RCS) of the
ground surface situated on range gate rg and angle θ. The clutter model of
’CreateClutter’ is computed from random, positive values with a given average
and adding peak reflectivity values of a given probability. The returned signal
from a burst of pulses of the ground surface to which targets with a given
RCS and radial velocity have been added, is computed by ’EchoRaf’. The final
processing step in this module is the addition of white noise to the signal.

The presented processing chain contains some naive, well-known radar pro-
cessing techniques for legacy reasons. Nevertheless, the characteristics, i.e. the
main challenges from an implementers point of view, are representative for the
important industrial domain of embedded signal-processing applications on par-
allel hardware, as: a) The processing chain uses multiple operators with differ-
ent requirements on precision and/or dynamic ranges. b) The static processing
graph represents a dynamic processing chain, as algorithm parameters, such
as array sizes, loop boundaries, etc., change (multi-mode radar [4]). c) The
computational load is high enough to require parallel computing hardware. d)
Performance is one of the key requirements, both in terms of computational
throughput and latency, which may be due to operational requirements or ar-
chitecture constraints such as memory limitations.
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Figure 2: The data
processing graph of
the MTI applica-
tion is subdivided
into several mod-
ules. Modules are
indicated by boxes
with folded bot-
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text denote pro-
cessing functions,
boxes containing
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capital X with a
number denote
structure trans-
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a matrix without
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values.

3 Introducing S-Net

S-Net is a coordination language based on stream processing. It turns func-
tions written in a computation language (C, for example) into asynchronously
executed, stateless stream-processing components, named boxes. Each box is
connected to the rest of the network by two typed streams: an input stream
and an output stream. Messages on these typed streams are organised as non-
recursive records, i.e. label-value pairs. Labels are subdivided into fields and
tags. Fields are associated with values from the box domain that are entirely
opaque to S-Net; tags are associated with integer numbers that are accessible
both on the S-Net and the box level. Tag labels are distinguished from field
labels by angular brackets.

A box expects a record on its input stream to which it applies its associated
box function.

As soon as the evaluation of the box function is complete, the S-Net box is
ready to receive and process the next input record.

The functionality of a box is declared on the S-Net level by a box signature:
a mapping from an input type to a disjunction of potential output types. For
example,
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box foo ((a,<b>) -> (c) | (c,d,<e>))

declares a box that expects records with a field labeled a and a tag labeled b.
The box responds with an unspecified number of records that either have just
a field c or fields c and d as well as tag e. The associated box function foo is
supposed to be of arity two: the first argument is of type void* to cover any
opaque data; the second argument is of type int.

The box signature naturally induces a type signature. Whereas a concrete
sequence of fields and tags is essential for the proper specification of the box
interface, we drop the ordering when reasoning about boxes in the S-Net do-
main and turn tuples of labels into sets of labels. Hence, the type signature of
box foo is {a,<b>} -> {c} | {c,d,<e>}. We call the left hand side of this
type mapping the input type and the right hand side the output type. To be
precise, this type signature makes foo accept any input record that has at least
field a and tag <b>, but may well contain further fields and tags. The formal
foundation of this behaviour is structural subtyping on records: Any record type
t1 is a subtype of t2 iff t2 ⊆ t1. This subtyping relationship extends nicely to
multivariant types, e.g. the output type of box foo: A multivariant type x is a
subtype of y if every variant v ∈ x is a subtype of some variant w ∈ y. Again,
the variant v is a subtype of w iff every label λ ∈ v also appears in w.

Subtyping on input types of boxes raises the question what happens to the
excess fields and tags. Subtyping relations would be satisfied if we simply dis-
carded them. Instead, we retrieve excess fields and tags from incoming records
and attach them to any output record produced in response to this very input
record, unless the respective label is already present in the record. We call this
behaviour flow inheritance. Note that due to the presence of subtyping, flow
inheritance is type-safe as it produces subtypes of the output type, which cannot
violate type constraints.

Type inference algorithms developed for S-Net take full account of subtyp-
ing and flow inheritance, which can be dealt with statically. In conjunction
record subtyping and flow inheritance prove to be indispensable when it comes
to making boxes that were originally unaware of each other cooperate in a
streaming network.

It is a distinguishing feature of S-Net that we do not explicitly introduce
streams as objects. Instead, we use algebraic formulae to define connectivity
in streaming networks. The restriction of boxes to a single input and a single
output stream (SISO) is essential for this. S-Net provides four different network
combinators: static serial and parallel composition of two networks and dynamic
serial and parallel replication of a single network. These combinators preserve
the SISO property, i.e., any network, regardless of its complexity, again is a
SISO component.

Let A and B denote two S-Net networks or boxes. Serial combination (A..B)
constructs a new network where the output stream of A is directed to the input
stream of B, and the input stream of A and the output stream of B become
the input and output streams of the combined network, respectively. As a
consequence, A and B operate in a pipeline mode.
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Parallel combination (A|B) constructs a network where all incoming records
are either sent to A or to B and the resulting record streams are merged to form
the overall output stream of the combined network. Each network is associated
with a type signature. However, unlike box signatures they are inferred by
the compiler. Network types control the flow of records in the case of parallel
combination. Any incoming record is directed towards the subnetwork whose
input type better matches the type of the record itself. If both branches in the
streaming network match equally well, one is selected non-deterministically.

The parallel and serial combinators have their infinite counterparts: serial
and parallel replicators for a single subnetwork. The serial replicator A*(type )
constructs an infinite chain of replicas of A connected via serial combination.
The chain is tapped before every replica to extract records that match the type
specified as second operand.

The parallel replicator A!<tag > also replicates network A infinitely far, but
this time the replicas are connected in parallel. All incoming records must have
the tag specified and the value of this tag decides to which replica a record is
sent to.

In practice, we often see boxes that mostly or entirely serve housekeeping
purposes, such as renaming, duplication or elimination of fields and tags or
simple arithmetic operations on tag values. While all this can be easily accom-
plished using a user-implemented box, it is often more convenient to do this
housekeeping on the S-Net level as it directly affects network construction.
The construct we introduce for these purposes is called a filter and it looks as
follows:

[pattern→ record1; record2; . . . recordn] .

The type pattern on the left is a set of labels while each of the record specifiers
on the right defines the output.

For example, the following filter consumes a record with fields a,b and the
tag c and creates two new records: The first record has field a with the original
value, field z with the same value and a tag 〈t〉 set to zero. The second record
has fields b with the original value, a with the same value as b and the tag 〈c〉,
whose value is incremented by 1:

[{a,b,<c>} -> {a,z=a,<t>};
{b,a=b,<c>=<c >+1}]

There is one “stateful” box in S-Net: the synchrocell. It provides the only
means in S-Net to combine two existing records into a single one, whereas the
opposite direction, splitting a record into two or more records can easily be
achieved by any box. Syntactically, a synchrocell consists of an at least two-
element comma-separated list of type patterns enclosed in [| and |] brackets,
for example [| {a,b,<t>}, {c,d,<u>} |]. The principle idea behind the syn-
chrocell is that it keeps incoming records which match one of the patterns until
all patterns have been matched. Only then the records are merged into a single
one that is released to the output stream. Matching here means that the type
of the record is a subtype of the type pattern. The pattern also acts as an input
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type specification of the synchrocell: a synchrocell only accepts records that
match at least one of the patterns.

For space reasons we have to refer interested readers to [5, 1] for a more
thorough treatment of all language components.

4 Modelling MTI in S-Net

The starting point of the design process of the MTI application in S-Net is
the data-flow graph of the original implementation shown in Fig. 2. We use
the structure of this graph to derive the structure of our application: Each
signal processing function, i.e. the small boxes in Fig. 2, becomes an S-Net
box that we build from the existing components. The modules translate to
individual networks which connect the boxes using combinators according to the
connections within the module. The same combinators also enable us to connect
these networks to each other to form the MTI application. This hierarchical
approach allows us to implement and test networks, i.e. the modules of the
application, independently, as each network is a fully functional application
itself when deployed individually.

In the remainder of this section we illustrate the design process of the ap-
plication modules as networks, using module ’Stimuli Generation’ as starting
point.

The module in Fig. 2 contains three processing functions, and so does the
network we implement. The boxes are arranged in a serial combination (Create-
Clutter .. EchoRaf .. Noise), implementing the function composition of these
funtions.

On first glance, the definition of the box and network signatures is as straight
forward as the definition of the network structure. On second glance, however,
there is some design space to be explored. The algorithms of these boxes con-
sume a wealth of parameters. As an example, the parameters of CreateClutter
are shown in Table 1. Most of these parameters are semi-static; they usually do
not change during runtime but are only adjusted between runs of the applica-
tion.

The box returns one single value, a 2D array representing the Radar Cross
Section (RCS) of the ground surface. From this knowledge, we may construct
the box signature as {σ} → {array 2d}, where σ is shorthand for all entries of
the second column of Table 1.

The box EchoRaf has a similarly extensive input type. Not only does it
require CreateClutter ’s result, it also requires a set of parameters to produce a
3D array of values representing the ground echo including targets. Box Noise
is more frugal with respect to parameters and requires only two 3-dimensional
matrices of random values to compute white noise, which it applies to the result
of EchoRaf. If we combine these boxes in sequence to form a network, the
parameters propagate to the network signature. This results in an extremely
unwieldy input type of the network, composed of field ’rnd values’ plus the union
of required parameters of all three boxes. The exposure of local parameters
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to the outside is not only unaesthetic, but also problematic from a software
engineering perspective: The parameters propagate through any surrounding
context and eventually manifest in the global input type of the application
network. To avoid this, we confine parameters to their local contexts.

One trivial approach to achieve this, is toparameter name static
rnd values no
σ0 yes
rgmin,rgmax,rgsize yes
angle carrier yes
beam width yes
size yes
targets yes
Nθ yes

Table 1: Parameters of Create-
Clutter

generate all required parameters within the
box implementation itself. The problem is,
that this is not always possible: If a box is
provided as an opaque object, e.g. as pre-
compiled library from a third party, we do
not have access to its implementation. In
this case, we have to embed the function call
into wrapper code that computes all parame-
ters before invoking the actual box function.
By generating the parameters within the box,
this approach solves the problem of exploding
signatures. The downside of this approach is,

that parameters are completely invisible on the S-Net layer. This potentially
impedes component reuse, as a user of such a network is now unaware of the
presence of the parameters.

Therefore, we take a more flexible approach by generating parameters from
within stand-alone S-Net boxes. This is done in such a way, that a parameter
generating box does not require any input fields or tags and delivers parameters
for one specific box as output. The non-static input is merged to the generating
paremeter set by exploiting the power of flow-inheritance: For a box A with
signature α∪ ρ→ β, where α is the set of input labels and ρ is the set of static
parameters, a corresponding parameter generating box PA has signature {} → ρ.
Because of the empty input type, this box can be inserted as predecessor of A
without adding any label constraints to surrounding contexts. Any record that
arrives at PA is accepted as input and is enriched by parameter set ρ. More
specifically, due to flow-inheritance, a record with label set α as input to PA

results in α ∪ ρ (of course, any excess label is carried over as well: α ∪ γ →
α ∪ ρ ∪ γ).

Using this technique, the original box implementation is left untouched and
parameters are visible on the S-Net level without being propagated. In this set-
ting our recently developed reconfiguration and adaptivity features for S-Net
[6] come in handy. In short, these features allow us to replace boxes in a de-
ployed network at runtime. With these features we offer a solution to maintain
semi-static parameters: If new parameter values are required, we replace the
generating box by a new version which generates desired results. As this is pos-
sible at runtime, multiple parameter sets may be used within the same run of
the application. Here, our design decisions become clear: By implementing pa-
rameter generators as stand-alone boxes, an adjustment of parameters is merely
a replacement of the generator, which leaves the box implementation consuming
the parameters untouched if parameter changes occur.

The network that implements the ’Filter Calculation’ module of the MTI
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net Thresholding
{
box ApplyFilter( (array_3d_signal, array_4d_filter) ->

(array_4d_filtered));
box X5( (array_4d_filtered) -> (array_4d_filtered));
box CalcCohCoeff( () -> (coh_array_2d));

}
connect [{array_4d_filter, array_3d_signal} ->

{array_4d_filter, array_3d_signal}; {}]
.. ( ( ApplyFilter .. X5)

| CalcCohCoeff)
.. [|{array_4d_filtered},{coh_array_2d}|];

Figure 3: Implementation of the Thresholding network in S-Net

application is a sequence of boxes as defined by the order of tasks shown in
Fig. 2. Parameters of boxes are, as above, supplied by parameter generators if
required. Special treatment is necessary for boxes CalcSteerVect and CalcFil-
ter, as the former lacks an input channel, whereas the latter requires two input
channels. One possibility to model this, is to assign an empty input type Calc-
SteerVect and place it as direct predecessor of CalcFilter. A record that arrives
at this box triggers execution of the box without any of the record’s fields or
tags being read. Flow-inheritance inserts all inbound-record constituents to the
resulting record, ensuring that CalcFilter receives all required input fields in
one record. This approach, however, does not overlap computations where it
would be possible: CalSteerVect does not require any input, and can therefore
begin its computation much earlier. To do this, the box is arranged in parallel
to the rest of the network and computation is triggered at the earliest possible
moment, i.e. when a record arrives at the first box. The output of the box is
then combined to a result record at the latest possible stage, i.e. a synchro-cell
merges the box’s result to the result of the remaining network. This created
record contains all required fields for CalcFilter. Fig. 4 (a) and (b) illustrate
these techniques.

The remaining networks implementing ’Filter Application’ and ’Threshold-
ing’ use the same techniques. For brevity we refrain from describing them in
detail here but show the concrete S-Net implementation of network ’Thresh-
olding’ in Fig. 3 and its graphical representation in Fig. 4(c).

The final step of the implementation phase is to combine all modules to form
the MTI application. The complete application network is shown in Fig. 4(d).
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{input_3d}	  -‐>	  
{array_3d}	  

Box	  X3	  

{array_3d}	  -‐>	  
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{}	  -‐>	  
{steer_array_3d}	  

Box	  CalcSteer	  

{inv_array_3d,	  
steer_array_3d}	  -‐>	  
{array_4d_filter}	  

Box	  CalcFilter	  

{input_3d}	  -‐>	  
{array_3d}	  

Box	  X3	  

{array_3d}	  -‐>	  
{array_4d}	  

Box	  CoVar	  

{array_4d}	  -‐>	  
{array_4d}	  

Box	  X4	  

{array_4d}	  -‐>	  
{array_3d}	  

Box	  AvgCov	  

{array_3d}	  -‐>	  
{inv_array_3d}	  

Box	  MatInv	  

{}	  -‐>	  
{steer_array_3d}	  

Box	  CalcSteer	  

{inv_array_3d,	  
steer_array_3d}	  -‐>	  
{array_4d_filter}	  

Box	  CalcFilter	  

{inv_array_3d},	  
{steer_array_3d}	  	  

Sync	  

{input_3d}	  -‐>	  
{input_3d};	  {}	  	  

Filter	  

{array_3d_signal,	  
array_4d_filter}	  -‐>	  
{array_4d_filtered}	  

Box	  ApplyFilter	  	  

{array_4d_filtered}	  -‐>	  
{array_4d_filtered}	  

Box	  X5	  

{}	  -‐>	  
{coh_array_2d}	  

Box	  CalcCohCoeff	  
{array_4d_filtered},	  
{coh_array_2d}	  	  

Sync	  

{array_4d_filter,	  
array_3d_signal}	  -‐>	  
{array_4d_filter,	  

array_3d_signal};	  {}	  

Filter	  

{array_4d_filtered,	  
Coh_array_2d}	  -‐>	  
{sum_array_3d}	  

Box	  CohSum	  

(a)	  

(b)	  

(c)	  

{cluKer_rnd_array}	  -‐>	  
{array_3d}	  

Net	  SMmuli	  

{array_3d}	  -‐>	  
{input_3d}	  

Box	  PulseComp	  

{input__3d}	  -‐>	  
{array_3d_signal}	  

Box	  	  X2	  

{input_3d}	  -‐>	  
{input_3d};	  

{input__3d=input_3d}	  

Filter	  
{input_3d}	  -‐>	  

{array_4d_filter}	  

Net	  FilterCalculaMon	  

{array_4d_filter,	  
array__signal_3d}	  
-‐>	  {sum_array_3d}	  

Net	  FilterApplicaMion	  

{array_4d_filter},	  
{array__signal_3d}	  

Sync	  

{sum_array_3d}	  
-‐>	  {threshold_3d}	  

Net	  Threshold	  

(d)	  

Figure 4: (a)
This variant
of ’FilterCal-
culation’ uses
CalcSteerVect
as direct pre-
decessor to
CalcFilter.
(b) shows an
alternative
implementation
of (a) where
CalcSteer is
arranged in
parallel to the
remaining net-
work to overlap
computations.
(c) shows the
implementation
of network
’Threshold-
ing’. (d) shows
the final MTI
application

5 Performance

The measurements we present here compare the original, sequential C implemen-
tation with the S-Net implementation that we have developed. Both programs
were given several sets of input samples and for each set the total runtime was
recorded. The numbers presented in Fig. 5 show the average amount of time
that was required to process one input sample, computed by dividing the total
runtime by the number of data samples in the input set.

We employed two separate machines for measurements: Representative for
consumer-grade hardware, we chose a laptop equipped with an Intel Core 2 Duo
processor at 2.4GHz and 4GB of memory running Darwin 10.2.0 (Mac OS X
10.6.2). We refer to this host as Machine A. The second machine, Machine B, is
a computation server featuring four Quad-Core AMD Opteron 8356 processors
and 16GB of memory running Linux 2.6.18-128.1.10.el5 (CentOS 5.3).

On both machines we conducted the experiments using input data that was
identical in size and value. Time was measured from beginning to end of a
program run, i.e., including all I/O operations. However, to keep disk access to
a minimum we reused input data from memory after reading it in once from disk.
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1	   10	   50	   100	   500	  

C	  	   0.500	   0.411	   0.402	   0.403	   0.403	  

S-‐Net	   0.520	   0.298	   0.274	   0.287	   0.279	  
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1	   10	   50	   100	   500	   1000	  

C	   1.330	   0.637	   0.658	   0.640	   0.641	   0.631	  

S-‐Net	   1.380	   0.389	   0.265	   0.230	   0.231	   0.252	  

S-‐Net	  RR	   1.400	   0.225	   0.082	   0.079	   0.064	   0.060	  
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Figure 5: Timings of the original C and S-Net implementation on a dual-core
(left) and 16-core (right) machine

As was to be expected, the S-Net runtime system adds runtime overhead whose
effect is most prominently seen on the runtimes for one single input sample. This
overhead, however, is amortised by the fact that the S-Net runtime system
executes multiple stages of the computational pipeline in parallel on systems
with more than one core. As both systems contain multiple cores the S-Net
implementation outperforms the original C implementation on both machines
from as few as five input samples.

The best speed-up on Machine A is about 1.47 which we deem acceptable
for a dual-core laptop machine. On Machine B, however, the best speed-up
we were able to achieve was 2.78. This dissapointing figure is mainly due to
sequential box code which does not take advantage of multiple cores. As these
strictly sequential code blocks inevitably limit the achievable speed-up, we have
also measured a round-robin distribution of input records to five instances of
the network, labelled “S-Net RR” in Fig. 5. This experiment came with almost
no additional development cost, as the ! combinator can be used to achieve
exactly this: By applying the split combinator ! to the outermost level of the
network, the runtime system automatically creates multiple instances of the
network (demand driven). The combinator determines based on a tag value
which instance a data item is dispatched to. In this case, stap!<n> requires all
data items to carry a tag <n> whose value determines the instance. By tagging
the input data with <n> using values between 1 and 5, and thereby dispatching
data items in a round-robin fashion to the instances, a much better utilisation
of the computing resources was possible, and hence the speed-up increased to a
more satisfying value of 10.5.

6 Related Work

Synchronous data-flow languages, e.g. Lustre [?] and Esterel [?], are in indus-
trial use today, where they are employed for safety-critical, reactive systems [?].
Recent developments in this area include MIT’s StreamIt [?]. Unlike these,
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S-Net is based on asynchronous communication, which allows us to model
highly dynamic systems as there is no static schedule of computation, but comes
with the price of a more complex memory and communication management.

The coordination aspect of S-Net is related to a large body of work in
so-called data-driven coordination, see [?]. Unlike most data-driven coordina-
tion languages, here we have a complete separation of coordination and com-
putation. The earliest related proposal, to our knowledge, is the coordination
language HOPLa from the Utrecht University’s Areadne project [?]. It is a
Linda-like [7] coordination language, which uses record subtyping in a manner
similar to S-Net, but does not handle variants as we do, and has no concept
of flow inheritance. Another early source to mention is the language Sisal [?],
which pioneered high-performance functional array processing with stream com-
munication. Sisal was not intended as a coordination language, though, and
no attempt at the separation of communication and computation was made in
it. Still it is important to acknowledge the stream variables of Sisal as an early
example of task decomposition using streams. Among more recent papers, we
cite the work on the language Eden [?] as related to our effort, since it is based
on the concept of stream communication. Like S-Net, Eden defines a con-
nection topology for the processing entities; it however deploys the processes
completely dynamically and even allows completely dynamic channels. Eden
has no provision for subtyping and does not integrate topology with types.

Also functionally based is the language Hume [8]. Hume’s conceptual design
is not that of a pure coordination language, but a fully-featured programming
language, primarily aimed at embedded and real-time systems. Programming
in Hume follows a layered approach. Values and functions are defined in a fully-
functional expression language, and interaction between functions is defined in
a coordination language. The finite-state machine based coordination language
connects any desired amount of inbound and outbound “wires” to a function to
allow for interaction between the components (i.e. the functions) of a program.
Originating from Hume’s primary domain and the related necessity for space-
and time bound analysis [9], the expression language is an inherent part of
the system and cannot be freely chosen as in S-Net. For the same reason,
dynamically evolving network structures as are possible in S-Net using serial
and parallel replication, are not expressible in Hume.

Another recent advancement in coordination technology is the language Reo
[?], whose focus is on streams but which concerns itself primarily with issues of
channel and component mobility and which does not exploit static connectivity
and type-theoretical tools for network analysis.

7 Conclusion

An approach to programming high-end stream processing applications from first
principles has been demonstrated. We have shown how an application can be as-
sembled from unit algorithms using a coordination layer. The language S-Net,
delineated in the paper, provides an abstract “glue”, which connects (existing)
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components in a flexible manner, by utilising asynchrony and nondeterminism
in order to simplify the representation of connectivity. As the example shows,
the network aspect of the application, including its hierarchical encapsulation in
a variety of subnetworks, has been given prominence in the designer’s view. We
hope that prospective users may feel enthused by the elegance and succinctness
of the coordination code and a high degree of customisability that S-Net adds
to existing code.

Future work will proceed in two directions. We will investigate which impact
parallel box code has on performance. An implementation of this application in
a functional, auto-parallelising array-processing language [10, 11] is underway
and will be experimented with on shared- and distributed memory [12] systems.
Secondly, analysis tools will be added to the toolkit to enable the prediction of
statistical characteristics of networks, such as latency, throughput etc., which
should make it possible to use our approach in intricate real-time and resource-
limited settings.

We would like to thank the anonymous reviewers for their constructive com-
ments and suggestions. EU financial support under project Æther, IST-02761
and project Apple-CORE, IST-215216 is acknowledged.
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