
Improving the Precision of Fowler’s Definitions of Bad Smells

Min Zhang, Nathan Baddoo, Paul Wernick
School of Computer Science
University of Hertfordshire

Hatfield, Herts, UK
{M.1.Zhang, N.Baddoo, P.D.Wernick}@herts.ac.uk

Tracy Hall
School of Information Systems, Computing &

Mathematics, Brunel University
Uxbridge, Middlesex, UK
Tracy.Hall@brunel.ac.uk

Abstract—Current approaches to detecting Bad Smells in code
are mainly based on software metrics. We suggest that these
methods lack precision in detecting Bad Smells, and we
propose a code pattern-based approach to detecting Bad
Smells. However before such a pattern-based approach can be
implemented, Fowler’s original definitions of Bad Smells need
to be made more precise. Currently Fowler’s definitions are
too informal to implement in a pattern-searching tool. In this
paper we use an expert panel to evaluate our enhanced
definitions for five of Fowler’s Bad Smells. We use a
questionnaire to survey four experts’ opinions of our Bad
Smell definitions. Our results show that the experts basically
agree with our enhanced definitions of the Message Chains,
Middle Man and Speculative Generality Bad Smells. However,
there are strong disagreements on our definitions of the Data
Clumps and Switch Statements Bad Smells. We present
enhanced definitions on the basis of these expert opinions.

Keywords- Coding tools and technique; programming
environments/construction tools; restructuring; reverse
engineering; reengineering

I. INTRODUCTION
This paper describes how we use an expert panel to

evaluate our pattern-based Bad Smells definitions. Bad
Smells are structures in source code informally identified by
Fowler et al. [1] that can give “indications that there is
trouble [in the code] that can be solved by a refactoring”.
They are widely used for detecting refactoring opportunities
in software [2].

However, manually detecting Bad Smells is a time-
consuming process and strongly depends on developers’
programming experience. As a consequence, recently,
several tools and methodologies have been introduced for
automatically detecting Bad Smells [3-6]. Most of these
methods are metric-based which identify Bad Smells using
different compositions of software metrics. However, Bad
Smells cannot be directly measured by software metrics.
Consequently metric-based methods translate a Bad Smell
into measurable code properties which are thought to be
related to this Bad Smell. However, Moha et al. [7] argue
that these metric-based methods are insufficient to precisely
identify Bad Smells.

Hence, we propose a pattern-based approach to detect
Bad Smells. The aim of our approach is to define Bad Smells
as patterns of source code, so that Bad Smells can be
identified through examining these patterns in source code.
We report the first phase of this work here, where we have

more precisely defined five of Fowler et al.’s [1] Bad Smells:
Data Clumps, Switch Statements, Speculative Generality,
Message Chains, and Middle Man. Our rationale for
choosing these five code smells is explained in [8]. This
paper also reports our use of an expert panel to evaluate how
well our definitions reflect Fowler et al.’s Bad Smells.

The rest of this paper is structured as follows: Section 2
provides an overview of our pattern-based definitions.
Section 3 presents our design of an expert panel for
validating our definitions. Section 4 summarises and
discusses the results of our expert panel. Finally, paper is
concluded and further studies are proposed in Section 5.

II. OVERVIEW OF PATTERN BASED BAD SMELL
DEFINITIONS

A pattern based approach defines Bad Smells as
particular patterns of source code. This is a relatively new
approach to identifying Bad Smells. Previous pattern based
approaches first translate source code file into a meta-model
[9], and then define Bad Smells as particular structures in
this meta-model. One recent study by Tourwe and Mens [10]
describes how to define Bad Smells using a pattern based
approach and detect them using a Logic Meta Programming
language SOUL. They suggest that this is a better approach
to identifying Bad Smells. However, they only demonstrate
this approach for two Bad Smells and do not apply them for
other Bad Smells. We have adopted a similar pattern-based
approach to Tourwe and Mens [10] but have extended their
approach to defining another five of Fowler et al.’s [1] Bad
Smells.

This section presents an overview of our pattern-based
definitions. We first describe our approach to defining
pattern-based Bad Smell. Secondly, our five Bad Smell
definitions are provided.

A. Definition Translating Methodology
Although Fowler et al. [1] describe Bad Smells

informally, they are described in a fairly consistent way.
Fowler et al. [1] first describe a generic symptom for each
Bad Smell. Each symptom is then separated into several sub-
situations. For each sub-situation Fowler et al. propose
several refactoring methods to eliminate that Bad Smell.

In our definitions, we focus on the sub-situations
described by Fowler et al. We translate each sub-situation for
each Bad Smell into particular source code patterns. Each
definition is translated using the following process.

32nd Annual IEEE Software Engineering Workshop

1550-6215/09 $25.00 © 2009 IEEE

DOI 10.1109/SEW.2008.26

161

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

1. Read Fowler et al.’s definition of a Bad Smell.
2. If Fowler et al.’s definition separates the symptom of

this Bad Smell into several sub-situations go to step
3, otherwise go to step 7.

3. Select one sub-situation to translate until all sub-
situations are processed.

4. Read Fowler et al.’s descriptions of a sub-situation,
if the description can be translated into source code
patterns go to step 5, otherwise go to step 3 select
another sub-situation.

5. If Fowler et al.’s descriptions have quantified
parameters to define source code patterns use Fowler
et al.’s parameters. If Fowler et al. do not provide
quantified parameters define new threshold values,
and refine them in implementation.

For example, Fowler et al. defines the same 3
or 4 data items should stay together as Data Clumps.
Hence, we use 3 as the threshold value to identify
this Bad Smell. In contrast, Fowler et al. define
Message Chains as “getThis methods that pass
through many objects” [1], but they did not define a
quantified parameter to describe what “many”
means. Hence, we will set up a threshold value for
this parameter.

6. Get to step 3.
7. Use the Fowler et al.’s generic description as a sub-

situation go to step 3.

B. Pattern-Based Definitions
We have translated five Bad Smell definitions into our

pattern-based definitions. These definitions are provided in
Tables 1 to 5.

TABLE 1: TRANSLATION OF DATA CLUMPS DEFINITION

Fowler et al.’s
definition

Data items hang around in groups. Often you will see
the same three or four data items together in lots of
places: fields in a couple of classes, parameters in many
method signatures. [1]

Pattern-based
definition

An instance of Data Clumps Bad Smell is characterised
by one of the following two situations.
Situation 1:

1. More than three data fields stay together in
more than one class.

2. These data fields should have same
signatures (same names, same data types,
and same access modifiers).

3. These data fields may not group together in
the same order.

Situation 2:

1. More than three input parameters stay
together in more than one methods’
declaration.

2. These parameters should have same
signatures (same names, same data types).

3. These parameters may not group together in
the same order.

TABLE 2: TRANSLATION OF MESSAGE CHAINS DEFINITION

Fowler et al.’s
definition

You see message chains when a client asks one object
for another object, which the client then asks for yet
another object, which the client then asks for yet another
another object, and so on. You may see these as a long
line of getThis methods, or as a sequence of temps. [1]

Pattern-based
definition

An instance of the Message Chains Bad Smell is in one
of the following situations:
Situation 1:

1. In order to access a data field in another
class, a statement needs to call more than a
threshold value of getter methods in a
sequence. (E.g. int a=b.getC().getD();)

2. This method call statement and the
declarations of getter methods are in different
classes.

Situation 2:

1. A statement calls more than a threshold value
of temp methods in a sequence. A temp
method is a method that contains at least one
method call to another temp method in
another class, and this method’s size is not
larger than a threshold value of LOC.

2. This method call statement and the
declarations of temp methods are in different
classes.

TABLE 3: TRANSLATION OF MIDDLE MAN DEFINITION

Fowler et
al.’s

definition

You look at a class’s interface and find half the methods
are delegating to this other class. [1]

Pattern-based
definition

An instance of the Middle Man Bad Smell meets the
following criteria:

1. Half of a class’s methods are delegation
methods.

2. A delegation method is a method that:
a. Contains at least one reference to

another Class.
b. Contains less than a threshold

value of LOC.

TABLE 4: TRANSLATION OF SPECULATIVE GENERALITY DEFINITION

Fowler et al.’s
definition

If the machinery was being used, it would be worth it.
But if it isn’t, it isn’t. The machinery just gets in the
way, so get rid of it. This kind of machinery includes:
abstract classes that aren’t doing much, methods with
unused parameters, methods named with odd abstract
names. [1]

Pattern-based
definition

An instance of Speculative Generality Bad Smell exists
if one of the following situations occurs:
Situation 1:

1. A class is an abstract class or interface.
2. This class has not been inherited or is only

inherited by one class.

Situation 2:

1. A class contains at least one method which
contains at least one parameter which is
unused.

162

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

TABLE 5: TRANSLATION OF SWITCH STATEMENTS DEFINITION

Fowler et al.’s
definition

The problem with switch statement is essentially that
of duplication. Often you find the same switch
statement scattered about a program in different
places. If you add a new clause to the switch, you
have to find all these switch, statements and change
them. So most times you see a switch statement you
should consider polymorphism. [1]

Pattern-based
definition

An instance of the Switch Statement Bad Smell
meets the following criteria:

1. The code contains an instance of the
switch key word.

2. A switch has more than two branches
(including default statement).

3. Each branch has more than a threshold
value of LOC (line of code).

III. METHODOLOGY
These pattern-based definitions are mainly based on our

own interpretation of Fowler et al.’s [1] definitions of Bad
Smells. To evaluate the effectiveness of these pattern-based
definitions, we conducted an expert panel based study.

Expert panels are widely used in evaluating software
engineering methodologies e.g. [11] as, expert opinions are
an important source of information for software engineering
research [12]. More particularly, Cushman and Rosenberg
[13] suggest that expert opinions can provide insights that
are not captured by metric-based data alone.

This section describes our methodology for conducting
an expert panel.

A. Sampling Strategy
The aim of our expert panel is to capture expert opinions

on our pattern-based Bad Smell definitions so that we can
refine them. We need experienced Object-Oriented
programming experts to take part in our panel in order to
provide useful opinions. Hence, a purposive sampling
strategy is adopted in this study. The purposive sampling
strategy depends on the researcher’s judgment to select the
best fitted samples to the research [14].

Two kinds of people are involved in our expert panel:
academic researchers on Object-Oriented programming and
software engineers from software industry. We selected
academic researchers because we think that they can
theoretically examine our definitions. We selected software
engineers because they can evaluate whether these
definitions are likely to be useful in real world software
development. In order to deeply analyse all comments from
our candidates, only a small size sample is used: four experts
are selected in our expert panel, two researchers and two
software engineers.

B. Data Capturing Methods
We use a questionnaire to capture expert opinions. Our

questionnaire is separated into two sections. The first part
captures the profile of experts. In this part all questions are

closed questions. The second part captures experts’ opinions
of our definitions. In this part, we first present each of our
definitions of Bad Smells along with Fowler et al.’s [1]
definition, and then several questions are asked. These
questions contain both closed questions and open-ended
questions. The closed questions capture whether the experts
agree on our definition. If they do not agree, the closed
questions also capture which parts of the definitions they do
not agree with. The open-ended questions elicit experts’
overall comments on our definitions. This questionnaire has
been validated by a pilot study of an experienced Object-
Oriented programming expert. The questionnaire has been
enhanced by suggestions from this expert.

We use two strategies to deliver our questionnaires. The
questionnaires to academic researchers were delivered using
a structured interview [14]. We met the experts and asked
them the questions in our questionnaire script face-to-face.
Adopting this strategy can ensure all questions are answered
by experts, and their comments are fully captured. However,
because the software developers were busy with their
software projects, they could not take part in our interviews.
Hence, their questionnaires were delivered on-line [14].
Their questionnaires were emailed and returned
electronically.

IV. RESULTS AND DISCUSSION

A. Demographic
Four experts participated in our expert panel. Their

demographic profile is presented in Table 6 which shows
that all experts have good knowledge of OO programming.
Each of the two academic researchers has more than 20 years
experience of teaching and research on OO programming.
Each of the two software developers has 5 to 10 years
experience of software development using OO languages.
They all have a strong knowledge background to provide
valuable evaluations.

TABLE 6: DEMOGRAPHIC OF EXPERTS

Expert Roles Year of
Experiences

Knowledge of OO
programming1

1A Academic 21+ Excellent
2A Academic 21+ Good
3D Developer 5~10 Excellent
4D Developer 5~10 Excellent

B. Overall Results
Each expert was asked for their opinions of our

definitions for each of the Bad Smells in the questionnaire.
The results are summarised in Table 7.

1 Each expert was asked to select one of the following five answers to

indicate their knowledge of OO programming: Excellent, Good,
Reasonable, Poor, and Don’t know.

163

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

TABLE 7: OVERALL RESULTS OF THE EXPERT PANEL

Bad Smell
Definitions

Expert 1A Expert 2A Expert 3D Expert 4D

Data Clumps Partially
Agree

Partially
Agree

Partially
Agree

Agree

Message
Chains

Partially
Agree

Partially
Agree

Agree Agree

Middle Man Agree Agree Agree Agree
Speculative
Generality

Disagree Agree Agree Agree

Switch
Statements

Partially
Agree

Disagree Don’t
know

Don’t
know

Our results show that the software developers have

stronger agreement of our definitions of Bad Smells than the
academic researchers. We also found that academic
researchers often refer to how students write code when
describing their disagreements. Therefore, we think that this
difference between researchers and developers may be
caused by the different domains in which they are involved.
The academic researchers normally face source code written
by students. The quality of this source code is not always as
good as that developed by professional developers.
Consequently, academic researchers are likely to have more
experience with Bad Smells than professional developers.

Moreover, our results also show that all experts agree on
our definition of the Middle Man Bad Smell. We think that it
may be because the Middle Man Bad Smell is defined
relatively formally by Fowler et al. [1] so that our translation
of this definition is straightforward. The main disagreements
are in definitions of the Switch Statements, and the Data
Clumps Bad Smells. Relatively, fewer disagreements exist in
the Message Chains and Speculative Generality Bad Smells

C. Reasons for Disagreement
In our expert panel, experts were asked to provide their

reasons if they disagree or partially agree on any of our
definitions. Their reasons for disagreement are discussed in
this section.

1) Data Clumps: There are strong disagreements in our
definition of the Data Clumps Bad Smell. Three out of four
experts only partially agree on our definition of this Bad
Smell.

Expert 2A and Expert 3D do not agree with Situation 1 of
our definition of the Data Clumps Bad Smell (See Table 1).
Both suggest that not only the data fields with same
signatures (same name, same data type, same access
modifier), but also data fields with similar signatures (similar
name, same data type, same access modifier) should be
treated as Data Clumps, if they exist in more than one class.
However, although we agree with this suggestion, our
definitions are intended to be implemented into an automatic
tool. To identify similar signatures is a subjective decision,
which is hard to implement in code. Consequently, we are
not going to include this suggestion in our Data Clumps Bad
Smell definition.

Expert 1A argues with our definition of Situation 2 of the
Data Clumps Bad Smell. Expert 1A suggests that in
Situation 2 we should exclude methods inherited from
parent-classes. This expert’s reason is that the inheritance
features of OO programming allow a method from sub-
classes using the same signature to override a method from
parent-classes. In this situation, we should not count the
same parameters in these methods as a Data Clump, because
they are not duplication. We agree with this suggestion so an
additional criterion is added to our definition as in Table
1(ii).

TABLE 1(II): REFINED DATA CLUMPS DEFINTION

An instance of Data Clumps Bad Smell is characterised by one of the
following two situations.
Situation 1:

1. More than three data fields stay together in more than one class.
2. These data fields should have same signatures (same names, same

data types, and same access modifiers).
3. These data fields may not group together in the same order.

Situation 2:

1. More than three input parameters stay together in more than one
methods’ declaration.

2. These parameters should have same signature (same names, same
data types).

3. These parameters may not group together in the same order.
4. These methods should not in a same inheritance hierarchy and

with a same method signature.

2) Message Chains: Expert 1A and Expert 2A partially

agree with our definition of the Message Chains Bad Smell.
They both think our definition of “temps” in Situation 2 of
this definition (See Table 2) is wrong. Expert 2A argues that
defining “temps” as temp method may not indicate
problems of code and it is not a good interpretation of
Fowler et al.’s [1] idea, but Expert 2A cannot provide a
better definition of this. Expert 1A indicates that the
Message Chains Bad Smell should refer to a class A in
order to access the data parts of a class B has to through
sequence of other classes. This is a problem with data
transmission. Hence, in defining the Message Chains Bad
Smell we should consider only the source code statements
related to accessing data. Because, a getThis method often
refers to a method designed to access the data part of a class,
so “temps” should refer temporary data variable which
access the data part of other classes.

We think that the disagreements here are caused by
Fowler et al.’s [1] ambiguous description of “temps”.
However, we agree with the comment from Expert 1A which
better interprets Fowler et al.’s idea. Hence, our definition of
the Message Chain is changed as follows.

164

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

TABLE 2(II): REFINED MESSAGE CHAINS DEFINTION

An instance of the Message Chains Bad Smell is in one of the following
situations:
Situation 1:

1. In order to access a data field in another class, a statement needs to
call more than a threshold value of getter methods in a sequence.
(E.g. int a=b.getC().getD();)

2. This method call statement and the declarations of getter methods
are in different classes.

Situation 2:

1. A method has more than a threshold number of temp variable.
2. A temp variable is that a variable only access data members (data

fields/getter methods) of the other classes or other temp variables.

3) Speculative Generality: Expert 1A disagrees with our

definition of the Speculative Generality Bad Smell (See
Table 3). This expert indicates two reasons. Firstly, Expert
1A thinks that when a software project is still in the
development phase, especially a project developed in
parallel by two or more development teams, developers
often intend to design an interface first and implement it
later, so that other developers can use this interface to
develop their parts of the program and do not need to wait
until this interface has been fully implemented.
Consequently, Situation 1 of our Speculative Generality
definition is normal and should not cause problems in code.
Secondly, Expert 1A argues that in Situation 2 of our
definition, we should exclude the inheritance and overriding
situation. Sometimes in order to reduce code duplication,
similar methods in sub-classes are extracted to a parent-
class. In this case, in order to provide a generalized
interface, some parameters may not be used by some sub-
classes.

We do not agree with the comments regarding projects
still in development. We think that our definitions of Bad
Smells are designed to examine the problems in stable
software applications so that projects still in development
should not be a driving concern. For the comment regarding
inheritance, we agree that sometimes in the inheritance
situation un-used parameters are reasonable, but we think
that this situation should also be identified and developers
should decide whether to apply refactoring. Such a situation
is discussed by Fowler et al. [1] when they introduce the
Remove Parameters refactoring. They indicate that in some
situations putting parameters which may not be used by sub-
classes in a parent-class is necessary. However, they also
indicate that in many situations these parameters can be
refactored using Extract Method. Consequently, we think
this situation should be identified, because it can be an alarm
to developers and let them consider further refactoring.

4) Switch Statements: None of the experts agree with

our definition of the Switch Statement Bad Smell. Two
experts, Expert 3D and Expert 4D, respond with “don’t
know”. Their reasons are that switch statements cannot be
simply treated as bad structures in code. Sometimes, the

switch statements have to be used, for example, to handle
keyboard inputs when using switch statements is the best
solution. Expert 2A disagrees with our definition of switch
statement giving a similar reason as the other two experts.
This expert argues that switch statements may not cause
problems in code, and suggests that only similar switch
statements existing in code should indicate problems. Expert
1A partially agrees with on our definition. This expert’s
comment is we should also treat the if-else statements as
switch statements, especially the if-else statements whose
condition expression use the instanceof key word to check
the sub-type of a data type. This expert indicates these if-
else statements can be refactored using polymorphism.

We agree that switch statements may not cause problems
in code. However, we think that Fowler et al. [1] propose the
Switch Statements Bad Smell not because they think switch
statements directly lead to problems in code. The real
problem is that switch statements often create duplication in
code which results in source code that is hard to maintain,
and polymorphism is an OO programming mechanism
designed to replace switch statements in code, so we should
consider a polymorphism solution when we find switch
statement existing in source code. We think that a switch
statement is more prone to duplicated code, if it has many
branches, and the code size of each branch is large.
Consequently, we are not going to modify our original
definition of the Switch Statements Bad Smell. However, we
also think that the last expert’s suggestion is reasonable; the
switch statement should not only include statements starting
with switch key words, but also the if-else statements. Hence,
one more situation is added to our new definition of the
Switch Statements Bad Smell.

TABLE 5(II): REFINED SWITCH STATEMENTS DEFINTION

An instance of the Switch Statements Bad Smell is in one of the following
situations:
Situation 1:

1. The code contains an instance of the switch key word.
2. A switch has more than two branches (including default

statement).
3. Each branch has more than a threshold value of LOC (line of

code).

Situation 2:

1. The code contains an instance of if-else key word.
2. This if-else block has more than two branches.
3. The logic expressions in the if-else statements are type checking

expressions using instanceof key words.

V. CONCLUSION AND FUTURE STUDIES
This paper presents how we use an expert panel to

evaluate our pattern-based definitions of five Bad Smells.
The overall results show that experts basically agree with our
definitions on the Message Chains, Middle Man and
Speculative Generality Bad Smells. However, there are
strong disagreements on our definitions of the Data Clumps
and Switch Statements Bad Smells. Our definitions are
enhanced considering these expert opinions. These pattern-

165

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

based Bad Smell definitions can facilitate easier automatic
detection of Bad Smells and reduce current reliance on
metric-based definitions. We are now implementing these
pattern-based definitions into an automatic Bad Smell
detecting tool. In the future, we will apply this tool to further
studies on Bad Smells. In particular, we are going to
investigate how Bad Smells relate to faults in a large scale
open source project.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, Refactoring: Improving the Design of Existing
Code: Addison Wesley, 1999.

[2] T. Mens and T. Tourwe, "A survey of software
refactoring," Software Engineering, IEEE Transactions
on, vol. 30, pp. 126-139, 2004.

[3] F. Simon, F. Steinbruckner, and C. Lewerentz, "Metrics
based refactoring," presented at Software Maintenance
and Reengineering, 2001. Fifth European Conference
on, 2001.

[4] R. Marinescu, "Detection strategies: metrics-based rules
for detecting design flaws," presented at Software
Maintenance, 2004. Proceedings. 20th IEEE
International Conference on, 2004.

[5] M. J. Munro, "Product Metrics for Automatic
Identification of "Bad Smell" Design Problems in Java
Source-Code," presented at Software Metrics, 2005.
11th IEEE International Symposium 2005.

[6] W. Li and R. Shatnawi, "An empirical study of the bad
smells and class error probability in the post-release

object-oriented system evolution," Journal of Systems
and Software, vol. 80, pp. 1120-1128, 2007.

[7] N. Moha, Y.-G. Gueheneuc, and P. Leduc, "Automatic
Generation of Detection Algorithms for Design
Defects," presented at Automated Software
Engineering, 2006. ASE '06. 21st IEEE/ACM
International Conference on, 2006.

[8] M. Zhang, T. Hall, N. Baddoo, and P. Wernick, "Do
Bad Smells Indicate "Trouble" in Code?," presented at
International Workshop on Defects in Large Software
Systems (DEFECTS 2008), Seattle, WA, USA, 2008.

[9] D. Strein, R. Lincke, J. Lundberg, and W. Lowe, "An
Extensible Meta-Model for Program Analysis,"
Software Engineering, IEEE Transactions on, vol. 33,
pp. 592-607, 2007.

[10] T. Tourwe and T. Mens, "Identifying refactoring
opportunities using logic meta programming,"
presented at Software Maintenance and Reengineering,
2003. Proceedings. Seventh European Conference on,
2003.

[11] S. Beecham, T. Hall, C. Britton, M. Cottee, and A.
Rainer, "Validating a Requirements Process
Improvement Model, Technical Report 373,"
University of Hertfordshire. 373, 2003.

[12] S. L. Pfleeger, "What software engineering can learn
from soccer," Software, IEEE, vol. 19, pp. 64-65, 2002.

[13] W. H. Cushman and D. J. Rosenberg, Human factors in
product design. Amsterdam: Elsevier, 1991.

[14] M. N. K. Saunders, P. Lewis, and A. Thornhill,
Research methods for business students, 3rd ed.
Harlow: Financial Times Prentice Hall, 2003.

166

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 26,2010 at 10:11:21 UTC from IEEE Xplore. Restrictions apply.

