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Abstract. The astrophysical S-factor for the reaction 7Be(p,γ)8B up to an

energy of 2 MeV (c.m.) and the capture cross section of 7Li(n,γ)8Li up to

1 MeV (c.m.) are calculated using the Direct Capture model (DC). Both

calculations are in good agreement with experimental data.
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1 Introduction

The reaction 7Be(p,γ)8B plays an important role in the so-called ppIII chain

in the hydrogen burning of main-sequence stars. A knowledge of the reaction

rate is essential to determine the branching ratios between the ppI, ppII and

ppIII chains. The magnitude of the reaction cross section is of special interest

for the solar neutrino problem. The reason for this is that in the 37Cl neutrino

experiment [1] 77%, in the Kamiokande II experiment [2] 100% and in the

gallium experiments [3, 4] 11% of the detected neutrino flux originate from

the high-energy neutrinos emitted in the ppIII chain [5]. Therefore, the

reaction rate of the above process determines the high-energy solar neutrino

flux.

The reaction considered in this paper has been measured by various au-

thors at subCoulomb energies. The most recent data have been obtained in

the energy range Ec.m. = 117 − 1230 keV [6].

The dominance of the direct interaction (DI) mechanism and the validity

of the description with the potential-model approach below the Coulomb

barrier has been established in many light-ion reactions ([7] and references

therein). In this work we apply this approach to the above reaction. In the

next section we introduce the direct capture model. In Section 3 the result

for the astrophysical S-factor is given and compared to experimental data.

Finally, in Section 4 the results are summarized.
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2 Potential Model Approach

Potential models are based on the description of the dynamics of the reaction

by a Schrödinger equation with local optical potentials in the entrance and/or

exit channels. Such models are the “Distorted Wave Born Approximation”

(DWBA) [8, 9, 10] for transfer or the “Direct Capture” model (DC) [11, 12,

13] for capture reactions.

In first order perturbation theory the expression for the differential cross

section of a direct capture reaction is [14]:

dσDC

dΩγ

= 2

(

e2

h̄c

)(

mc2

h̄c

)(

kγ

ka

)3
1

2IA + 1

1

2Sa + 1

∑

MAMaMBσ

| TMAMaMB,σ |2 .

(1)

Here IA (MA) and Sa (Ma) are the spins (their projections on the z-axis)

of target and projectile, and σ is the polarization of the electromagnetic

radiation (σ = ±1). The wave numbers of the emitted γ-rays and of the

asymptotic relative wave function in the entrance channel are denoted by kγ

and ka, and m is the reduced mass. We couple the angular momenta in the

spin-orbit representation:

~la + ~Sa = ~ja , (2)

~lb + ~Sa = ~jb , (3)

~IA + ~IB = ~jb . (4)

The coupling and notation are the same as in [14].
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The transition amplitudes TMAMaMB,σ are expanded in terms of rotation

matrix elements dλ
δσ(θ) with the electromagnetic multipole λ (λ = E1, E2,

M1, . . . ),

TMAMaMB,σ =
∑

λ

T λ
MAMaMB ,σ dλ

δσ(θ) , (5)

where δ = MA + Ma − MB and θ is the angle between ka and kγ.

The transition amplitudes are proportional to the radial integrals

T λ ∝ Iλ
lbjbIB ;laja

=
∫

dr UlbjbIB
(r) Oλ(r) χlaja(r) , (6)

where UlbjbIB
(r) and χlaja(r) are the radial parts of the bound state wave func-

tion and the distorted wave function in the entrance channel, respectively.

The functions Oλ(r) are the radial parts of the electromagnetic multipole

operators, which were taken in their approximated form,

OM1(r) ≃ 1, OE1(r) ≃ r, OE2(r) ≃ r2 . (7)

Folding potentials

We solve the radial integral (6) numerically using single folding potentials [15]

for the bound state potential and the optical potential,

V (r) = λ
∫

drA ρA(rA) t(E, ρA, |s = r − rA|) , (8)

which were assumed to be real. Here r is the separation of the centers of

mass of the bound or colliding particles, ρA is the nucleon density of the

target and λ is a normalization constant. For the effective nucleon-nucleon
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interaction t in the entrance and exit channel we chose the density dependent

form of the M3Y interaction [16].

The nucleon density ρA is derived from the charge density distribution

ρp(r) of the target A with the assumption, that the distribution in the nucleus

is the same for protons and neutrons: ρn = (N/Z)ρp [9, p. 474]. This leads

to

ρA = ρp + (N/Z) ρp = (A/Z) ρp . (9)

The density ρA(r) satisfies

4π
∫

ρA(r) r2dr = A, (10)

The normalization constant λ of the folding potential (λsc for the potential

in the entrance channel and λb for the bound state potential) accounts for the

interplay of the Pauli principle and distortion and breakup effects. One of the

advantages of the folding procedure lies in the fact that no open geometrical

parameters exist, since λb is adjusted to reproduce the experimentally known

binding energies and λsc can be adjusted to reproduce scattering phase shifts

(if they are available) or the energies of resonant states (which is done for

7Be(p,γ)8B). Therefore the form of the optical and bound state potentials is

determined uniquely.
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3 Results

7Be(p,γ)8B

The 7Be(p,γ)8B reaction is of crucial importance since it leads to the high-

energy 8B neutrinos. Unfortunately, there are still significant experimental

uncertainties in the low-energy cross section for this reaction. The reaction

was analyzed before in the DC model by using phenomenological poten-

tials [17, 18]. Furthermore, this reaction was also analyzed with the res-

onating group method (RGM) [19] and the generator coordinate method

(GCM) [20, 21]. The numerical calculations in the DI model in this work

were performed using the direct capture code TEDCA [22].

The folding potential for 7Be+p

Because of the instability of 7Be there are no experimental charge distribu-

tions available to compute the nucleon density with Eq. (9) [23]. Therefore

we chose the same distribution as that of 7Li, which should give a suitable

approximation. Although the experimental charge distributions of 7Li and

7Be are somewhat different, the resulting potential should be quite similar.

We conclude this from calculations comparing the folding potentials of 11B+p

and 12C+p.

The folding potential for 7Be+p was calculated using a harmonic oscillator

model for the 7Li charge distribution with parameters a = 1.77 fm and

α = 0.327 [23]. The depth of the pure folding potential is 43 MeV (λ = 1),
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the volume integral per nucleon is 660 MeV fm3.

Calculation of 7Be(p,γ)8B without spin-orbit coupling

All contributions to the transition matrix lead to the ground state of 8B

with spin Jπ = 2+. We use the spectroscopic factors S1p3/2
= 0.977 and

S1p1/2
= 0.0561 from the shell model calculations of [24]. The DC cross

section is a sum over the two final state configurations (jb = 1/2, 3/2),

σDC =
∑

lb jb

C2Slbjb
σlb jb

, (11)

where C2 is the isospin Clebsch-Gordan coefficient.

A strength factor of λb = 1.041 yields the correct separation energy of

138 keV of the bound proton. The bound state wave function is very diluted

due to the very low binding energy. Therefore we had to calculate radial

contributions to the transition matrix up to 200 fm.

In Fig. 1 the astrophysical S-factor is shown. The λ-parameter of the

scattered wave λsc = 0.969 was determined with the condition that the res-

onance in the p-wave has to be at an energy of 632 keV, which leads to

a resonant M1 transition. This value of the normalization parameter de-

termines the potential uniquely and was used for all partial waves in the

entrance channel.

In Fig. 2 the radial integrand (6) of the s-wave is plotted at two differ-

ent energies (Ec.m. = 15 keV and Ec.m. = 1 MeV). At low energies there
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are contributions to the integral from very far outside the nucleus. Those

contributions can be neglected only for distances larger than 200 fm.

As one can see in Fig. 1, the calculated S-factor of 7Be(p,γ)8B agrees

with the experiments [6, 25, 26] quite nicely in absolute value over a wide

range of energies (100 keV − 2 MeV), except in the resonance energy region

near Ec.m. = 632 keV. In particular there is also a very good agreement

with the mean experimental value of S(0) that is used by Bahcall [5] in the

standard solar model. A comparison of the parametrization of the potential

model calculation with these experimental values is given in Tab. 1. The

data of [25] in Fig. 1 were renormalized as suggested by [27].

The experimental width of the 1+-resonance at 632 keV is not reproduced

so well. The calculated width of 100 keV is too large by a factor of 2.5. A

possible explanation for this is the neglect of configuration mixing and other

channels, such as the channel p +7 Be(1/2)− , which could only be taken into

account in a coupled channel calculation.

Calculation with spin-orbit coupling in the entrance channel

Currently another resonance is discussed, which should correspond to a

Jπ = 1+ state of 8B with an excitation energy Ex ≈ 1.5 MeV. This state

is derived from comparison with the excitation spectra of the mirror nucleus

8Li [28] (1+
1 : Ex = 0.9808MeV, 1+

2 : Ex = 2.255MeV). Up to now, no

experimental evidence for the 1+
2 state in 8B is available. The 1+

2 state is
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predicted by the GCM [20] and also by the potential model, if one takes

spin-orbit coupling into account. The two states are assumed to have the

configurations 7Be+p(1p3/2) (1+
1 ) and 7Be+p(1p1/2) (1+

2 ).

We are able to include this doublet in our calculation by employing an

additional spin-orbit potential in the entrance channel. For this spin-orbit

potential we used the usual parametrization [29], with the Woods-Saxon form

factor replaced by the form factor of the folding potential. The strength

λsc = 0.94, together with the spin-orbit term (Vso = 2.44MeV), reproduces

the correct energy separation of the two 1+-resonances at Ec.m. = 632 keV

and Ec.m. = 1.4 MeV. Fig. 3 displays a plot of the contributions of different

partial waves and multipolarities. The influence of the Jπ = 1+
2 -resonance

on the S-factor is negligible, especially for thermonuclear energies.

Calculation with spin-orbit coupling in both channels

According to the shell model calculations of [24], the 1+
1 level in 8B has a

better p3/2 structure (S1p3/2
= 0.3215 and S1p1/2

= 0.1240). Nevertheless,

we also want to consider the description of the ground and first excited

(unbound) state of 8B as a p-wave spin-doublet. The two states should then

have the configurations 7Be+p(1p3/2) (2+) and 7Be+p(1p1/2) (1+
1 ).

The form factor of the spin-orbit potential stays the same as for the

calculation with spin-orbit coupling in the entrance channel. The spin-orbit

strength Vso = 2.01MeV was adjusted to describe the correct energy splitting
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of the two corresponding states in 8Li. The so determined spin-orbit potential

is able to reproduce with λb = λsc = 1.01733 both the binding energy of the

ground state and the resonance in the entrance channel at 0.632 MeV. The

potentials for the three assumptions (no spin-orbit potential, spin-orbit in

the entrance channel and spin-orbit in both channels) are shown in Tab. 2.

Fig. 4 displays the S-factor calculated with the additional spin-orbit po-

tential in both channels. Now the height of the resonance at 632 keV is

reduced, compared to the previous calculations. At this energy, the dom-

inating M1-contribution is formed by the overlap of the quasi-bound and

bound state (Eq. (6)), which are now almost orthogonal. This is due to

the assumption of a spin-dublet with a spin-orbit potential. In Fig. 5, the

radial wave function of the bound state (full line) is shown together with

the scattering wave functions of the p wave at resonance energy (632 keV)

for the case of zero spin-orbit potential (dashed line) and spin-orbit potential

(dashed dotted line). The overlap of scattering wave and bound state reaches

its maximum at 3 fm in both cases, but is much smaller in its absolute value

for the case of spin-orbit potential.

As a consequence, the description of the experimental S-factor by the

potential model gets worse in the resonance energy region (Fig (4)). The

assumption of a spin-dublet does not lead to a good description of the data.
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7Li(n,γ)8Li

We now want to calculate the mirror reaction 7Li(n,γ)8Li with the assumption

of spin-orbit coupling in the entrance channel only, because this seems to be

the most realistic potential. Since the determination of the folding potential

is not depending on isospin, the 7Li+n-potential is the same as the 7Be+p-

potential of the last section. Therfore the optical potential for the entrance

channel can be taken from the analog calculation of 7Be(p,γ)8B (see also

Tab. 2). Also the shell model spectroscopic factors are the same for 8Li and

8B.

We consider the capture into the ground state (Jπ = 2+) and the first

excited state (Jπ = 1+, Ex = 0.9808MeV) of 8Li. The correct binding

energies of these states are reproduced with the parameters λb = 1.0361 for

the ground state and λb = 0.9627 for the first excited state of 8Li.

The result of the calculation is shown in Fig. 6. The experimental data

were taken from [30] (filled circles) and [31]. The open circles and triangles

result from two different normalization procedures. We did not attempt to

reproduce the resonance at Ec.m. = 0.222MeV, which corresponds to a 3+

state in 8Li, since this state has a bad 7Li+n structure [32].
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4 Summary

We have shown that the reactions 7Be(p,γ)8B and 7Li(n,γ)8Li can be de-

scribed by a potential model at thermonuclear energies. The theoretical

values of the low-energy astrophysical S-factor for the different assumptions

concerning the single-particle configurations of 8B are in good agreement

with the mean experimental values of [5]. It can be concluded that the di-

rect interaction mechanism is dominant at energies well below the Coulomb

barrier.

The resonance width and strength of the experimentally known resonance

at Ec.m. = 632 keV are both overestimated by the potential model, if one

uses no spin-orbit potential or a spin-orbit potential in the entrance channel

only. In these cases no special assumptions concerning the single-particle

configurations of the final bound state in 8B are made. If one assumes the

configurations 7Be+p(1p3/2) (2+) and 7Be+p(1p1/2) (1+
1 ) for this state and

introduces an additional spin-orbit potential to describe the bound and first

unbound state simultaneously, the DC cross section in the energy region

of the resonance is strongly reduced (Fig. 4) and underestimates the data,

due to the overlap of relatively orthogonal wavefunctions. But in the non-

resonant energy region the reproduction of the cross section data is excellent

in all cases.

The reaction 7Li(n,γ)8Li was calculated with the potential in the entrance
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channel taken from 7Be(p,γ)8B, since this seems to be the most realistic and

therefore favorable potential ansatz. The agreement with the reaction data

is good, as can be seen in Fig. 6.

The progress of applying the potential model combined with the folding

procedure lies mainly in the fact that no parameter has to be adjusted to the

reaction data. This is neither the case in the phenomenological fits of Barker

et al. [27] nor Kim et al. [14], where potential parameters have to be fitted

to the experimental reaction data.

In our model the strengths of the folding potentials are adjusted to re-

produce the energies of the bound and quasi-bound states. This procedure

is similar to microscopic models [20], where the correct binding energies are

ensured by adjusting a parameter in the nucleon-nucleon interaction.
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Figure captions:

Fig. 1: Astrophysical S-factor for the reaction 7Be(p,γ)8B. Full curve: poten-

tial model calculation (no spin-orbit coupling). The data points are from [6]

(triangles), [25] (circles) and [26] (squares).

Fig. 2: 7Be(p,γ)8B: Radial integrand of Eq. (6) for two different energies in

the entrance channel (s-wave only).

Fig. 3: Contributions of different partial waves and multipolarities to the

cross section of 7Be(p,γ)8B. Here an additional spin-orbit potential in the

entrance channel was used which influences the p-wave contribution near

Ec.m. = 1.4 MeV.

Fig. 4: Astrophysical S-factor of 7Be(p,γ)8B. Full curve: potential model

calculation (spin-orbit coupling in both channels).

Fig. 5: Radial wave functions of the 7Be+p bound state (full line) and scat-

tering wave functions of the p wave at resonance energy (0.632 MeV) for zero

spin-orbit potential (dashed line) and spin-orbit potential in both channels

(dashed dotted line).

Fig. 6: Total cross section for the reaction 7Li(n,γ)8Li. The experimental

data are from [30] (filled circles) and [31] (open circles and triangles).



Table captions:

Tab. 1: Comparison of the results of the potential model calculation of

7Be(p,γ)8B for the three different assumptions (no spin-orbit coupling, spin-

orbit in the entrance channel and spin-orbit in both channels) with the ex-

perimental values of the astrophysical S-factor and its derivative as given

in [5].

Tab. 2: Comparison of the potentials used in the calculation of 7Be(p,γ)8B

and 7Li(n,γ)8Li.



Exp. [5] without SO SO(i) SO(i+f)

S(0) 0.0243 ± 0.0053 0.0249 0.0249 0.0236

Ṡ(0) −3 · 10−5 −3.2 · 10−5 −3.2 · 10−5 −3.1 · 10−5

S(18 keV) 0.0238 ± 0.0052 0.0243 0.0243 0.0231

7Be(p,γ)8B 7Li(n,γ)8Li

without SO SO(i) SO(i+f) SO(i)

λb 1.041046 1.041046 1.01733 1.0361 0.9627

Vso 0 0 2.01 0

Eres −0.138 −0.138

︷ ︸︸ ︷

− 0.138 — −2.033 − 1.052

jb 1/2, 3/2 1/2, 3/2 3/2 1/2 1/2, 3/2 1/2, 3/2

λsc 0.96895 0.94 1.01733 0.94

Vso 0 2.44 2.01 2.44

Eres 0.632

︷ ︸︸ ︷

0.632 1.4

︷ ︸︸ ︷

— 0.632

︷ ︸︸ ︷

— —

ja 1/2, 3/2 3/2 1/2 3/2 1/2 3/2 1/2


