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Abstract 

Power laws are increasingly used to describe animal movement. Despite this, 

the use of power laws has been criticised on both empirical and theoretical grounds, 

and alternative models based on extensions of conventional random walk theory 

(Brownian motion) have been suggested. In this paper, we analyse a large volume of 

data of aphid walking behaviour (65068 data points), which provides a highly 

resolved data set to investigate the pattern of movement. We show that aphid 

movement is intermittent – with alternations of a slow movement with frequent 

change of direction and a fast, relatively directed movement – and that the fast 

movement consists of two phases – a strongly directed phase which gradually changes 

into an uncorrelated random walk. By measuring the mean squared displacement and 

the duration of non-stop movement episodes we found that both spatial and temporal 

aspects of aphid movement are best described using a truncated power law approach. 

We suggest that the observed spatial pattern arises from the duration of non-stop 

movement phases rather than from correlations in turning angles.  We discuss the 

implications of these findings for interpreting movement data, such as distinguishing 

between movement and non-movement, and the effect of the range of data used in the 

analysis on the conclusions. 

 

Keywords: intermittency; Lévy walk; power law; scale-free distribution; super-

diffusion  
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1. INTRODUCTION 

Power laws arise from processes in which the variable measured has no 

characteristic scale – i.e. both short and long values occur, with no scale being 

dominant (most frequent). An important consequence of the scale-free properties is 

that animals with this type of movement can be super diffusive which means that the 

displacement from the starting point increases faster than predicted by a simple 

(uncorrelated) random walk approach (Klafter & Sokolov 2005). In relation to 

movement, two terms related to power laws are used – a Lévy flight and a Lévy walk. 

Both types approximate non-diffusive movement in which the step lengths l come 

from a power-law distribution  with μ−∝ llP )( 31 << μ   (Shlesinger et al. 1993). 

For such values of μ the sum of step lengths (the displacement after n steps) is 

dominated by rare large values and for a large number of steps, the average step 

length tends to infinity. While in a Lévy flight step length is the main concept, in a 

Lévy walk time to complete a step is taken into account. A longer step normally 

requires a more time to take than a short step. Hence, in Lévy walks, in spite of the 

average step length being infinite, the average displacement R after time t is finite and 

defined as  where the values of γ = 1/2 corresponds to a simple diffusion 

and γ = 1 corresponds to ballistic motion (movement in a straight line) (Shlesinger et 

al. 1993).  

γttR ∝)(

Power laws with exponent values indicative of Lévy patterns have been found 

in the distribution of flight times (the duration of non-stop movement) of albatrosses, 

bumble-bees and deer (Viswanathan et al. 1996, 1999, but see Edwards et al. 2007), 

and in microzooplankton (Bartumeus et al. 2003); in the duration of the inactive phase 

in Drosophila (Cole 1995; Martin 2004) and spider monkeys (Ramos-Fernandes et al. 
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2004) and  in the distributions of  move-step-lengths (the distance travelled between 

consecutive time intervals) in grey seals (Austin et al. 2004, but see Sims et al. 2007 

and Edwards 2008) and other marine predators (Sims et al. 2008). Other examples can 

be found in Edwards et al. 2007 and Sims et al. 2008. Even human hunter gatherers 

(Brown et al. 2007) and the distance travelled by bank notes (Brockman et al. 2006) 

show power law behaviour. 

However, the use of Lévy walks to describe animal movement patterns is not 

generally accepted. For instance, only 30% of grey seals’ movement fits Lévy 

statistics (Austin et al. 2004), and the movement pattern of reindeer changes with the 

season (Mårell et al. 2002). Edwards et al. (2007) showed that other models were 

better suited to describe some of the movement patterns previously classified as Lévy 

walks. Gonzalez et al. (2008) showed that, unlike the movement of bank notes, which 

follows a power law (Brockmann et al. 2006), movement of individuals can only be 

approximated as a Lévy walk within a certain region (home range), but not on a 

global scale.  

Patterns qualitatively similar to power laws within a certain time range can also 

be obtained by modifying simple random walk models. Turchin (1996) argued that 

such patterns could often be described by a correlated random walk (a random walk in 

which the direction of the move depends on the direction of the previous move), and 

Benhamou (2007) suggested using a combination of simple random walks to generate 

power law like distributions (but see Reynolds 2008). Some other alternatives include 

introduction of waiting times and combining simple diffusion with directed (ballistic) 

movement (Turchin 1998, Codling et al. 2008).  

Intermittent movement behaviour, in which episodes of high activity are 

interspersed with episodes of inactivity, became a recent addition to the list of how 
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power laws can arise. Intermittent movement is widely observed in animals (Kramer 

& McLaughlin 2001). Cole (1995) was the first to find power law in the duration of 

the inactive phase in Drosophila. . Benichou et al. (2005) showed that move durations 

and pause durations reported by (Kramer & McLaughlin 2001) had a power law 

relationship. While theoretical studies have shown that intermittent behaviour is an 

efficient searching strategy on its own (Benichou et al. 2005, 2006) or in combination 

with the power law relocation phase (Lomholt et al. 2008), detailed experimental 

studies on intermittency are scarce (but see Martin 2004 and Reynolds & Frye 2007).  

The debate in the recent literature about whether or not animal movement is best 

described as a Lévy walk can be partly explained by difficulties in fitting power laws. 

Sims et al. 2007 and White et al. 2008 have shown that different methods of fitting 

give different values for the exponent which affects the final conclusion. The 

reliability of the analysis can be increased by increasing the amount of data available. 

Collecting animal movement data, through tagging animals and following them, is 

time consuming and costly. For this reason there is ambiguity about the nature of the 

distributions of the step lengths or moving times, in particular in the tail of the 

distributions where observations are infrequent, and where it is difficult to get 

sufficient resolution. Recent advances in video-tracking techniques have simplified 

obtaining detailed movement data (Martin 2004, Reynolds & Frye 2007, Oliver et al. 

2007), thus, providing an opportunity to identify the exact form of the distribution.  

One of the peculiar and distinctive properties of a power law distribution is that 

long moves are expected to be more frequent than with a Gaussian or an exponential 

distribution which are used in simple random walks. Evidently, for any animal the 

duration of moves or the distance moved in one ‘step’ is limited due to physical 

constraints. This suggests that the power law characteristics only hold true in a limited 
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range, and that a truncated power law should provide a more generic description 

(Newman 2005, Clauset et al. 2007). This limitation has been taken into account in 

some theoretical studies (Viswanathan et al. 1999), but typically an asymptotic 

(unlimited) power law has been considered in empirical studies of animal movement.  

The truncated power law can also be identified by measuring the Mean Squared 

Displacement (MSD). In diffusive processes the MSD grows linearly with time (a 

power function with exponent one) while in a power law process it grows over-

linearly (exponent between one and two, with the value of two corresponding to 

movement in a straight line) (Bartumeus et al. 2005). If a super diffusive behaviour 

develops into a diffusive behaviour the exponent of the MSD decreases to 1 with the 

transition time being proportional to the maximum step length (Barthelemy et al. 

2008). Qualitatively, this pattern is similar to a correlated random walk (random walk 

in which a direction of the move depends on the direction of the previous step) 

(Codling et al. 2008). Another way to detect long-range correlations in the movement 

is to measure the root mean square fluctuations of the displacement 

( ) 22 )()()( tytytF Δ−Δ=  where )()()( 00 tyttyty −+=Δ  (e.g. 

Viswanathan et al. 1996). In uncorrelated processes  with α = ½ while 

other values of α indicate the presence of long-range correlations with no 

characteristic scale (Viswanathan et al. 1996, Atkinson et al. 2002). 

αttF ∝)(

In this study, we have generated and analysed a data set obtained through video 

tracking the walking behaviour of black bean aphids Aphis fabae Scopoli (Hemiptera: 

Aphididae). Aphis fabae is a major pest on beans and sugar beet which can spread fast 

at an epidemic scale (Williams et al. 1999 and references therein), suggesting possible 

super-diffusive movement. The spread of aphid pests involves some flying dispersal 

by winged individuals (alates), but a significant proportion of local movement is 
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achieved by non-winged individuals (apterae), which move across the ground 

between plants (Hodgson 1991; Furuta & Aloo 1994). 

On a practical side, aphids are small and easy to rear, and their movements 

cover a relatively small area. This allowed us to obtain a large collection of highly 

time resolved data. Moreover, we found that aphid walking behaviour has intermittent 

characteristics allowing us to distinguish movement from non-movement, which 

facilitated the analysis. We will show that the truncated power law is indeed a more 

universal model for the description of the walking behaviour of the black bean aphid 

in space and time, and discuss the implications of these findings. 

 

2. MATERIAL AND METHODS 

(a) Experimental data 

Black bean aphids, Aphis fabae Scopoli, were collected from Silwood Park, UK 

and kept in culture for two years. Aphids were taken from plants (Vicia faba L.), 

placed on clean filter paper in 9 cm (diameter) Petri dishes 10 or 20 aphids per dish 

(12 replica each), left for 10-20 min to settle and then video recorded for 5 min with 

frames taken at 0.5 s time interval (see Oliver et al. 2007 for the  details of the setup 

and software used). 360 aphids were used in this study.  

(b) Data analysis 

Movement paths of aphid movement were calculated using automatic single 

particle tracking module from the free image analysis package GMimPro 

(www.nimr.mrc.ac.uk/GMimPro). We used measurements taken at 1 s intervals for 

further analysis (65068 data points) because it reduced the number of data points by a 

factor two while  still capturing all relevant features of aphid movement which we 

http://www.nimr.mrc.ac.uk/GMimPro
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discuss in this paper. A sample video illustrating aphid movement and tracking 

procedure can be found in the electronic supplementary material (S1). 

Mean squared displacement (MSD) was calculated by averaging squared 

distances between the points separated by increasing time interval t starting with the 

first point and moving along the path using all possible pairs (using non-overlapping 

pairs gives very similar result, all possible pairs method was chosen solely for 

presentational purpose since it smoothes the line). The term MSD is used as 

equivalent to squared net displacement (e.g. Turchin 1998).  

Aphid paths consisted of alternating intervals of high and low speed (figure 1). 

Visual inspection readily reveals that high speed was correlated with directed 

movement (the corresponding turning angles close to 0) while at low speed the 

distribution of the turning angles was much broader and became uniform for the speed 

values inferior to approximately 0.3 mm/s (figure 2). This observation shows that we 

can classify the movement as either slow and undirected, or fast and directed. This 

motivated the use of a speed of 0.3 mm/s as a threshold separating movement (in a 

sense of ‘dislocation’ as opposed to turning on a spot, swinging etc.) from non-

movement.  Different threshold levels did not qualitatively affect the results (table S2 

in the electronic supplementary material). Note, that the chosen value was much 

higher than the noise of the system (the noise level was measured by recording dead 

aphids and there were no speed values higher than 0.05 mm/s) and corresponded to 

approximately ½ pixel (for comparison – an average size of aphids was 1-1.5 mm). A 

high temporal resolution of the data is essential to observe such dichotomy in turning 

angles – e.g. it completely disappeared when we reconstructed figure 2 using 

measurements taken at 4s intervals. 
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In principle, a correlation between turning angle and speed can arise as an 

artefact of discrete sampling: if an animal moves at a fixed rate and is sampled at 

discrete intervals the distance covered between samples will be negatively correlated 

with the curvature of the path (Codling & Hill 2005, Bovet & Benhamou 1988). 

Analysis of artificial tracks with a fixed speed revealed that the pattern in figure 2 

cannot be generated by such artefacts under the sampling rate used in this study 

(figure S3 in the electronic supplementary material).  

By applying this threshold we separated paths into subsequent bouts of 

movement so that a bout started when the speed was ≥0.3 mm/s and ended when the 

speed was <0.3 mm/s. For example, the path shown in (figure 1a) is interpreted as 

three long bouts in the middle of the path and a few shorter ones at the beginning and 

the end of the path. The distribution of the bouts’ duration was used for model fitting 

(as in Viswanathan et al. (1996) and Edwards et al. (2007)). We chose the duration of 

the bouts, rather than displacement between start and end points, since aphids were 

restricted to Petri dishes. We pooled the bout durations of aphid records from dishes 

with 10 and 20 aphids per dish since we did not detect any significant difference 

between the two (χ2 = 89.1, P = 0.28, d.f. = 84). 

(c) Model fitting 

Three models were fitted to the distribution of the bout durations – a power law 

(expected for Levy flight), an exponential distribution (expected if change from 

movement to non-movement was a random Poisson process) and a truncated power 

law. For the truncated power law we chose an exponential decay for the longest bouts 

as reported by Edwards et al. (2007). In this way our truncated power law model 

captures the transition from super diffusive to diffusive process. We fitted the models 

using a maximum likelihood method (e.g. Hilborn and Mangel 1997) which has been 
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advocated as the most accurate for fitting the power law models by White et al. 

(2008).  

Log-likelihood functions were derived for the range starting with xmin and going 

to infinity (assuming that values higher than the recorded ones were possible). We did 

not consider an upper cut-off because 1) the longest bouts lasted less than a half of the 

record duration, and 2) the duration of bouts was not affected by the size of Petri 

dishes: there were examples of aphids keeping moving along the boundaries. Since 

the data were binned with 1 s bin width, the continuous distributions were converted 

to the discrete ones so that the value for the bin j was obtained by integrating over j-

0.5 to j+0.5. The details of the derivation of the log-likelihood functions are given in 

the Appendix. 

The log-likelihood function for the power law model s μ−= Cxxf )(  i

l(μ|data) = ⎥
⎦

⎤
⎢
⎣

⎡ +−−
−

−−

=
∑ μ

μμ

1
min

11

1

)5.0()5.0(log
max

x
jjd

x

j
j  (1) 

where μ >1 (required for the power law to converge) is the parameter of the power 

law distribution, dj is the number of data points of value j, xmin is the smallest value of 

x used for fitting and xmax is the largest bin. The best value of μ is the one that 

maximises the log-likelihood function. 

For the exponential distribution  with the parameter λ the log-

likelihood function is 

xCexf λ−=)(

l(λ|data) = ⎥
⎦

⎤
⎢
⎣

⎡ −
−

+−−−

=
∑ min

max )5.0()5.0(

1

log x

jjx

j
j e

eed λ

λλ

 (2) 

and for the truncated power law  with parameters μ and λ xeCxxf λμ −−=)(

l(μ,λ|data) = 
),1(

))5.0(,1())5.0(,1(log
min1

max

x
jjd

x

j
j λμ

λμλμ
−Γ

+−Γ−−−Γ∑
=

 (3) 
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where ),1( jλμ−Γ  is the incomplete gamma function. 

The performance of the models was compared using Akaike weights (Burnham 

& Anderson 2002) 

∑ Δ−

Δ−

=

J

i j

i

e
ew 2/

2/

 

where J is the number of models compared and ΔI=AICi-AICmin is calculated using the 

Akaike Information Criterion AICi=-2li+2Ki with li being the maximum log-

likelihood and Ki being the number of parameters in the model i. The best model has 

the smallest AIC (AICmin) and contributes most to the denominator; as a result its 

weight is close to 1. 

The 95% confidence intervals were calculated using the profile likelihood-ratio 

test (Hilborn & Mangel 1997; Edwards et al. 2007). All calculations were made using 

Mathematica 5.2. 

 

3. RESULTS 

We found that the movement of aphids was intermittent – fast movement 

alternated with slow movement phases (figure 1). This pattern suggests that 

movement and non-movement can be distinguished by applying some threshold 

value. Until recently this threshold was dictated by the technical restrictions such as 

the frequency at which it is feasible to record the data (Cole 1995; Atkinson et 

al.2002; Viswanathan et al. 1996) or GPS accuracy (Austin et al. 2004). Modern 

video recording techniques allow us to collect data at a very high resolution and the 

threshold has to be defined intentionally. For example, Martin (2004), who studied 

Drosophila movement from video records, chose the threshold by trying a range of 

values. Kane et al. 2004 defined a fish as moving if the fish moved approximately 
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half of its length per second. Arbitrary choice of the threshold value inevitably 

introduces an element of subjectivity in the analysis. We found that speed was not the 

only parameter indicating whether an animal was moving. Changes of direction 

occurred much more often at small speed than at high speed (figure 2). This allows us 

to introduce a natural dichotomy between movement and non-movement, based on the 

characteristics of the movement behaviour.  

We measured two characteristics of movement – the mean squared 

displacement (MSD) and the distribution of bout durations. We measured MSD 

(equivalent to net squared displacement) because it is a convenient parameter to 

quantify dispersal (Turchin 1998, Kareiva & Shigesada 1983) and is not affected by 

any assumptions (e.g. distinguishing between movement and movement). In simple 

diffusion, MSD depends linearly (power function with the exponent value of 1) on the 

time intervals at which it is measured. In case of long-distance correlations which are 

characterised by power laws, the MSD grows faster, and the exponent value can be 

estimated as a slope of the MSD on a double-log scale (e.g. Ramos-Fernandes et al. 

2004). In black bean aphids a power law relationship between MSD and time was 

found for the time intervals up to about 20 s which is indicated by a straight line when 

plotted on the double-log scales (figure 3a). The exponent value is close to 2 meaning 

that movement in this time interval is nearly directed. For longer intervals the power 

law is truncated - the line curves. We also measured the root mean square fluctuation 

of the displacement (RMSFD) which is often used as an indicator of long-range 

correlations with no characteristic scale (Viswanathan et al. 1996, Atkinson et al. 

2002, Reynolds et al. 2007). RMSFD shows the same pattern with the exponent value 

of 0.95 for the first 20 s and of 0.59 (which is close to 0.5 value indicative of 
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uncorrelated random walk) for 20 to 60 s (figure 3b). For larger time intervals the 

power law is not a good fit which might be related to the size of the Petri dish. 

Further, we analysed the distribution of bout durations to see whether a 

truncated power law in displacement is accompanied by a similar temporal pattern. 

Figure 4a shows a linear part of the distribution plotted on the double-log scale 

suggesting a power law distribution. However, for long moves the distribution departs 

from a power law which becomes even more evident if the short moves are excluded 

from the analysis (figure 4b, c). This change is captured by a truncated power law 

model which is favoured overwhelmingly over both power law and exponential 

models for the cases when short moves (up to 10 s) were included in the analysis 

(table 1). When only the moves lasting 10 s or more were included, the truncated 

power law reduced to the exponential (the exponent μ was close to 0). Both models 

had a similar maximum log-likelihood, but the exponential was slightly favoured 

because it had less parameters.  

To test whether the change of walking behaviour from directed movement for 

the time interval up to 20 s to movement similar to an uncorrelated random walk for 

the intervals between 20 and 60 s were affected by boundaries, we compared 

distribution of duration of the bouts lasting between 20 and 60 s (278 bouts) with the 

duration of the bouts within the same time interval from four records of walking 

aphids (from the same stock) moving in 25x25 cm dish, 10 aphids per dish (23 bouts 

in total). We found no significant difference in these two distributions (χ2 = 34.7, P = 

0.53, d.f. = 36) although the area of the large dish was about 10 times bigger than the 

area of 9 cm Petri dishes. 

We have thus found truncated power law behaviour in both space (MSD) and 

time (distribution of bout durations). In both cases strong correlations were found 
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within 20 s interval. This was also supported by RMSFD results, for which the 

correlation weakened for large time intervals. This pattern can suggest that the 

truncated power law in MSD in aphids is driven by a truncated power law in 

movement duration. When aphids start to move, they tend to walk at least 20 s after 

which they continue to  move for an approximately exponentially distributed time 

interval.  

Given that approximate speed of aphids in this experiment was about 0.5 mm/s 

(Oliver et al. 2007) aphids would have travelled about 1 cm during this time interval. 

This distance is very small compared to the size of a bean leaf, but could an optimal 

distance if searching for a different feeding place within the leaf. 

Interestingly, the estimated exponent of the power law for all three cases was 

close to 2, which has been suggested as an optimal value when searching for 

renewable sparsely distributed targets (Viswanathan et al. 1999).  For the truncated 

power law, the exponent decreased (and even fell below 1) when the short moves 

were excluded. Note that the requirement for the exponent of a power law distribution 

to be more than 1 comes from the fact that for the lower values the distribution does 

not converge. However, for the truncated power law this restriction is lifted since the 

convergence is ensured by the exponential component. 

  

4. DISCUSSION 

There is an ongoing debate whether a Lévy pattern, characterised by the 

presence of power laws, is an appropriate model to describe animal movement. While 

some authors strongly support Lévy walk approach (Sims et al. 2008 and Buchanan 

2008 being the latest), others show that at least in some cases non-heavy-tail 

distributions such as exponential are a better fit to the datasets which were originally 
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shown to fit a Lévy walk (Edwards et al. 2007). Our results show that if we would 

only have measured the value of the exponent of the power law distribution (which is 

a principal method for detecting Lévy patterns (Sims et al. 2007, White et al. 2008)) 

we would have concluded that any data range convincingly confirmed Lévy 

behaviour. However, applying more than one model allowed us to get a better 

understanding of aphid walking pattern: we have shown that the short moves were 

power law distributed, but the long moves were exponentially distributed. Therefore, 

the conclusion whether an exponential or a power law is a good fit to the dataset 

depends heavily on how the data were collected.  

Given that the observed distribution was a mixture of a power law and an 

exponential it was not surprising that a truncated power law was the best fit to the 

data. We found a truncated power law in both mean squared displacement and 

distribution of bout durations of black bean aphids. This indicates the presence of 

correlations in both space and time within a limited time interval. We are not aware of 

studies where both mean squared displacement and duration of bouts (active periods) 

were measured at the same time. Our finding suggests that correlations in time lead to 

correlations in space and provides evidence for an assumption that duration of a move 

can be used as a measure of the move length made in some previous studies 

(Viswanathan et al. 1996, 1999). 

In both space and time, strong correlations were found for about 20 s which 

suggests that within 20 seconds aphids kept moving and this movement was 

directional. After 20 s the mean squared displacement and bout durations were 

truncated. This might suggest that truncation in the mean squared displacement was 

driven by truncation in bout durations. In this sense, the observed shape of the mean 

squared displacement should not be interpreted as a correlated random walk since it 



 16

does not emerge from the correlations in the turning angles but from another truncated 

power law process. 

The observed truncation in the distribution of the bout durations could 

potentially arise for various reasons – the two obvious ones being encountering of 

boundaries of the arena and encountering other aphids. Since the two density 

treatments did not differ, encountering other aphids was not likely to cause the 

truncation. Boundaries were not likely to cause truncation either since we found no 

difference in distribution of bout durations in the region where truncation occurred 

(between 20 and 60 s) between aphids moving in small Petri dishes (9 cm in diameter) 

and large square dishes (25x25 cm). The second change in behaviour at 60 s is more 

likely to be related to the boundaries because with the mean speed being about 0.5 

mm/s (Oliver et al. 2007), on average an aphid would  move a distance of 30 mm 

which makes 1/3 of the Petri dish diameter. These results suggest that the truncation 

might be an intrinsic property of aphid movement rather than simply an artefact of the 

experimental design. Our observations differ from the observations of Reynolds and 

Frye (2007) who found only one change in root mean square fluctuations of 

displacement in Drosophila which they related to the space restrictions.  

Our data has demonstrated two distinct modes in the movement of aphids – fast 

and directed or slow with random change of direction. This intermittency can be 

interpreted in two ways: 1) the slow phase can be interpreted as non-movement, and 

then plotting the turning angles against the speed allows us to introduce a natural 

dichotomy between movement and non-movement, based on the characteristics of the 

movement behaviour; 2) the slow phase can be interpreted as an intensive (foraging) 

phase as opposed to fast extensive (relocation) phase. Intermittent locomotion in 

which movements are interspersed with pauses has been reported for at least 21 
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species (Kramer & McLaughlin 2001). Few explanations to these pauses have been 

suggested such as recovering from fatigue, reducing detection by predators, 

stabilizing the perceptual field and others. Our study shows that in aphids such pauses 

are not complete stops, but small moves with a recordable change of the position and, 

therefore, they are best interpreted as a short-range (intensive) search. Such 

intermittency has been reported earlier in Bewick swans (Nolet & Mooij 2002) and in 

Drosophila (Reynolds & Frye 2007).  

Intermittency on its own or combined with power laws has been shown to be 

beneficial when searching for sparse targets (Benichou et al. 2005, 2006 Reynolds 

2006, Lomholt et al. 2007). Typically aphids feed on leaves and young shoots. 

Although a leaf surface does not look like a collection of sparsely distributed food 

parcels, aphids choose particular sites where they can reach phloem vessels with their 

stylets, and the vessels are not evenly distributed within the leaf. Aphid movement is 

similar to the movement of Drosophila, where intermittency was combined with a 

power law distributed long moves (Reynolds & Frye 2007), apart from the truncation 

of the power law. Such truncation might facilitate a search within a restricted area, 

thus keeping an aphid within a leaf.  

To summarise, we have shown that in aphid movement intermittency is 

combined with a relocation phase consisting of a directed and diffusive parts which 

are best described as a truncated power law. A truncated power law was found in both 

space and time suggesting that an individual’s decisions to start and to stop movement 

lead to a corresponding pattern in the mean squared displacement. This approach, 

along with the consideration that data resolution can affect the interpretation of 

movement patterns, provides a universal model for movement patterns, and can serve 
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as a useful building block to integrate movement in models which describe the 

population biology and ecology of moving animals. 
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APPENDIX. DERIVATION OF THE LOG-LIKELIHOOD 

FUNCTIONS 

(1) Log-likelihood function for the Exponential distribution 

The pdf of the exponential model is  

xCexf λ−=)( , [ ]∞∈ ,minxx  where C is the normalisation constant 
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where dj is the number of data points of the value j. The summation can be carried out 

up to any value larger than xmax but for all those values dj=0 and therefore they have 

no effect on the results. 
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Over the bounded range [ ]maxmin , xxx ∈ , 
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(2) Log-likelihood function for the power law distribution 

Similarly to the Exponential distribution, the pdf of the power law model is  

μ−= Cxxf )( , [ ∞∈ ,minxx  where μ
μ

−

−
= 1

min

1
x

C  for μ >1 (for smaller μ 

the distribution cannot be scaled). Then, the probability of x being j is  

P(x = j|μ) = [ ] μ

μμ
μ

μ −

−−
+
−

−+

−

+−−
=

−
=∫ 1

min

11
5.0
5.0

15.0

5.0

)5.0()5.0(
1

)(
x

jjxCdxxf j
j

j

j
 

and the log-likelihood function is 
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(3) Log-likelihood function for the truncated power law distribution 

The pdf of the truncated power law is  

xeCxxf λμ −−=)( , [ ]∞∈ ,minxx  where 
),1(

1

min
1 x

C
λμλμ −Γ

= −  for 

the positive values of x with Γ() being incomplete gamma function. Then, the 

probability of x being j is  

P(x = j|λ,μ) = 
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and the log-likelihood function is 

l(λ,μ|data) = 
),1(

))5.0(,1())5.0(,1(log
min1

max

x
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x
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j λμ

λμλμ
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Figure captions 

Figure 1 Two examples of aphid paths. (a,c) 2-D image of tracks showing temporal 

variance of pixel intensity during the record. The longer an aphid stayed in the same 

place the darker the colour is. It can be seen that fast movement (grey lines) is often 

interrupted by slowing down (black patches). These images were obtained using 

GMimPro software. (b,d) Corresponding speed variation in time. The horizontal lines 

indicate the threshold between movement and non-movement which we employed. 

Figure 2 Speed vs turning angle relationship measured from aphid tracks at 1 s 

intervals. It can be seen that for low speed the corresponding turning angle varied 

greatly while when the speed was high the turning angle was close to zero indicating 

directed movement. The threshold value of 0.3 mm/s was used to distinguish moves 

from non-moves. Other values for the threshold did not change the results 

qualitatively. The inset shows the same relationship for a single track. 

Figure 3 (a) Mean Squared Displacement (MSD)±SE measured from the tracks of 

aphids. The tracks recorded at 10 and 20 aphids per dish (12 replicas each, 360 aphids 

altogether) were pooled. If plotted separately the two lines are very similar with the 

standard errors being closely overlapping. MSD starts as a straight line on double-log 

scales indicating power law relationship and then gradually slows down. For the first 

20 s the equation fitted with the least sum of squares method is y = 0.8x1.93, R2 = 

0.9998. The exponent value of 1.93 indicates the directed movement. (b) Root mean 

squared fluctuation of the displacement (RMSFD). The exponent of the power law 

fitted to the first 20 s is 0.95 (indicating the presence of correlations), and to the 21 to 

60 seconds 0.59 (which is not very different from 0.5 expected for an uncorrelated 

process). The exponent values were found by least sum of squares method. The inset 

shows the same graph on the log-log scales. 
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Figure 4 Double-log plots of the distributions of the bout durations (symbols) together 

with the best fit exponential (dashed line), power law (dotted line) and truncated 

power law (solid line) distributions fitted for the datasets with the minimal move 

duration of 2 s (a), 5 s (b) and 10 s (c). The best-fit parameters were found by fitting 

the unbounded distributions to the data while the plotted values were calculated for 

the bounded distribution to retain  (the formula are given in the 

Appendix). 
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Short title: Intermittency and power laws in aphid movement
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Table 1. The best-fit parameters (with 95% confidence intervals), maximum log-likelihood and 

Akaike weights for the models fitted to the different parts of the dataset. 

model best-fit parameters 
maximum  

log-likelihood 

Akaike 

weights 

fitting to the whole data set (starting from 2 s moves) 

power law μ = 1.869 (1.827-1.912) -4858.02 0 

exponential λ = 0.097 (0.092-0.102) -5405.30 0 

truncated power law 
μ = 1.667 (1.584-1.734) 

λ = 0.007 (0.005-0.010) 
-4828.27 1 

fitting to the part of the data set starting from 5 s moves 

power law μ = 1.890 (1.831-1.952) -3258.22 0 

exponential λ = 0.061 (0.057-0.066) -3206.61 0 

truncated power law 
μ = 0.903 (0.697-1.085) 

λ = 0.029 (0.023-0.036) 
-3172.53 1 

fitting to the part of the data set starting from 10 s moves 

power law μ = 2.115  (2.024-2.212) -2245.63 0 

exponential λ = 0.052  (0.048-0.057) -2170.88 0.7 

truncated power law 
μ = 0.080  (0-0.511) 

λ = 0.050   (0.038-0.560) 
-2170.78 0.3 
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