
1 AMO - Advanced Modeling and Optimization, Volume 15, Number 2, 2013.

Traversing non-convex regions

M.C. Bartholomew-Biggs, S.Beddiaf & S.J. Kane

School of Physics Astronomy & Mathematics
University Of Hertfordshire, Hatfield AL10 9AB, United Kingdom

Abstract
This paper considers a method for dealing with non-convex objective functions in optimiza-
tion problems. It uses the Hessian matrix and combines features of trust-region techniques
and continuous steepest descent trajectory-following in order to construct an algorithm
which performs curvilinear searches away from the starting point of each iteration. A
prototype implementation yields promising results.

1 Introduction

It is well-known that iterative methods for unconstrained minimization can experi-
ence difficulties if the search enters a region where the Hessian matrix of the objec-
tive function F(x) is not positive-definite. Popular iterative methods based on min-
imizing a convex quadratic model function become inappropriate in this situation.
In the Newton method, for instance, the search direction p=−∇2F−1∇F may lead
towards a saddle point or a local maximum rather than a minimum. Quasi-Newton
methods which use positive-definite estimates of ∇2F will be able to obtain de-
scent directions; but the standard updates cannot revise the Hessian in non-convex
regions and so progress made by successive iterations may be little better than that
given by steepest descent.

One minimization technique whose use can be justified in non-convex regions is the
trust-region approach. This uses a step which minimizes a local quadratic model
subject to a restriction on the two-norm of the step size. This model problem
always has a solution, whether or not the Hessian is positive-definite. Another
theoretically justifiable way to make progress through a non-convex region is to
follow the continuous steepest descent path (CSDP) obtained by solving the ODE

dx
dt

=−∇F(x). (1)

If we follow this path accurately from x = x1 to x = x2, where ||x2 − x1||= ∆, then
we obtain the maximum decrease in F for all steps of size ∆ away from x1. This
indicates that there is relationship between the CSDP and trust region approaches.
We shall discuss this further in the next section.

1AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

387

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

In this paper we consider a minimization method in which each iteration is based
on the solution of (1). Such algorithms have been proposed by many authors (see,
for instance, [1], [2], [3], [4], [5], [6], [7], [8]) and our focus is on efficient ways
of performing curvilinear searches along an approximate CSDP. The methods sug-
gested by Behrman [1] and Brown [2] are probably the ones to which the ideas in
this paper are closest. Our algorithmic suggestions are still of a preliminary na-
ture; but initial numerical experience seems sufficiently encouraging to be worth
reporting. We outline the main ideas in sections 2 and 3. We then show their out-
working on some sample problems in section 4. Based on observed behaviour on
these demonstration problems, we discuss a prototype algorithm in sections 5 and
6 and describe its performance in section 7. A concluding section indicates areas
for further work.

2 Solving the continuous gradient equation

We use g(x) and G(x) to denote the gradient and Hessian of an objective function
F(x). If xk is an estimate of a local minimum of F obtained after k iterations of a
minimization algorithm then we write Fk = F(xk), gk = g(xk) and Gk = G(xk).

Now consider (1) with initial condition x = xk when t = 0. A step of the Implicit
Euler method uses

xk+1 = xk −δtg(xk+1) (2)

to give xk+1 as an estimate of the solution at t = δt. The right hand side of (2) can
be approximated by

xk −δt(gk +Gk(xk+1 − xk))

and if we write pk = xk+1 − xk then we obtain a linearised form of (2), namely

(I +δtGk)pk =−δtgk. (3)

A well-known observation is that (3) gives a correction step similar to that produced
by a trust-region method which solves

(µI +Gk)pk =−gk. (4)

The parameter µ in (4) is effectively the reciprocal of the step length δt in (3). Thus
(3) causes pk to approach the Newton step as δt → ∞ while (4) gives the Newton
step when µ = 0. Similarly (3) gives pk parallel to −gk when δt = 0 while (4)
makes pk tend to a steepest descent step as µ → ∞.

An important point about (4) is that, even when Gk is not positive definite, it gives
pk as a descent direction, providing µ is chosen sufficiently large. More precisely,
(4) yields pk as the step which minimizes the quadratic model function

1
2

pT Gk p+ pT gk +Fk (5)

388

Traversing non-convex regions

subject to a step-size constraint

||p||2 ≤ ∆. (6)

In (6), ∆ is a function of µ. Trust region methods (see [9] for a detailed survey)
work by choosing a step size ∆ on each iteration and then finding µ so that the
solution of (4) satisfies (6). (This is a non-trivial calculation since the relationship
between ∆ and µ is typically highly nonlinear.) The value of ∆ for the next iteration
is increased if the new point xk+1 = xk + pk gives an acceptable decrease in the
objective function. On the other hand, if F(xk+1)≥ Fk, then ∆ must be reduced.

The correspondence between (3) and (4) allows us to state that, whether Gk is
positive definite or not, (3) will produce a step pk such that F(xk+ pk)< Fk so long
as δt is sufficiently small or µ is sufficiently large.

In the discussion which follows, we assume the exact Hessian Gk is available. (The
algorithmic ideas we develop may also be applicable when (3) and (4) involve a
quasi-Newton estimate of the Hessian which need not be forced to be positive
definite.) We propose an approach in which each iteration traces out a curved path
away from xk by solving (4) for various values of µ. In the troublesome case when
Gk is non positive-definite we must use positive values of µ such that µ > µmin > 0,
where −µmin is the most negative eigenvalue of Gk. When Gk is positive definite,
however, it is natural to use µ= 0 and obtain pk as the classical Newton step (giving
quadratic convergence in the vicinity of a minimum). But, as we shall see later, it
may be beneficial to use negative values of µ to extrapolate beyond a Newton step
when xk is not sufficiently near a minimum for quadratic convergence to occur.

3 Searching along a CSDP

We now consider how to choose value(s) of µ in (4) that will allow the search
to follow an approximate CSDP away from xk. Our aim is to make significant
progress along this path in order to reach an acceptable new point xk+1 at which
the Hessian G will be recomputed. We assume the eigenvalues of Gk are available.
This enables us to detect immediately whether or not Gk is positive definite.

3.1 Approximating the CSDP when Gk is not positive definite

When Gk is not positive-definite the Newton step given by setting µ = 0 in (4)
is likely to lead towards a maximum or saddle point. In order for the coefficient
matrix in (4) to be positive definite (and hence for the solution pk to satisfy the
descent property pT

k gk < 0) we need to use a positive value for µ. More precisely,
if −µmin is the most negative eigenvalue of Gk then we must choose

µ > µmin. (7)

389

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

To trace out an approximate CSDP from xk we first select an initial value µ = µ1
(as discussed later in section 5.1) and we then solve (4) for a sequence of values of
µ1,µ2, ... decreasing towards µmin. We denote a typical trial point by

xk, j = xk + pk, j (8)

where pk, j is obtained by solving (4) with µ= µ j. We can justifiably keep following
the path defined by points xk, j so long as F(x) is being sufficiently reduced and the
xk, j stay acceptably close to the true CSDP.

If Fk, j denotes F(xk, j) we define

D1 =
Fk, j −Fk

gT
k pk, j

(9)

D1 compares the actual change in F with a first-order prediction; in particular, if
F is quadratic, then D1 = 0.5 at the one-dimensional minimum along the search
direction pk, j. Hence, if D1 is appreciably greater than 0.5 we may deduce that
there is still useful progress to be made with values of µ < µ j. (This is especially
true if D1 > 1 which indicates negative curvature over the step from xk to xk, j.)

We can also define

D2 =
Fk, j −Fk

gT
k pk, j +

1
2 pT

k, jGk pk, j
(10)

which measures how the actual change in function compares with a quadratic pre-
diction. Hence if D2 is close to 1 we can assume that xk, j is near the true CSDP.

The measures D1 and D2 relate the behaviour at xk, j to expectations at the initial
point xk, However, when we have used several values of µ to compute trial steps
away from xk we can also consider more local behaviour the function around xk, j
by using a quadratic model of F interpolating the points xk, j−2, xk, j−1 and xk, j to
indicate whether a further step using µ j+1 < µ j is likely to make a significant further
reduction in the objective function. This is discussed in a subsequent section.

Of course, a trial point xk, j may turn out be unacceptable because Fk, j ≥ Fk. If
this happens then D1 < 0. Hence, in order to ensure that an iteration produces a
non-trivial decrease in the objective function, we regard a step as unsuccessful if
it causes D1 to fall below some small positive tolerance Dmin

1 . In such a case we
must retreat along the path by solving (4) with a value of µ > µ j. (If j > 1 we could
simply accept the previous point xk, j−1.)

Once we have found an acceptable xk, j beyond which it does not seem beneficial
to explore the current CSDP any further, we set xk+1 = xk, j and recompute the
Hessian Gk+1 ready to trace out a new CSDP. The ideas outlined in this section
will be strengthened into computable tests in the algorithm given in section 6.

390

Traversing non-convex regions

3.2 Approximating the CSDP when Gk is positive definite

The use of (4) may be rather more straightforward when Gk is positive definite
because the initial choice µ1 = 0 is reasonable. Indeed we could avoid making any
other choice by reverting to a standard line search form of Newton method and
obtaining

xk+1 = xk + spk where Gk pk =−gk

with the scalar step size, s, being chosen so that F(xk+1) < Fk. However we can
also use a strategy which conducts a curvilinear search in terms of µ, as in the
preceding subsection.

The coefficient matrix in (4) will be positive definite if µ> µmin =−λmin where λmin

(> 0) is the smallest eigenvalue of Gk. The initial choice µ1 may either be zero or
a value calculated on the basis of a step-size restriction as discussed in section 5.1,
below. Suppose, as before, that pk, j is the solution of (4) when µ = µ j. Decisions
on whether to extrapolate beyond a trial point xk, j = xk + pk, j by reducing µ can be
made on the basis of the ratios D1 and D2 defined in (9) and (10) and on quadratic
interpolations through the three most recent trial points. Exploration along the
approximate CSDP must not go beyond the point where D1 < Dmin

1 .

4 Illustrative examples

It may be helpful to give some examples which show how a curvilinear search al-
gorithm can behave. We consider a sample problem T1 which involves minimizing

F = x1x2 +0.01(x2
1 +2x2

2 −10)2 (11)

from the starting point x = (2.5,1,6)T (at which the Hessian is not positive defi-
nite). Figure 1 shows the points traced out along an approximate CSDP calculated
as outlined in section 3.1. The circled points show the start and finish of the itera-
tion and the plain dots are intermediate trial points. The initial µ1 is chosen to limit
the size of the initial step ||pk,1|| < 0.1 (using a strategy outlined in section 5.1).
The adjustment of µ is done according to

µ j+1 = µ j −κ(µ j −µmin) (12)

with κ = 0.5. The path illustrated is obtained by continuing to decrease µ until
Fk, j ≥ Fk, j−1.

391

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

2 2.5 3 3.5 4 4.5 5 5.5 6
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: An approximate CSDP iteration for problem T1

At the end point of the approximate CSDP in Figure 1 the Hessian of the function
(11) is positive definite and so a single curvilinear search has succeeded in escaping
from the non-convex region. From this point, four further simple Newton iterations
are sufficient to locate the minimum, as can be seen in Figure 2.

2 2.5 3 3.5 4 4.5 5 5.5 6
−4

−3

−2

−1

0

1

2

Figure 2: A complete solution of problem T1

392

Traversing non-convex regions

Figures 1 and 2 suggest that the exploration along the CSDP during the first iter-
ation has gone rather further than necessary. Therefore we consider what happens
if we curtail the curvilinear search by allowing extrapolation only as long as the
steps are in good agreement with the quadratic model. Specifically, the progress
shown in Figure 3 is obtained with the threshold |1−D2|< 0.15. The iterates now
appear to take a rather more direct route to the solution and only fourteen function
evaluations are needed (as compared with seventeen evaluations for the path shown
in Figure 2).

2 2.5 3 3.5 4 4.5 5 5.5 6
−4

−3

−2

−1

0

1

2

Figure 3: A solution of problem T1 with CSDP extrapolation governed by D2

This simple example illustrates the factors which can affect progress made by a
curvilinear search. Allowing the CSDP extrapolation to go a little too far, as in
Figure 2, involves additional unproductive function evaluations; but, on the other
hand, we have found that being overly restrictive about exploring the CSDP can
lead to an increase in the number of iterations. We can expect broadly similar
principles to apply for larger and more difficult problems and these considerations
will inform the development of a practical curvilinear search algorithm.

Before proceeding to a discussion of such an algorithm, we illustrate the use of the
system (4) in a case when the Hessian is positive definite. We consider problem T2
which involves minimizing the function

F = x1x2 +0.001(x2
1 +2x2

2 −10)4

and we consider the starting guess x0 = (4, −2)T which is marked as O in Figure
4. This figure shows the trial points obtained by solving (4) with µ ≤ 0. The point

393

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

A is reached by the simple Newton step with µ = 0. The corresponding function
value is F ≈ 3.45. Extrapolation using κ = 0.25 in (12) gives µ ≈ −8.4 and the
step produced by (4) gives the trial point B. Here the function value is reduced
to F ≈ 3.0. A further extrapolation using µ ≈ −14.7 leads to the circled point C
where F ≈ 2.65. (This is taken as the end point of the search because the value of
D2 indicates insufficient agreement with the quadratic model.)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−2

−1.95

−1.9

−1.85

−1.8

−1.75

O

A

B

C

D

E

Figure 4: Solution of problem T2

Figure 4 also shows the second (and subsequent) iterations based on (4). The
dotted point D is reached by the Newton step away from C; but the circled point E
is obtained by solving (4) with µ ≈ −3 and this gives a bigger function decrease.
Hence this example shows that, even when the Hessian is positive definite, it can
be beneficial to perform a curvilinear search, based on varying µ in (4).

5 Ingredients of a curvilinear search algorithm

5.1 Initial choice of µ for exploring the CSDP

We now consider the initial choice µ = µ1. In the spirit of trust region methods we
can relate this to an estimate of ||pk,1||2. Suppose ∆k defines an acceptable step size
calculated on the basis of observed function behaviour during the iteration leading
to the current point xk. (A value for ∆0 at the start of the first iteration must be set
arbitrarily). Suppose also that Gk has factors given by

Gk = RDRT where RRT = I and D is a diagonal matrix (13)

394

Traversing non-convex regions

The elements of D are the eigenvalues of Gk and the system (4) can be written

R(µI +D)RT pk =−gk.

Hence the solution of (4) for each value of µ can be done via

ĝk = RT gk; p̂k,i =
ĝk,i

µ+dii
, i = 1, ...,n; pk = Rp̂k. (14)

Because of the orthonormality of R we can deduce that

||pk||2 ≤ 1
µ+λmin

||gk||2

where λmin is the most negative (or least positive) eigenvalue of Gk. Hence in order
to guarantee that ||pk||2 < ∆k we require

1
µ+λmin

≤ ∆k

||gk||2 and so µ ≥ ||gk||2
∆k

−λmin.

Since we must have µ > µmin, an initial µ1 for the iteration which moves away from
xk can be obtained from the safeguarded formula

µ1 = max(γµmin,
||gk||2

∆k
−λmin) (15)

for some γ > 1. In the case when Gk is positive definite, however, it may be prefer-
able to allow the choice µ1 = 0 if it does not imply too large an initial step. Hence
we could use a formula of the form

µ1 = max(0,
||gk||2
c∆k

−λmin) (16)

which allows the Newton step to be taken using a bound ||pk,1||2 ≤ c∆k where c is
some chosen constant. (We note that (15) and (16) only require knowledge of λmin

and do not require the calculation of the matrices R and D in (13).)

5.2 Choosing the step size ∆k+1

After we have completed a curvilinear search to find a new point xk+1 we need
to choose ∆k+1 as an acceptable size for the first trial step on the iteration which
leads away from xk+1. We could simply set ∆k+1 = ||xk+1−xk||2. However it would
probably be better to relate ∆k+1 to the length of step over which the local quadratic
approximation is accurate. We can base this on the error measure D2 given by

D2 =
Fk+1 −Fk

pT gk +
1
2 pT Gk p

where p = xk+1 − xk.

395

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

Suppose we regard a local quadratic approximation as being adequate if

|D2 −1|< Dtol
2 (17)

where Dtol
2 is a specified tolerance. Clearly, if (17) is satisfied at the final point of a

curvilinear search then we can choose ∆k+1 = ||xk+1 − xk||2. However if (17) does
not hold we may be able to estimate the largest steplength over which a quadratic
model would be adequate. For brevity we write A = pT gk and B = 1

2 pT Gk p. We
suppose that

Fk+1 = Fk + pT gk +
1
2

pT Gk p+C = Fk +A+B+C

where C represents the error in the local quadratic model of F over the step p. Then

D2 = 1+
C

A+B

and so we can deduce that the non-quadratic error is given by

C = (D2 −1)(A+B).

If q is a positive scalar we can now estimate the value of D2 that would have
occurred if xk+1 had been obtained as xk +qp. A and B are, respectively, linear and
quadratic functions of stepsize and so, if we assume that C varies as the cube of the
stepsize, we can write

D2(q) = 1+
q3C

qA+q2B
.

In order to estimate the value of q which gives |D2 −1|= Dtol
2 we let

D =

{
Dtol

2 if D2 > 1
−Dtol

2 if D2 ≤ 1

We then want to solve
q3C

qA+q2B
= D

which simplifies to
Cq2 −BDq−AD = 0. (18)

If (18) has a real positive root q we can choose the initial step size limit for the
next iteration as ∆k+1 = q||xk+1 − xk||2. If however (18) has both roots negative or
complex then we can revert to a choice like

∆k+1 = ||xk+1 − xk||2 if |1−D2| ≤ Dtol
2

∆k+1 =
1
2
||xk+1 − xk||2 if |1−D2|> Dtol

2

(In our numerical tests to date we have found that (18) does usually yield a real,
positive root.)

396

Traversing non-convex regions

5.3 Controlling extrapolation along the CSDP

Each trial point along the CSDP corresponds to some choice of µ in (4). In order to
explore the CSDP systematically by choosing suitable values of µ we have found
it convenient to work with τ defined by

τ = (µ−µmin)
−1 so that µ = µmin +

1
τ
. (19)

We can think of τ as being related to the stepsize used in the numerical solution
of (1). In particular τ → 0 as µ → ∞ and hence τ ≈ 0 corresponds to the situation
when (4) yields a very small step in the steepest descent direction.

Consider the initial step pk,1 of an iteration which has been determined using µ= µ1
in (4). Suppose that xk,1 from (8) gives a function value Fk,1. Recall that, if F is
approximately quadratic, D1 from (9) will have a value about 0.5 if xk,1 is near
to the minimum of F along the direction pk,1. Hence, if D1 is greater than some
threshold Dmax

1 (> 0.5), there may be scope for extrapolation beyond xk,1.

If τ1 = (µ1 −µmin)
−1 then we could simply obtain µ2 from (19) with τ = τ2 = ατ1

(for some α > 1). If D1 < 1, however, a less arbitrary choice of τ2 could be made
by treating D1 as a linear function of τ and estimating the value which would give
D1 = 0.5. This is

τ =
0.5τ1

1−D1

In practice we combine these two possibilities and set

τ2 = ατ1 if D1 ≥ 1; τ2 = min(ατ1,
0.5τ1

1−D1
) if D1 < 1. (20)

Exploration of the CSDP continues with µ2 being obtained from (19) to yield pk,2
from (4) and xk,2 from (8). Using Fk,2 = F(xk,2) we can calculate D1 from (9). The
decision to extrapolate beyond xk,2 depends on the condition D1 > Dmax

1 and also
on the behaviour of a quadratic model of F

F = Q(τ) = a+bτ+ cτ2

with coefficients calculated to interpolate

Q(0) = Fk, Q(τ1) = Fk,1, Q(τ2) = Fk,2.

If c ≤ 0 – i.e. if Q(τ) is non-convex – then a further exploratory value τ3 = ατ2 can
be tried. But if c > 0 we choose to keep extrapolating only if two further conditions
hold, namely

Fc < Fb and ρ =
Q′(τc)

Q′(τa)
> ρmin

397

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

where ρmim is a small positive constant. These suggest that F is still decreasing
significantly along the path. If these conditions do hold then τ∗ is found as the
minimizer of Q(τ) and we set

τ3 = min(ατ3,τ∗).

Extrapolation continues in a similar way using τ j, j = 3,4, ... to obtain µ j, pk, j,xk, j,Fk, j
and D1 from (9). The extrapolation algorithm can be summarised as follows:

Algorithm Q-ext(j)
Given τ j−2, τ j−1, τ j, xk, j−2, xk, j−1, xk, j, Fk, j−2, Fk, j−1, Fk, j.
Set f lag = 0
Find a,b,c so Q(τ) = a+bτ+ cτ2 interpolates Q(τi) = Fk,i, i = j−2, j−1, j
If c > 0 and (Fk, j > Fk, j−1 or Q′(τ j)> ρminQ′(τ j−2))

Set f lag = 1 and exit
Else

If c ≤ 0
Set τ j+1 = ατ j

Else
Calculate τ∗ as the minimizer of Q(τ) and set τ j+1 = min(ατ j,τ∗)

5.4 Controlling interpolation along the CSDP

If the step taken when τ = τ j does not produce an acceptable function decrease –
i.e. if it yields xk, j and Fk, j such that D1 < Dmin

1 – then we need to interpolate a new
point using τ < τ j.

We consider first the case when this happens when j = 1. In this case we can
choose a scaling factor β(< 1) and set

τ2 = max(βτ1,
D̄1τ1

1−D1
) where D̄1 =

1
2
(Dmin

1 +Dmax
1).

This uses linear interpolation to estimate the value of τ which would give D1 = D̄1
but includes a safeguard to stop τ becoming too small if D1 is much less than Dmin

1 .

If D1 < Dmin
1 occurs at xk, j with j > 1 and if successful extrapolation has already

taken place then we know that there is an acceptable point corresponding to some
τbest < τ j. Hence we do not want to choose τ j+1 smaller than τbest and so we can
use a more general interpolation formula

τ j+1 = max((τ j −β(τ j − τbest),
1− D̄1

1−D1
τ j). (21)

398

Traversing non-convex regions

6 A prototype algorithm

We now formalise the algorithmic ideas discussed in the previous section, includ-
ing some extra safeguards – for instance by putting an upper limit on τ j when an
extrapolation phase follows some interpolation steps. The resulting algorithm is
called NIMP1 (denoting Newton-based IMPlicit Euler) and it involves parameters
α,β,γ which are used in the adjustment of τ and the selection of µ1 at each iteration.

Algorithm NIMP1 for minimizing F(x)

Choose a starting point x0 and an initial step size ∆0.
For k = 0,1,2, ... (until ||gk|| is sufficiently small and Gk is positive definite)
Calculate Fk,gk,Gk. Compute eigenvalues λmax, ...,λmin of Gk. Set µmin =−λmin

If λmin ≤ 0 obtain µ1 from (15); otherwise set µ1 = 0.
Calculate pk,1 from (4) with µ = µ1. Set τ1 = (µ1 −µmin)

−1. Set τmax = ∞.
Calculate xk,1 from (8) and set Fk,1 = F(xk,1). Get D1 from (9).
If Dmax

1 ≥ D1 ≥ Dmin
1 set xk+1 = xk,1 and go to (*)

Else if D1 > Dmax
1 set τbest = τ1 and calculate τ2 using (20)

Else if D1 < Dmin
1 set τmax = τ j and calculate τ2 from (21)

For j = 2,3, ...
Set µ j = µmin+τ−1

j . Get pk, j from (4) with µ = µ j and hence Fk, j and D1 from (9)
If Dmax

1 ≥ D1 ≥ Dmin
1 set xk+1 = xk, j and go to (*)

Else if D1 > Dmax
1

Calculate τ j+1 using algorithm Q-ext(j)
If f lag = 1 set xk+1 = xk, j and go to (*); otherwise set τ j+1 = min(τ j+1,βτmax)

Else if D1 < Dmin
1 set τmax = τ j and calculate τ j+1 using (21)

End j-loop
(*) Set ∆k+1 = ||xk+1 − xk||2
If |1−D2|> Dtol

2 and q > 0 solves (18) then set ∆k+1 = q||xk+1 − xk||2
end k-loop

Typical parameter choices for use in this algorithm are

α = 1/(1−κ), β = 1/(1+κ), with κ = 0.5

γ = 1.01, Dmin
1 = 0.1, Dmax

1 = 0.6, Dtol
2 = 0.2.

For an n variable problem the initial step size is usually taken as ∆0 = 0.1
√

n.
These values are used to obtain the results given in the next section to demonstrate
performance of a prototype MATLAB implementation of this algorithm in which
the eigenvalues of Gk (but not the eigenvectors) are found using the efficient built-
in procedure eig [10].

399

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

7 Numerical tests with NIMP1

The figures in section 4 for problems T1 and T2 show that the NIMP1 strategy can
be successful in constructing a curvilinear escape route from a non-convex region
and in improving on a Newton step when the function is convex. We now consider
the performance of NIMP1 on some n-variable problems whose objective function
is of the form

F = xT Dx−bT x+M[
n

∑
k=1

ckx2
k −1]2 (22)

where D is a diagonal matrix whose elements are equally spaced between dmax and
dmin; b is an n-vector whose elements are all 0.1; c is an n-vector with ck = k/n2;
and M is a positive constant. We consider four instances in which the matrix D
introduces differing amounts of non-convexity.
Problem P1 has the elements of D lying between dmax = 5 and dmin =−5.
Problem P2 uses dmax = 10 and dmin =−1.
Problem P3 uses dmax = 1 and dmin =−10.
Problem P4 uses dmax = dmin = 0.
The starting guess for all these problems is taken as x = (0,0, ...,0)T so that a large
non-convex region around the origin must be traversed by the curvilinear search.

We begin by using these test problems to consider how NIMP1 performs as the
parameters κ,Dmax

1 and ρmin vary. These quantities control the stepsize and extent
of extrapolation. In particular, as κ → 1 the extrapolation steps get bigger; and as
Dmax

1 → 0.5 and/or ρmin → 0 the number of permitted extrapolation steps increases.
Table 1 shows numbers of iterations and function calls needed for problems P1 –
P4 with n = 100 and M = 100.

On the basis of these results we choose the settings κ= 0.7, Dmin
1 = 0.7, ρmin = 0.2

for use in a comparison of NIMP1 with a truncated Newton trust-region method
implemented fminunc in the MATLAB optimization toolbox [10]. The method in
fminunc is described in [11], [12] and it is comparable with NIMP1 in that it uses
the exact Hessian of the objective function and works with a trust-region subprob-
lem (5), (6) on every iteration. The approach differs from NIMP1 however in not
obtaining an exact solution to the trust-region subproblem but rather by restrict-
ing itself to a two-dimensional subspace. This subspace is defined by the negative
gradient −gk together with either an approximate Newton direction, n ≈ −G−1

k gk
or a direction of negative curvature, s, such that sT Gks < 0. Obtaining the New-
ton direction or a direction of negative curvature could involve the solution of (4)
with µ = 0 or the calculation of the eigensystem of Gk. However the method in
fminunc seeks to avoid doing as much work as NIMP1 on each iteration and hence
it finds n or s, by applying a preconditioned conjugate gradient (PCG) method (see
[13]) to the system Gkn =−gk. When the search is far from the optimum the PCG
method may be terminated with quite a low-accuracy approximation to the New-
ton direction; and, in particular, if Gk is found to be non positive-definite the PCG

400

Traversing non-convex regions

Dmax
1 = 0.5, ρmin = 0.0

Problem κ = 0.5 κ = 0.7 κ = 0.9
P1 6/29 5/22 6/22
P2 4/22 4/18 5/16
P3 8/39 8/36 9/53
P4 11/39 11/37 11/38

Dmax
1 = 0.7, ρmin = 0.2

Problem κ = 0.5 κ = 0.7 κ = 0.9
P1 6/21 5/16 6/16
P2 4/16 4/13 5/13
P3 8/25 8/22 10/31
P4 12/36 11/26 11/32

Dmax
1 = 0.9, ρmin = 0.75

Problem κ = 0.5 κ = 0.7 κ = 0.9
P1 8/24 7/19 6/16
P2 4/16 4/13 5/13
P3 8/25 8/22 15/36
P4 11/31 14/42 14/35

Table 1: Iterations/function calls for NIMP1

method returns a direction of negative curvature, rather than an approximation to
the Newton direction.

As well as comparing numbers of iterations, function calls needed by NIMP1 and
fminunc for the solution of various instances of problem P1 - P4 we also consider
a time-ratio which is given by the execution time by NIMP1 divided by the time for
fminunc.

In Tables 2 - 5 we also quote numbers of iterations and function calls to solve
the problems using the trust-region approach NMTR available on the NEOS server
[15]. This computes correction steps via an approximate solution to the trust-region
problem (5), (6) using an approach described by More and Sorenson [14].

n M NIMP1 fminunc time-ratio NMTR
100 10 6/18 134/134 0.07 18/21
100 100 5/16 54/54 0.14 17/20
100 1000 7/19 40/40 0.24 20/23
100 10000 9/33 54/54 0.45 30/35

Table 2: Comparative results for NIMP1 and fminunc on problem P1

These results present a fairly consistent picture. NIMP1 typically uses considerably

401

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

n M NIMP1 fminunc time-ratio NMTR
100 10 5/16 51/51 0.15 12/14
100 100 4/13 34/34 0.18 12/14
100 1000 6/17 29/29 0.29 18/20
100 10000 7/20 49/49 0.25 27/30

Table 3: Comparative results for NIMP1 and fminunc on problem P2

n M NIMP1 fminunc time-ratio NMTR
100 10 6/19 216/216 0.04 26/30
100 100 8/22 75/75 0.04 22/25
100 1000 11/29 44/44 0.36 21/24
100 10000 23/62 63/63 0.74 30/33

Table 4: Comparative results for NIMP1 and fminunc on problem P3

n M NIMP1 fminunc time-ratio NMTR
100 10 8/26 85/85 0.15 13/15
100 100 11/26 68/68 0.23 15/17
100 1000 19/59 66/66 0.38 23/27
100 10000 34/118 79/79 0.8 42/46
100 100000 68/238 153/154 1.0 77/90

Table 5: Comparative results for NIMP1 and fminunc on problem P4

fewer iterations than fminunc although it sometimes uses more function evalu-
ations. This is consistent with the fact that NIMP1 seeks to extrapolate along a
curved path on each iteration while fminunc does not. Hence NIMP1 often makes
more progress on the basis of each (possibly costly) Hessian evaluation. In conse-
quence, the time-ratio suggests that NIMP1 is very much more efficient. It is only
on problem P4, where there is no strictly negative curvature in the first term of (22)
that fminunc outperforms NIMP1 at larger values of M. Even then the time-ratio
does not give fminunc an advantage.

The performance of NMTR is much more competitive with NIMP1. Generally
speaking, NIMP1 uses fewer iterations but requires more function calls in about
half the examples. NMTR seems to perform better for the larger values of the
weighting parameter M.

As a final comparison we consider some larger-dimensional versions of problems
P1 – P4 along with one further test example Problem T6(n) which features the

402

Traversing non-convex regions

objective function:

F = ρ
n

∑
i=1

(1− xi+1/xi)
2 +(sn − s f)

2 +(un −u f)
2

where
si = si−1 +ui−1τ+

1
2

xiτ2; ui = ui−1 + xiτ

using ρ = 0.01, τ = 3
n , s0 = u0 = u f = 0, s f = 1.5.

The starting point is
xi = 0.66 (i = 1, .., n

2); xi =−0.66 (i = n
2 +1, ...,n).

This problem is described in [16] and is interesting for us because the Hessian
remains non positive-definite until quite close to the solution.

We do not include NMTR in these comparisons because the NEOS server does not
allow the larger problems to be submitted. Instead we quote results for a version
of NIMP1 called NIMP1-ls which performs an Armijo-type line search along the
Newton direction whenever Gk is positive definite. This means that it will behave
like a conventional Newton method in the convex region round a solution.

The results in Table 6 are quite promising. While NIMP1 is not invariably bet-
ter than fminunc, it is seldom significantly worse in terms of either run-time or
counts of iterations and function calls. Moreover, it is worth noting that the ver-
sion NIMP1-ls is never inferior to NIMP1 and is occasionally noticeably better. The
curvilinear search, therefore, is principally of benefit in the non-convex regions for
which it was originally intended.

8 Conclusions and future work

In this paper we have revisited and extended some familiar ideas for dealing with
nonconvex objective functions in optimization problems. These ideas centre on the
strategy of growing an approximation to the steepest descent trajectory away from
the starting point of every iteration. This can be viewed as a curvilinear search, with
the search parameter being the value of µ in the trust-region equation (4). We have
shown that this basic idea can work quite well when the Hessian matrix is used as
in the proposed algorithm NIMP1. An interesting consequence of our initial ideas
is the observation that, for highly non-quadratic functions, it can be beneficial to
carry out a curvilinear search by varying µ in (4) even when the Hessian matrix is
positive-definite.

Our objective has been to understand the features which are important in the con-
struction of an approximate CSDP through a non-convex region in the most favourable
case when the Hessian matrix is available. While we have made quite good progress

403

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

P1(n,10000)
n NIMP1 fminunc time-ratio NIMP1-ls

200 11/29 62/63 0.42 12/30
400 10/27 86/87 0.44 11/29
800 13/34 124/125 0.5 13/33

P2(n,10000)
n NIMP1 fminunc time-ratio NIMP1-ls

200 7/20 59/60 0.43 7/20
400 8/22 80/81 0.4 8/22
800 6/18 114/115 0.29 6/18

P3(n,10000)
n NIMP1 fminunc time-ratio NIMP1-ls

200 26/70 66/67 0.74 22/55
400 27/71 74/75 1.1 27/68
800 29/71 105/106 1.1 27/68

P4(n,10000)
n NIMP1 fminunc time-ratio NIMP1-ls

200 28/96 125/126 0.75 26/63
400 21/56 228/229 0.37 21/55
800 20/71 442/443 0.26 18/47
T6
n NIMP1 fminunc time-ratio NIMP1-ls

100 11/26 14/15 0.46 11/26
200 13/37 21/22 1.1 13/37
400 15/52 27/28 0.59 15/52
800 21/74 32/33 0.7 21/74

Table 6: Comparative results for NIMP1 and fminunc on larger problems

in gaining such understanding there are a number of issues that need further explo-
ration. One of these concerns the repeated solution of (4).

If each iteration of NIMP1 solves the linear system (4) for several different values
of µ then the computational cost will be quite high and may be justifiable only if
the iteration makes much more substantial progress along a curved path than could
be obtained by a straight-line step along pk given by solving (4) for a single value
of µ. In the reported results the repeated solutions of (4) have been done by using
a fresh Cholesky factorization of the coefficient matrix for each µ. However we
might consider other schemes outlined below.
(i) We can avoid repeated Cholesky factorization by once-and-for-all determination
the eigensystem of Gk via the factorization Gk = RDRT . Since RRT = I, the system

404

Traversing non-convex regions

(4) can be written
R(µI +D)RT pk =−gk

and the solution for each value of µ can be done via the steps

ĝk = RT gk; p̂k,i =
ĝk,i

µ+dii
, i = 1, ...,n; pk = Rp̂k. (23)

For a single solution of (4), use of the eigenvalue calculation is more expensive
than a Cholesky factorization. But if several values of µ are tried then the second
and subsequent solutions are cheaper than a re-factorization.
(ii) Another possible approach to repeated solution of (4) would be to seek pk, j
iteratively. For this we would use the factors of the coefficient matrix in (4) with
µ = µ1. If L1LT

1 = (µ1I +Gk) then we can consider an iteration of the form

p̃i+1 = L−T
1 (L−1

1 (−gk − (µ j −µ0)p̃i))

as a way of obtaining p̃i → pk, j.
(iii) A third possibility is to consider problem (5), (6) which underlies (4). Hamaker
[18] has recently proposed an iterative approach to problems of this type which
appears to be very efficient, under certain conditions. This approach might be
capable of application to the NIMP1 subproblem of choosing search directions pk.

The relative merits of (i) – (iii) against the approach implemented in NIMP1 remain
to be investigated but must depend, in part, on how far and how accurately we want
to pursue a curved path solution of (1).

The differential equation (1) can also be solved in a way given by Behrman [1].
This approach uses the RDRT factorization together with the explicit formula

pk =−RΛRT gk (24)

where Λ is a diagonal matrix whose elements are derived from the eigenvalues on
the diagonal of D via

Λii =

{
exp(dii

µ −1)
dii

if dii 6= 0
1
µ if dii = 0

(25)

Behrman uses the search direction (24) in a way which is broadly similar to what
we have described in previous sections of this paper – namely, by adjusting the
µ parameter in order to perform a curvilinear search so long as the trial points
reduce the objective function and are acceptable close to the true CSDP. Beddiaf
[17] quotes results with an implementation of the Behrman method which show
that it does not perform particularly well in comparison with NIMP1.

In revisiting the familiar problem of non-convexity in unconstrained optimization
we have so far adopted a pragmatic approach of developing and testing algorith-
mic ideas via the observation of behaviour on numerical examples. We have not,

405

M.C. Bartholomew-Biggs, S. Beddiaf and S.J. Kane

however, given any formal analysis of the iterative scheme that we propose. If – as
in NIMP1-ls – we revert to a standard Newton method in the convex region round a
solution then the ultimate convergence is assured. Global convergence requires us
to be able to show that the Wolfe conditions are satisfied by the curvilinear search
procedure. Some refinement of NIMP1 may still be needed in order to establish
this. We have not, for example, specified what should be done if gk = 0 and Gk is
not positive definite.

References

[1] Behrman, W., An Efficient Gradient Flow Method for Unconstrained Opti-
mization, PhD Thesis, Stanford University, 1998.

[2] Brown, A.A., Optimisation Methods Involving the Solution of Ordinary Dif-
ferential Equations, PhD Thesis, Hatfield Polytechnic, 1986.

[3] Brown, A.A., Bartholomew-Biggs, M.C. Some Effective Methods for Uncon-
strained Optimization based on the Solution of Systems of Ordinary Differential
Equations, J. Optim. Theory Appl. 62(2):211-224,1989.

[4] Botsaris, C.A., Jacobson, D.H. A Newton-type Curvilinear Search Method for
Optimization, J. Maths Anal.Appl., 54(1):217-229,1976.

[5] Vial, J.P., Zang, Israel, Unconstrained Optimization by Approximation of the
Gradient Path. Maths. Oper. Res., 2(3):253-265, 1977.

[6] Botsaris, C.A., Differential Gradient Methods. J. Maths. Anal. Appl.,
63(1):177-198, 1978

[7] Botsaris, C.A., A Curvilinear Optimization Method Based Upon Iterative Es-
timation of the Eigensystem of the Hessian Matrix. J. Maths. Anal. Appl.,
63(2):396-411, 1978

[8] Neculai,A., Gradient Flow Algorithm for Unconstrained Optimization ICI
Technical Report, April 2004.

[9] Conn,A.,R., Gould, N.I.M., Toint, P.T., Trust Region Methods MPS-SIAM
Series on Optimization, Philadelphia, 2000.

[10] The Mathworks Co, MATLAB documentation, www.mathworks.com

[11] Branch, M.A., T.F. Coleman, Y. Li, A Subspace, Interior, and Conjugate
Gradient Method for Large-Scale Bound-Constrained Minimization Problems,
SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp. 1-23, 1999.

406

Traversing non-convex regions

[12] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional Subspaces,
Mathematical Programming, Vol. 40, pp. 247-263, 1988.

[13] Broyden C.G. and M.T. Vespucci, Krylov Solvers for Linear Algebraic Sys-
tems, Studies in Computational Mathematics, 11, Elsevier, 2004.

[14] More, J.J. and Sorenson, D.C., Computing a Trust Region Step, Technical
Report ANL-81-83, Argonne National Laboratory, 1981

[15] http://www-neos.mcs.anl.gov/neos/solvers/uco:NMTR/C.html.

[16] Bartholomew-Biggs, M.C., Nonlinear Optimization with Engineering Appli-
cations, Springer, 2008.

[17] Beddiaf, S., Continuous steepest descent path for traversing non-convex re-
gions, Advanced Modeling and Optimization, Vol. 1 Number 1, 2009.

[18] Hamaker, C., Optimization of a constrained quadratic function, Studies in
Informatics and Control, Vol. 18, Number 1, 2009.

407

